

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CHINESE CHARACTER DECOMPOSITION WITH COMPOSITIONAL LATENT COMPONENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Humans can decompose Chinese characters into compositional components and recombine them to recognize unseen characters. This reflects two cognitive principles: *Compositionality*, the idea that complex concepts are built on simpler parts; and *Learning-to-learn*, the ability to learn strategies for decomposing and recombining components to form new concepts. These principles provide inductive biases that support efficient generalization. They are critical to Chinese character recognition (CCR) in solving the zero-shot problem, which results from the common long-tail distribution of Chinese character datasets. Existing methods have made substantial progress in modeling compositionality via predefined radical or stroke decomposition. However, they often ignore the learning-to-learn capability, limiting their ability to generalize beyond human-defined schemes. Inspired by these principles, we propose a deep latent variable model that learns **Compositional Latent** components of Chinese characters (CoLa) without relying on human-defined decomposition schemes. Recognition and matching can be performed by comparing compositional latent components in the latent space, enabling zero-shot character recognition. The experiments illustrate that CoLa outperforms previous methods in both character the radical zero-shot CCR. Visualization indicates that the learned components can reflect the structure of characters in an interpretable way. Moreover, despite being trained on historical documents, CoLa can analyze components of oracle bone characters, highlighting its cross-dataset generalization ability.

1 INTRODUCTION

Humans exhibit remarkable flexibility in recognizing Chinese characters by understanding the internal structure of characters. Chinese characters are composed of components that often carry semantic or categorical cues. Skilled readers can decompose complex characters into constituent parts and generalize across structurally similar but previously unseen characters (Shu & Anderson, 1997; Chan & Nunes, 1998). Previous studies show that young children, even English-speaking children, can make informed guesses about unfamiliar Chinese characters based on components (Shu et al., 2000; 2003; Tang et al., 2024). Understanding this compositional mechanism offers critical insight into the design of AI systems for Chinese character recognition.

The principles of compositionality and learning-to-learn, widely discussed in cognitive science, have been proposed to explain how humans decompose abstract concepts into constituent parts and recombine known components to form new ones (Schyns et al., 1998; Winston & Horn, 1975; Smith et al., 2002). Compositionality refers to the idea that complex concepts are structured from simpler parts. Learning-to-learn indicates the ability to automatically acquire strategies for concept decomposition and component recombination. Psychological studies (Freyd, 1983) have demonstrated that these principles also underlie the ability to recognize unseen handwritten characters. Inspired by these cognitive mechanisms, some machine learning models (Lake et al., 2015; 2011; 2017) decompose handwritten characters into strokes and recombine them to generate new characters, enabling rapid generalization in simple handwritten characters. These findings suggest that incorporating the principles into intelligence systems is feasible to realize human-like generalization and Chinese character recognition abilities.

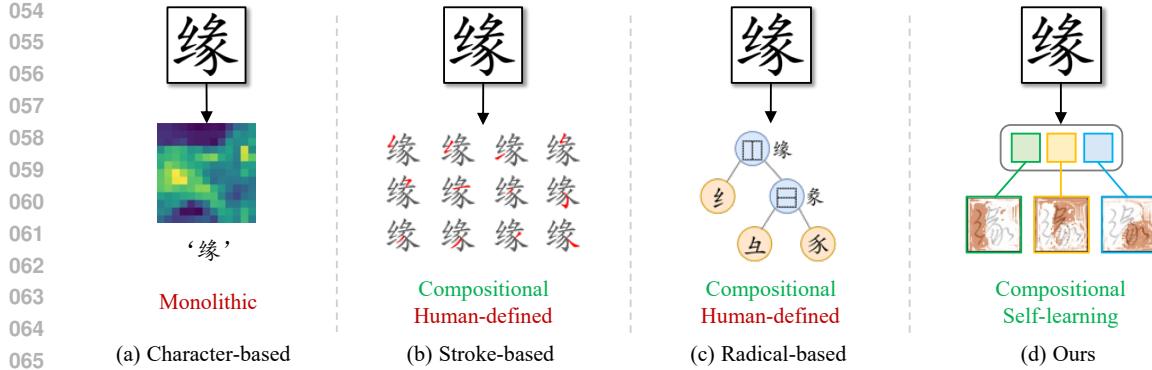


Figure 1: **Different types of Chinese character recognition methods.** (a) character-based methods extract monolithic representations for prediction; (b) and (c) are stroke-based and radical-based methods requiring human-defined decomposition schemes to predict stroke and radical sequences; (d) the proposed CoLa automatically decomposes characters into compositional components.

Due to the large character set, Chinese character datasets typically follow a long-tail distribution. As a result, the zero-shot recognition problem, where test characters are absent from the training set, is inevitable in practical scenarios, such as the digitalization of Chinese historical documents. The above principles provide inductive biases that support efficient generalization and are critical to Chinese character recognition (CCR) in solving the zero-shot problem. The existing approaches have made substantial progress in modeling compositionality by decomposing characters via predefined schemes. They usually rely on human-defined decomposition rules, for example, as shown in Figure 1, the stroke- and radical-based approaches (Wang et al., 2019, 2018; Chen et al., 2021) utilize an auto-regressive decoder to predict corresponding stroke or radical sequences. Recently, based on CLIP (Radford et al., 2021), Yu et al. (2023) proposed an efficient image-IDS matching method for zero-shot CCR. However, they often ignore the learning-to-learn capability to automatically acquire decomposition and recombination strategies from data, limiting their ability to generalize beyond predefined decomposition schemes.

Inspired by the compositionality and learning-to-learn principles of human cognition, we propose a deep latent variable model to learn **Compositional Latent** components from Chinese characters (CoLa). CoLa decomposes Chinese characters into latent compositional components without relying on predefined decomposition schemes such as radicals or strokes. CoLa encodes an input image into component-specific representations in a latent space, which are decoded and recombined to reconstruct the visual features of the input. CoLa compares the input image and templates to determine the most likely character class based on the similarity of compositional latent components, which enables zero-shot recognition of Chinese characters. In our experiments, CoLa significantly outperforms previous methods in the radical zero-shot setting. Visualization results further demonstrate that the components learned by CoLa capture the structure of Chinese characters in an interpretable manner. Although trained on historical documents, CoLa can generalize effectively to decompose and match latent components of oracle bone characters, Korean, and Japanese, highlighting its cross-dataset generalization ability.

2 RELATED WORKS

2.1 ZERO-SHOT CHINESE CHARACTER RECOGNITION

Due to the significantly larger number of Chinese characters compared to Latin characters, character recognition in Chinese inevitably encounters zero-shot problems, *i.e.*, the characters in the test set are excluded in the training set. Early works in Chinese character recognition can be broadly categorized into three types: **1) Character-based.** Before the era of deep learning, the character-based methods usually utilize the hand-crafted features to represent Chinese characters (Jin et al., 2001; Su & Wang, 2003; Chang, 2006). With deep learning achieving a great success, MCDNN (Cireşan & Meier, 2015) takes the first attempt to use CNN for extracting robust features of Chinese characters while

approaching the human performance on handwritten CCR in the ICDAR 2013 competition (Yin et al., 2013). **2) Radical-based.** To solve the character zero-shot problem, some methods propose to predict the radical sequence of the input character image. In (Wang et al., 2018), character images are first fed into a DenseNet-based encoder (Huang et al., 2017) to extract the character features, which are subsequently decoded into the corresponding radical sequences through an attention-based decoder. However, the prediction of radical sequences takes longer time than the character-based methods. Although HDE (Cao et al., 2020) adopts a matching-based method to avoid the time-consuming radical sequence prediction, this method needs to manually design a unique vector for each Chinese character. **3) Stroke-based.** To fundamentally solve the zero-shot problem, some methods decompose Chinese characters into stroke sequences. The early stroke-based methods usually extract strokes by traditional strategies. For example, in (Kim et al., 1999), the authors employed mathematical morphology to extract each stroke in characters. The proposed method in (Liu et al., 2001) describes each Chinese character as an attributed relational graph. Recently, a deep-learning-based method (Chen et al., 2021) is proposed to decompose each Chinese character into a sequence of strokes and employs a feature-matching strategy to solve the one-to-many problem (*i.e.*, there is a one-to-many relationship between stroke sequences and Chinese characters).

Recently, Yu et al. (2023) introduced CCR-CLIP, which aligns character images with their radical sequences to recognize zero-shot characters, achieving comparable inference efficiency with the character-based approach. All previous methods focus on learning Chinese character features through human-defined representations but struggle to achieve high generalization capabilities.

2.2 OBJECT-CENTRIC REPRESENTATION LEARNING

Object-centric representation methods interpret the world in terms of objects and their relationships. They capture structured representations that are more interpretable, compositional, and generalizable, which has become increasingly popular in computer vision, as it aligns with how humans perceive and interact with the world. One class of models extracts object-centric representations with feedforward processes. For example, SPACE and GNM (Lin et al., 2020; Jiang & Ahn, 2020) attempt to divide images into small patches for parallel computation while modeling layouts of scenes. Another class of models initializes and updates object-centric representations by iterative processes (Greff et al., 2017; 2019; Emami et al., 2021). A representative method is Slot Attention, which assigns visual features to initialized slots via iterative cross-attention mechanism (Locatello et al., 2020). Based on Slot Attention, many methods have been proposed to improve the quality of object-centric representations in different scenarios (Seitzer et al., 2022).

3 METHODOLOGY

In this section, we introduce CoLa, a deep latent variable model that learns compositional components from Chinese characters. CoLa encodes characters into latent compositional representations without relying on radical- or stroke-level annotations, nor alignment with predefined standards. In the following sections, we introduce CoLa in detail.

3.1 OVERALL FRAMEWORK

We denote the input character image as \mathbf{X} and its class label as y , where $y \in \mathcal{C}$ and \mathcal{C} is the set of all class labels. N template character images are provided for each character in \mathcal{C} . The set of all template images is \mathcal{T} , where \mathcal{T}_{ij} indicates the j -th template image of the i -th character in \mathcal{C} . The templates are generated from public font files and matched to predict the class y .

Given templates \mathcal{T} and the input image \mathbf{X} , a traditional CCR method predicts the label of \mathbf{X} by maximizing $p(y|\mathbf{X}, \mathcal{T})$. Unlike the traditional methods, CoLa decomposes a character image into *compositional latent components* to extract individual representations. Besides the label prediction task, CoLa incorporates another feature reconstruction objective to ensure that the components retain visual information from the input image. The objective of CoLa is to maximize

$$p(\mathbf{F}, y|\mathbf{X}, \mathcal{T}, \epsilon) = \int p(\mathbf{F}, y, \mathbf{S}, \mathbf{T}|\mathbf{X}, \mathcal{T}, \epsilon) d\mathbf{S} d\mathbf{T}, \quad (1)$$

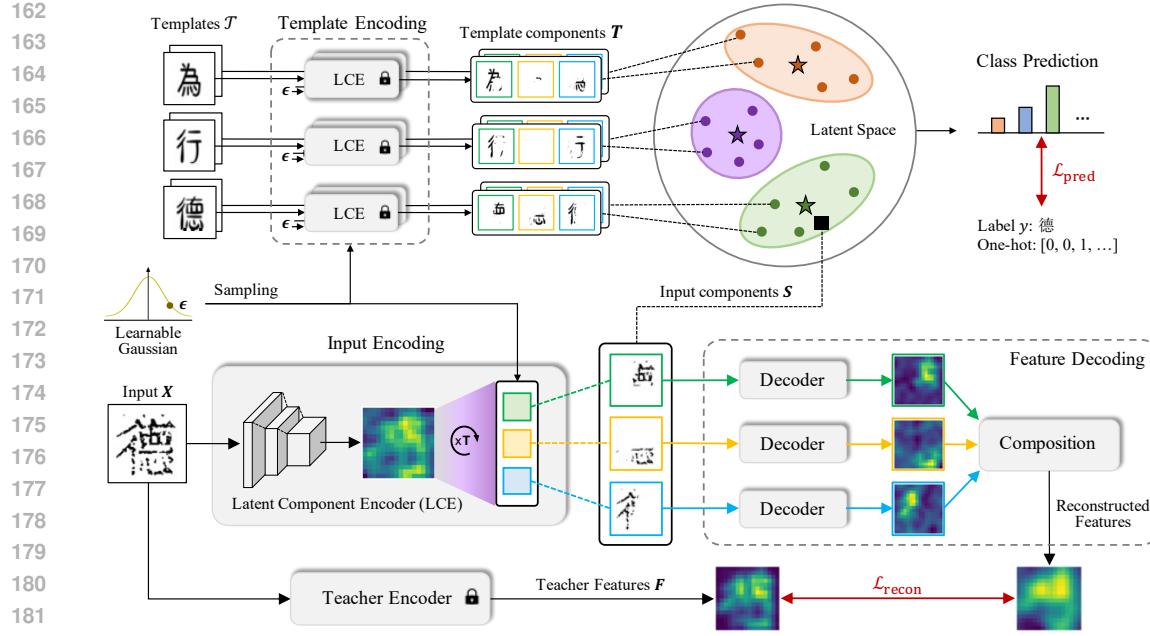


Figure 2: **The overview of CoLa.** CoLa extract compositional latent components of the input image and template images in the input encoding and feature decoding processes, respectively. The input compositional latent components are decoded to reconstruct teacher features. The template compositional latent components constitute a mixture of Gaussians in the latent space, which is used to predict the class of the input image. The training objective is to minimize the distance between the reconstructed features and the features from a frozen teacher encoder, while maximizing the probability that CoLa predicts the correct class label of the input image.

where \mathbf{F} denotes the visual features of \mathbf{X} , and \mathbf{S} and \mathbf{T} represent the compositional latent components of \mathbf{X} and the template set \mathcal{T} , respectively. Although \mathbf{S} and \mathbf{T} appear as intermediate variables in Equation 1, they are treated as latent variables and marginalized. This is because they are neither directly observed nor explicitly defined like radicals or strokes. Instead, they gradually emerge during training, guided by the visual reconstruction and classification objectives, without relying on any external supervision. \mathbf{S} and \mathbf{T} are permutation invariant, i.e., using different component orders will not alter the represented character. To model the permutation invariance, CoLa introduces an observed variable ϵ that specifies the order of components. In the following sections, we describe how CoLa decomposes the conditional generative process $p(\mathbf{F}, y, \mathbf{S}, \mathbf{T} | \mathbf{X}, \epsilon, \mathcal{T})$ in Equation 1 into a set of distinct subprocesses and optimizes the model parameters.

3.2 CONDITIONAL GENERATIVE PROCESS

CoLa decomposes the conditional generative process into four processes:

$$p(\mathbf{F}, y, \mathbf{S}, \mathbf{T} | \mathbf{X}, \epsilon, \mathcal{T}) = \underbrace{p(\mathbf{S} | \mathbf{X}, \epsilon)}_{\text{Input Encoding}} \cdot \underbrace{p(\mathbf{T} | \mathcal{T}, \epsilon)}_{\text{Template Encoding}} \cdot \underbrace{p(\mathbf{F} | \mathbf{S})}_{\text{Feature Decoding}} \cdot \underbrace{p(y | \mathbf{S}, \mathbf{T})}_{\text{Class Prediction}}. \quad (2)$$

CoLa employs an encoder to extract compositional latent components from input images, followed by a decoder to reconstruct visual features based on the representations. The compositional latent components of template images are also extracted and used to predict the class of the input image in the latent space. The generative process of CoLa is composed of the following parts.

Input Encoding. We define $p(\mathbf{S} | \mathbf{X}, \epsilon)$ as a Gaussian distribution $\mathcal{N}(\mu^s, \sigma^2 \mathbf{I})$, where σ is a hyper-parameter. A Latent Component Encoder (LCE) to introduced to estimate $\mu^s \in \mathbb{R}^{K \times D}$, where K is the maximum number of components extracted from the images. \mathbf{X} is encoded by a CNN-based backbone, augmented with positional embeddings, and transformed into visual features through layer normalization and a multilayer Perceptron. We denote the visual features as $\mathbf{H} \in \mathbb{R}^{M \times D}$

216 where M is the number of input features and D is the dimensionality of each feature. μ^s is initialized
 217 by ϵ . In the following iterations, LCE measures the similarity between components and visual
 218 features, updating the components through the slot attention mechanism (Locatello et al., 2020),
 219 which allows each component to gradually focus on different regions of \mathbf{X} . Controlling K encour-
 220 ages LCE to learn interpretable components rather than decomposing the input into more fragmented
 221 parts. Finally, we sample the input compositional latent components by $\mathbf{S} \sim \mathcal{N}(\mu^s, \sigma^2 \mathbf{I})$.

222 **Template Encoding.** The template encoding process is factorized in terms of each template image:
 223

$$224 \quad p(\mathbf{T}|\mathcal{T}, \epsilon) = \prod_{i \in \mathcal{C}} \prod_{n=1}^N p(\mathbf{T}_{i,n}|\mathcal{T}_{i,n}, \epsilon) = \prod_{i \in \mathcal{C}} \prod_{n=1}^N \mathcal{N}(\mu_{i,n}^t, \sigma^2 \mathbf{I}), \quad (3)$$

227 where $\mu_{i,n}^t$ of each template image is estimated using LCE. The template compositional latent com-
 228 ponents are separately sampled via $\mathbf{T}_{i,n} \sim \mathcal{N}(\mu_{i,n}^t, \sigma^2 \mathbf{I})$ for $i \in \mathcal{C}$ and $n = 1, \dots, N$.
 229

230 **Feature Decoding.** The decoder of CoLa transforms \mathbf{S} into the input features \mathbf{F} extract by a teacher
 231 encoder. \mathbf{H} is not chosen as the reconstruction target, since the backbone is updated during training,
 232 which may lead the model to exploit shortcuts that minimize reconstruction loss, e.g., collapsing
 233 \mathbf{H} to a zero matrix. On the other hand, \mathbf{H} may contain low-level information to reconstruct image
 234 details, while neglecting high-level semantics that are more useful for recognition tasks. Seitzer
 235 et al. (Seitzer et al., 2022) point out that well-pretrained visual features can facilitate the model
 236 in learning components that make up images. Inspired by this idea, CoLa introduces a pretrained
 237 teacher encoder, aligning the output of the decoder and the teacher encoder to enhance the ability
 238 of learning compositional latent components. The teacher encoder consists of a frozen DINOv2
 239 encoder (Oquab et al., 2023) and a two-layer convolutional network. The visual features extracted
 240 by the teacher are passed through a prediction head, which is jointly trained with the convolutional
 241 layers by predicting the classes of character images in the training data. The decoding process
 242 $p(\mathbf{F}|\mathbf{S})$ is formulated as $\mathcal{N}(\mu^d, \sigma^2 \mathbf{I})$. CoLa uses a spatial broadcast decoder (Watters et al., 2019)
 243 to convert \mathbf{S}_k to the component features \mathbf{O}_k and corresponding mask \mathbf{M}_k :
 244

$$245 \quad \mathbf{M}_k = \frac{e^{\Lambda_k}}{\sum_{l=1}^K e^{\Lambda_l}}, \quad \text{where } \Lambda_k, \mathbf{O}_k = \text{Decoder}(\mathbf{S}_k), \quad k = 1, \dots, K. \quad (4)$$

246 Λ_k contains unnormalized logits that indicate where the k -th component contributes in the image,
 247 and is converted to the normalized mask \mathbf{M}_k . The component features are combined via mask-
 248 weighted summation, followed by a linear layer to predict the mean $\mu^d = \text{Linear}(\sum_k \mathbf{M}_k \odot \mathbf{O}_k)$.
 249

250 **Class Prediction.** The input and template images are compared according to \mathbf{S} and \mathbf{T} in the latent
 251 space to predict class labels. CoLa assumes that the probability of assigning \mathbf{S} to class i is deter-
 252 mined by its distance to the center of the corresponding templates. Each class i is represented by
 253 the mean of the template compositional latent components, i.e., $\bar{\mathbf{T}}_i = \sum_{n=1}^N \mathbf{T}_{i,n}/N$. Therefore,
 254 $p(y|\mathbf{S}, \mathbf{T})$ is modeled as a categorical distribution, where
 255

$$256 \quad p(y = i|\mathbf{S}, \mathbf{T}) \propto \exp\left(-\|\mathbf{S} - \bar{\mathbf{T}}_i\|_2^2\right). \quad (5)$$

257 3.3 PARAMETER LEARNING

258 The objective in Equation 1 is typically intractable when the conditional generative process is param-
 259 eterized with neural networks, since we need to estimate the integration over \mathbf{S} and \mathbf{T} . The stochastic
 260 gradient variational Bayes (SGVB) estimator (Kingma & Welling, 2013; Sohn et al., 2015) is applied
 261 to make the objective tractable by estimating the log-form of the likelihood through the evidence
 262 lower bound (ELBO). The core idea is to approximate the posterior distribution $p(\mathbf{S}, \mathbf{T}|\mathbf{X}, \mathcal{T}, \epsilon)$
 263 with a variational distribution $q(\mathbf{S}, \mathbf{T}|\mathbf{X}, \mathcal{T}, \mathbf{F}, y, \epsilon)$ parameterized by neural networks. Then Equation
 264 1 is estimated via the following lower bound (see Appendix A for the detailed derivation):
 265

$$266 \quad \text{ELBO} = \mathbb{E}_{q(\mathbf{S}, \mathbf{T}|\mathbf{X}, \mathcal{T}, \mathbf{F}, y, \epsilon)} \left[\log \frac{p(\mathbf{F}, y, \mathbf{S}, \mathbf{T}|\mathbf{X}, \mathcal{T}, \epsilon)}{q(\mathbf{S}, \mathbf{T}|\mathbf{X}, \mathcal{T}, \mathbf{F}, y, \epsilon)} \right]. \quad (6)$$

268 We use a parameter-shared variational distribution as an approximation of the posterior:
 269

$$270 \quad q(\mathbf{S}, \mathbf{T}|\mathbf{X}, \epsilon, \mathcal{T}, \mathbf{F}, y) = q(\mathbf{S}|\mathbf{X}, \epsilon)q(\mathbf{T}|\mathcal{T}, \epsilon), \quad (7)$$

270 which take the same forms as in the generative process to extract compositional latent components
 271 from the input and templates. Therefore, $q(\mathbf{S}|\mathbf{X}, \epsilon)$ and $q(\mathbf{T}|\mathcal{T}, \epsilon)$ are estimated by LCE to reduce
 272 the parameters. Considering Equations 2 and 7, the ELBO in Equation 6 is further refined into:
 273

$$274 \quad \text{ELBO} = \underbrace{\mathbb{E}_{q(\mathbf{S}|\mathbf{X}, \epsilon)} \left[\log p(\mathbf{F}|\mathbf{S}) \right]}_{\text{Reconstruction Term } \mathcal{L}_{\text{recon}}} + \underbrace{\mathbb{E}_{q(\mathbf{S}, \mathbf{T}|\mathbf{X}, \mathcal{T}, \epsilon)} \left[\log p(y|\mathbf{S}, \mathbf{T}) \right]}_{\text{Prediction Term } \mathcal{L}_{\text{pred}}}. \quad (8)$$

275
 276

277 The **reconstruction term** $\mathcal{L}_{\text{recon}}$ encourages the decoder to reconstruct teacher features from
 278 compositional latent components, which ensures that the compositional latent components learned by
 279 CoLa can reflect the structure of characters. The **prediction term** $\mathcal{L}_{\text{pred}}$ measures the similarity
 280 between the prediction results and ground truth class labels, which directly influences the accuracy
 281 of CCR and is critical when training CoLa to recognize Chinese characters. Finally, we compute
 282 the ELBO through a Monte Carlo estimator and the training objective of CoLa is to minimize the
 283 negative ELBO. We introduce a hyperparameter λ to control the importance of the prediction term.
 284 After training, CoLa can directly recognize zero-shot characters based on the templates of novel
 285 character sets. The detailed derivations of the ELBO are provided in Appendix A.
 286

287 4 EXPERIMENTS

288

289 In this section, we first introduce the experimental settings, including data construction and training
 290 details. Then, we show some results of conducted experiments (additional experimental results
 291 are shown in Appendix D) to illustrate the application of the compositional latent components,
 292 including visualization of compositional latent components, zero-shot CCR on three datasets, and
 293 an evaluation on oracle bone characters to validate the cross-dataset generalization ability of CoLa.

294 **Dataset Construction.** In this paper, we mainly conduct experiments on three datasets: HWDB1.0-
 295 1.1 (Liu et al., 2013), Printed artistic characters (Chen et al., 2021) and Historical Documents.
 296 HWDB1.0-1.1 (Liu et al., 2013) contains 2,678,424 handwritten Chinese character images with
 297 3,881 classes, which is collected from 720 writers and covers 3,755 commonly-used Level-1 Chi-
 298 nese characters. Printed artistic characters (Chen et al., 2021) are generated in 105 font files and
 299 contain 394,275 samples for 3,755 Level-1 Chinese characters. The data of Historical Documents is
 300 collected from the web library. The examples of each dataset are shown in Appendix B.

301 **Training Details.** CoLa is trained using the Adam optimizer (Kingma & Ba, 2014) where the
 302 momentums β_1 and β_2 are set to 0.9 and 0.99. For the CNN-based backbone and slot attention
 303 module, we increase the learning rate from 0 to 10^{-4} in the first 30K steps and then halve the
 304 learning rate every 250K steps. For the spatial broadcast decoder, we increase the learning rate from
 305 0 to 3×10^{-4} in the first 30K steps and then halve the learning rate every 250K steps. The training
 306 batch size is 32, and the input image of CoLa will be scaled to 80×80 . We set $K = 3$, $N = 10$ and
 307 $\lambda = 0.01$. More details of model architecture and training settings are provided in Appendix C.

308 4.1 VISUALIZATION OF COMPOSITIONAL LATENT COMPONENTS

309

310 In this section, we visualize the compositional latent components learned by CoLa. CoLa does not
 311 rely on any manually defined decomposition scheme, nor is it designed with the objective of aligning
 312 with radicals. The role of the compositional latent components is to serve as latent representations of
 313 distinct and independent regions within a character. The components provide a self-learning struc-
 314 tural abstraction, while remaining free from the constraints of human-designed radical systems.
 315 Nevertheless, we compare the learned components with human-defined radical-based decomposi-
 316 tions for reference. Our key observation is that, even without any radical-level information, CoLa
 317 can still discover decompositions that align with predefined radicals in certain cases.

318 **Qualitative Analysis.** As shown in Figure 3, we visualize the attended regions of components on
 319 the three datasets. The visualization results reveal that each component focuses on distinct and
 320 independent regions of the character. Despite the absence of fine-grained supervision information
 321 based on radicals or strokes, the compositional latent components can still effectively distinguish
 322 meaningful regions of the character. CoLa produces component decompositions that, in some cases,
 323 align with human-defined schemes (Examples 3, 4, and 8). In the radical annotations, complex
 characters are usually decomposed into a large number of fine-grained elements (Examples 1 and

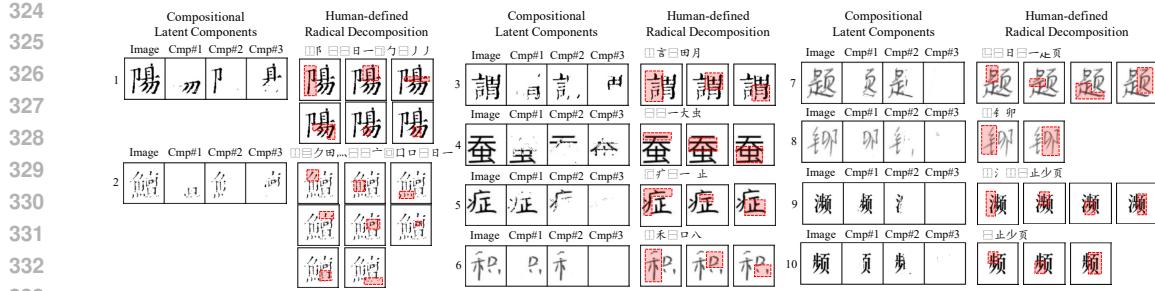


Figure 3: **Visualization of the compositional latent components.** For each example, the left side are compositional latent components (Cmp#1 ~ Cmp#3), and the right side is the human-defined radical decomposition scheme of the character. The radical regions are highlighted using red boxes.

2), whereas CoLa tends to learn higher-level structures. We observe that CoLa performs different hierarchical decompositions for characters. For example, although Cmp#1 of Example 9 can be further decomposed in the same way as Example 10, CoLa chooses to stop at the level of Example 10 without proceeding to finer splits. This suggests that CoLa develops a distinct understanding of decomposition to capture the overall structure of Chinese characters.

Quantitative Analysis. We conduct a quantitative analysis on the attention masks of components. Since the datasets do not provide ground-truth radical masks, we select a subset of 100 different characters from HWDB and manually annotate masks based on the radical annotations. We also apply the CRF-based postprocessing method used in image segmentation (Kamnitsas et al., 2017), and compute mIoU between the component masks and the ground-truth radical masks after postprocessing (+CRF). Table 1 reports the quantitative results where CoLa outperforms Slot Attention. Applying CRF post-processing significantly improves the performance of CoLa. This indicates that the masks produced by CoLa are more structurally meaningful and therefore benefit from CRF-based refinement, whereas the lower-quality masks from Slot Attention leave little room for CRF to contribute. Overall, these results validate the effectiveness of CoLa in discovering interpretable components and show that it can be further enhanced with standard post-processing techniques.

4.2 RESULTS ON CHINESE CHARACTER RECOGNITION

We follow (Chen et al., 2021) to construct the corresponding datasets for the character zero-shot and radical zero-shot settings. We select several radical-based methods (Wang et al., 2018; Cao et al., 2020; Luo et al., 2023; Li et al., 2024; Zhang et al., 2025), stroke-based method (Chen et al., 2021; Yu et al., 2024; Zu et al., 2022) and matching-based method (Yu et al., 2023) as the compared methods in zero-shot settings. For fair comparison, some few-shot CCR models (Li et al., 2020), which trained with additional samples from the test character set, are not considered. Moreover, since the character accuracy of character-based methods is almost zero in zero-shot settings, these methods are also not used for comparison.

Character Zero-Shot Setting. For the character zero-shot settings, we collect samples with labels falling in the first m classes as the training set and the last k classes as the test set. For the handwritten character dataset HWDB and printed artistic character dataset, m ranges in $\{500, 1000, 1500, 2000, 2755\}$ and k is set to 1000. We first validate the effectiveness of CoLa in the character zero-shot setting. As shown in Table 2, regardless of the handwritten or printed character dataset, the proposed CoLa outperforms previous methods by a clear margin. For instance, in the 500 HWDB character zero-shot setting, the proposed method achieves a performance improvement of about 47% compared with the previous methods.

Table 1: **Quantitative results of the component masks.** We compute the mIoU between component masks and ground-truth radical masks.

Models	mIoU \uparrow
Slot Attention	0.2745
Slot Attention + CRF	0.2748
CoLa	0.3478
CoLa + CRF	0.4349

378
 379 **Table 2: Accuracy (%) of Chinese character recognition on the character and radical zero-**
 380 **shot setting.** CoLa outperforms the previous methods on handwritten and printed character datasets
 381 HWDB and Printed, especially with a limited training charset (with only 500 training characters).
 382 The training of CoLa does not rely on human-defined decomposition schemes, therefore the com-
 383 positional latent components learned by CoLa can handle zero-shot radicals more effectively.

Datasets	HWDB (Character Zero-shot)					Printed (Character Zero-shot)				
	500	1000	1500	2000	2755	500	1000	1500	2000	2755
DenseRAN	1.70	8.44	14.71	19.51	30.68	0.20	2.26	7.89	10.86	24.80
HDE	4.90	12.77	19.25	25.13	33.49	7.48	21.13	31.75	40.43	51.41
SD	5.60	13.85	22.88	25.73	37.91	7.03	26.22	48.42	54.86	65.44
ACPM	9.72	18.50	27.74	34.00	42.43	-	-	-	-	-
CUE	7.43	15.75	24.01	27.04	40.55	-	-	-	-	-
SideNet	5.10	16.20	33.80	44.10	50.30	-	-	-	-	-
HierCode	6.22	20.71	35.39	45.67	56.21	-	-	-	-	-
RSST	11.56	21.83	35.32	39.22	47.44	23.12	42.21	62.29	66.86	71.32
CCR-CLIP	21.79	42.99	55.86	62.99	72.98	23.67	47.57	60.72	67.34	76.44
Ours	68.59	76.58	79.16	81.16	82.71	78.10	85.38	90.32	93.26	92.70
Datasets	HWDB (Radical Zero-shot)					Printed (Radical Zero-shot)				
	50	40	30	20	10	50	40	30	20	10
DenseRAN	0.21	0.29	0.25	0.42	0.69	0.07	0.16	0.25	0.78	1.15
HDE	3.26	4.29	6.33	7.64	9.33	4.85	6.27	10.02	12.75	15.25
SD	5.28	6.87	9.02	14.67	15.83	11.66	17.23	20.62	31.10	35.81
ACPM	4.29	6.20	7.85	10.36	12.51	-	-	-	-	-
RSST	7.94	11.56	15.13	15.92	20.21	13.90	19.45	26.59	34.11	38.15
CCR-CLIP	11.15	13.85	16.01	16.76	15.96	11.89	14.64	17.70	22.03	21.27
-pred -teach	10.59	11.65	8.04	12.11	11.89	10.49	10.24	8.44	8.45	9.41
-pred	30.09	35.96	42.81	39.22	49.63	34.50	37.38	41.47	39.15	36.30
Ours	70.40	74.80	77.01	80.64	75.78	82.23	84.48	82.20	92.12	94.81

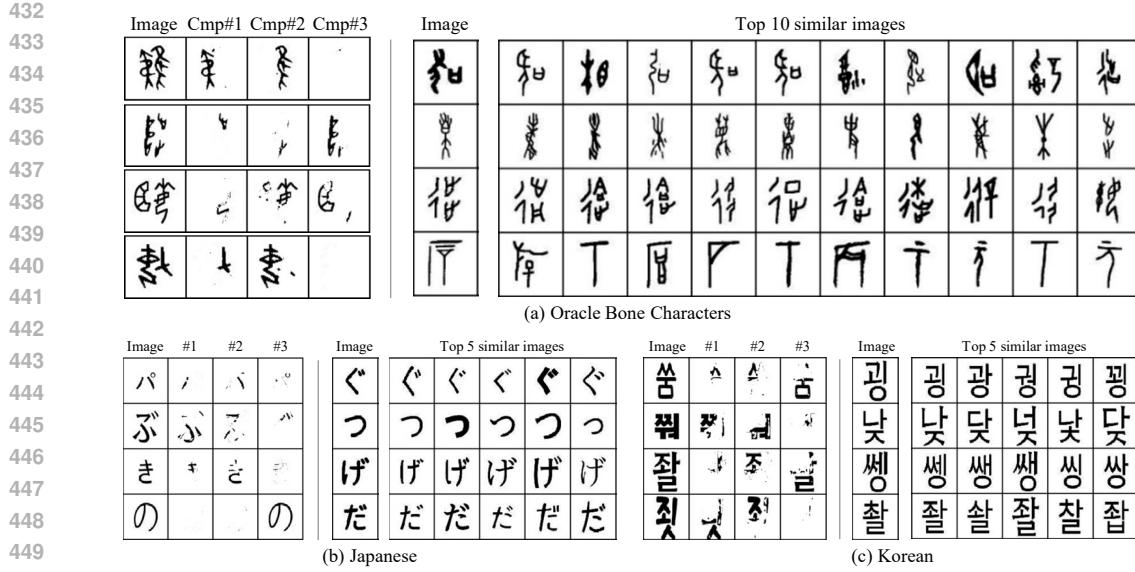
406
 407
 408
 409 **Radical Zero-Shot Setting.** For the radical zero-shot settings, we first calculate the frequency of
 410 each radical in the lexicon. Then the samples of characters that have one or more radicals appearing
 411 less than n times are collected as the test set, otherwise, collected as the training set, where n ranges
 412 in $\{10, 20, 30, 40, 50\}$ in the radical zero-shot settings. The experimental results shown in Table 2
 413 indicate that the proposed method achieves the best performance across all sub-settings with an
 414 average improvement of about 60% in accuracy compared to the previous methods. Since we do
 415 not introduce manually defined radical or stroke sequences for supervision, CoLa can still achieve
 416 satisfying performance in the case of radical zero-shot scenarios. Although the radicals in test sets
 417 are not common in training sets, the proposed CoLa can robustly decompose corresponding latent
 418 components, improving the zero-shot recognition performance.

419 **Historical Document Characters.** We also collect a dataset from
 420 historical documents to validate the effectiveness of our method.
 421 Historical documents contain more characters with complex struc-
 422 tures, and they often exhibit broken or blurred strokes. Through
 423 the results in Table 3, we observe that the proposed CoLa can
 424 achieve a performance improvement of about 35% compared with
 425 the previous method CCR-CLIP (Li et al., 2020), which validates
 426 the robustness of CoLa in more complicated settings.

427 **Ablation Study.** The results in Table 2 show that removing the
 428 teacher encoder (-teach) or the prediction loss (-pred) leads to sig-
 429 nificant performance decreases. The teacher encoder is crucial for
 430 learning latent components from character images. Pixel-level reconstruc-
 431 tion makes it difficult for CoLa to segment components that generalize well, while high-level teacher features can provide
 432 clearer guidance for component learning. The prediction loss aligns the latent component represen-
 433 tations of handwritten characters with those of printed templates. In HWDB, it encourages char-

434
 435 Table 3: Accuracy (%) of Chi-
 436 nese character recognition on
 437 historical document characters.

Models	Accuracy \uparrow
SD	11.09
DenseRAN	13.43
CCR-CLIP	22.36
Ours	57.37



451 **Figure 4: Cross-dataset evaluation on Oracle Bone Characters (OBCs), Japanese characters and Korean characters.** On the left of each figure, we present the component parsing results obtained by applying CoLa trained on Historical Documents to OBCs, Japanese, and Korean. On the right of each figure, we select four examples and visualize the top-10 or top-5 similar samples.

456 actors belonging to the same class to be projected into similar regions of the latent space, thereby
457 enhancing the model’s ability to match components effectively and improving recognition accuracy.

460 4.3 CROSS-DATASET EVALUATION

461 This experiment evaluates the cross-dataset generalization ability of CoLa. We examine whether
462 a model trained on historical Chinese characters can transfer its decomposition capability to other
463 types of characters without retraining. To this end, we introduce three datasets, including Oracle
464 Bone Characters (OBCs) (Wang et al., 2024), Japanese characters, and Korean characters. Figure
465 4 presents the decomposition results and the top similar images retrieved based on the similarity of
466 compositional latent components. Despite the substantial visual gap between modern and OBCs,
467 CoLa can extract components and retrieve visually related samples. For Japanese and Korean char-
468 acters, CoLa can parse distinct components and retrieve similar samples, though parsing Korean
469 characters proves more challenging due to the larger set of visually similar components. These find-
470 ings confirm that CoLa demonstrates effective cross-dataset generalization and has the potential to
471 discover compositional structures in previously unseen writing systems.

473 5 DISCUSSION

475 In this paper, we propose a deep latent variable model to learn Compositional Latent components of
476 Chinese characters (CoLa) to address challenges in Chinese character recognition, particularly zero-
477 shot recognition. CoLa offers a unique solution by automatically learning compositional compo-
478 nents from the data as latent variables, distinct from traditional radical or stroke-based approaches.
479 The experimental results demonstrate that CoLa outperforms previous methods in character and
480 radical zero-shot settings. The visualization experiments also reveal that the acquired components
481 reflect the structure of Chinese characters in an interpretable manner and can be applied to analyze
482 oracle bone characters, Japanese characters, and Korean characters.

483 **Limitation.** Although CoLa achieves outperforming results in zero-shot settings, its capability in
484 scene images with complex backgrounds or low resolution remains underexplored. The complex
485 backgrounds and noise in scene images are unfavorable factors that impact the decomposition of
486 components, which can be a significant topic in future work.

486 REFERENCES
487

488 Zhong Cao, Jiang Lu, Sen Cui, and Changshui Zhang. Zero-shot handwritten chinese character
489 recognition with hierarchical decomposition embedding. *Pattern Recognition*, 107:107488, 2020.

490 Lily Chan and Terezinha Nunes. Children’s understanding of the formal and functional characteris-
491 tics of written chinese. *Applied psycholinguistics*, 19(1):115–131, 1998.

492 Fu Chang. Techniques for solving the large-scale classification problem in chinese handwriting
493 recognition. In *Summit on Arabic and Chinese Handwriting Recognition*, pp. 161–169. Springer,
494 2006.

495 Jingye Chen, Bin Li, and Xiangyang Xue. Zero-shot chinese character recognition with stroke-level
496 decomposition. *arXiv preprint arXiv:2106.11613*, 2021.

497 Dan Cireşan and Ueli Meier. Multi-column deep neural networks for offline handwritten chinese
498 character classification. In *2015 international joint conference on neural networks (IJCNN)*, pp.
499 1–6. IEEE, 2015.

500 501 Patrick Emami, Pan He, Sanjay Ranka, and Anand Rangarajan. Efficient iterative amortized in-
502 ference for learning symmetric and disentangled multi-object representations. In *International
503 Conference on Machine Learning*, pp. 2970–2981. PMLR, 2021.

504 Jennifer J Freyd. Representing the dynamics of a static form. *Memory & cognition*, 11(4):342–346,
505 1983.

506 507 Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization.
508 *Advances in Neural Information Processing Systems*, 30, 2017.

509 510 Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel
511 Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
512 learning with iterative variational inference. In *International Conference on Machine Learning*,
513 pp. 2424–2433. PMLR, 2019.

514 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
515 convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern
516 recognition*, pp. 4700–4708, 2017.

517 518 Jindong Jiang and Sungjin Ahn. Generative neurosymbolic machines. *Advances in Neural Informa-
519 tion Processing Systems*, 33:12572–12582, 2020.

520 Lian-Wen Jin, Jun-Xun Yin, Xue Gao, and Jiang-Cheng Huang. Study of several directional feature
521 extraction methods with local elastic meshing technology for hcrc. In *Proceedings of the Sixth
522 Int. Conference for Young Computer Scientist*, pp. 232–236, 2001.

523 Konstantinos Kamnitsas, Christian Ledig, Virginia FJ Newcombe, Joanna P Simpson, Andrew D
524 Kane, David K Menon, Daniel Rueckert, and Ben Glocker. Efficient multi-scale 3d cnn with fully
525 connected crf for accurate brain lesion segmentation. *Medical image analysis*, 36:61–78, 2017.

526 Jin Wook Kim, Kwang In Kim, Bong Joon Choi, and Hang Joon Kim. Decomposition of chinese
527 character into strokes using mathematical morphology. *Pattern Recognition Letters*, 20(3):285–
528 292, 1999.

529 530 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
531 arXiv:1412.6980*, 2014.

532 533 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint
534 arXiv:1312.6114*, 2013.

535 536 Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning of
537 simple visual concepts. In *Proceedings of the annual meeting of the cognitive science society*,
538 volume 33, 2011.

539 Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. *Science*, 350(6266):1332–1338, 2015.

540 Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
 541 machines that learn and think like people. *Behavioral and brain sciences*, 40:e253, 2017.
 542

543 Zhiyuan Li, Qi Wu, Yi Xiao, Min Jin, and Huaxiang Lu. Deep matching network for handwritten
 544 chinese character recognition. *Pattern Recognition*, 107:107471, 2020.

545 Ziyan Li, Yuhao Huang, Dezhi Peng, Mengchao He, and Lianwen Jin. Sidenet: Learning repre-
 546 sentations from interactive side information for zero-shot chinese character recognition. *Pattern*
 547 *Recognition*, 148:110208, 2024.

548

549 Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
 550 Jiang, and Sungjin Ahn. Space: Unsupervised object-oriented scene representation via spatial
 551 attention and decomposition. *arXiv preprint arXiv:2001.02407*, 2020.

552 Cheng-Lin Liu, In-Jung Kim, and Jin H Kim. Model-based stroke extraction and matching for
 553 handwritten chinese character recognition. *Pattern Recognition*, 34(12):2339–2352, 2001.

554

555 Cheng-Lin Liu, Fei Yin, Da-Han Wang, and Qiu-Feng Wang. Online and offline handwritten chinese
 556 character recognition: benchmarking on new databases. *Pattern Recognition*, 46(1):155–162,
 557 2013.

558 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
 559 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
 560 tion. *Advances in Neural Information Processing Systems*, 33:11525–11538, 2020.

561

562 Guo-Feng Luo, Da-Han Wang, Xia Du, Hua-Yi Yin, Xu-Yao Zhang, and Shunzhi Zhu. Self-
 563 information of radicals: A new clue for zero-shot chinese character recognition. *Pattern Recog-*
 564 *nition*, 140:109598, 2023.

565

566 Maxime Oquab, Timothée Darzet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 567 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 568 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

569

570 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 571 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 572 models from natural language supervision. In *International conference on machine learning*, pp.
 573 8748–8763. PMLR, 2021.

574

575 Philippe G Schyns, Robert L Goldstone, and Jean-Pierre Thibaut. The development of features in
 576 object concepts. *Behavioral and brain Sciences*, 21(1):1–17, 1998.

577

578 Maximilian Seitner, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-Johann
 579 Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, et al. Bridging the
 580 gap to real-world object-centric learning. *arXiv preprint arXiv:2209.14860*, 2022.

581

582 Hua Shu and Richard C Anderson. Role of radical awareness in the character and word acquisition
 583 of chinese children. *Reading Research Quarterly*, 32(1):78–89, 1997.

584

585 Hua Shu, Richard C Anderson, and Ningning Wu. Phonetic awareness: Knowledge of orthography–
 586 phonology relationships in the character acquisition of chinese children. *Journal of Educational*
 587 *Psychology*, 92(1):56, 2000.

588

589 Hua Shu, Xi Chen, Richard C Anderson, Ningning Wu, and Yue Xuan. Properties of school chinese:
 590 Implications for learning to read. *Child development*, 74(1):27–47, 2003.

591

592 Linda B Smith, Susan S Jones, Barbara Landau, Lisa Gershkoff-Stowe, and Larissa Samuelson.
 593 Object name learning provides on-the-job training for attention. *Psychological science*, 13(1):
 594 13–19, 2002.

595

596 Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
 597 conditional generative models. *Advances in neural information processing systems*, 28, 2015.

598

599 Yih-Ming Su and Jhing-Fa Wang. A novel stroke extraction method for chinese characters using
 600 gabor filters. *Pattern Recognition*, 36(3):635–647, 2003.

594 Min Tang, Rongzhi Liu, and Fei Xu. Compositionality in chinese characters: Evidence from english-
 595 speaking children. In *Proceedings of the Annual Meeting of the Cognitive Science Society*, vol-
 596 ume 46, 2024.

597

598 Pengjie Wang, Kaile Zhang, Xinyu Wang, Shengwei Han, Yongge Liu, Jinpeng Wan, Haisu Guan,
 599 Zhebin Kuang, Lianwen Jin, Xiang Bai, et al. An open dataset for oracle bone character recogni-
 600 tion and decipherment. *Scientific Data*, 11(1):976, 2024.

601

602 Tianwei Wang, Zecheng Xie, Zhe Li, Lianwen Jin, and Xiang Chen. Radical aggregation network
 603 for few-shot offline handwritten chinese character recognition. *Pattern Recognition Letters*, 125:
 604 821–827, 2019.

605

606 Wenchao Wang, Jianshu Zhang, Jun Du, Zi-Rui Wang, and Yixing Zhu. Denseran for offline hand-
 607 written chinese character recognition. In *2018 16th International Conference on Frontiers in*
Handwriting Recognition (ICFHR), pp. 104–109. IEEE, 2018.

608

609 Nicholas Watters, Loic Matthey, Christopher P Burgess, and Alexander Lerchner. Spatial broadcast
 610 decoder: A simple architecture for learning disentangled representations in vaes. *arXiv preprint*
arXiv:1901.07017, 2019.

611

612 Patrick Henry Winston and Berthold Horn. *The psychology of computer vision*, volume 67. McGraw-
 613 Hill New York, 1975.

614

615 Fei Yin, Qiu-Feng Wang, Xu-Yao Zhang, and Cheng-Lin Liu. Icdar 2013 chinese handwriting recog-
 616 nition competition. In *2013 12th international conference on document analysis and recognition*,
 pp. 1464–1470. IEEE, 2013.

617

618 Haiyang Yu, Xiaocong Wang, Bin Li, and Xiangyang Xue. Chinese text recognition with a pre-
 619 trained clip-like model through image-ids aligning. In *Proceedings of the IEEE/CVF International*
Conference on Computer Vision (ICCV), pp. 11943–11952, October 2023.

620

621 Haiyang Yu, Jingye Chen, Bin Li, and Xiangyang Xue. Chinese character recognition with radical-
 622 structured stroke trees. *Machine Learning*, 113(6):3807–3827, 2024.

623

624 Yuyi Zhang, Yuanzhi Zhu, Dezhi Peng, Peirong Zhang, Zhenhua Yang, Zhibo Yang, Cong Yao, and
 625 Lianwen Jin. Hiercode: A lightweight hierarchical codebook for zero-shot chinese text recogni-
 626 tion. *Pattern Recognition*, 158:110963, 2025.

627

628 Xinyan Zu, Haiyang Yu, Bin Li, and Xiangyang Xue. Chinese character recognition with aug-
 629 mented character profile matching. In *Proceedings of the 30th ACM International Conference on*
Multimedia, pp. 6094–6102, 2022.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A PROOFS AND DERIVATIONS
649650 A.1 ELBO
651652 According to the stochastic gradient variational Bayes (Kingma & Welling, 2013; Sohn et al., 2015),
653 the log-likelihood $p(\mathbf{F}, y | \mathbf{X}, \epsilon, \mathcal{T})$ can be estimated using the following evidence lower bound
654 (ELBO).

$$\begin{aligned}
& \log p(\mathbf{F}, y | \mathbf{X}, \epsilon, \mathcal{T}) \\
&= \int q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y) \log p(\mathbf{F}, y | \mathbf{X}, \epsilon, \mathcal{T}) d\mathbf{S} d\mathbf{T} \\
&= \int q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y) \log \frac{p(\mathbf{F}, y, \mathbf{S}, \mathbf{T} | \mathbf{X}, \epsilon, \mathcal{T}) q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y)}{p(\mathbf{S}, \mathbf{T} | \mathbf{F}, y, \mathbf{X}, \epsilon, \mathcal{T}) q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y)} d\mathbf{S} d\mathbf{T} \\
&= \int q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y) \log \frac{p(\mathbf{F}, y, \mathbf{S}, \mathbf{T} | \mathbf{X}, \epsilon, \mathcal{T})}{q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y)} d\mathbf{S} d\mathbf{T} \\
&\quad + \int q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y) \log \frac{q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y)}{p(\mathbf{S}, \mathbf{T} | \mathbf{F}, y, \mathbf{X}, \epsilon, \mathcal{T})} d\mathbf{S} d\mathbf{T} \\
&= \int q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y) \log \frac{p(\mathbf{F}, y, \mathbf{S}, \mathbf{T} | \mathbf{X}, \epsilon, \mathcal{T})}{q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y)} d\mathbf{S} d\mathbf{T} \\
&\quad + \text{KL}(q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y) \| p(\mathbf{S}, \mathbf{T} | \mathbf{F}, y, \mathbf{X}, \epsilon, \mathcal{T})) \\
&\geq \mathbb{E}_{q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y)} \left[\log \frac{p(\mathbf{F}, y, \mathbf{S}, \mathbf{T} | \mathbf{X}, \epsilon, \mathcal{T})}{q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y)} \right] = \text{ELBO}
\end{aligned} \tag{9}$$

672 Given the conditional generative process $p(\mathbf{F}, y, \mathbf{S}, \mathbf{T} | \mathbf{X}, \epsilon, \mathcal{T})$ and the variational distribution
673 $q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y)$ in Equations 2 and 7:

$$\begin{aligned}
p(\mathbf{F}, y, \mathbf{S}, \mathbf{T} | \mathbf{X}, \epsilon, \mathcal{T}) &= p(\mathbf{S} | \mathbf{X}, \epsilon) p(\mathbf{F} | \mathbf{S}) p(\mathbf{T} | \mathcal{T}, \epsilon) p(y | \mathbf{S}, \mathbf{T}), \\
q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y) &= q(\mathbf{S} | \mathbf{X}, \epsilon) q(\mathbf{T} | \mathcal{T}, \epsilon),
\end{aligned} \tag{10}$$

677 the ELBO can be further factorized via Equation 8:

$$\begin{aligned}
\text{ELBO} &= \mathbb{E}_{q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon, \mathbf{F}, y)} \left[\log \frac{p(\mathbf{S} | \mathbf{X}, \epsilon) p(\mathbf{F} | \mathbf{S}) p(\mathbf{T} | \mathcal{T}, \epsilon) p(y | \mathbf{S}, \mathbf{T})}{q(\mathbf{S} | \mathbf{X}, \epsilon) q(\mathbf{T} | \mathcal{T}, \epsilon)} \right] \\
&= \mathbb{E}_{q(\mathbf{S} | \mathbf{X}, \epsilon)} \left[\mathbb{E}_{q(\mathbf{T} | \mathcal{T}, \epsilon)} \left[\log p(\mathbf{F} | \mathbf{S}) \right] \right] + \mathbb{E}_{q(\mathbf{S} | \mathbf{X}, \epsilon)} \left[\mathbb{E}_{q(\mathbf{T} | \mathcal{T}, \epsilon)} \left[\log p(y | \mathbf{S}, \mathbf{T}) \right] \right] \\
&\quad + \mathbb{E}_{q(\mathbf{S} | \mathbf{X}, \epsilon)} \left[\mathbb{E}_{q(\mathbf{T} | \mathcal{T}, \epsilon)} \left[\log \frac{p(\mathbf{S} | \mathbf{X}, \epsilon)}{q(\mathbf{S} | \mathbf{X}, \epsilon)} \right] \right] + \mathbb{E}_{q(\mathbf{S} | \mathbf{X}, \epsilon)} \left[\mathbb{E}_{q(\mathbf{T} | \mathcal{T}, \epsilon)} \left[\log \frac{p(\mathbf{T} | \mathcal{T}, \epsilon)}{q(\mathbf{T} | \mathcal{T}, \epsilon)} \right] \right] \\
&= \underbrace{\mathbb{E}_{q(\mathbf{S} | \mathbf{X}, \epsilon)} \left[\log p(\mathbf{F} | \mathbf{S}) \right]}_{\text{Reconstruction Term } \mathcal{L}_{\text{recon}}} + \underbrace{\mathbb{E}_{q(\mathbf{S}, \mathbf{T} | \mathbf{X}, \mathcal{T}, \epsilon)} \left[\log p(y | \mathbf{S}, \mathbf{T}) \right]}_{\text{Prediction Term } \mathcal{L}_{\text{pred}}} \\
&\quad - \underbrace{\text{KL}(q(\mathbf{S} | \mathbf{X}, \epsilon) \| p(\mathbf{S} | \mathbf{X}, \epsilon))}_{\text{Input Regularizer } \mathcal{R}_{\text{input}}} - \underbrace{\text{KL}(q(\mathbf{T} | \mathcal{T}, \epsilon) \| p(\mathbf{T} | \mathcal{T}, \epsilon))}_{\text{Template Regularizer } \mathcal{R}_{\text{temp}}}.
\end{aligned} \tag{11}$$

692 A.2 DETAILS OF THE CONDITIONAL GENERATIVE PROCESS
693694 The template encoding process is factorized via $p(\mathbf{T} | \mathcal{T}, \epsilon) = \prod_{i \in \mathcal{C}} \prod_{n=1}^N p(\mathbf{T}_{i,n} | \mathcal{T}_{i,n}, \epsilon)$. The
695 compositional latent components of the input image \mathbf{X} and templates \mathcal{T} are extracted by

$$\begin{aligned}
\mathbf{S} &\sim \mathcal{N}(\boldsymbol{\mu}^s, \sigma^2 \mathbf{I}), \quad \text{where } \boldsymbol{\mu}^s = \text{LCE}(\mathbf{X}), \\
\mathbf{T}_{i,n} &\sim \mathcal{N}(\boldsymbol{\mu}_{i,n}^t, \sigma^2 \mathbf{I}), \quad \text{where } \boldsymbol{\mu}_{i,n}^t = \text{LCE}(\mathcal{T}_{i,n}), \quad i \in \mathcal{C}, \quad n = 1, \dots, N.
\end{aligned} \tag{12}$$

699 Denoting the Spatial Broadcast Decoder and the composition process used in feature decoding as a
700 function CompDec, the reconstructed teacher features are obtained via
701

$$\tilde{\mathbf{F}} \sim \mathcal{N}(\boldsymbol{\mu}^d, \sigma^2 \mathbf{I}), \quad \text{where } \boldsymbol{\mu}^d = \text{CompDec}(\mathbf{S}). \tag{13}$$

In the class prediction process, the final prediction is sampled from a Categorical distribution. The process is $y \sim \text{Cat}(\boldsymbol{\pi})$ where

$$\pi_i = \frac{\exp\left(-\left\|\mathbf{S} - \sum_{n=1}^N \mathbf{T}_{i,n}/N\right\|_2^2\right)}{\sum_{l \in \mathcal{C}} \exp\left(-\left\|\mathbf{S} - \sum_{n=1}^N \mathbf{T}_{l,n}/N\right\|_2^2\right)}. \quad (14)$$

A.3 DETAILS OF THE VARIATIONAL DISTRIBUTION

The variational distribution shares input and template encoding processes similar to the conditional generative process. The templates are encoded via $q(\mathbf{T}|\mathcal{T}, \epsilon) = \prod_{i \in \mathcal{C}} \prod_{n=1}^N q(\mathbf{T}_{i,n}|\mathcal{T}_{i,n}, \epsilon)$, and the compositional latent components are extracted by

$$\begin{aligned} \tilde{\mathbf{S}} &\sim \mathcal{N}(\tilde{\boldsymbol{\mu}}^s, \sigma^2 \mathbf{I}), \quad \text{where } \tilde{\boldsymbol{\mu}}^s = \text{LCE}(\mathbf{X}), \\ \tilde{\mathbf{T}}_{i,n} &\sim \mathcal{N}(\tilde{\boldsymbol{\mu}}_{i,n}^t, \sigma^2 \mathbf{I}), \quad \text{where } \tilde{\boldsymbol{\mu}}_{i,n}^t = \text{LCE}(\mathcal{T}_{i,n}), \quad i \in \mathcal{C}, \quad n = 1, \dots, N. \end{aligned} \quad (15)$$

A.4 MONTE CARLO ESTIMATOR OF THE ELBO

Using the detailed definition of the conditional generative process and variational distribution, the terms in the ELBO can be estimated by a Monte Carlo estimator as follows.

$$\begin{aligned} \mathcal{L}_{\text{recon}} &= \mathbb{E}_{q(\mathbf{S}|\mathbf{X}, \epsilon)} [\log p(\mathbf{F}|\mathbf{S})] \approx -\frac{1}{2\sigma^2} \left\| \mathbf{F} - \text{CompDec}(\tilde{\mathbf{S}}) \right\|_2^2 + C(\sigma), \\ \mathcal{L}_{\text{pred}} &= \mathbb{E}_{q(\mathbf{S}, \mathbf{T}|\mathbf{X}, \mathcal{T}, \epsilon)} [\log p(y|\mathbf{S}, \mathbf{T})] \approx \log \frac{\exp\left(-\left\|\tilde{\mathbf{S}} - \sum_{n=1}^N \tilde{\mathbf{T}}_{y,n}/N\right\|_2^2\right)}{\sum_{l \in \mathcal{C}} \exp\left(-\left\|\tilde{\mathbf{S}} - \sum_{n=1}^N \tilde{\mathbf{T}}_{l,n}/N\right\|_2^2\right)}, \end{aligned} \quad (16)$$

where $C(\sigma)$ is a constant related to the standard deviation σ , $\tilde{\mathbf{S}}$ and $\tilde{\mathbf{T}}$ are compositional latent components sampled from the variational distribution through Equation 15. Since the conditional generative process and the variational distribution share the same backbone and slot attention module in image encoding and template encoding, we have $p(\mathbf{S}|\mathbf{X}, \epsilon) = q(\mathbf{S}|\mathbf{X}, \epsilon)$ and $p(\mathbf{T}_{i,n}|\mathcal{T}_{i,n}, \epsilon) = q(\mathbf{T}_{i,n}|\mathcal{T}_{i,n}, \epsilon)$ if the same input and templates are given. Then, the two regularizers are

$$\begin{aligned} \mathcal{R}_{\text{input}} &= \text{KL}(q(\mathbf{S}|\mathbf{X}, \epsilon) \parallel p(\mathbf{S}|\mathbf{X}, \epsilon)) = 0, \\ \mathcal{R}_{\text{temp}} &= \text{KL}(q(\mathbf{T}|\mathcal{T}, \epsilon) \parallel p(\mathbf{T}|\mathcal{T}, \epsilon)) = \sum_{i \in \mathcal{C}} \sum_{n=1}^N \text{KL}(q(\mathbf{T}_{i,n}|\mathcal{T}_{i,n}, \epsilon) \parallel p(\mathbf{T}_{i,n}|\mathcal{T}_{i,n}, \epsilon)) = 0. \end{aligned} \quad (17)$$

The Monte Carlo estimation of the ELBO is given by

$$\text{ELBO}_{MC} = -\frac{1}{2\sigma^2} \left\| \mathbf{F} - \text{CompDec}(\tilde{\mathbf{S}}) \right\|_2^2 + \log \frac{\exp\left(-\left\|\tilde{\mathbf{S}} - \frac{\sum_{n=1}^N \tilde{\mathbf{T}}_{c,n}}{N}\right\|_2^2\right)}{\sum_{l \in \mathcal{C}} \exp\left(-\left\|\tilde{\mathbf{S}} - \frac{\sum_{n=1}^N \tilde{\mathbf{T}}_{l,n}}{N}\right\|_2^2\right)}. \quad (18)$$

We introduce a hyperparameter λ to balance the importance of different terms:

$$\mathcal{L} = \left\| \mathbf{F} - \text{CompDec}(\tilde{\mathbf{S}}) \right\|_2^2 - \lambda \log \frac{\exp\left(-\left\|\tilde{\mathbf{S}} - \sum_{n=1}^N \tilde{\mathbf{T}}_{c,n}/N\right\|_2^2\right)}{\sum_{l \in \mathcal{C}} \exp\left(-\left\|\tilde{\mathbf{S}} - \sum_{n=1}^N \tilde{\mathbf{T}}_{l,n}/N\right\|_2^2\right)}. \quad (19)$$

B DATASETS

Figure 5 visualizes the data used in the experiments. The Printed dataset is constructed on the basis of different printed font files. The handwritten dataset HWDB includes handwritten samples from

Figure 5: Visualization of the samples from (a) Printed, (b) HWDB and (c) Historical Documents.

789 various writers. The template set \mathcal{T} is constructed by selecting $N = 10$ images for each character in
790 the character set during the training and testing phases. The templates are generated from commonly
791 used printed fonts to ensure that some rare characters also have templates. The character images
792 in historical documents are collected from the web library¹. In addition, all character images are
793 allowed to used for free without any copyright concerns.

C DETAILS OF THE MODELS

798 The compared models follow the original experimental settings and architectures. We use open-
799 source codes if the reimplemented methods have official codes (e.g., CCR-CLIP and SD). CoLa is
800 trained on the server with Intel(R) Xeon(R) Gold 6326 CPUs, 24GB NVIDIA GeForce RTX 4090
801 GPUs, 256GB RAM, and Ubuntu 20.04.6 LTS. CoLa is implemented with PyTorch (Paszke et al.,
802 2019).

803 In the following, we will describe the architectures of learnable networks in CoLa and the hyper-
804 parameter selection of CoLa. The learnable networks include: (1) the CNN-based backbone; (2) the
805 Spatial Broadcast Decoder (SBD) and the following linear layer to compose the components; (3) the
806 two-layer CNN and prediction head of the teacher encoder. The details of the learnable networks
807 are provided below.

- The CNN-based backbone:

¹<https://library.harvard.edu/policy-access-digital-reproductions-works-public-domain>

- 810 – 5×5 Conv, stride 2, padding 2, 192, ReLU
- 811 – 5×5 Conv, stride 1, padding 2, 192, ReLU
- 812 – 5×5 Conv, stride 1, padding 2, 192, ReLU
- 813 – 5×5 Conv, stride 1, padding 2, 192
- 814 – Cartesian Positional Embedding, 192, LayerNorm
- 815 – Fully Connected, 192, ReLU
- 816 – Fully Connected, 192

817
 818 We set the dimension of each component as 128, and the iteration step of updating component as
 819 3. The components have the shape of $K \times 128$, initialized with the ϵ sampled from a learnable
 820 Gaussian $\mathcal{N}(\mu_\epsilon, \sigma_\epsilon^2)$.

821 • **SBD:**

- 822 – Fully Connected, 192
- 823 – Learnable 2D Positional Embedding, 192
- 824 – Fully Connected, 1024, ReLU
- 825 – Fully Connected, 1024, ReLU
- 826 – Fully Connected, 1024, ReLU
- 827 – Fully Connected, 1025

828 • **The composition linear layer after SBD:**

- 829 – Fully Connected, 1024, without bias

830 The SBD output has the shape of $1025 \times 16 \times 16$, split along the channel dimension into the mask
 831 of $1 \times 16 \times 16$ and the component feature of $1024 \times 16 \times 16$. Here, $1024 \times 16 \times 16$ is the feature
 832 size of the teacher encoder.

833 • **The two-layer CNN of the teacher encoder:**

- 834 – 3×3 Conv, stride 1, padding 1, 1024, ReLU
- 835 – 3×3 Conv, stride 1, padding 1, 1024

836 The two-layer CNN converts the DINOv2 features of $768 \times 16 \times 16$ to the teacher features of
 837 $1024 \times 16 \times 16$. The teacher encoder is followed by a Transformer encoder block with a class token
 838 to predict the label of the input image. The DINOv2 encoder is frozen, and the two-layer CNN and
 839 prediction head are trained via a cross-entropy loss based on the training characters and the class
 840 labels. Finally, we use the output of the two-layer CNN as the teacher encoder, and the prediction
 841 head is not used in the following stages.

842 We train the teacher encoder using an Adam optimizer (Kingma & Ba, 2015), setting the learning
 843 rate to 3×10^{-4} and the batch size to 8. Then we freeze the teacher encoder to train the remaining
 844 part of CoLa. We set the learning rate to 3×10^{-4} and the batch size to 32. We first warm up CoLa
 845 by disabling the prediction term (i.e., setting $\lambda = 0$). After the training loss is stable, we enable
 846 the prediction term by setting the $\lambda = 0.01$ to train the model. The template images in the training
 847 character set are also used to train CoLa in the training process. The CNN-based backbone and
 848 the slot attention module are frozen when extracting components of templates to stop the gradient
 849 propagation to reduce the cost of computational resources.

850 **D ADDITIONAL EXPERIMENTAL RESULTS**

851 **D.1 ADDITIONAL RESULTS OF COMPONENT VISUALIZATION**

852 To further display the compositional latent components learned by CoLa, Figure 6 provides ad-
 853 dditional visualization results on three different datasets: (a) Printed, (b) HWDB, and (c) Historical
 854 Document. We select input images from the test set of each dataset and visualize their compositional
 855 latent components (Cmp#1-#3). CoLa can decompose characters into meaningful structures in most
 856 cases, despite various character styles across the datasets. On images from historical documents
 857 (Figure 6c), CoLa still successfully extracts compositional latent components, even if some images
 858 are incomplete or partly ambiguous. These results demonstrate that CoLa can learn interpretable
 859 components across different styles of Chinese characters and handle low-quality images.

864 D.2 INFLUENCE OF THE COMPONENT ORDER
865

866 This experiment investigates how the decomposition order ϵ influences the learning of compositional
867 latent representations. Figure 7 compares the components learned in different ways of initialization:
868 (a) using random initialization, where CoLa samples ϵ from the Gaussian distribution randomly
869 for each example; (b) using fixed initialization, where a fixed order is used for all examples. For
870 each initialization method, we visualize four groups of character images with their compositional
871 latent components (Cmp#1-#3). In Figure 7a, the components learned with random initialization
872 have similar decomposition, but the component order varies across examples. With a fixed order
873 (In Figure 7b), CoLa assigns semantically or spatially similar components in the same order for one
874 character. These results demonstrate that CoLa’s decomposition process is controlled by the order ϵ ,
875 which works by initializing the latent component with ϵ before input into the slot attention module.
876

877 D.3 AVERAGE INFERENCE TIME
878

879 To evaluate the computational efficiency of the models, we estimate the per-batch inference time
880 required for predicting the label of input images on a dataset with 3,755 classes of characters. We set
881 the batch size to 32 and compute the average inference time across all batches in the test set during
882 the evaluation phase. As shown in Table 4, CoLa demonstrates higher time efficiency compared to
883 previous zero-shot Chinese character recognition (CCR) methods.

884 Table 4: Comparison of average inference time (AIT).
885

Methods	Ours	DenseRAN	HDE	SD	CCR-CLIP
AIT(ms)	9	1666	29	567	14

886 D.4 HYPERPARAMETER SELECTION
887

888 As shown in Table 5, we examine two hyperparameters that influence the performance of CoLa: the
889 number of components K and the number of template character images used for matching N .

890 **Number of Components.** On the HWDB and Printed datasets, CoLa achieves its best performance
891 when the number of components $K = 3$. Our results indicate that continuously increasing K does
892 not lead to further performance gains. Instead, once the model surpasses an optimal level of de-
893 composition, additional components may even degrade performance (e.g., $K > 3$). The excessively
894 fine-grained partitioning may introduce redundant or noisy substructures, and expanding K may in
895 fact hinder the ability of CoLa to generalize. This observation is consistent with cognitive evidence
896 in Chinese character recognition, which indicates that native readers tend to mentally decompose a
897 character into a small number of interpretable structural units, rather than a large set of fine-grained
898 details (Yeh & Li, 2002). In this sense, the component decomposition mechanism of CoLa implicitly
899 aligns with the human processing strategy, where a small number of structural parts often suffice to
900 capture the decomposition of Chinese characters.

901 **Number of Templates.** We further investigate how the number of template character images in-
902 fluences the performance of CoLa. Across both the HWDB and Printed datasets, expanding the
903 template set consistently improves matching accuracy, suggesting that a richer reference pool en-
904 ables the model to better capture intra-class variations and reduce ambiguity in zero-shot recogni-
905 tion. However, the benefit of adding more templates gradually diminishes as the number increases.
906 In particular, performance gains become less when $N > 10$, indicating that the model has already
907 saturated its ability to benefit from additional examples. Considering both the empirical results and
908 the practical cost of maintaining larger template sets, we adopt $N = 10$ templates per class, which
909 offers a trade-off between accuracy and efficiency.

910 D.5 INFLUENCE OF TEMPLATE SAMPLING
911

912 Table 6 reports the standard deviation of recognition accuracy obtained using five independently
913 constructed template sets. Each template set is generated from public printed fonts collected from
914 the Internet. We manually filtered the candidate fonts and applied quantitative metrics to ensure
915

918
 919 **Table 5: Recognition Accuracy (%) with different K (#Comp) and N (#Temp).** The table pro-
 920 vides the performance of CoLa on both the handwritten dataset HWDB and the printed character
 921 datasets Printed.

#Comp	HWDB (Character Zero-shot)					Printed (Character Zero-shot)				
	500	1000	1500	2000	2755	500	1000	1500	2000	2755
$K = 1$	41.19	39.30	46.28	47.97	53.82	78.08	83.24	87.03	88.05	85.40
$K = 2$	58.20	66.07	70.23	72.38	79.34	78.11	84.51	90.89	92.40	92.80
$K = 3$	68.59	76.58	79.16	81.16	82.71	78.10	85.38	90.32	93.26	92.70
$K = 4$	58.08	69.67	73.99	75.34	82.16	78.24	84.38	90.82	92.68	93.61
$K = 5$	55.44	68.85	71.86	74.32	81.09	78.26	84.24	90.94	92.36	93.29
#Comp	HWDB (Radical Zero-shot)					Printed (Radical Zero-shot)				
	50	40	30	20	10	50	40	30	20	10
$K = 1$	39.58	45.77	55.26	52.00	49.44	79.79	80.82	82.79	87.57	89.22
$K = 2$	64.10	68.83	75.18	75.44	68.12	82.46	84.54	86.87	90.85	94.37
$K = 3$	70.40	74.80	77.01	80.64	75.78	82.23	84.48	82.20	92.12	94.81
$K = 4$	69.62	74.43	78.25	80.62	73.09	82.31	85.00	87.34	91.96	94.65
$K = 5$	68.77	73.01	77.43	79.23	62.00	82.22	84.88	86.79	91.34	94.39
#Temp	HWDB (Character Zero-shot)					Printed (Character Zero-shot)				
	500	1000	1500	2000	2755	500	1000	1500	2000	2755
$N = 1$	41.05	51.56	56.23	61.32	65.82	60.39	69.52	81.50	84.13	85.73
$N = 3$	41.99	52.58	59.23	60.65	70.44	64.14	70.66	82.26	86.49	87.71
$N = 5$	42.46	54.33	60.08	59.89	71.08	69.57	77.55	86.57	89.09	90.86
$N = 10$	68.59	76.58	79.16	81.16	82.71	78.10	85.38	90.32	93.26	92.70
$N = 20$	66.92	76.67	79.94	81.14	84.11	80.31	86.25	91.98	93.69	94.36
#Temp	HWDB (Radical Zero-shot)					Printed (Radical Zero-shot)				
	50	40	30	20	10	50	40	30	20	10
$N = 1$	48.12	53.88	58.93	61.04	63.45	64.26	69.85	79.45	83.88	87.00
$N = 3$	50.36	60.19	63.38	67.01	67.70	71.25	72.26	81.61	85.60	89.96
$N = 5$	53.53	60.70	63.87	66.91	61.89	75.52	77.75	83.55	88.41	92.45
$N = 10$	70.40	74.80	77.01	80.64	75.78	82.23	84.48	82.20	92.12	94.81
$N = 20$	74.27	78.07	81.19	82.70	83.42	83.43	87.11	91.63	93.07	95.36

951
 952 **Table 6: Standard deviation of recognition accuracy under different template sets.** We evaluate
 953 CoLa on HWDB and Printed using five independently constructed template sets, each generated
 954 from ten public printed fonts ($N = 10$). Each cell reports the standard deviation of recognition
 955 accuracy across the five template sets.

Datasets	Character Zero-shot					Radical Zero-shot				
	500	1000	1500	2000	2755	50	40	30	20	10
HWDB	2.63	2.16	1.63	1.98	0.75	1.54	1.30	1.04	1.15	1.68
Printed	1.56	1.34	0.74	0.47	0.50	1.58	1.20	0.74	0.61	0.32

963 usability. In particular, we manually examined some character images rendered from each font file
 964 and computed statistics such as the number and spatial distribution of black pixels in each image.
 965 This procedure ensures that the remaining template fonts produce visually correct character images.

966 The results in Table 6 show that the variance across different template sets is influenced by the
 967 size of the training character set. The overall influence is limited, especially when the training
 968 character set is large. When only a small number of classes are observed during training, e.g., 500
 969 characters, the model’s recognition accuracy exhibits higher sensitivity to template selection. As the
 970 training set expands, these variations progressively diminish. When the model has been trained on
 971 all 2,755 characters, the effect of different template sets is attenuated, with deviations reduced to
 972 0.75% on HWDB and 0.50% on Printed. A similar trend emerges in the radical zero-shot scenario,

972 **Table 7: Performance of CoLa on the fine-grained image categorization dataset Stanford Dogs.**
 973 We evaluate the generalization ability of CoLa on the vision task beyond Chinese character recog-
 974 nition. Approximately 10 out of 120 classes are held out as unseen test classes. The entire dataset
 975 contains around 20,000 images of different dog breeds.

Models	Random Baseline	CLIP	DINOv2	Slot Attention	CoLa
Accuracy	0.83	0.01	7.72	7.34	22.26

980 **Table 8: Quantitative results on cross-script recognition.** “Conf.” denotes the cross-script settings,
 981 where “A → B” means that a model trained on A is evaluated on B. We report multiple commonly
 982 used retrieval metrics: Recall@K, Prec@K, F1@K, and MRR.

Models	Conf.	Recall@1	Recall@5	Prec@1	Prec@5	F1@1	F1@5	MRR
CLIP		0.67	3.36	0.67	0.67	0.67	1.12	10.45
DINOv2		64.07	90.65	64.07	53.49	64.07	63.84	75.79
DINOv2 Ft.	zh → ja	79.01	96.47	79.01	70.80	79.01	78.55	86.64
Slot Attention		76.67	95.52	76.67	71.42	76.67	78.42	84.85
CoLa		83.03	97.95	83.03	77.77	83.03	83.99	89.62
CLIP		0.07	0.33	0.07	0.07	0.07	0.11	9.22
DINOv2		3.98	10.17	3.98	2.27	3.98	3.66	14.56
DINOv2 Ft.	zh → ko	11.97	30.61	11.97	8.56	11.97	12.91	25.34
Slot Attention		13.42	30.60	13.42	8.05	13.42	12.36	26.19
CoLa		15.03	39.58	15.03	11.71	15.03	17.40	29.89
CLIP		0.01	0.06	0.01	0.01	0.01	0.02	9.12
DINOv2		49.78	65.88	49.78	25.54	49.78	34.84	59.26
DINOv2 Ft.	zh → obc	53.80	69.68	53.80	28.60	53.80	38.32	62.83
Slot Attention		45.97	59.30	45.97	21.83	45.97	30.19	54.87
CoLa		61.97	74.84	61.97	33.67	61.97	43.88	69.39

1000 where the standard deviation gradually drops as the number of recognizable radicals increases. This
 1001 behavior indicates that once the model has encountered sufficient structural diversity during training,
 1002 it becomes increasingly robust to the style difference in templates.

1004 D.6 GENERALIZE TO OTHER TASKS

1007 We evaluate the generalization ability of CoLa beyond the CCR task by applying it to the Stanford
 1008 Dogs dataset (Khosla et al., 2011). Since the compared CCR method cannot be directly applied to
 1009 the dataset, we compare CoLa with three representative models: CLIP, DINOv2, and Slot Attention.
 1010 Stanford Dogs is a fine-grained categorization dataset with small intra-class variations and strong
 1011 visual similarity across breeds. We hold out 10 out of 120 types of dogs as unseen test classes,
 1012 ensuring that no images from these categories appear during training for zero-shot evaluation.

1013 The results in Table 7 show that CoLa achieves the best performance, with CLIP’s performance
 1014 even falling below the random baseline. This contrast highlights an important limitation of CLIP.
 1015 The CLIP features tend to emphasize high-level semantic concepts (i.e., recognizing that all samples
 1016 are “dogs”), while ignoring the fine-grained information to distinguish different dog categories.
 1017 The compositional latent components of CoLa can capture variations between dogs for zero-shot
 1018 classification on this fine-grained dataset.

1019 D.7 QUANTITATIVE RESULTS ON CROSS-SCRIPT EVALUATION

1021 To assess the model performance on the Japanese, Korean, and OBC datasets, we employ several
 1022 metrics that are commonly used in zero-shot retrieval tasks. Recall@K measures whether at least one
 1023 correct class appears within the top-K matched templates, and is therefore an appropriate indicator
 1024 of match success in the zero-shot setting. Prec@K quantifies the proportion of correctly matched
 1025 templates among the top-K results, which is informative when multiple examples exist for each class.
 To jointly capture both aspects, we further report F1@K, which is the harmonic mean of Prec@K

1026
1027 Table 9: **Performance of cross-style Chinese character recognition.** For the configuration HWDB
1028 → Printed, CoLa is trained on handwritten characters and evaluated on printed characters.
1029
1030
1031
1032
1033

Configurations	Character Zero-shot					Radical Zero-shot				
	500	1000	1500	2000	2755	50	40	30	20	10
HWDB → Printed	66.88	72.44	71.31	71.78	76.65	73.66	71.53	73.80	77.32	82.02
Printed → HWDB	11.69	15.85	24.75	29.59	27.99	14.09	15.93	23.06	30.59	29.35

1034
1035
1036
1037 and Recall@K. In addition, we employ the Mean Reciprocal Rank (MRR) to evaluate how early the
1038 correct class appears in the ranked candidates. MRR is useful when distinguishing between visually
1039 similar characters, as it rewards models that place the correct match at higher ranks. Table 8 presents
1040 the quantitative results of different cross-script character recognition configurations. For example, zh
1041 → ja indicates that the model is trained on Chinese characters and evaluated on Japanese characters.
1042 Across the configurations, we observe that CoLa outperforms other baselines, demonstrating its
1043 generalization ability in different writing systems.
1044

1045 The DINOv2 backbone significantly outperforms CLIP, indicating that features learned by DINOv2
1046 are more suitable for character matching or recognition. CLIP’s visual encoder is trained with
1047 large-scale contrastive supervision, which may encourage global cross-modal alignment rather than
1048 fine-grained discrimination. DINOv2 is optimized on massive image corpora, and therefore learns
1049 mid-level and local structural patterns that better capture geometric and morphological variations
1050 among characters. These signals are crucial for distinguishing characters, which explains the gap
1051 between DINOv2 and CLIP in different metrics. Fine-tuning DINOv2 with a character classification
1052 objective further improves performance. As shown in Table 8 (i.e., DINOv2 Ft.), adapting the
1053 encoder to the specific domain yields more discriminative features. The supervised signal refines
1054 the feature space such that characters with similar shapes and structures cluster more tightly. This
1055 domain adaptation benefits cross-script generalization, as fine-tuned DINOv2 surpasses the frozen
1056 backbone consistently across the metrics. CoLa outperforms Slot Attention despite both methods
1057 learning component representations. Slot Attention learns components by primarily minimizing
1058 reconstruction loss, while CoLa integrates compositional latent components with template-based
1059 matching and feature-level reconstruction. As a result, CoLa achieves improvements in Recall@K,
1060 Prec@K, F1@K, and MRR, especially in the setting zh → obc, where the differences between
1061 scripts are substantial.
1062

1062 D.8 CROSS-STYLE EVALUATION

1063
1064 Table 9 reports the quantitative results of cross-style Chinese character recognition. The configura-
1065 tions indicate different training-testing settings, where a model trained on one style (e.g., handwrit-
1066 ten) is directly evaluated on another (e.g., printed). We observe that CoLa still maintains recognition
1067 ability under cross-style transfer. For example, transferred from HWDB to Printed, CoLa achieves
1068 66.88% accuracy on the 500-character split and increases to 76.65% for the 2755-character one.
1069 This demonstrates that the learned compositional latent components can generalize across different
1070 visual styles without requiring re-training or adaptation.
1071

1072 The results also suggest that cross-style performance is related to the diversity and complexity of the
1073 training data. Handwritten characters exhibit larger structural variation and irregular stroke distri-
1074 bution, forcing the model to learn more flexible relational or structural features. Printed characters
1075 are visually homogeneous and contain less intra-class variability. When trained on handwritten data
1076 (HWDB), CoLa is encouraged to discover structures that remain informative under style variations,
1077 which can generalize to printed fonts. In contrast, the performance of CoLa drops more significantly
1078 on HWDB → Printed. This asymmetry reflects that models trained on more complex and diverse
1079 sources tend to transfer better to simpler or more regular targets, but not vice versa. Printed glyphs
may lack the variability necessary to teach the model how to handle large deformations, stroke vari-
ance, or handwriting artifacts.
1080

1080 Table 10: **Performance of CoLa trained with different teacher models.** “Ft.” indicates that the
 1081 pretrained backbone is further fine-tuned using the corresponding training data.

Teachers	Ft.	HWDB (Radical Zero-shot)				
		50	40	30	20	10
CLIP _{ViT-B/16}	✓	49.96	59.36	60.60	64.57	66.60
DINOv2 _{ViT-B/16}		66.33	72.15	74.09	76.81	78.29
DINOv2 _{ViT-B/16} (CoLa)	✓	70.40	74.80	77.01	80.64	75.78

D.9 INFLUENCE OF TEACHER MODELS

Table 10 summarizes the performance of CoLa when trained with different teacher encoders, where DINOv2 outperforms CLIP under most configurations. CLIP may focus more on high-level semantic alignment and tend to downplay local structural cues. Since CoLa relies on component-level comparison, representations that retain detailed visual signals offer more effective supervision, which explains the consistent performance advantage of DINOv2 over CLIP. Fine-tuning the pre-trained encoder with the character classification objective improves performance. When DINOv2 is fine-tuned on character images (DINOv2 ViT-B/16 + Ft.), the model gains additional domain-specific priors. Although the fine-tuning task does not explicitly leverage compositional information of characters, it still organizes the feature space such that similar characters are pulled closer while dissimilar ones are pushed apart.

D.10 ADDITIONAL VISUALIZATION RESULTS OF CHARACTER DECOMPOSITION

Figure 8 presents visualizations of CoLa on different Chinese character structures, e.g., left–right, up–down, and various surrounding structures. For two-component structures such as Left–Right (a) and Up–Down (c), CoLa produces clear component separation, often aligning its slots with radical-level subregions. The two-part layouts are commonly seen in Chinese characters, allowing the encoder to form stable component decomposition. In three-component layouts, such as Left–Middle–Right (b) and Up–Middle–Down (d), CoLa frequently produces two slots instead of three. This behavior reflects a preference toward grouping spatially adjacent radicals into a single perceptual unit. In surrounding structures (e–j), component decomposition becomes more challenging. CoLa produces more accurate decomposition results in Bottom–Left Surrounded and Top–Left Surrounded layouts, while it tends to treat the entire character as a single component in the Fully–Wrapping structure. The visualization results demonstrate that CoLa learns to decompose components that reflect radical-level semantics and spatial roles.

E LLM USAGE STATEMENT

We use Large Language Models (LLMs) as auxiliary tools during the preparation of this paper. The usage is limited to correcting grammatical issues, improving readability, and polishing the presentation. LLMs do not contribute to the generation of research ideas, experimental design, data analysis, or theoretical development. All scientific content and claims are produced by the authors.

REFERENCES

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for fine-grained image categorization: Stanford dogs. In *Proc. CVPR workshop on fine-grained visual categorization (FGVC)*, volume 2, 2011.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International Conference on Learning Representations*, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.

1134 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
1135 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
1136 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
1137
1138 Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
1139 conditional generative models. *Advances in neural information processing systems*, 28, 2015.
1140
1141 Su-Ling Yeh and Jing-Ling Li. Role of structure and component in judgments of visual similarity of
1142 chinese characters. *Journal of Experimental Psychology: Human Perception and Performance*,
1143 28(4):933, 2002.
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188	Image	Cmp#1	Cmp#2	Cmp#3												
1189	存	子	口	孝	宇	宇	宀		嘶	𠂇	𠂇	𠂇	歛	𠂇	𠂇	𠂇
1190	敝	敝	攵	敝	豹	豹	豸	豹	矴	𠂇	𠂇	𠂇	海	𠂇	𠂇	𠂇
1191	便	便	亻	便	驯	驯	马	驯	杀	𠂇	𠂇	𠂇	解	𠂇	𠂇	𠂇
1192	狭	狭	宀	狭	熏	熏	灬	熏	限	𠂇	𠂇	𠂇	讶	𠂇	𠂇	𠂇
1193	专	专	宀	专	症	症	疒	症	具	𠂇	𠂇	𠂇	淹	𠂇	𠂇	𠂇
1194	官	官	宀	官	捶	捶	扌	捶	榨	𠂇	𠂇	𠂇	橡	𠂇	𠂇	𠂇
1195	拜	拜	十	拜	隶	隶	衤	隶	貢	𠂇	𠂇	𠂇	婿	𠂇	𠂇	𠂇
1196	晋	晋	日	晋	叟	叟	叟	叟	骸	𠂇	𠂇	𠂇	𠂇	𠂇	𠂇	𠂇
1197																
1198																
1199																
1200																
1201																
1202																
1203																
1204																
1205																
1206	班	王	𠂇	𠂇	喙	𠂇	口	𠂇	洲	𠂇	𠂇	𠂇	淄	𠂇	𠂇	𠂇
1207	他	也	亻	亻	诀	𠂇	云	𠂇	蹬	𠂇	𠂇	𠂇	七	𠂇	𠂇	𠂇
1208	越		走	走	攵	攵	攵	攵	拆	𠂇	𠂇	𠂇	莊	𠂇	𠂇	𠂇
1209					纟	纟	纟	纟	故	𠂇	𠂇	𠂇	筆	𠂇	𠂇	𠂇
1210					纟	纟	纟	纟	故	𠂇	𠂇	𠂇	均	𠂇	𠂇	𠂇
1211					纟	纟	纟	纟	故	𠂇	𠂇	𠂇	头	𠂇	𠂇	𠂇
1212					纟	纟	纟	纟	故	𠂇	𠂇	𠂇	墨	𠂇	𠂇	𠂇
1213					纟	纟	纟	纟	故	𠂇	𠂇	𠂇	鼎	𠂇	𠂇	𠂇
1214					纟	纟	纟	纟	故	𠂇	𠂇	𠂇				
1215					纟	纟	纟	纟	故	𠂇	𠂇	𠂇				
1216					纟	纟	纟	纟	故	𠂇	𠂇	𠂇				
1217					纟	纟	纟	纟	故	𠂇	𠂇	𠂇				
1218					纟	纟	纟	纟	故	𠂇	𠂇	𠂇				
1219					纟	纟	纟	纟	故	𠂇	𠂇	𠂇				
1220					纟	纟	纟	纟	故	𠂇	𠂇	𠂇				
1221					纟	纟	纟	纟	故	𠂇	𠂇	𠂇				
1222					纟	纟	纟	纟	故	𠂇	𠂇	𠂇				
1223	磚	母	声	石	餉	𠂇	食	𠂇	湿	𠂇	𠂇	𠂇	麥	𠂇	𠂇	𠂇
1224	軀	平	身	𠂇	捲	𠂇	木	𠂇	蠶	𠂇	𠂇	𠂇	詩	𠂇	𠂇	𠂇
1225	靈	靈	𠂇	王	摺	𠂇	白	𠂇	蠶	𠂇	𠂇	𠂇	鵠	𠂇	𠂇	𠂇
1226	煙	火	王	西	佛	𠂇	也	𠂇	采	𠂇	𠂇	𠂇	蓑	𠂇	𠂇	𠂇
1227	律	声	才	汗	賴	𠂇	貞	赤	筭	𠂇	𠂇	𠂇	智	𠂇	𠂇	𠂇
1228	指	旨	𠂇	才	絲	𠂇	𠂇	𦥑	壤	𠂇	𠂇	𠂇	噫	𠂇	𠂇	𠂇
1229	龙	大	也	𠂇	釋	𠂇	半	𦥑	𡇱	𠂇	𠂇	𠂇	𧕧	𠂇	𠂇	𠂇
1230	蹠	脚	𠂇	𠂇	壘	𠂇	面	𠂇	𠂇	𠂇	𠂇	𠂇	噦	𠂇	𠂇	𠂇
1231																
1232																
1233																
1234																
1235																
1236																
1237																
1238																
1239																
1240																
1241																

(c) Historical Document

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

Image	Cmp#1	Cmp#2	Cmp#3
踊	足	甬	踊
踊	甬	足	踊
踊		甬	踊
踊	足	甬	踊
踊	甬	足	踊
踊		甬	踊
踊	足	甬	踊
踊	甬	足	踊
踊		甬	踊

Image	Cmp#1	Cmp#2	Cmp#3
確		亾	角
確		石	角
確	角	亾	
確	角	石	亾
確	石	亾	角
確	石	角	亾
確	亾	角	石
確	亾	石	角
確	角	石	亾

Image	Cmp#1	Cmp#2	Cmp#3
襞	辛	星	衣
襞	辛	星	衣
襞	辛	衣	星
襞	衣	辛	星
襞	衣	星	辛
襞	星	辛	衣
襞	星	衣	辛
襞	辛	衣	星
襞	星	辛	衣

Image	Cmp#1	Cmp#2	Cmp#3
蟻	赤	夕	虫
蟻	赤	夕	虫
蟻	夕	虫	赤
蟻	虫	夕	赤
蟻	赤	虫	夕
蟻	虫	夕	赤
蟻	赤	夕	虫
蟻	虫	夕	赤

(a) Random initialization

Image	Cmp#1	Cmp#2	Cmp#3
赔	贝		倍
赔	贝		倍
赔	贝		倍
赔	贝		倍
赔	贝		倍
赔	贝		倍
赔	贝		倍
赔	贝		倍

Image	Cmp#1	Cmp#2	Cmp#3
碑	石	彑	十
碑	石	彑	十
碑	石	彑	十
碑	石	彑	十
碑	石	彑	十
碑	石	彑	十
碑	石	彑	十
碑	石	彑	十

Image	Cmp#1	Cmp#2	Cmp#3
傅	甫	𠂇	子
傅	甫	𠂇	子
傅	甫	𠂇	子
傅	甫	𠂇	子
傅	甫	𠂇	子
傅	甫	𠂇	子
傅	甫	𠂇	子
傅	甫	𠂇	子

Image	Cmp#1	Cmp#2	Cmp#3
議	義	我	言
議	義	我	言
議	義	我	言
議	義	我	言
議	義	我	言
議	義	我	言
議	義	我	言
議	義	我	言

(b) Fix initialization

Figure 7: **The compositional latent components learned with different orders.** (a) Random initialization. The components in each panel are learned with randomly sampled ϵ . (b) Fix initialization. The components in each panel are learned using a fixed ϵ .

1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296

1297

1298

1299

1300

弱	弓		弓	从	人	人		数		娄	女
---	---	--	---	---	---	---	--	---	--	---	---

(a) Left-Right : Two components combined left to right

1301

1302

1303

1304

濒		氵	濒	树	木		木	假		亻	假
---	--	---	---	---	---	--	---	---	--	---	---

(b) Left-Middle-Right : Three components combined left to middle and right

1305

1306

1307

1308

胃	月		月	岁	夕	夕	皆	皆	皆	比
---	---	--	---	---	---	---	---	---	---	---

(c) Up-Down : Two components combined above to below

1309

1310

1311

1312

弌	弌		弌	苔		苔	台	荧	荧	火	一
---	---	--	---	---	--	---	---	---	---	---	---

(d) Up-Middle-Down : Three components combined above to middle and below

1313

1314

1315

1316

迟	辵		辵	延	辵	辵	延	赴	辵	辵	辵
---	---	--	---	---	---	---	---	---	---	---	---

(e) Bottom-Left Surrounded : One component surround bottom and left side of another one

1317

1318

1319

1320

病	丙	疒		度	广		度	屏	屮	屮	并
---	---	---	--	---	---	--	---	---	---	---	---

(f) Top-Left Surrounded : One component surround top and left side of another one

1321

1322

1323

1324

戒	戈	厂	厂	氛		𠂇		岛		岛	
---	---	---	---	---	--	---	--	---	--	---	--

(g) Top-Right Surrounded : One component surround top and right side of another one

1325

1326

1327

1328

同	同		冂	冈		冂	凰	冂	凰	凰
---	---	--	---	---	--	---	---	---	---	---

(h) Left-Top-Right Surrounded : One component surround another one, opening at bottom

1329

1330

1331

1332

画		𠂇	𠂇	凶		𠂇	𠂇	凶	𠂇	𠂇	𠂇
画		𠂇	𠂇	凶		𠂇	𠂇	凶	𠂇	𠂇	𠂇

(i) Left-Bottom-Right Surrounded : One component surround another one, opening at top

1333

1334

1335

1336

匪	匪		匪	匱		匱	匱	匱	匱	匱
---	---	--	---	---	--	---	---	---	---	---

(j) Top-Left-Bottom Surrounded : One component surround another one, opening at right

1337

1338

1339

1340

幽		幽		爽		𠂇		𠂇		夷	
幽		幽		爽		𠂇		𠂇		夷	
幽		幽		爽		𠂇		𠂇		夷	

(k) Overlapped : Two components overlapped

1341

1342

1343

1344

国	国		𠂇		𠂇		𠂇		𠂇	𠂇
---	---	--	---	--	---	--	---	--	---	---

(l) Fully-Wrapping : One component fully wrapping another one

1345

1346

1347

1348

1349

Figure 8: **Visualization of component decomposition.** The figures (a)-(l) show decomposition results of twelve character structures, respectively.