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Abstract

In human-agent collaboration tasks, it is essential to explore ways for developing1

assistive agents that can improve humans’ performance in achieving their goals.2

In this paper, we propose the Reinforcement Learning from Human Gain (RLHG)3

approach, designed to effectively enhance human goal-achievement abilities in4

collaborative tasks with known human goals. Firstly, the RLHG method trains5

a value network to estimate primitive human performance in achieving goals.6

Subsequently, the RLHG method trains a gain network to estimate the positive gain7

of human performance in achieving goals when subjected to effective enhancement,8

in comparison to the primitive performance. The positive gains are used for9

guiding the agent to learn effective enhancement behaviors. Distinct from directly10

integrating human goal rewards into optimization objectives, the RLHG method11

largely mitigates the human-agent credit assignment issues encountered by agents12

in learning to enhance humans. We evaluate the RLHG agent in the widely popular13

Multi-player Online Battle Arena (MOBA) game, Honor of Kings, by conducting14

experiments in both simulated environments and real-world human-agent tests.15

Experimental results demonstrate that the RLHG agent effectively improves the16

goal-achievement performance of participants across varying levels.17

1 Introduction18

An intriguing research direction in the field of Artificial Intelligence (AI), particularly in the human-19

agent field, is how to effectively enhance human goal-achievement abilities within collaborative20

tasks. Human-Agent Collaboration (HAC) (Crandall et al., 2018; Dafoe et al., 2020) has gained21

significant attention from researchers, and numerous agents have been successfully developed to22

collaborate with humans in complex environments (Jaderberg et al., 2019; Carroll et al., 2019; Hu23

et al., 2020; Strouse et al., 2021; Bakhtin et al., 2022; Gao et al., 2023). However, as Amodei et al.24

(2016) stated, “[F]or an agent operating in a large, multifaceted environment, an objective function25

that focuses on only one aspect of the environment may implicitly express indifference over other26

aspects of the environment”. The current agents focus mainly on maximizing their own rewards27

to complete the task, less considering the role of their human partners, which potentially leads to28

behaviors that are inconsistent with human preferences (Fisac et al., 2020; Alizadeh Alamdari et29

al., 2022). For instance, consider the scenario depicted in Figure 1, where there is an agent and a30

human on either side of an obstacle. Only the agent is capable of pushing or pulling the obstacle once.31

Both the human and the agent share the same task goal, i.e., obtaining the coin, while the human32

needs the agent’s assistance to get the coin. In this scenario, the HAC agent may push the obstacle to33

the human side and pass through to get the coin by itself. However, in a qualitative study (Cerny,34

2015) on companion behavior, humans reported greater enjoyment of the game when AI assisted35

them more like a sidekick. Thus, the human may prefer that the agent plays a more assisting role by36

pulling the obstacle to its side, thereby enabling the human to get the coin. To advance AI techniques37

for the betterment of humanity, it is crucial to consider ways to assist humans in improving their38

goal-achievement abilities rather than replacing them outright (Wilson and Daugherty, 2018).39
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Figure 1: Toy scenario, where an agent and a human are on either side of an obstacle. Only the agent is capable
of pushing or pulling the obstacle once. They share the same task goal of obtaining the coin. ⇐: The agent
replaces the human to get the coin by itself. ⇒: The agent assists the human to get the coin.

In complex collaborative environments, such as Multi-player Online Battle Arena (MOBA)40

games (Silva and Chaimowicz, 2017), humans pursue multiple individual goals, such as achieving41

higher MVP scores and experiencing more highlight moments, beyond simply winning the game to42

enhance their gaming experience (see Figure 4 (c), our participant survey). When human goals are43

aware, an intuitive approach to learning assistive agents would be to combine the agents’ original44

rewards with the human’s goal rewards (Hadfield-Menell et al., 2016; Najar and Chetouani, 2021;45

Alizadeh Alamdari et al., 2022). Nevertheless, directly incorporating the human’s goal rewards may46

cause negative consequences, such as human-agent credit assignment issues, i.e., human rewards47

for achieving goals are assigned to non-assisting agents, which potentially leads the agent to learn48

poor behaviors and forfeits its autonomy. When human goals are unknown, some studies attempt to49

infer them from prior human behaviors using Bayesian Inference (BI) (Baker et al., 2005; Foerster et50

al., 2019; Puig et al., 2020; Wu et al., 2021) and Inverse Reinforcement Learning (IRL) (Ng et al.,51

2000; Ziebart et al., 2008; Ho and Ermon, 2016). Other work introduces auxiliary rewards, such as52

the human empowerment (Du et al., 2020), i.e., the mutual information of human trajectories and53

current state, for guiding agents to learn assistive behaviors. However, the diverse and noisy human54

behaviors(Majumdar et al., 2017) may be unrelated to actual human goals, leading agents to learn55

assistance behaviors that are not aligned with human preferences. Moreover, in tasks where human56

goals are known, these methods may not be as effective as explicitly modeling human goals (Du et57

al., 2020; Alizadeh Alamdari et al., 2022).58

This paper focuses on the setting of known human goals in complex collaborative environments.59

Our key insight is that agents can enhance human goal-achievement abilities without compromising60

AI autonomy by learning from the human positive gains toward achieving goals under the agent’s61

effective enhancement. We propose the Reinforcement Learning from Human Gain (RLHG) method,62

which aims to fine-tune a given pre-trained agent to be assistive in enhancing a given human model’s63

performance in achieving specified goals. Specifically, the RLHG method involves two steps. Firstly,64

we determine the primitive performance of the human model in achieving goals. We train a value65

network to estimate the primitive human return in achieving goals with episodes collected by directly66

teaming the agent and the human to execute. Secondly, we train the agent to learn effective human67

enhancement behaviors. We train a gain network to estimate the positive gain of human return in68

achieving goals when subjected to effective enhancement, in comparison to the primitive performance.69

The agent is fine-tuned using the combination of its original advantage and the human-enhanced70

advantage calculated by the positive gains. The RLHG method can be seen as a plug-in that can be71

directly utilized to fine-tune any pre-trained agent to be assistive in human enhancement.72

We conducted experiments in Honor of Kings (Wei et al., 2022), one of the most popular MOBA73

games globally, which has received much attention from researchers lately (Ye et al., 2020a,b,c; Gao74

et al., 2021, 2023). We first evaluated the RLHG method in simulated environments, i.e., human75

model-agent tests. Our experimental results indicate that the RLHG agent is more effective than76

baseline agents in improving the human model goal-achievement performance. We further conducted77

real-world human-agent tests to verify the effectiveness of the RLHG agent. We tested the RLHG78

agent teaming up with different levels of participants. Our experimental results demonstrate that the79

RLHG agent could effectively improve the performance of general-level participants in achieving80

their individual goals to be close to those of high-level participants and that this enhancement can be81

generalized to different levels of participants. In general, our contributions are as follows:82

• We propose a novel insight to effectively enhance human abilities in achieving goals within83

collaborative tasks by training an assistive agent to learn from human positive gains.84

• We achieve our insight by proposing the RLHG algorithm and providing a practical implementation.85

• We validated the effectiveness of the RLHG method by conducting human-agent tests in the86

complex MOBA game Honor of Kings.87
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2 Problem Settings88

2.1 Game Introduction89

MOBA games, characterized by multi-agent cooperation and competition mechanisms, long time90

horizons, enormous state-action spaces (1020000), and imperfect information (OpenAI et al., 2019;91

Ye et al., 2020a), have attracted much attention from researchers. Honor of Kings is a renowned92

MOBA game played by two opposing teams on the same symmetrical map, each comprising five93

players. The game environment depicted in Figure 2 comprises the main hero with peculiar skill94

mechanisms and attributes, controlled by each player. The player can maneuver the hero’s movement95

using the bottom-left wheel (C.1) and release the hero’s skills through the bottom-right buttons (C.2,96

C.3). The player can view the local environment on the screen, the global environment on the top-left97

mini-map (A), and access game states on the top-right dashboard (B). Players of each camp compete98

for resources through team confrontation and collaboration, etc., with the task goal of winning the99

game by destroying the opposing team’s crystal.100
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Game Victory Highlight MomentIn-game Resource
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Bittersweet

Enjoyable

(a) (b)

Figure 2: (a) The UI of Honor of Kings. (b) The player’s goals in-game (based on our participant survey).

2.2 Human-Agent Enhancement101

We formulate the human enhancement problem in collaborative tasks as an extension of the Dec-102

POMDP, which can be represented as a tuple < N,S,A,O, P,R, γ, πH ,GH , RH >, where N103

denotes the number of agents. S denotes the space of global states. A = {Ai, AH}i=1,...,N denotes104

the space of actions of N agents and a human to be enhanced, respectively. O = {Oi, OH}i=1,...,N105

denotes the space of observations of N agents and the human, respectively. P : S ×A → S and106

R : S ×A → R denote the shared state transition probability function and reward function of N107

agents, respectively. γ ∈ [0, 1) denotes the discount factor. πH(aH |oH) is the human policy, which108

cannot be directly accessible to the agent. GH = {gi}i=1,...,M denotes the human individual goals,109

where gi is a designated goal and M is the total number of individual goals. RH : S×A×GH → R110

denotes the goal reward function of the human. In agent-only scenarios, the optimization objective111

is to maximize the expected return V πθ = Eπθ
[G], where G =

∑∞
t=0 γ

tRt is the discounted112

total rewards (OpenAI et al., 2019; Ye et al., 2020a). In human non-enhancement scenarios, the113

optimization objective is V πθ,π
H

= Eπθ,πH [G] =
∑
a πθ(a|o, πH)EπH [G] (Carroll et al., 2019;114

Strouse et al., 2021). However, in human enhancement scenarios, the agent learns to enhance the115

human in achieving their goals GH . Therefore, the optimization objective can be formulated as:116

V
πθ,π

H

he = V πθ,π
H

+ α · V πθ,π
H

H = Eπθ,π
H [G+ α ·GH ] =

∑
a

πθ(a|o, πH)EπH [G+ α ·GH ] ,

where V πθ,π
H

H = Eπθ,πH [GH ], GH =
∑∞
t=0 γ

tRHt is the discounted total human goal rewards, and117

α is a balancing parameter. The agent’s policy gradient can be formulated as:118

g(θ) = ∇θ log πθ(a|o, πH)EπH [A+ α ·AH ] , (1)

where A = G − V πθ,π
H

and AH = GH − V πθ,π
H

H are the agent’s original advantage and the119

human’s enhanced advantage, respectively.120

However, incorporating human rewards directly into the optimization objective may lead to negative121

consequences, such as human-agent credit assignment issues. Intrinsically, humans possess the122

primitive ability to achieve certain goals independently. Therefore, it is unnecessary to reward the123

agent for assisting in goals that the human can easily achieve, as it potentially impacts the agent’s124

original behavior, resulting in losing its autonomy. In the subsequent section, we propose a novel125

insight to achieve effective human enhancement by instead learning from the positive gains that the126

human achieves goals better than his/her primitive performance.127
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3 Reinforcement Learning from Human Gain128

In this section, We present the RLHG method in detail. We start with describing the key insight in129

the RLHG method (Section 3.1). Then we implement our insights and present the RLHG algorithm130

(Section 3.2). We end by providing a practical implementation of the RLHG algorithm (Section 3.3).131

3.1 Effective Human Enhancement132

In the process of learning to enhance humans, agents explore three types of behaviors: effective133

enhancement, invalid enhancement, and negative enhancement. Intuitively, effective enhancement134

can help humans achieve their goals better than their primitive performance, invalid enhancement135

provides no benefits for humans in achieving their goals but also causes no negative impact, and136

negative enhancement hinders humans from achieving their goals. Our key insight is that agents are137

only encouraged to learn effective enhancement behaviors, which we refer to learn from positive138

gains. Formally, we denote the effective enhancement policy as πefθ , the invalid enhancement policy139

as πinθ , and the negative enhancement policy as πneθ . The agent’s policy can be expressed as follows:140

πθ =


πef
θ , if V

πθ,π
H

H > V π,πH

H

πin
θ , if V

πθ,π
H

H = V π,πH

H

πne
θ , if V

πθ,π
H

H < V π,πH

H

(2)

where π is a given pre-trained policy and V π,πH

H is the primitive value of the human policy πH141

teaming with π to achieve goals. We use the ρ-function to represent the probability of exploring142

each policy, and we have ρ(πefθ ) + ρ(πinθ ) + ρ(πneθ ) = 1. Intuitively, the expected return of human143

goal-achievement under arbitrary enhancement is a lower bound of the expected return under effective144

enhancement, that is,145

V
π
ef
θ

,πH

H ≥ ρ(πef
θ ) · V π

ef
θ

,πH

H + ρ(πin
θ ) · V πin

θ ,πH

H + ρ(πne
θ ) · V πne

θ ,πH

H = V
πθ,π

H

H .

To ensure that the agent only learns effective enhancement behaviors, we replace the lower bound146

V πθ,π
H

H with V π,πH

H . Therefore, the agent’s policy gradient 1 can be reformulated as:147

g(θ) = ∇θ log πθ(a|o, πH)EπH

[
A+ α · ÂH

]
, (3)

where ÂH = (GH − V π,πH

H )− Gainπ
ef
θ ,πH

and Gainπ
ef
θ ,πH

= V
πef
θ ,πH

H − V π,πH

H is the expected148

of the effective enhancement benefit. We use Gainω to denote an estimate of Gainπ
ef
θ ,πH

, which can149

be trained by minimizing the following loss function:150

L(ω) = Es∈S

[
I(GH , Vϕ(s)) · ∥(GH − Vϕ(s))− Gainω(s)∥2

]
, I(G,V ) =

{
1, G > V

0, G ≤ V
(4)

where I is an indicator function to filter invalid and negative enhancement samples and Vϕ is an151

estimate of V π,πH

H .152

3.2 The Algorithm153

We achieve our insights and propose the RLHG algorithm as shown in Algorithm 1, which consists154

of two steps: the Human Primitive Value Estimation step and the Human Enhancement Training step.155

Human Primitive Value Estimation: The RLHG algorithm initializes a value network Vϕ(s), which156

is used to estimate the expected primitive human return for achieving GH in state s. Vϕ(s) is trained157

by minimizing the Temporal Difference (TD) errors (Sutton and Barto, 2018) with trajectory samples158

collected by teaming the agent π and the human πH to execute in a collaboration environment.159

Afterward, Vϕ(s) is frozen for subsequent human enhancement training.160

Human Enhancement Training: The RLHG algorithm initializes the agent’s policy network πθ161

and value network Vψ by conditioned on the human policy πH , respectively. The RLHG algorithm162

also initializes a value network Gainω(s), which is used to estimate the benefit value of the human163

return GH in state s under effective enhancement over Vϕ(s). Gainω(s) is trained by minimizing the164

loss function Eq. 4. The trajectory samples are also collected by teaming πθ and πH to execute in165
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the collaboration environment. The agent’s policy network πθ is fine-tuned by the PPO (Schulman166

et al., 2017) algorithm using the combination of the original advantage A and the human-enhanced167

advantage ÂH . The agent’s value network Vψ is fine-tuned using the agent’s original return G.168

Algorithm 1 Reinforcement Learning from Human Gain (RLHG)
Require: Human policy network πH , human individual goals GH , agent policy network π, agent
value network V , hyper-parameter α
Process:

1: Initialize human primitive value network Vϕ;
// Step I: Human Primitive Value Estimation

2: while not converged do
3: Collect human-agent team < π, πH > trajectories;
4: Compute human return GH for achieving goals GH ;
5: Update Vϕ(s)← GH

6: end while
7: Initialize agent policy network πθ(a|o, πH)← π, agent value network Vψ(s, π

H)← V , human
gain network Gainω(s);
// Step II: Human Enhancement Training

8: while not converged do
9: Collect human-agent team < πθ, π

H > trajectories;
10: Compute agent original return G and human return GH ;
11: Compute agent original advantage A = G− Vψ(s, π

H);
12: Compute human-enhanced advantage ÂH = (GH − Vϕ(s))− Gainω(s);
13: Update agent policy network πθ ← A+ α · ÂH ;
14: Update agent value network Vψ(s, π

H)← G;
15: Update human gain network Gainω(s) with Eq. 4
16: end while

3.3 Practical Implementation169

We provide the overall training framework of the RLHG algorithm, as shown in Figure 3. We170

elaborate on the integral components of the RLHG framework, including the human model, the agent171

model, and the training details.172

Human Model: The RLHG algorithm introduces a human model as a partner of the agent during the173

training process. The human model can be trained via Behavior Cloning (BC) (Bain and Sammut,174

1995) or any Supervised Learning (SL) techniques (Ye et al., 2020b), but this is not the focus of our175

concern. The RLHG algorithm aims to fine-tune a pre-trained agent to enhance a given human model.176

Agent Model: Any pre-trained agent can be used within our framework. Since in many practical177

scenarios agents cannot directly access human policies, we input the observed human historical info178

ht = (sHt−m, ..., sHt ) into an LSTM (Hochreiter and Schmidhuber, 1997) module to extract the human179

policy embedding, similar to Theory-of-Mind (ToM) (Rabinowitz et al., 2018). The human policy180

embedding is fed into two extra value networks, i.e., Vϕ and Gainω , and fused into the agent’s original181

network. We use surgery techniques (Chen et al., 2015; OpenAI et al., 2019) to fuse the human182

policy embedding into the agent’s original network, i.e. adding more randomly initialized units to an183

internal fully-connected layer. Vϕ(ht) and Gainω(ht) output values estimate the human return for184

achieving goals without enhancement and the benefit under enhancement in state st, respectively.185

Training Details: The overall training framework of the RLHG algorithm is shown in Figure 3.186

Figure 3 (a) shows the training process of the human primitive value network Vϕ, in which the agent’s187

policy network is frozen. Vϕ is trained by minimizing the TD errors. Figure 3 (b) shows the human188

enhancement training process, in which Vϕ is frozen. The agent’s policy and value networks are189

trained using the PPO algorithm. Gainω(ht) is trained by minimizing the loss function Eq. 4. we190

apply the absolute activation function to ensure that the gains are non-negative. In practical training,191

we found that only conducting human enhancement training has a certain negative impact on the192

agent’s original ability to complete the task. Therefore, we introduce 1− β% agent-only environment193

to maintain the agent’s original ability and reserve β% human-agent environment to learn effective194

enhancement behaviors. These two environments can be easily controlled through the task gate, i.e.,195

the task gate is set to 1 in the human-agent environment and 0 otherwise.196

5



Environment+

𝑠!

𝑎!

Observation

Human History Info

Human-Agent𝑜!

ℎ! = (𝑠!", 𝑠!#$" , …, 𝑠$")

𝜋(𝑠!)

𝐺!"

𝑉%(ℎ!)

Observation

Human History Info

𝑜!

ℎ! = (𝑠!", 𝑠!#$" , …, 𝑠$")

Encoder

x

Gain&(ℎ!)
-

𝜋'(𝑠!,ℎ!)

𝑉((𝑠!,ℎ!)Task Gate

abs

+ +

Agent-OnlyHuman-Agent

𝐺!"

𝑠!
𝑎!

𝐺!

LSTM

𝑉%(ℎ!)

Encoder

LSTM

minus

Frozen

Architecture(a)

(b)

𝛽% 1 − 𝛽%

Figure 3: The RLHG training framework. (a) The human primitive value network Vϕ is trained in the
human-agent environment with the agent’s policy π frozen. (b) The human enhancement training framework. Vϕ

is frozen. β% human-agent environment is used to learn human enhancement behaviors, and 1− β% agent-only
environment is used to maintain the agent’s original ability.

4 Experiments197

In this section, we evaluate the proposed RLHG method by conducting both simulated human model-198

agent tests and real-world human-agent tests in Honor of Kings. All experiments1 were conducted in199

the 5v5 mode with a full hero pool (over 100 heroes, see Appendix A.2). Our demo videos and code200

are present at https://sites.google.com/view/rlhg-demo.201

4.1 Experimental Setup202

Environment Setup: To evaluate the performance of the RLHG agent, we conducted experiments in203

both the simulated environment, i.e., human model-agent game tests, and the real-world environment,204

i.e., human-agent game tests, as shown in Figure 4 (a) and (b), respectively. All game tests were205

played in a 5v5 mode, that is, 4 agents plus 1 human or human model team up against a fixed opponent206

team. To conduct our experiments, we communicated with the game provider and obtained testing207

authorization. The game provider assisted in recruiting 30 experienced participants with anonymized208

personal information, which comprised 15 high-level (top 1%) and 15 general-level (top30%) par-209

ticipants. We first did an IRB-approved participant survey on what top 5 goals participants want to210

achieve in-game, and the result is shown in Figure 4 (c). We can see that the top 5 goals voted the211

most by the 30 participants including the task goal, i.e., game victory, and 4 individual goals, i.e.,212

high MVP score, high participation, more highlights, and more resources. We found that participants213

consistently rated the high MVP score individual goal most, even more than the task goal.

0 10 20 30

More Resources

More Highlights

High Participation

Game Victory *

High MVP Score

Votes

+ +
Goals

VSVS

Human Model

+
Fixed Opponent Fixed Opponent

Human

(a) (b) (c)

+

Figure 4: Environment Setup. (a) Simulated environment: the human model-agent game tests. (b) Real-world
environment: the human-agent game tests. (c) Top 5 goals based on the stats of our participant survey. * denotes
the task goal. The participant survey contains 8 initial goals, each participant can vote up to 5 non-repeating
goals, and can also add additional goals. 30 participants voluntarily participated in the voting.

214
Training Setup: We were authorized to use the Wukong agent (Ye et al., 2020a) as the pre-trained215

agent and use the JueWu-SL agent (Ye et al., 2020b) as the fixed human model. Note that both216

1All experiments are conducted subject to oversight by an Institutional Review Board (IRB).
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the Wukong agent and the JueWu-SL agent were developed at the same level as the high-level (top217

1%) players. We adopted the top 4 individual goals as G for the pre-trained agent to enhance the218

human model. The corresponding goal reward function can be found in Appendix B.3. We trained219

the human primitive value network and fine-tune the agent until they converge for 12 and 40 hours,220

respectively, using a physical computer cluster with 49600 CPU cores and 288 NVIDIA V100 GPU221

cards. The batch size of each GPU is set to 256. The hyper-parameters α and β are set to 2 and 50,222

respectively. The step size and unit size of the LSTM module are set to 16 and 4096, respectively.223

Due to space constraints, detailed descriptions of the network structure and ablation studies on these224

hyper-parameters can be found in Appendix B.6 and Appendix C.1, respectively.225

Baseline Setup: We compared the RLHG agent with two baseline agents: the Wukong agent (the226

pre-trained agent) and the Human Reward Enhancement (HRE) agent (the pre-trained agent learns to227

be assistive by incorporating the human’s goal rewards). The human model-agent team (4 Wukong228

agents plus 1 human model) was adopted as the fixed opponent for all tests. For fair comparisons,229

both the HRE and RLHG agents are trained using the same goal reward function, and all common230

parameters and training resources are kept consistent. Results are reported over five random seeds.231

4.2 Human Model-Agent Test232

Directly evaluating agents with humans is expensive, which is not conducive to model selection and233

iteration. Instead, we build a simulated environment, i.e., human model-agent game tests, to evaluate234

agents, in which the human model, i.e., the JueWu-SL agent, teams up with different agents.235

Figure 5: The performance of the human model in achieving game goals after teaming up with different agents.
(a) The task goal. (b) The top 4 individual goals (b.1, b.2, b.3, and b.4). (c) The follow rate metric: the frequency
with which an agent follows a human in the entire game. Each agent played 10,000 games. Error bars represent
95% confidence intervals, calculated over games.

Figure 5 shows the results of the human model on different game goals, including the top 4 individual236

goals and the task goal, i.e., the Win Rate, after teaming up with different agents. From Figure 5 (b),237

we can observe that both the RLHG agent and the HRE agent significantly enhance the performance238

of the human model in achieving the top 4 individual goals, and the RLHG agent has achieved239

the best enhancement effect on most of the individual goals. However, as shown in Figure 5 (a),240

the HRE agent drops significantly on the task goal. We observed the actual performance of the241

HRE agent teamed with the human model and found that the HRE agent did many unreasonable242

behaviors. For example, to assist the human model in achieving the goals of Participation Rate and243

Highlight Times, the HRE agent had been following the human model throughout the entire game,244

such excessive following behaviors greatly affect its original ability to complete the task and lead245

to a decreased Win Rate. This can also be reflected in Figure 5(c), in which the HRE agent has the246

highest Follow-Rate metric. Although the Follow-Rate of the RLHG agent has also increased, we247

observed that most of the following behaviors of the RLHG agent can effectively assist the human248

model. We also found that the Win Rate of the RLHG agent decreased slightly, which is in line249

with expectations because the RLHG agent made certain sacrifices to the task goal while enhancing250

humans in achieving their individual goals. In practical applications, we implemented an adaptive251

adjustment mechanism by simply utilizing the agent’s original value network to measure the degree252

of completing the task goal and setting the task gate to 1 (enhancing the human) when the original253

value is above the specified threshold ξ, and to 0 (completing the task) otherwise. The threshold254

ξ depends on the human preference, i.e. the relative importance of the task goal and the human’s255

individual goals. We verify the effectiveness of the adaptive adjustment mechanism in Appendix C.2.256

4.3 Human-Agent Test257

In this section, we conduct online experiments to examine whether the RLHG agent can effectively258

enhance human participants (We did not compare the HRE agent, since the HRE agent learned lots259
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of unreasonable behaviors, resulting in a low Win Rate). We used a within-participant design for260

the experiment: each participant teams up with four agents. This design allowed us to evaluate both261

objective performances as well as subjective preferences. All participants read detailed guidelines262

and provided informed consent before the testing. Each participant tested 20 matches. After each test,263

participants reported their preference over their agent teammates. For fair comparisons, participants264

were not told the type of their agent teammates. See Appendix D for additional experimental details,265

including experimental design, result analysis, and ethical review.266

Table 1: The results of high-level participants achieving goals after teaming up with different agents. Results for
the task goal are expressed as mean, and results for individual goals are expressed as mean (std.).

Agent \ Goals
Task Goal Top 4 Individual Goals

Win Rate MVP Score Highlight Times Participation Rate Resource Quantity

Wukong 52% 8.86 (0.79) 0.53 (0.21) 0.46 (0.11) 5.3 (2.87)

RLHG 46.7% 10.28 (0.75) 0.87 (0.29) 0.58 (0.09) 6.28 (2.71)

Table 2: The results of general-level participants achieving goals after teaming up with different agents. Results
for the task goal are expressed as mean, and results for individual goals are expressed as mean (std.).

Agent \ Goals
Task Goal Top 4 Individual Goals

Win Rate MVP Score Highlight Times Participation Rate Resource Quantity

Wukong 34% 7.44 (0.71) 0.37 (0.349) 0.41 (0.11) 4.98 (2.73)

RLHG 30% 9.1 (0.61) 0.75 (0.253) 0.59 (0.05) 5.8 (2.78)

We first compare the objective performance of the participants on different goal-achievement metrics267

after teaming up with different agents. Table 1 and Table 2 demonstrate the results of high-level and268

general-level participants, respectively. We see that both high-level and general-level participants269

had significantly improved their performance on all top 4 individual goals after teaming up with270

the RLHG agent. Notably, the RLHG agent effectively improves the performance of general-level271

participants in achieving individual goals even better than the primitive performance of high-level272

participants. We also notice that the Win Rate of the participants decreased when they teamed up273

with the RLHG agent, which is consistent with the results in the simulated environment. However,274

we find in the subsequent subjective preference statistics that the improvement of Gaming Experience275

brought by the enhancement outweighs the negative impact of the decrease in Win Rate.276

Figure 6: Participants’ preference over their agent teammates. (a) Behavioral Rationality: the reasonableness
of the agent’s behavior. (b) Enhancement Degree: The degree to which the agent enhances your abilities to
achieve your goals. (c) Gaming Experience: your overall gaming experience. (d) Overall Preference: your
overall preference for your agent teammates. Participants scored (1: Terrible, 2: Poor, 3: Normal, 4: Good, 5:
Perfect) in these metrics after each game test. Error bars represent 95% confidence intervals, calculated over
games. See Appendix D.2.3 for detailed wording and scale descriptions.

We then compare the subjective preference metrics, i.e., the Behavioral Rationality, the Enhancement277

Degree, the Gaming Experience, and the Overall Preference, reported by participants over their agent278

teammates, as shown in Figure 6. We find that most participants showed great interest in the RLHG279

agent, and they believed that the RLHG agent’s enhancement behaviors were more reasonable than280

that of the Wukong agent, and the RLHG agent’s enhancement behaviors brought them a better281

gaming experience. A high-level participant commented on the RLHG agent "The agent frequently282

helps me do what I want to do, and this feeling is amazing." In general, participants were satisfied283

with the RLHG agent and gave higher scores in the Overall Preference metric (Figure 6 (d)).284
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4.4 Case Study285

To better understand how the RLHG agent effectively enhances participants, we visualize the values286

predicted by the gain network in two test scenarios where participants benefitted from the RLHG287

agent’s assistance, as illustrated in Figure 7. In the first scenario (Figure 7 (a)), the RLHG agent288

successfully assisted the participant in achieving the highlight goal, whereas the Wukong agent289

disregards the participant, leading to a failure in achieving the highlight goal. The visualization290

(Figure 7 (b)) of the gain network illustrates that the gain of the RLHG agent, when accompanying291

the participant, is positive, reaching the maximum when the participant achieved the highlight goal.292

In the second scenario (Figure 7 (c)), the RLHG agent actively relinquishes the acquisition of the293

monster resource, enabling the participant to successfully achieve the resource goal. Conversely, the294

Wukong agent competes with the participant for the monster resource, resulting in the participant’s295

failure to achieve the resource goal. The visualization (Figure 7 (d)) of the gain network also reveals296

that the gain of the RLHG agent’s behavior - actively forgoing the monster resource, is positive, with297

the gain peaking when the participant achieved the resource goal. These results indicate that the298

RLHG agent learns effective enhancement behaviors through the guidance of the gain network.299

(T1) Human wants Monster.

Human gets Monster.(T2) Agent leaves Monster to Human.

(T2) Agent competes with Human for Monster. Agent gets Monster.

First Defeat

Human achieves Highlight.

(T1) Human goes to Top Lane.

Human does nothing.(T2) Agent ignores Human.

(T2) Agent follows and assists Human.

Wukong

RLHG

Wukong

RLHG

(a) (b)

(c) (d)

T1 T2

Primitive Value Enhanced Value

Gain

T1 T2     

a &

Primitive Value Enhanced Value

Gain

T1 T2

Figure 7: The RLHG agent enhances participants in two scenarios. (a) The Wukong agent ignores the
participant; The RLHG agent accompanies the participant and assists the participant in achieving the highlight
goal. (b) The gain value in scenario (a). (c) The Wukong agent competes with the participant for the monster
resource; The RLHG agent actively forgoes the monster resource, and the participant successfully achieves the
resource goal. (d) The gain value in scenario (c).

5 Discussion and Conclusion300

Summary. In this work, we introduced the Reinforcement Learning from Human Gain method,301

dubbed RLHG, designed to effectively enhance human goal-achievement abilities within collaborative302

tasks. The RLHG method first trains a value network to estimate the primitive performance of humans303

in achieving goals. Subsequently, the RLHG method trains a gain network to estimate the positive304

gain of human performance in achieving goals under effective enhancement over that of the primitive.305

The positive gains are used for guiding the agent to learn effective enhancement behaviors. The306

RLHG method can be regarded as a continual learning plug-in that can be directly utilized to fine-tune307

any pre-trained agent to be assistive in human enhancement. The experimental results in Honor308

of Kings demonstrate that the RLHG agent effectively improves the performance of general-level309

participants in achieving their individual goals to be close to those of high-level participants and that310

this enhancement is generalizable across participants at different levels.311

Limitations and Future Work. In this work, we only focus on the setting of known human goals.312

But for many practical complex applications, human goals may be difficult to define and formalize,313

and the goal reward function needs to be inferred using Inverse Reinforcement Learning (IRL) (Ng314

et al., 2000; Ziebart et al., 2008; Ho and Ermon, 2016) or Reinforcement Learning from Human315

Feedback (RLHF) (Christiano et al., 2017; Ibarz et al., 2018; Ouyang et al., 2022) techniques. Future316

work can combine the RLHG method with goal inference methods to solve complex scenarios where317

human goals are unknown. Besides, our method and experiments only consider the scenario where318

multiple agents enhance one human. Another worthy research direction is how to simultaneously319

enhance multiple humans with diverse behaviors.320
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