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ABSTRACT

The classification problem concerning crisp-valued data has been well resolved.
However, interval-valued data, where all of the observations’ features are de-
scribed by intervals, is also a common type of data in real-world scenarios. For
example, the data extracted by many measuring devices are not exact numbers but
intervals. In this paper, we focus on a highly challenging problem called learning
from interval-valued data (LIND), where we aim to learn a classifier with high
performance on interval-valued observations. First, we obtain the estimation error
bound of the LIND problem based on Rademacher complexity. Then, we give the
theoretical analysis to show the strengths of multi-view learning on classification
problems, which inspires us to construct a new framework called multi-view inter-
val information extraction (Mv-IIE) approach for improving classification accu-
racy on interval-valued data. The experiment comparisons with several baselines
on both synthetic and real-world datasets illustrate the superiority of the proposed
framework in handling interval-valued data. Moreover, we describe an application
of the Mv-IIE framework that we can prevent data privacy leakage by transform-
ing crisp-valued (raw) data into interval-valued data.

1 INTRODUCTION

Machine learning methods for the classification problem (Pan et al., 2018; Li et al., 2018) have
made great achievements in many areas, including medical imaging (Raghu et al., 2019), natural
language processing (Otter et al., 2020), biology (Llorente et al., 2021) and computer vision (Tran
et al., 2019). The well-known classification machine learning algorithms incorporate logistic regres-
sion (Efron, 1975; Kayabol, 2020), support vector machines (Noble, 2006; Kafai & Eshghi, 2019),
random forests (Breiman, 2001; Biau, 2012) and neural networks (Anderson, 1995; Zhang et al.,
2021). Moreover, the theoretical analysis of these well-known algorithms has been well researched
by applying different types of complexity, such as Rademacher complexity (Bartlett et al., 2006;
Mohri et al., 2012) and VC-dimension (Mohri et al., 2012; Daniely & Shalev-Shwartz, 2014). Most
existing works for the classification problem only focus on crisp-valued data classification.

However, in many real-world scenarios, observations with crisp-valued features are not always avail-
able. Interval-valued data (Dombi, 1990; Billard & Diday, 2003) is a common type of data where
all of the observations’ features are described by intervals, not crisp-valued numbers. For example,
the mushroom dataset (see Table 1) is a real-world interval-valued dataset described by five interval-
valued features and one category variable. Moreover, the data extracted by many measuring devices
are not exact numbers but intervals because there are only a limited number of decimals available on
most of these measuring devices. Existing well-known machine learning methods cannot be directly
used to handle interval-valued data. Recently, some researchers have begun exploring imprecise
data from different perspectives, such as superset label learning and data disambiguation Cour et al.
(2011); Lin & Cercone (2012); Hüllermeier (2014); Liu & Dietterich (2014). Unfortunately, the ex-
isting research related to analyzing interval-valued data mainly focuses on decision-making (Jahan-
shahloo et al., 2006), clustering analysis (De Carvalho & Tenório, 2010), regression analysis (Hao,
2009; Utkin & Coolen, 2011; Souza et al., 2017), and feature selection (Li et al., 2022), yet less
on classification tasks (Utkin & Coolen, 2011). Besides, limited research on interval-valued clas-
sification only gives some simple framework and no relevant experimental analysis on real-world
interval-valued datasets.

In this paper, we focus on a highly challenging problem called learning from interval-valued data
(LIND), where we aim to learn a classifier that can obtain high classification accuracy on interval-
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Table 1: Some instances of the mushroom dataset. The first column of this table shows the name of each
instance. The 2nd-6th columns of this table are five interval-valued features of the mushroom dataset, and the
last column of this table shows the category of each instance (label).

Name Pw(cm) Sl(cm) St(cm) Sma(cm) Smi(µm) Category

Arorae [3, 8] [4, 9] [0.5, 2.5] [4.5, 5] [3, 3.5] Agaricus

Moronii [6, 12] [2, 7] [1.5, 3] [6, 7.5] [4, 5] Agaricus

Appendiculatus [7, 14] [5, 9] [3, 6] [11.5, 13.5] [3.5, 4.5] Boletus

Fragans [6, 15] [4, 10] [1, 3.5] [13, 17.5] [5, 7.8] Boletus

Augusta [6, 12] [9, 17] [1, 2] [9.5, 11.5] [8.5, 10] Amanita

valued observations. Throughout existing research involving interval-valued data, no research dis-
cusses a theory regarding the interval-valued data classification problem. To fill this gap, we first
present theoretical analysis to obtain the estimation error bound of the LIND problem based on
Rademacher complexity (Theorem 1). This Rademacher complexity-based bound demonstrates that
we can always train a classifier with high classification accuracy when enough interval-valued in-
stances can be collected. Next, we provide a theorem to show the strengths of multi-view learning
in addressing classification problems (Theorems 4 and 5). This theorem inspires us to propose
a new framework called the multi-view interval information extraction (Mv-IIE) approach using
multi-view learning (Blum & Mitchell, 1998; Zhang et al., 2018a; Wang et al., 2021a;b).

The proposed framework, which comprises two main parts (Figure 1), applies multi-view learning
to classify crisp-valued information extracted from the interval-valued observations. The first part is
used to extract crisp-valued information from the interval-valued observations. The most commonly
used method is to take the midpoint of the intervals to extract crisp-valued information, however us-
ing this method will result in the loss of a lot of critical information from the intervals. For example,
suppose we have two intervals x̄1 = [1, 5] and x̄2 = [2, 4], we will obtain the same crisp-valued in-
formation x = 3 from different intervals by taking the midpoint of the intervals. However, x̄1 clearly
has a larger interval than x̄2 has, thus it is improper to consider them as the same instance in the view
of midpoint. Therefore, in this paper, we propose a membership function-based method (Dombi,
1990; Delgado et al., 1998; Oussalah, 2002) to extract multi-view information (crisp-valued). The
second part is a multi-view classifier to handle the extracted multi-view information. In this paper,
support vector machines, random forests and neural networks are used as the basic structures of the
multi-view classifier. This multi-view classifier guided by the proposed theorem is trained on the
view-fusion representation vectors constructed by integrating an appropriate number of candidate
views (more details and motivation are discussed in Section 4).

Finally, we compare the performance of the Mv-IIE framework with several baselines on both syn-
thetic and real-world datasets. The experiment results illustrate the superiority of the proposed model
in handling interval-valued data. Moreover, we detail an application of the Mv-IIF framework that
we present a novel framework for protecting data privacy called interval privacy-preserving (INPP),
see Section 5.4. Through experiments on one real-world dataset, it demonstrates that applying INPP
can prevent raw (crisp-valued) data leakage while ensuring high performance.

2 PROBLEM SETTING

In this section, we introduce the problem of learning from interval-valued data.

Let x̄ = (x̄1, · · · , x̄p)
⊤ be a p-dimension interval-valued vector, where x̄j = [xl

j , x
r
j ], j ∈ [p]. Here,

we denote [p] = {1, · · · , p}. R̄ is denoted as the set of all real-valued intervals (closed) and R̄p is
denoted as the set of all p-dimension interval-valued vector, i.e., R̄ = {[xl, xr] : xl, xr ∈ R, xl ≤ xr}
and R̄p = {([xl

1, x
r
1], · · · , [xl

p, x
r
p])

⊤ : xl
j , x

r
j ∈ R, xl

j ≤ xr
j , j ∈ [p]}.

Key Definitions. In this part, we introduce some basic definitions to identify the LIND problem.
We first show the definition of the interval-valued random variable.

Definition 1 (Interval-valued Random Variable). Suppose X l, Xr ∈ R are two real-valued ran-
dom variables (Jeffreys, 1998) defined in R. We define X̄ = [X l, Xr] ∈ R̄ as an interval-valued
random variable, as long as X l ≤ Xr. Then, a p-dimension interval-valued random vector
X̄ = (X̄1, · · · , X̄p)

⊤ ∈ R̄p is a k-tuple of the interval-valued random variables, where X̄j (j ∈ [p])
is an interval-valued random variable.
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The interval-valued random variable is a natural extension of the ordinary real-valued random vari-
able. Then, we define D̄ as the interval probability distribution of X̄ = (X̄1, · · · , X̄p)

⊤ (denoted as
X̄ ∼ D̄). Note that the strict definitions related to interval probability distribution and i.i.d. interval-
valued random vectors are given in Appendix B. Next, we introduce the definition of the interval
expectation for an interval-valued random vector.
Definition 2 (Interval Expectation). Suppose X̄ = (X̄1, · · · , X̄p)

⊤ ∼ D̄ is an interval-valued
random vector. We denote Xl = (X l

1, · · · , X l
p)

⊤ and Xr = (Xr
1, · · · , Xr

p)
⊤, which are two real-

valued random vectors following probability distribution Dl and Dr. Then, the interval expectation
of an interval-valued random vector X̄ is defined as,

ED̄[X̄] =
1

2

∫
xdDl(x) +

1

2

∫
xdDr(x) =

1

2
E[Xl] +

1

2
E[Xr].

Based on the above definitions and the introduction of ordinary classification problems with crisp-
valued observations (Mohri et al., 2012), we can identify the LIND problem.

Learning from Interval-valued Data: Let X̄ ⊂ R̄p be the input space and Y = [K] be the output
space. Suppose S̄ = {(x̄i, yi)}mi=1 is a sample drawn i.i.d. from D̄, where x̄i = (x̄i1, · · · , x̄ip)

⊤ ∈
X̄ and yi = f(x̄i) ∈ Y be the ground-truth function. Let H ⊂ {h : X̄ → RK} be the hypothesis
space of the LIND problem and for any h ∈ H,

h(x̄i) : X̄ → RK

x̄i → (h1(x̄i), · · · , hK(x̄i))
⊤.

Without loss of generality, we suppose that
∑K

k=1 hk(x̄i) = 1 and each hk(x̄i) represents the
probability of instance x̄i belonging to the k-th category. Therefore, we have suph∈H ∥ h ∥∞ ≤ 1.
Let LH = {ℓ(h(x̄), y) : x̄ ∈ X̄ ,h ∈ H, y ∈ Y} be the class of functions with respect to the
loss ℓ and H, where ℓ : RK × Y → R+. Based on the ordinary classification problem, we denote
RD̄(h) = ED̄[ℓ(h(x̄), y)] as the risk of the LIND problem. Therefore, the aim of the LIND problem
is to find the optimal classifier h∗ ∈ H such that h∗ = argminh∈H RD̄(h).

Remark 1: Most previous works considering that the expectation of an interval is itself an inter-
val (Aumann, 1965) were primarily focused on the operation of interval-valued data. However, in
this paper, we focus on learning this type of data (interval) from a machine learning perspective.
Therefore, we give a different definition of the expectation of an interval (Definition 2).

3 THEORETICAL ANALYSIS

This section presents the main theoretical outcome of the LIND problem (all proofs and further
analysis are shown in Appendix B).

Let S̄X̄ = {x̄i}mi=1 be a sample drawn i.i.d. from D̄. Based on the Rademacher complexity of H
with respect to S̄X̄ (see Definition 7 in Appendix B), we can obtain the following theorem.
Theorem 1. Suppose that sup∥h∥∞≤1 maxy ℓ(h, y) ≤ Cℓ, and all functions in LH are Lℓ-Lipschitz
functions. For any δ > 0, with probability at least 1− δ, each of the following holds for all h ∈ H:

|RD̄(h)− R̂D̄(h)| ≤ 2
√
2LℓR̂S̄X̄

(H) + 3Cℓ

√
log(2/δ)

2m . (1)

This theorem presents a generalization bound of the discrepancy between the risk and empirical
risk of h based on empirical Rademacher complexity. R̂S̄X̄

(H) is in the order of O(1/
√
m) under

some certain restrictions of H (Bach et al., 2004; Cortes et al., 2010; Kloft et al., 2011), for example
H has limited-VC dimension or H is a kernel class with bounded trace. According to Eq. (1)
and if R̂S̄X̄

(H) = O(1/
√
m), we notice that as m → ∞, RD̄(h) → R̂D̄(h). Therefore, this

bound demonstrates that we can always well handle the LIND problem when enough interval-valued
instances can be collected.

In addition, we prove two theorems (See Appendix B.2 for details) to illustrate the advantage of
using multi-view learning to address the LIND problem in terms of error rate and estimation er-
ror bound. Theorem 4 shows that the error rate of a multi-view prediction function is lower than
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Figure 1: Mv-IIE framework. The first part (denoted in green) is to extract the multi-view information from
the interval-valued dataset D. Then, the multi-view classifier with two structures is used to handle the extracted
multi-view information. The first structure (denoted in red) is used to select well-performed candidate views.
The second structure (denoted in yellow) aims to train the final multi-view classifiers by using the view-fusion
representation vectors.

that of any single-view prediction function under some certain restrictions, which means that us-
ing multi-view methodology can reduce the error rate of the predict function for the classification
tasks. Theorem 5 demonstrates that we can obtain tighter estimation error bounds by applying the
multi-view methodology. Inspired by the theoretical analysis of Theorems 4 and 5, we decide to
find appropriate multi-view features that can achieve well and similar performance on some specific
classifiers to train our multi-view classifiers.

4 CONSTRUCT MODEL FOR INTERVAL-VALUED DATA CLASSIFICATION

In this section, a new framework called multi-view interval information extraction (Mv-IIE) ap-
proach is presented to address the LIND problem. The structure of the Mv-IIE framework is shown
in Figure 1. We describe this proposed framework in detail in the following paragraph.

We denote D = {(x̄i, yi)}mi=1 as the interval-valued dataset, where x̄i = (x̄i1, · · · , x̄ip)
⊤ ∈ R̄p is

the interval-valued feature vector and yi ∈ [K] is the label. First, we construct a set of membership
function-based transformation functions to extract multi-view information (crisp-valued) from the
interval-valued dataset D (denoted in green in Figure 1). T = {Tv(·;β)}7v=1 is denoted as the set
of transformation functions, where

T1 = MOM ◦ F1,T2 = COG ◦ F1,T3 = COG ◦ F2,T4 = ALC ◦ F1,
T5 = ALC ◦ F2,T6 = VAL ◦ F1,T7 = VAL ◦ F2.

Here, F1(·;β),F2(·;β) are two functions that are used to transfer a interval-valued feature vector
into a triangular fuzzy vector and a Gaussian fuzzy vector, and MOM, COG, ALC, VAL (Delgado
et al., 1998; Oussalah, 2002) are four different membership function-based defuzzification methods
(see Appendix C for details). F1(·;β),F2(·;β) are defined as:

Fτ (x̄i;β) = (Fτ (x̄i1;β), · · · , Fτ (x̄ip;β))
⊤, τ = 1, 2.

F1(x̄ij ;β) = Tr(xl
ij , βx

l
ij + (1− β)xr

ij , x
r
ij),

F2(x̄ij ;β) = Ga(βxl
ij + (1− β)xr

ij , S1j , S2j),

S1j =
√
Var(Aj), S2j =

√
Var(Bj),

Aj = {xl
ij : i ∈ [m], (x̄i, yi) ∈ D}, Bj = {xr

ij : i ∈ [m], (x̄i, yi) ∈ D}, j ∈ [p],

where Tr(xl
ij , βx

l
ij + (1 − β)xr

ij , x
r
ij) and Ga(βxl

ij + (1 − β)xr
ij , S1j , S2j) are represented two

types of fuzzy numbers (see Appendix C for details). Through the above process, one interval-
valued feature x̄i can be transferred into seven different parts XMv

i = (x1
i , · · · ,x7

i ), where for
any i ∈ [m], v ∈ [7],xv

i = Tv(x̄i;β),Tv ∈ T . Then, we obtain the multi-view informa-
tion DMv = {(x1

i , yi, 1), · · · , (x7
i , yi, 7)}mi=1 by using the above mentioned method. For any

(xv
i , yi, v) ∈ DMv, yi ∈ [K] is the category label, and v ∈ [7] is the view label.
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Algorithm 1 Mv-IIE
1: Input data D = {(x̄i, yi)}mi=1, the basic classifiers Cq, q ∈ [3];
2: Initial network parameters of C3 and split D into a training set Dtr with size m1, a validation set Dva with
size m2 and a test set Dte with size m3;
3: Compute extract multi-view information : xv

i = Tv(x̄i;β),Tv ∈ T , i ∈ [m], v ∈ [7];
4: Train single-view classifiers Cv

q , v ∈ [7], q ∈ [3] on the training set {(xv
i , yi)|(x̄i, yi) ∈ Dtr}m1

i=1;
5: Compute classification accuracy of the single-view classifier Cv

q , v ∈ [7], q ∈ [3] on the validation set
{(xv

i , yi)|(x̄i, yi) ∈ Dva}m2
i=1;

6: Select c candidate views for each q ∈ [3], denoted as Vq = {vq1 , · · · , vqc}, that achieve higher classification
accuracy than the rest of the views;
7: Compute view-fusion representation vector :

xco,q
i = (ŷ

v
q
1 ,Cq

i ; · · · ; ŷvq
c ,Cq

i ), i ∈ [m], q ∈ [3],

where ŷ
v,Cq

i ∈ RK is the category prediction for the v-th view of the i-th data by applying Cq;
8: Train multi-view classifiers CMv

q , q ∈ [3] on the training set {(xco,q
i , yi)|(x̄i, yi) ∈ Dtr}m1

i=1;
9: Select the optimal hyperparameters that can obtain the highest classification accuracy on the validation set
{(xco,q

i , yi)|(x̄i, yi) ∈ Dva}m2
i=1;

10: Output CMv
q , q ∈ [3] with optimal hyperparameters and use these model to test the performance on the

test set {(xco,q
i , yi)|(x̄i, yi) ∈ Dte}m3

i=1.

Motivation of transformation functions construction: The interval-valued features contain simi-
lar structures and properties with fuzzy numbers Delgado et al. (1998), which both exist a consider-
able amount of uncertainty. Further, the α-cut of a fuzzy number x̃ is defined as {t ∈ R|µx̃(t) ≤ α}
(µx̃(t) is the membership function of x̃), which is a closed and bounded interval. Therefore, we
design two fuzzilization methods to transfer the interval-valued features into two well-defined fuzzy
numbers. Moreover, the four membership function-based methods can extract different crucial dis-
criminant information from fuzzy numbers. For example, MOM finds the maximum membership
level but ignores the changing trend of the membership function, while COG takes into account the
trend and finds the centroid of the area bounded by the membership function. Through the above
analysis, it inspired us to construct a set of transformation functions by fusing the two fuzzilization
methods and the four membership function-based methods to extract multi-view discriminant infor-
mation. Experimental results shown in Sections 5.2 and 5.3 verify the rationality and efficacy of the
fuzzy transformation functions.

Next, we propose a multi-view classifier with two parts to train the multi-view information, which
aims to minimize the empirical risk R̂D(hco) in Section 3. The first part (denoted in red in Fig-
ure 1) is used to select appropriate multi-view information. We apply support vector machines,
random forests and neural networks as three basic classifiers, which denoted as C1,C2 and C3.
Then, we apply the three basic classifiers to train single-view classifiers Cv

q , v ∈ [7], q ∈ [3] on
the training set, and we select several well-performed views with the number of c as the candi-
date views for each basic classifier on the validation set (we set c = 2 for our experiments in this
paper). This selected approach is inspired by the theoretical analysis of Theorem 4 and 5. Let
ŷ
v,Cq

i ∈ RK , i ∈ [m], v ∈ [7], q ∈ [3] denoted as the category prediction for the v-th view of the
i-th data by applying the basic classifier Cq , and Vq = {vq1, · · · , vqc}, q ∈ [3] denoted as the selected
candidate views for basic classifier Cq . The second part (denoted in yellow in Figure 1) aims to
train the final multi-view classifiers by using the selected candidate views. For each basic classi-
fier Cq, q ∈ [3], the category predictions of the selected candidate views are integrated to obtain
xco,q
i = (ŷ

vq
1 ,Cq

i ; · · · ; ŷvq
c ,Cq

i ), i ∈ [m], q ∈ [3] as view-fusion representation vector, and we use
xco,q
i as input and Cq as a classifier to train the multi-view classifier CMv

q on the training set and
select the optimal hyperparameters of CMv

q on the validation set. Finally, the trained multi-view
classifiers CMv

q , q ∈ [3] with optimal hyperparameters are used to get the final category prediction
ŷq on the test set. More detail of the Mv-IIE framework is shown in Algorithm 1.

5 EXPERIMENTS

In this section, we compare the proposed model with several baselines on both synthetic and real-
world datasets, and introduce an application of our method.
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Figure 2: Synthetic datasets. From (a) and (c), each rectangle represents one interval-valued instance. (b) and
(d) plot the the center of the interval-valued data (rectangle) to show the separability of the synthetic dataset.

5.1 BASELINES

This section gives a brief introduction of seven baselines. The first two baselines called DF-SVM
and DF-MLP are proposed in (Ma et al., 2022). Next three baselines called L-IIE, U-IIE and
M-IIE that take the low bound, upper bound and midpoint values from intervals to train the three
basic classifiers. The other two baselines called Mv-IIE-2 and Mv-IIE-3 are constructed based
on our proposed framework in this paper. Instead of using the membership function-based method
to extract multi-view information in the proposed framework, Mv-IIE-2 uses the upper and lower
bounds of intervals as two views. Mv-IIE-3 uses the two views mentioned above and the midpoint
of intervals as another view and integrates all these views to get the final prediction.

5.2 EXPERIMENTS ON SYNTHETIC DATASETS

In this section, we verify the efficacy of the proposed framework on three synthetic datasets. First,
we introduce the process of the synthetic datasets generation.

Interval-valued Dataset Generation. We use two different mechanisms to construct synthetic
interval-valued datasets. In the first data-generation mechanism, we generate the crisp-valued
dataset {(xi = (xi1, xi2)

⊤, yi)}ni=1 in two categories by the double moon data generator. Then,
we use the generated crisp-valued dataset to construct the first interval-valued dataset {x̄i =
(x̄i1, x̄i2)

⊤, yi}ni=1, where each x̄ij is an interval characterized by [xij − aij , xij + bij ]. We let
aij , bij ∼ U [0, 4] and n = 1000 to generate the first synthetic dataset and let aij ∼ U [0.5, 1], bij ∼
U [2, 4] and n = 2000 to generate the second synthetic dataset (U [a, b] denotes the uniform distribu-
tion over [a, b]). Visualizations of the first two synthetic datasets are shown in Figure 2.

In the second data-generation mechanism, we first select one dataset (Letter Recognition dataset
selected from the UCI Machine Learning Repository https://archive-beta.ics.uci.edu/) denoted as
DR = {(xi, yi)}ni=1, where xi = (xi1, · · · , xip)

⊤ ∈ Rp, and yi ∈ [K]. Then, we present one
intervalization approach to generate the second synthetic interval-valued dataset (see Figure 3). We
select the first L features in DR and find the maximum value xmax

l and minimum value xmin
l of each

feature l, so for any l ∈ [L], i ∈ [n], xip ∈ [xmin
l , xmax

l ]. We bisect the interval [xmin
l , xmax

l ] into T

intervals [x0
l , x

1
l ], [x

2
l , x

3
l ], · · · , [x

T−1
l , xT

l ]. We denote for any l ∈ [L], t ∈ [L], and k ∈ [K],

Itlk = {(xi, yi) ∈ DR : xil ∈ [xt−1
l , xt

l ], yi = k}.
Finally, we transfer set Itlk into an interval-valued data (([xl

1, x
r
1], · · · , [xl

p, x
r
p])

⊤, k), where xl
j =

min(xi,k)∈It
lk
xij , x

r
j = max(xi,k)∈It

lk
xij , j ∈ [p]. Then, let L = 4, T = 12, we generate the third

synthetic interval-valued dataset by using the aforementioned data-generation mechanism.

Experiment Results Analysis. In our experiments, we compare the performance of the Mv-IIE
framework with the seven baselines on the three generated synthetic datasets. All the experiment
details are shown in Appendix D. The experimental results are shown in Table 2. From these results,
it can be seen that the proposed model achieves the best classification accuracy on the three synthetic
datasets. Further, results of the Wilcoxon rank-sum test Wilcoxon (1992) show that our approach
outperforms DF-MLP, L-IIE, U-IIE, M-IIE and Mv-IIE-2 significantly at the 0.05 significance
level in most cases. Further, our method outperforms Mv-IIE-2 and Mv-IIE-3, which verifies the
rationality of the theoretical analysis of Theorems 4 and 5 (see Section 3). All these results verify the
superiority of the proposed model in addressing classification problems with interval-valued data.
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Number Feature 1 Feature 2 Feature 3 Label

1 8 3 7 0

2 6 5 2 0

3 12 4 12 1

4 5 6 8 1

5 4 9 10 0

6 2 1 4 1

select  Feature1 

Feature1 Label Number

[ 2, 7 ] 0 2, 5

1 4, 6

[ 7, 12 ] 0 1

1 3

Feature 1 Feature 2 Feature 3 Label

[ 2, 7 ] [ 5, 9 ] [ 2, 10 ] 0

[ 2, 7 ] [ 1, 6 ] [ 4, 8 ] 1

[ 7, 12 ] [ 3, 3 ] [ 7, 7 ] 0

[ 7, 12 ] [ 4, 4 ] [ 12, 12 ] 1

transfer into 
interval-valued data

Figure 3: The intervalization approach.
Table 2: Experiment results (accuracy±standard deviation of accuracies) on the three synthetic datasets. The bold value represents the
highest accuracy in each column. p is the p-value of the Wilcoxon rank-sum test between the best performance and other algorithms. ∗

represents p < 0.05, meaning that Mv-IIE outperforms other baselines significantly at the 0.05 significance level (Rice, 2006).
1st synthetic 2nd synthetic 3rd synthetic

Algorithms basic classifier Test accuracy p Test accuracy p Test accuracy p

DF-SVM 71.30%±1.62% 0.73 97.82%±0.61% 0.43 94.26%±2.10% 0.59

DF-MLP 70.60%±1.67% 0.35 97.13%±1.04% 0.034∗ 92.21%±2.15% 0.032∗

L-IIE C1 67.35%±2.95% 0.0051∗ 97.90%±0.76% 0.47 90.34%±1.64% 0.0012∗

C2 63.90%±2.71% 0.00016∗ 97.80%±0.64% 0.43 89.17%±1.32% 0.00067∗

C3 66.15%±2.40% 0.00016∗ 97.10%±0.84% 0.034∗ 90.49%±1.88% 0.0012∗

U-IIE C1 66.90%±1.37% 0.00016∗ 76.95%±1.43% 0.0016∗ 88.04%±2.59% 0.048∗

C2 65.20%±2.61% 0.00016∗ 75.68%±1.31% 0.0016∗ 89.31%±2.94% 0.00067∗

C3 66.65%±1.21% 0.00016∗ 75.95%±1.63% 0.0016∗ 87.01%±2.90% 0.00034∗

M-IIE C1 71.15%±2.09% 0.60 89.85%±0.92% 0.0016∗ 94.02%±2.07% 0.048∗

C2 70.25%±2.17% 0.11 88.58%±0.72% 0.0016∗ 90.54%±1.92% 0.0012∗

C3 69.95%±2.11% 0.048∗ 86.95%±1.44% 0.0016∗ 91.67%±1.81% 0.0094∗

Mv-IIE-2 C1 70.35%±2.09% 0.15 98.20%±0.81% 0.94 93.14%±1.95% 0.048∗

C2 69.85%±2.92% 0.045∗ 97.03%±0.96% 0.0011∗ 90.44%±2.60% 0.0011∗

C3 65.82%±3.12% 0.00016∗ 97.90%±0.72% 0.47 84.17%±3.14% 0.00034∗

Mv-IIE-3 C1 71.05%±2.21% 0.57 98.17%±0.72% 0.88 94.46%±2.15% 0.79

C2 70.90%±2.88% 0.44 97.25%±0.84% 0.044∗ 91.37%±2.70% 0.0081∗

C3 66.25%±1.95% 0.00016∗ 97.85%±0.65% 0.43 80.59%±4.43% 0.00034∗

Mv-IIE C1 71.25%±2.11% 0.68 98.25% ± 0.69% —- 94.66% ± 1.81% —-

C2 71.65% ± 2.05% —- 97.13%±1.18% 0.034∗ 90.49%±2.51% 0.0012∗

C3 71.05%±1.67% 0.57 98.05%±0.72% 0.74 86.96%±1.35% 0.00034∗

Table 3: Experiment results (accuracy±standard deviation of accuracies) on the two real-world datasets. The bold value represents the
highest accuracy in each column. p is the p-value of the Wilcoxon rank-sum test between the best performance and other algorithms. ∗

represents p < 0.05, meaning that Mv-IIE outperforms other baselines significantly at the 0.05 significance level (Rice, 2006).
Mushroom dataset Weather dataset

Algorithms basic classifier Test accuracy p Test accuracy p

DF-SVM 76.67%±3.86% 0.00067∗ 97.12%±0.98% 0.79

DF-MLP 79.39%±3.32% 0.019∗ 96.83%±0.98% 0.048∗

L-IIE C1 71.18%±6.30% 0.00034∗ 93.56%±0.96% 0.00016∗

C2 76.36%±6.62% 0.00067∗ 93.33%±0.73% 0.00016∗

C3 76.19%±4.13% 0.00067∗ 93.54%±0.85% 0.00016∗

U-IIE C1 74.50%±2.88% 0.00054∗ 94.06%±0.90% 0.00016∗

C2 79.14%±3.58% 0.015∗ 93.15%±1.16% 0.00016∗

C3 76.01%±4.29% 0.00067∗ 93.93%±1.03% 0.00016∗

M-IIE C1 75.60%±3.11% 0.00054∗ 97.03%±0.96% 0.75

C2 79.34%±4.75% 0.019∗ 97.08%±0.73% 0.77

C3 76.01%±4.29% 0.00067∗ 96.85%±0.88% 0.048∗

Mv-IIE-2 C1 81.74%±5.13% 0.045∗ 96.76%±0.91% 0.047∗

C2 80.47%±3.69% 0.022∗ 95.50%±1.25% 0.0032∗

C3 76.55%±5.58% 0.00067∗ 93.72%±1.00% 0.00016∗

Mv-IIE-3 C1 82.34%±3.79% 0.56 97.12%±0.90% 0.79

C2 82.57%±4.54% 0.69 97.10%±0.74% 0.77

C3 73.79%±4.69% 0.00034∗ 93.52%±1.16% 0.00016∗

Mv-IIE C1 81.75%±4.09% 0.045∗ 97.26% ± 0.81% —-

C2 83.69% ± 3.39% —- 96.46%±0.73% 0.041∗

C3 82.67%±3.14% 0.72 96.62%±1.20% 0.046∗
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Table 4: Experiment results (accuracy±standard deviation of accuracies) of the ablation study on the synthetic and real-world datasets.

The bold value represents the highest accuracy in each column.
Algorithms Basic classifier 1st synthetic 2nd synthetic 3rd synthetic Mushroom Weather

view 1 C1 70.70%±2.16% 97.97%±0.80% 94.22%±2.05% 76.81%±3.07% 96.94%±0.96%

C2 69.75%±2.32% 97.85%±0.92% 91.27%±2.31% 82.29%±5.26% 97.03%±0.68%

C3 71.45%±2.25% 98.12%±0.66% 92.21%±1.76% 77.56%±3.36% 96.80%±1.25%

view 2 C1 70.95%±1.62% 96.50%±0.56% 94.26%±1.99% 76.66%±3.83% 97.12%±0.74%

C2 69.75%±1.74% 95.10%±1.10% 91.81%±1.87% 83.35%±5.06% 96.83%±0.97%

C3 70.25%±1.93% 96.47%±0.68% 92.45%±1.85% 79.62%±4.15% 96.83%±0.96%

view 3 C1 71.20%±2.17% 95.20%±0.56% 94.41%±2.05% 76.55%±3.25% 97.01%±0.94%

C2 69.45%±2.27% 94.00%±0.81% 91.67%±2.28% 82.44%±4.65% 96.69%±0.99%

C3 71.20%±1.68% 94.30%±0.91% 91.52%±2.62% 79.62%±3.32% 96.78%±1.12%

view 4 C1 71.30%±1.62% 97.82%±0.61% 94.26%±2.10% 76.67%±3.86% 97.12%±0.98%

C2 69.15%±3.24% 97.13%±1.04% 90.88%±2.98% 82.45%±5.26% 96.72%±1.20%

C3 70.60%±1.67% 97.62%±0.93% 92.21%±2.15% 79.39%±3.32% 96.76%±0.98%

view 5 C1 70.60%±1.73% 97.97%±0.80% 94.17%±1.87% 75.07%±3.18% 96.96%±0.89%

C2 69.75%±2.32% 97.50%±0.78% 91.08%±2.49% 82.70%±4.88% 96.96%±0.69%

C3 71.20%±2.11% 98.12%±0.66% 90.49%±2.19% 71.38%±5.94% 96.42%±1.03%

view 6 C1 70.65%±2.13% 98.00%±0.80% 94.17%±2.13% 77.12%±3.14% 97.01%±0.87%

C2 69.75%±2.32% 98.05%±0.76% 90.54%±2.11% 82.78%±5.08% 96.94%±0.70%

C3 70.35%±2.47% 98.12%±0.66% 92.55%±1.65% 77.90%±4.48% 96.58%±1.05%

view 7 C1 70.60%±1.74% 97.95%±0.77% 94.36%±2.02% 76.81%±3.07% 97.05%±0.75%

C2 69.75%±2.32% 97.38%±1.03% 90.54%±2.07% 82.89%±5.13% 97.03%±0.68%

C3 70.60%±1.67% 98.12%±0.66% 91.57%±2.33% 75.13%±4.82% 96.96%±1.04%

Mv-IIE C1 71.25%±2.11% 98.25% ± 0.69% 94.66% ± 1.81% 81.75%±4.09% 97.26% ± 0.81%

C2 71.65% ± 2.05% 97.13%±1.18% 90.49%±2.51% 83.69% ± 3.39% 96.46%±0.73%

C3 71.05%±1.67% 98.05%±0.72% 86.96%±1.35% 82.67%±3.14% 96.62%±1.20%

5.3 EXPERIMENTS ON REAL-WORLD DATASETS

This section illustrates the experimental results on two real-world datasets which are used to verify
the efficacy of the proposed framework. The briefly introduction of the two real-world datasets used
in our experiments is shown in Appendix E.

Experiment Results Analysis. All the experiment details on the two real-world datasets are shown
in Appendix D. The experiment results on the two real-world datasets are shown in Table 3. From
the results of classification accuracy and the Wilcoxon rank-sum test, it can be seen that the proposed
model outperforms DF-SVM, DF-MLP, L-IIE, U-IIE, M-IIE and Mv-IIE-2 significantly at the
0.05 significance level nearly in all cases. DF-SVM and DF-MLP perform much worse than our
methods on the mushroom dataset because they ignore some crucial discriminant information from
this dataset. In comparison, our methods via multi-view learning and fuzzy transformation functions
can extract more discriminant information. In addition, although Mv-IIE-3 applies 3 views, our
method still get better outcomes than Mv-IIE-3. These results again demonstrate the superiority of
our method in addressing classification problems with interval-valued data.

Ablation Study. To verify the advantage of using multi-view methodology, we apply all single-view
classifiers (Cv

q , v ∈ [7], q ∈ [3], see Section 4) to test classification performance on both synthetic
and real-world datasets. All results are report in Table 4, which verifies the proposed framework’s
superiority and rationality in addressing interval-valued data classification problems.

5.4 APPLICATION
In this section, we describe an application of Mv-IIE, where a novel framework for protecting data
privacy called interval privacy-preserving (INPP) is presented. The structure of the INPP framework
is shown in Figure 4 (see Appendix D). There are three roles involved in each machine learning task:
the input party (data owners), the computation party and the results’ party. In such systems, the data
owner(s) send their data to the computation party. Then, the computation party trains a model using
these data and sends this model to the results’ party. Finally, the results’ party uses this model to
predict new data. If all three roles are from the same entity, then privacy is naturally preserved.
However, when these roles are from two or more entities, privacy-preserving is necessary. For
example, an online clothing retailer wants to know different customers’ preferences to adjust the
quantity of each garment. In this situation, different customers play the first role and online clothing
retailers play the second and third roles.
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Table 5: Experiment results of INPP framework on letter recognition dataset. R is equal to the ratio of the outcomes of INPP framework
to the best outcome on the original dataset.

Method L T q Test accuracy R EN

original dataset —- —- —- 95.86%±0.19% —- —-

INPP 6 15 0.20 88.85%±0.71% 92.69% 66.82%

6 15 0.30 91.19%±0.75% 95.13% 56.84%

6 15 0.50 93.24%±0.50% 97.27% 37.19%

In the proposed framework, we denote DR = {(xi, yi)}ni=1 as the raw data from the data owner(s),
where xi = (xi1, · · · , xip)

⊤ ∈ Rp, yi ∈ [K]. First, the data owner(s) use the intervalization
approach (see Figure 3) to transfer DR into the interval-valued data DEN = {(x̄i, yi)}mi=1 and
an interval method the same as the first data-generation mechanism described in Section 5.2 to
transfer DC, which contains n∗q instances randomly selected from DR, into the interval-valued data
DIN = {(x̄i, yi)}n∗qi=1. Then, the data owner(s) send these two interval-valued datasets DEN, DIN to
the computation party. Secondly, the computation party uses the interval-valued data DEN to train
Model 1 by applying Mv-IIE and the interval-valued data DIN is used to fine-tune Model 1 to obtain
Model 2. Then, the computation party sends Model 2 to the results’ party. Finally, the results’ party
uses the same interval method described in Section 5.2 to transfer xnew into x̄new and uses Model 2
to predict x̄new for new data prediction. According to the above methods, the intervalization process
of our proposed framework is irreversible and the raw data is largely compressed. Therefore, the
computation party and other parties cannot obtain the raw data from DEN and DIN, so this process
achieve the purpose of preventing data leakage. We define EN = 1 − (m + n ∗ q)/n, where
(m + n ∗ q) is the amount of data that the computation party can receive from the data owner(s)
and n is the amount of raw data. A smaller EN means the computation party will receive more data
from the data owner(s), so the computation party may receive more information about the raw data.
Therefore, EN can be used to measure the degree of privacy-preserving by applying INPP. Greater
EN means greater privacy protection by applying INPP.

Differential privacy (DP) Dwork et al. (2014); Papernot et al. (2018) and homomorphic encryption
(Gilad-Bachrach et al., 2016; Zhang et al., 2018b; Lou & Jiang, 2021) are common used schemes
to achieve privacy-preserving. DP and homomorphic encryption can be applied to the raw data or
the algorithm, but our method only applies to the raw data. DP applied to the raw data is based on
data-perturbation, and homomorphic encryption is based on data-encryption, but the amount of data
is not changed. Moreover, if the keys of the encryption schemes are compromised, the information
of the raw data will also be compromised. While our method compresses the raw data into interval-
valued data with fewer instances through an irreversible process to protect data privacy. Further,
DP and our approach can not be easily applied to image data, which is a meaningful problem worth
considering in the future.

Experiments on one real-world dataset are conducted to verify the efficacy and feasibility of the
INPP framework. We use four well-known machine learning methods (logistic regression, support
vector machines, random forests and neural networks) to classify the original dataset and compare
the best outcome of these four methods on the original dataset with the outcomes of the INPP
framework. The experiment details of the INPP are shown in Appendix D. All the experiment
results are shown in Table 5. We note that the proposed framework can achieve 93.24% classification
accuracy on the new data with R = 97.27% when L = 6, T = 15, q = 0.5, which demonstrates
that applying the proposed framework can prevent crisp-valued data leakage while ensuring high
classification accuracy of the model that has been trained by the computation party.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK
In this paper, we focus on a highly challenging called LIND and obtain the estimation error bound
of this problem based on Rademacher complexity. Moreover, we construct a new framework called
Mv-IIE by applying multi-view learning for interval-valued data classification. Through experimen-
tal comparisons with seven baselines on both synthetic and real-world datasets, it demonstrates the
superiority of the proposed model. Finally, we detail an application of the proposed framework
that we can prevent crisp-valued data leakage by transforming crisp-valued data into interval-valued
data. However, we only consider the situation where the observations with interval-valued features
in the training and test sets are drawn from the same distribution in this paper. Therefore, we plan
to consider more complicated issues related to interval-valued data analysis in future research, for
example, covariate shift and domain adaptation with interval-valued observations.
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REPRODUCIBILITY STATEMENT

All the codes and processed data in this paper will be publicly released on our GitHub website after
this paper is accepted. Moreover, we include all complete proofs proofs for our theoretical results in
Appendix B, and additional experiment details in Appendix D.
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Table 6: Main notations and their descriptions.
Notation Description

• Spaces and Labels

R̄ = {[xl, xr]|xl, xr ∈ R, xl ≤ xr} the set of all real-valued intervals

R̄p = {([xl
1, x

r
1], · · · , [xl

p, x
r
p])

⊤} the set of all p-dimension interval-valued vector

X̄ ⊂ R̄p input (feature) space of LIND problem

Xv ⊂ Rp, v ∈ [c] single-view input (feature) space

X = X1 × · · · × Xc ⊂ Rp × · · · × Rp multi-view input (feature) space

Y output (label) space

[K] = {1, · · · ,K} 1, · · · ,K represent the labels in Y
• Distributions

X̄ = [X l, Xr] interval-valued random variable

X̄ = (X̄1, · · · , X̄p)
⊤ interval-valued random vector

Xl = (X l
1, · · · , X l

p)
⊤, real-valued random vector

Xr = (Xr
1, · · · , Xr

p)
⊤

Dl,Dr distribution of real-valued random vector Xl,Xr

D̄ interval distribution over X̄
D multi-view distribution over X
S̄X̄ = {x̄i = (x̄i1, · · · , x̄ip)

⊤}mi=1 a sample drawn i.i.d. from X̄
SXv = {xv

i = (xv
i1, · · · , xv

ip)
⊤}mi=1 the single-view sample drawn i.i.d. from Xv

SX = {Xi = (x1
i , · · · ,xc

i )}mi=1 the multi-view sample drawn i.i.d. from X
• Loss Function ad Function Spaces

ℓ(·, ·) loss : RK × Y → R+

H hypothesis space of the LIND problem

Hv hypothesis space of v-th view, v = 1, · · · , c
Hco multi-view hypothesis space

fv predict function of hv ∈ Hv , v = 1, · · · , c
fco predict function of hco ∈ Hco

• Risks and Complexities

RD̄(h) risk of h ∈ H
RD(hco) risk of hco ∈ Hco

R̂S̄X̄
(H) empirical Rademacher complexity of H with respect to the sam-

ple S̄X̄

RS̄X̄
(H) Rademacher complexity of H̄ with respect to the sample S̄X̄

RSXv (Hv) Rademacher complexity of Hv with respect to the sample SXv

RSX (Hco) Rademacher complexity of Hco with respect to the sample SX

A NOTATIONS

In this section, we summarize important notations in Table 6.

To prove Theorem 4, 5 and Corollary 1, for any hv ∈ Hv , we let

hv(x
v
i ) : Xv → RK

xv
i → (hv1(x

v
i ), · · · , hvK(xv

i ))
⊤.

13
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Without loss of generality, we suppose that
K∑

k=1

hvk(x
v
i ) = 1 and the predict function fv of hv is

defined as

fv(x
v
i ) = argmax1≤k≤K hvk(x

v
i ).

Then, for any hco ∈ Hco, we let

hco(Xi) : X → RK

Xi = (x1
i , · · · ,xc

i ) → (h1
co(Xi), · · · , hK

co(Xi))
⊤,

where hq
co(Xi) =

c∑
v=1

wq
v
⊤hv(x

v
i ),w

q
v = (wq

v1, · · · , w
q
vK)⊤ and without loss of generality, we

suppose
K∑
q=1

hq
co(Xi) = 1. Therefore, we have suphco∈Hco

∥ hco ∥∞ ≤ 1. The predict function fco

of hco is defined as

fco(Xi) = argmax1≤q≤K hq
co(Xi).

B PROOFS AND FURTHER ANALYSIS

B.1 PROOFS

In this section, we prove Theorem 1 in Section 3. To prove Theorem 1, we first give some related
definitions and prove the Azuma’s Inequality and McDiarmid’s Inequality of interval-valued random
variables.

B.1.1 RELATED DEFINITIONS AND THEOREMS TO PROVE THEOREM 1

Definition 3 (Interval Probability Density Function). Suppose X l, Xr are two real-valued random
variables and have the same continuous pdf pX(x). We define p̄X̄(x) as the interval pdf of interval-
valued random variable X̄ , where

p̄X̄(x) =

[
min

x∈[Xl,Xr]
pX(x), max

x∈[Xl,Xr]
pX(x)

]
.

Let X̄ = (X̄1, · · · , X̄p)
⊤ be a p-interval-valued random vector and the interval pdf of X̄j is

p̄X̄j
(x), j ∈ [p]. Then, we denote the joint interval pdf of X̄ as

p̄X̄(x) =

[
p∏

j=1

min
xj∈[Xl

j ,X
r
j ]
pXj

(xj),
p∏

j=1

max
xj∈[Xl

j ,X
r
j ]
pXj

(xj)

]
,x = (x1, · · · , xp)

⊤.

Definition 4 (Interval Probability Distribution). Let X̄ = (X̄1, · · · , X̄p)
⊤ be a p-interval-valued

random vector with the joint interval pdf p̄X̄(x). Let Xl = (X l
1, · · · , X l

p)
⊤,Xr = (Xr

1, · · · , Xr
p)

⊤

be two real-valued random vectors following probability distribution Dl,Dr. We define D̄ as the
interval probability distribution of X̄ (denoted as X̄ ∼ D̄), if

D̄(R̄p) =
∫̄
p̄X̄(x)dx = 1,

where
∫̄
p̄X̄(x)dx = 1

2

∫
dDl(x) + 1

2

∫
dDr(x). Therefore, X̄ ∼ D̄ if and only if Xl ∼ Dl and

Xr ∼ Dr. Then, we denote P(X̄ ∈ B̄) = D̄(B̄) as the probability of the event {X̄ ∈ B̄}, where
B̄ ∈ B̄ and B̄ is the Borel σ-algebra in R̄p (Jeffreys, 1998).
Definition 5. Let X̄ = (X̄1, · · · , X̄p)

⊤ be a p-interval-valued random vector with the joint interval
pdf p̄X̄(x) and Xl = (X l

1, · · · , X l
p)

⊤ ∼ Dl,Xr = (Xr
1, · · · , Xr

p)
⊤ ∼ Dr are two real-valued

random vectors. Then, the probability with respect to the function g : X̄ → R+ is defined as:

P(g(X̄) ≥ ε) =
1

2

∫
A

dDl(x) +
1

2

∫
B

dDr(x),

where A = {Xl ∈ Rp : g(X̄) ≥ ε},B = {Xr ∈ Rp : g(X̄) ≥ ε}.
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Definition 6 (Independence). The interval-valued random vectors X̄1, · · · , X̄n are said to be (mu-
tually) independent if and only if the real-valued random vectors Xl

1, · · · ,Xl
n,X

r
1, · · · ,Xr

n are
(mutually) independent. Then, we denote X̄1, · · · , X̄n as i.i.d. interval-valued random vectors if
and only if X̄1, · · · , X̄n are independent and have the same interval probability distribution.

Definition 7. The empirical Rademacher complexity of H with respect to S̄X̄ is defined as:

R̂S̄X̄
(H) = Eσ

[
sup
h∈H

1
m

m∑
i=1

K∑
k=1

σikhk(x̄i)

]
, (2)

where σ = [σik]m×K is a m × K matrix, with σiks independent random variables drawn from
the Rademacher distribution, i.e. P(σik = +1) = P(σik = −1) = 1

2 , i ∈ [m], k ∈ [K]. The
Rademacher complexity RS̄X̄

(H) is equal to the interval expectation of R̂S̄X̄
(H).

Definition 8. A sequence of V1, V2, · · · is a martingale difference sequence with respect to interval-
valued random variables X̄1, X̄2, · · · if for any i > 0, Vi is a real-value function of X̄1, · · · , X̄i and
ED̄[Vi+1|X̄1, · · · , X̄i] = 0.

Theorem 2 (Azuma’s Inequality of Interval-valued Random Variables). Let V1, V2, · · · be a mar-
tingale difference sequence with respect to the interval-valued random variables X̄1, X̄2, · · · and
assume that for any i > 0 there is a constant ci ≥ 0 and Zi, which is a real-value function of
X̄1, · · · , X̄i−1, satisfies

Zi ≤ Vi ≤ Zi + ci.

Then for any ε > 0 and m ∈ N+, the following inequalities hold:

P
[

m∑
i=1

Vi ≥ ε

]
≤ exp −2ε2

m∑
i=1

c2i

,

P
[

m∑
i=1

Vi ≤ −ε

]
≤ exp −2ε2

m∑
i=1

c2i

.
(3)

Proof. Suppose X̄ = [X l, Xr] is an interval-valued random variable. According to Definition 5, we
have

P(g(X̄) ≥ ε) = 1
2

(∫
A
e−tg(X̄)etg(X̄)dDl(x) +

∫
B
e−tg(X̄)etg(X̄)dDr(x)

)
≤ e−tε 1

2

(∫
A
etg(X̄)dDl(x) +

∫
B
etg(X̄)dDr(x)

)
≤ e−tεED̄[e

tg(X̄)].

By the convexity of x → ex, for any x ∈ [a, b], the following holds:

etx ≤ b−x
b−ae

ta + x−a
b−a e

tb.

Thus, using ED̄[Vi+1|X̄1, · · · , X̄i] = 0, then

ED̄[e
tVi+1 |X̄1, · · · , X̄i] ≤ ED̄

[
Zi+1+ci+1−Vi+1

ci+1
etZi+1 + Vi+1−Zi+1

ci+1
et(Zi+1+ci+1)|X̄1, · · · , X̄i

]
= Zi+1+ci+1

ci+1
etZi+1 + −Zi+1

ci+1
et(Zi+1+ci+1) ≤ et

2c2i+1/8.

Let Sk =
k∑

i=1

Vi. Then, for any t > 0, we can write

P[Sm ≥ ε] ≤ e−tεED̄[e
tSm ]

= e−tεED̄[e
tSm−1ED̄[e

tVm |X̄1, X̄2, · · · , X̄m−1]]

≤ e−tεED̄[e
tSm−1 ]et

2c2m/8(iterating previous argument)

≤ e−tεe
t2

m∑
i=1

c2i /8
(let t = 4ε/

m∑
i=1

c2i ) = e

−2ε2

m∑
i=1

c2
i ,

the second statement is shown in a similar way.
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Theorem 3 (McDiarmid’s Inequality of Interval-valued Random Variables). Let X̄1, · · · , X̄m ∈
X̄ ⊂ R̄p be a set of m ≥ 1 interval-valued random vectors and assume that there exist
c1, c2, · · · , cm > 0 such that f : X̄m → R satisfies the following conditions:

|f(X̄1, · · · , X̄i, · · · , X̄m)− f(X̄1, · · · , X̄
′

i, · · · , X̄m)| ≤ ci,

for any i ∈ [m] and any points X̄1, · · · , X̄i, · · · , X̄m, X̄
′

i ∈ X̄ . Let f(S̄) denote f(X̄1, · · · , X̄m),
then, for any ε > 0, the following inequalities hold:

P[f(S̄)− ES̄ [f(S̄)] ≥ ε] ≤ exp −2ε2
m∑

i=1
c2i

,

P[f(S̄)− ES̄ [f(S̄)] ≤ −ε] ≤ exp −2ε2
m∑

i=1
c2i

.
(4)

Proof. Define a sequence of random variables Vk, k ∈ [m], as follows:

V = f(S̄)− ES̄ [f(S̄)],
V1 = ES̄ [V |X̄1]− ES̄ [V ],
Vk = ES̄ [V |X̄1, · · · , X̄k]− ES̄ [V |X̄1, · · · , X̄k−1].

Note that V =
m∑
i=1

Vi. Furthermore, the interval-valued random vector ES̄ [V |X̄1, · · · , X̄k] is a

function of X̄1, · · · , X̄k, therefore:

ES̄ [ES̄ [V |X̄1, · · · , X̄k]|X̄1, · · · , X̄k−1] = ES̄ [V |X̄1, · · · , X̄k−1],

which implies ES̄ [Vk|X̄1, · · · , X̄k−1] = 0. Thus, the sequence (Vk), k ∈ [m] is a martingale
difference sequence. Next, observe that, since ES̄ [f(S̄)] is a scalar, Vk can be expressed as follows:

Vk = ES̄ [f(S̄)|X̄1, · · · , X̄k]− ES̄ [f(S̄)|X̄1, · · · , X̄k−1].

Thus, we can define an upper bound Wk and lower bound Uk for Vk by:

Wk = sup
X̄

ES̄ [f(S̄)|X̄1, · · · , X̄k, X̄]− ES̄ [f(S̄)|X̄1, · · · , X̄k],

Uk = inf
X̄′

ES̄ [f(S̄)|X̄1, · · · , X̄k, X̄
′
]− ES̄ [f(S̄)|X̄1, · · · , X̄k],

Wk − Uk = sup
X̄,X̄′

{ES̄ [f(S̄)|X̄1, · · · , X̄k, X̄]− ES̄ [f(S̄)|X̄1, · · · , X̄k, X̄
′
]}

≤ 1
2 sup
X̄,X̄′

{E(Dl)m−k [|f(S̄1)− f(S̄2)|] + E(Dr)m−k [|f(S̄1)− f(S̄2)|]}

≤ ck,

where S̄1 = (X̄1, · · · , X̄k, X̄, X̄k+1, · · · , X̄m), S̄1 = (X̄1, · · · , X̄k, X̄
′
, X̄k+1, · · · , X̄m). Thus,

Uk ≤ Vk ≤ Wk ≤ Uk+ck. In the view of these inequalities, we can apply Theorem 2 to V =
m∑
i=1

Vi,

which yields the result.

B.1.2 PROOF OF THEOREM 1

For any sample S̄ = {z̄i = (x̄i, yi)}mi=1 ∼ D̄m and any ℓ ∈ LH, we denote

Φ(S̄) = sup
ℓ∈LH

{ED̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i)} = sup
ℓ∈LH

{ED̄[ℓ(z̄)]− ÊS̄ [ℓ(z̄)]}.

Let S̄ and S̄
′

be two samples differing by exactly one point, say z̄m in S̄ and z̄
′

m in S̄
′
. Then, since

the difference of suprema does not exceed the supremum of the difference, we have

Φ(S̄
′
)− Φ(S̄) ≤ sup

ℓ∈LH

{ÊS̄ [ℓ(z̄)]− ÊS̄′ [ℓ(z̄)]} ≤ sup
ℓ∈LH

ℓ(z̄m)−ℓ(z̄
′
m)

m ≤ Cℓ

m .
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Similarly, we can obtain Φ(S̄) − Φ(S̄
′
) ≤ Cℓ

m , thus |Φ(S̄′
) − Φ(S̄)| ≤ Cℓ

m . Based on Definition 2,
Φ(S̄) is a function of random variables Xl

i and Xr
i and we have

ES̄′{ÊS̄′ [ℓ(z̄
′
)]} = 1

2{EDl [ 1m

m∑
i=1

ℓ(z̄
′

i)] + EDr [ 1m

m∑
i=1

ℓ(z̄
′

i)]}

= 1
2{

1
m

m∑
i=1

EDl [ℓ(z̄
′

i)] +
1
m

m∑
i=1

EDr [ℓ(z̄
′

i)]}

= 1
2{EDl [ℓ(z̄)] + EDr [ℓ(z̄)]} = ES̄′ [ℓ(z̄)].

Then, by Theorem 3, for any δ > 0, with probability at least 1− δ/2, the following holds:

Φ(S̄) ≤ ES̄ [Φ(S̄)] + Cℓ

√
log(2/δ)

2m ,

ES̄ [Φ(S̄)] = ES̄ [ sup
ℓ∈LH

{ES̄′ [ℓ(z̄)]− ÊS̄ [ℓ(z̄)]}] = ES̄ [ sup
ℓ∈LH

ES̄′{ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]}].

Because

sup
ℓ∈LH

ES̄′{ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]}

= sup
ℓ∈LH

1
2{E(Dl)m [ÊS̄′ [ℓ(z̄

′
)]− ÊS̄ [ℓ(z̄)]] + E(Dr)m [ÊS̄′ [ℓ(z̄

′
)]− ÊS̄ [ℓ(z̄)]]}

≤ 1
2 sup
ℓ∈LH

{E(Dl)m [ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]] + E(Dr)m [ÊS̄′ [ℓ(z̄

′
)]− ÊS̄ [ℓ(z̄)]]}

≤ 1
2{E(Dl)m sup

ℓ∈LH

[ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]] + E(Dr)m sup

ℓ∈LH

[ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]]}

= ES̄′ sup
ℓ∈LH

{ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]}.

Then, we have

ES̄ [Φ(S̄)] ≤ ES̄,S̄′ sup
ℓ∈LH

{ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]} = ES̄,S̄′ sup

ℓ∈LH

{ 1
m

m∑
i=1

[ℓ(z̄
′

i)− ℓ(z̄i)]}.

We introduce Rademacher variables σis, that are uniformly distributed independent random vari-
ables taking values in {−1,+1},

ES̄ [Φ(S̄)] ≤ ES̄,S̄′Eσ sup
ℓ∈LH

{ 1
m

m∑
i=1

[σiℓ(z̄
′

i)− ℓ(z̄i)]}(sup(U + V ) ≤ supU + supV )

≤ ES̄′Eσ sup
ℓ∈LH

{ 1
m

m∑
i=1

σiℓ(z̄
′

i)}+ ES̄Eσ sup
ℓ∈LH

{ 1
m

m∑
i=1

−σiℓ(z̄i)}.

Because the definition of Rademacher complexity and the fact that the variables σi and −σi are
distributed in the same way, then

ES̄ [Φ(S̄)] ≤ 2ES̄Eσ sup
ℓ∈LH

{ 1
m

m∑
i=1

σiℓ(z̄i)} = 2RS̄(LH).

Then using δ instead of δ/2, with probability 1− δ, the following holds :

Φ(S̄) ≤ 2RS̄(LH) + Cℓ

√
log(1/δ)

2m

Ez̄∼D̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i) ≤ 2RS̄(LH) + Cℓ

√
log(1/δ)

2m .
(5)

We observe that changing one point in S̄ changes R̂S̄(LH) by at most Cℓ/m. Then, again using
Theorem 3, with probability 1− δ/2 the following holds:

RS̄(LH) ≤ R̂S̄(LH) + Cℓ

√
log(2/δ)

2m .
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Then with probability at least 1− δ:

Φ(S̄) ≤ 2R̂S̄(LH) + 3Cℓ

√
log(1/δ)

2m

Ez̄∼D̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i) ≤ 2R̂S̄(LH) + 3Cℓ

√
log(1/δ)

2m .
(6)

Next we let,

Ψ(S̄) = inf
ℓ∈LH

{Ez̄∼D̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i)} = − sup
ℓ∈LH

{−Ez̄∼D̄[ℓ(z̄)] + ÊS̄ [ℓ(z̄)]}.

In the same way, with probability at least 1− δ the following holds:

Ez̄∼D̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i) ≥ −2RS̄(LH)− Cℓ

√
log(1/δ)

2m

Ez̄∼D̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i) ≥ −2R̂S̄(LH)− 3Cℓ

√
log(2/δ)

2m .
(7)

Since ℓ is Lipschitz continuous, according to Maurer (2016), we have

R̂S̄(LH) ≤
√
2LℓR̂S̄X̄

(H). (8)

Following from Eqs. (5), (6), (7) and for any δ > 0, with probability at least 1 − δ, each of the
following holds for all ℓ ∈ LH:

|Ez̄∼D̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i)| ≤ 2R̂S̄(LH) + 3Cℓ

√
log(2/δ)

2m . (9)

Using RD̄(h) = ED̄[ℓ(h(X̄), y)] and Eqs. (8) and (9), we have for any δ > 0, with probability at
least 1− δ, each of the following holds for all ℓ ∈ LH̄:

|RD̄(h)− R̂D̄(h)| ≤ 2
√
2LℓR̂S̄X̄

(H) + 3Cℓ

√
log(2/δ)

2m .

B.2 FURTHER ANALYSIS

In this section, we consider why using multi-view learning to address the LIND problem in terms of
error rate and estimation error bound.

Let Xv (v ∈ [c]) be the single-view input space and X = X1×· · ·×Xc be the muti-view input space.
Let SX = {Xi = (x1

i , · · · ,xc
i )}mi=1 ⊂ X be the multi-view sample drawn i.i.d. form D, where xv

i
is the single-view observation, Xi ∈ X and yi = f(Xi) ∈ Y is the ground-truth function. Let Hv

be the hypothesis space of v-th view, where for any hv ∈ Hv , hv : Xv → RK . Then, fv : RK → Y
is a predict function induced by hv . Lastly, we set Hco to be the multi-view hypothesis space, where
for any hco ∈ Hco, hco : X → RK . Then, we can induce a predict function fco : RK → Y by hco.

B.2.1 ERROR RATE

First, we propose a notion called discrepancy set to measure the predict functions difference across
different view. Then, we denote DF (f1, · · · , fc) as the discrepancy set between the predict func-
tions f1, · · · , fc over X , which is shown as follow:

DF (f1, · · · , fc) =

{
X = (x1, · · · ,xc) ∈ X :

∨
1≤v1<v2≤c

fv1(x
v1) ̸= fv2(x

v2)

}
,

here
∨

represents the logical relation “or”. Next, we give the following assumption:

For X = (x1, · · · ,xc), if f1(x1) = · · · = fc(x
c), we have fco(X) = f1(x

1). (10)

This assumption means that if all single-view predictions are same, the multi-view predict function
also has the same outcome, which is a trivial assumption. Then, we obtain the following theorem.
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Theorem 4. We assert that there exists a uniform constant M ∈ (0, 1) such that for any predict
function fco satisfies assumption (10), if

PD(fco(X) ̸= y|X ∈ DF (f1, · · · , fc)) ≤ M, where y is the ground-truth label,

we assert err(fco) ≤ minv∈[c] err(fv), where err(fco) = PD(fco(X) ̸= y).

Proof. Without loss of generality, we suppose err(f1) ≤ · · · ≤ err(fc). First, we consider the case
where c = 2. Then, we provide an upper bound on the error rate of fco.

err(fco) = PD(fco(X) ̸= y)
= P(fco(X) ̸= y|X ∈ DC

F (f1, f2)) + P(fco(X) ̸= y|X ∈ DF (f1, f2))
≤ 1

2 [err(f1) + err(f2)− PD(X ∈ DF (f1, f2))] + P(fco(X) ̸= y|X ∈ DF (f1, f2)),
(11)

where DC
F (f1, f2) is denoted as the complement set of DF (f1, f2). According to Eq. (11) and

err(f1) ≤ err(f2), if

P(fco(X) ̸= y|X ∈ DF (f1, f2)) ≤ 1
2 [err(f1)− err(f2) + PD(X ∈ DF (f1, f2))],

we have err(fco) ≤ err(f1). Next, we consider the case where c > 2. For c > 2, we have
hco ∈ Hco,

hq
co(X) =

k+1∑
v=1

wq
v
⊤hv(x

v) = wq
1
⊤
h1(x

1) +
c∑

v=2
wq

v
⊤hv(x

v).

So exists αq ∈ R+, such that
K∑
q=1

αq

c∑
v=2

wq
v
⊤hv(x

v) = 1, then exists

hc−1
co ∈ Hc−1

co (x2, · · · ,xc), where hc−1,q
co = αq

c∑
v=2

wq
v
⊤hv(x

v).

We combine the last c− 1 views i.e., X
′
= (x2, · · · ,xc),X = (x1,X

′
). So exists

hc−1
co ∈ Hc−1

co (x2, · · · ,xc) ⊂ H(X
′
), such that hq

co(X) = wq
1
⊤
h1(x

1) + 1
αq

hc−1,q
co (X

′
).

Therefore we have hco ∈ Hco(x
1,X

′
). Let f c−1

co (X) = argmax1≤q≤K hc−1,q
co (X) denoted as the

predict function of hc−1
co . Because the conclusion is true when c = 2, so exists M ∈ (0, 1), such

that
if P(fco(X) ̸= y|X ∈ DF (f1, f

c−1
co )) ≤ M,we have err(fco) ≤ err(f1).

Because DF (f1, f
c−1
co ) ⊂ DF (f1, · · · , fc), so

P(fco(X) ̸= y|X ∈ DF (f1, f
c−1
co )) ≤ P(fco(X) ̸= y|X ∈ DF (f1, · · · , fc)).

Therefore, the conclusion is true when c > 2 which yields the result.

We can easily find M < 1 that satisfies the condition in Theorem 4. According to Theorem 4, we
always have the error rate of a multi-view prediction function fco is lower than that of any single-
view prediction function fv, v ∈ [c] when PD(fco(X) ̸= y|X ∈ DF (f1, · · · , fc)) → 0, which
means that using multi-view methodology can reduce the error rate of the predict function for the
classification tasks. We can achieve PD(fco(X) ̸= y|X ∈ DF (f1, · · · , fc)) → 0 by reducing the
size of the discrepancy set DF (f1, · · · , fc). Based on the above theoretical analysis, we decide to
find appropriate multi-view features that can achieve well and similar performance on all single-view
classifiers to reduce the size of the discrepancy set DF (f1, · · · , fc).

B.2.2 ESTIMATION ERROR BOUND

LHco
= {ℓ(hco(X), y) : X ∈ X ,hco ∈ Hco, y ∈ Y} be the class of functions with respect

to the loss ℓ and Hco, where ℓ : RK × Y → R+. The risk of hco is denoted as RD(hco) =
ED[ℓ(hco(X), y)]. According to Theorem 3.1 and 3.2 in Mohri et al. (2012) and Theorem 2 in
Maurer (2016), we obtain the following corollary.
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Corollary 1. Suppose that sup∥hco∥∞≤1 maxy ℓ(hco, y) ≤ C
′

ℓ, and all functions in LHco
are Lco-

Lipschitz functions, and ||W||2 ≤ Λ (W see Appendix B). For any δ > 0, with probability at least
1− δ, each of the following holds for any hco ∈ Hco:

|RD(hco)− R̂D(hco)| ≤ 2Lco

√
2KcΛ2

m + C
′

ℓ

√
log(1/δ)

2m . (12)

Proof. According to Theorem 3.1, 3.2 in Mohri et al. (2012) and Theorem 2 in Maurer (2016), we
have

|RD(hco)− R̂D(hco)| ≤ 2
√
2LcoRSX

(Hco) + C
′

ℓ

√
log(1/δ)

2m . (13)

Next, let

W =
(
w1

1
⊤
, · · · ,w1

c
⊤
, · · · ,wK

1
⊤
, · · · ,wK

c
⊤
)⊤

,

H =

(
m∑
i=1

σi1h1(x
1
i )

⊤, · · · ,
m∑
i=1

σi1hc(x
c
i )

⊤, · · · ,
m∑
i=1

σiKh1(x
1
i )

⊤, · · · ,
m∑
i=1

σiKhc(x
c
i )

⊤
)⊤

.

Then, we have

RSX
(Hco) = 1

mED,σ[ sup
hco∈Hco

m∑
i=1

K∑
q=1

σiqh
q
co(Xi)]

= 1
mED,σ[ sup

hj∈Hv,||W||2≤Λ

m∑
i=1

K∑
q=1

σiq

c∑
v=1

wq
v
⊤hv(x

v
i )]

= 1
mED,σ[ sup

hv∈Hv,||W||2≤Λ

⟨W,H⟩]

≤ 1
mED,σ[ sup

hv∈Hv,||W||2≤Λ

||W||2||H||2](using Cauchy-Schwarz inequality)

≤ Λ
mED,σ[ sup

hv∈Hv

[
c∑

v=1

K∑
q=1

||
m∑
i=1

σiqhv(x
v
i )||22]

1
2 ]

(using Jensen’s inequality and i ̸= j ⇒ Eσ⃗[σipσjp] = 0)

≤ Λ
m

[
ED[ sup

hj∈Hj

K
m∑
i=1

c∑
v=1

||hv(x
v
i )||22]

] 1
2

≤ Λ
m

√
Kcm =

√
KcΛ2

m .

Then, we yield the final result

|RD(hco)− R̂D(hco)| ≤ 2Lco

√
2KcΛ2

m + C
′

ℓ

√
log(1/δ)

2m . (14)

Corollary 1 presents a generalization bound of the discrepancy between the risk and empirical risk
of hco. Finally, we give the following theorem to bound RSX

(Hco).

Theorem 5. For any m ≥ 1, we have RSX
(Hco) ≤ maxv∈[c] RSXv (Hv), where SXv = {xv

i }mi=1.

Proof. Because
K∑
q=1

c∑
v=1

K∑
k=1

wq
vkhvk(x

v
i ) = 1 and for any v ∈ [c], k ∈ [K], 0 ≤ hvk(x

v
i ) ≤ 1, so

K∑
q=1

c∑
v=1

K∑
k=1

wq
vk ≤ 1. Then,

20



Under review as a conference paper at ICLR 2023

RSX
(Hco) = 1

mED,σ[ sup
hco∈Hco

m∑
i=1

K∑
q=1

σiqh
q
co(Xi)]

= 1
mED,σ[ sup

hv∈Hv,||W||2≤Λ

m∑
i=1

K∑
q=1

σiq

c∑
v=1

wq
v
⊤hv(x

v
i )]

= 1
mED,σ[ sup

hv∈Hv,||W||2≤Λ

c∑
v=1

K∑
q=1

K∑
k=1

wq
vk

m∑
i=1

σiqhvk(x
v
i )]

≤ 1
mED,σ[ sup

hv∈Hv

max
v∈[c],q∈[K]

m∑
i=1

K∑
k=1

σikhvk(x
v
i )]

≤ max
v∈[c]

RSXv (Hv)

= min
v∈[c]

RSXv (Hv) + max
v∈[c]

RSXv (Hv)− min
v∈[c]

RSXv (Hv)

According to Theorem 5, if maxv∈[c] RSXv (Hv) − minv∈[c] RSXv (Hv) → 0, we have
RSX

(Hco) ≤ minv∈[c] RSXv (Hv), which demonstrates that we can obtain tighter estimation er-
ror bound by applying the multi-view methodology. Inspired by the above theoretical analysis, we
achieve maxv∈[c] RSXv (Hv)−minv∈[c] RSXv (Hv) → 0 by finding appropriate multi-view features
that can achieve similar performance on all single-view classifiers.

C MEMBERSHIP FUNCTION-BASED METHOD

In this section, we give further details of the membership function-based method to extract multi-
view information from interval-valued data.

First, we introduce two types of fuzzy number and four different defuzzification methods used to
construct the membership function-based method. The first type of fuzzy number called triangular
fuzzy number. A triangular fuzzy number x̃ can be characterized by Tr(a1, b1, a2) and the member-
ship function is shown as follows:

µx̃(t) =



0, t < a1
t− a1
b1 − a1

, a1 ≤ t < b1

t− a2
b1 − a2

, b1 ≤ t < a2

0, t ≥ a2.

Gaussian fuzzy number is the second type of fuzzy number. A Gaussian fuzzy number x̃ can be
characterized by Ga(c, δ1, δ2) and the membership function is given in the following equation:

µx̃(t) =

{
exp(−(t− c)/2δ1)

2, t < c

exp(−(t− c)/2δ2)
2, t ≥ c.

Next, we introduce the four different defuzzification methods.

MOM. The first method is called Mean/Middle of Maxima (MOM) (Oussalah, 2002) which is
widely-used due to its calculation simplicity. MOM is defined as:

MOM(x̃) = Mean(t = argmaxt µx̃(t)). (15)

COG. The Centre of Gravity (COG) (Oussalah, 2002) is another widely-used defuzzification
method. The definitions of COG for discrete and continuous membership functions are shown as
follows:

COG(x̃) =

∑
tµx̃(t)∑
µx̃(t)

(discrete) =
∫
tµx̃(t)dt∫
µx̃(t)dt

(continuous). (16)
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Table 7: Hyperparameters for the proposed method and four baselines
Algorithm Basic classifier Hyperparameters Ranges

DF-SVM regularization parameter, kernel type,
shape parameter β

{0.1, 0.2, · · · , 1, 2, · · · , 10}, {‘linear’,
‘poly’, ‘rbf’}, {0, 0.1, · · · , 1}

DF-MLP learning rate, shape parameter β {0.001, 0.01, 0.1}, {0, 0.1, · · · , 1}

L-IIE, U-IIE, M-IIE,
Mv-IIE-2, Mv-IIE-3

SVM regularization parameter, kernel type {0.1, 0.2, · · · , 1, 2, · · · , 10}, {‘linear’,
‘poly’, ‘rbf’}

RF min samples leaf, the number of trees {1, · · · , 10}, {5, 10, · · · , 100}

Net learning rate {0.001, 0.01, 0.1}

Mv-IIE same above same above, shape parameter β same above, {0, 0.1, · · · , 1}

ALC. The third approach, called averaging level cuts (ALC) (Oussalah, 2002), is defined as the flat
averaging of all midpoints of the α-cuts.

ALC(x̃) = 1
2

∫ 1

0
(x̃L

α + x̃U
α )dα. (17)

VAL. The final method is called value of a fuzzy number (VAL) (Delgado et al., 1998) which uses
α-levels as weighting factors in averaging the α-cut midpoints. VAL is defined as :

VAL(x̃) =
∫ 1

0
α(x̃L

α + x̃U
α )dα. (18)

We denote D = {(x̄i, yi)}mi=1 as the interval-valued dataset, where x̄i = (x̄i1, · · · , x̄ip)
⊤ ∈

R̄p, yi ∈ [K]. Then, the construction process of the membership function-based method is intro-
duced. We divide this method into two parts. In the first part, we use two functions F1(·;β), F2(·;β)
to transfer a interval-valued feature to a triangular fuzzy number and a Gaussian fuzzy number re-
spectively. F1(·;β), F2(·;β) are defined as:

F1(x̄ij ;β) = Tr(xl
ij , βx

l
ij + (1− β)xr

ij , x
r
ij),

F2(x̄ij ;β) = Ga(βxl
ij + (1− β)xr

ij , S1j , S2j),

S1j =
√
Var(Aj), S2j =

√
Var(Bj),

Aj = {xl
ij : i ∈ [m], (x̄i, yi) ∈ D}, Bj = {xr

ij : i ∈ [m], (x̄i, yi) ∈ D}, j ∈ [p],

where β ∈ [0, 1] is a hyperparameter to control the shape of the membership function, Var(·) is
used to find the variance of the set. Using the above process, one interval-valued feature x̄i can be
transferred into two fuzzy-valued features x̃1

i = (x̃1
i1, · · · , x̃1

ip)
⊤ and x̃2

i = (x̃2
i1, · · · , x̃2

ip)
⊤, where

x̃τ
i = Fτ (x̄i;β) = (Fτ (x̄i1;β), · · · , Fτ (x̄ip;β))

⊤, τ = 1, 2.

In the second part, we use the four defuzzification methods to transfer the two fuzzy-valued features
x̃1
i , x̃

2
i into eight crisp-valued features

MOM ◦ Fτ (x̄i;β),COG ◦ Fτ (x̄i;β),ALC ◦ Fτ (x̄i;β),VAL ◦ Fτ (x̄i;β), τ = 1, 2.

According to Eq. (15), we find that MOM ◦ Fτ (x̄i;β) = MOM ◦ F2(x̄i;β). Therefore, we
can use the aforementioned membership function-based method to extract multi-view information,
which contains seven parts: MOM ◦ F1(x̄i;β) and COG ◦ Fτ (x̄i;β),ALC ◦ Fτ (x̄i;β),VAL ◦
Fτ (x̄i;β), τ = 1, 2. We denote T = {Tv(·;β)}7v=1 as a set of transfer functions constructed by
using the membership function-based method, where

T1 = MOM ◦ F1,T2 = COG ◦ F1,T3 = COG ◦ F2,T4 = ALC ◦ F1,
T5 = ALC ◦ F2,T6 = VAL ◦ F1,T7 = VAL ◦ F2.

By applying the aforementioned transfer functions to extract crisp-valued information from the
interval-valued data, one interval-valued feature x̄i can be transferred into seven different parts
XMv

i = (x1
i , · · · ,x7

i ), where for any i ∈ [m], v ∈ [7],xv
i = Tv(x̄i;β),Tv ∈ T .

D EXPERIMENTAL DETAILS

In this section, the experiment details of all the baselines and our approach on both synthetic and
real-world datasets are given. Moreover, the experiment details of the INPP framework are given.
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We implement the model with PyTorch 1.9.0. All experiments are conducted on a NVIDIA Quadro
GV100 GPU with 32 GB memory.

Synthetic Datasets: For L-IIE, U-IIE, M-IIE, DF-MLP and Mv-IIE with basic classifier C3,
Adam (Kingma & Ba, 2015) is used as the optimization algorithm with momentum = 0.9,
weight decay = 0.0001, and cross-entropy loss is used as the category label prediction loss. We
set epochs equal to 200 and the mini-batch size equal to 200 for all datasets. The network struc-
ture of the basic classifier C3 is a two-layer network with ReLU and Dropout in all the layers
(100×100×#classes). For each algorithm on each dataset, we randomly divide each dataset into a
training set (60%), a validation set (20%) and a test set (20%). First, we select the hyperparameters
that can obtain the highest classification accuracy on the validation set. The hyperparameters that
need to be selected are shown in Table 7. Then, the selected optimal hyperparameters are used to
test the performance of each algorithm on the test set. In addition, the validation set is also used to
select the candidate views of our proposed framework. We repeat the entire experiment process 10
times. Thus, the final results are shown in the form of ”mean± standard deviation”. Classification
accuracy is used to evaluate the performance of the proposed model. The definition of classification
accuracy is shown as follows:

Accuracy =
|x̄ ∈ X̄ : f(x̄) = argmink∈[1,K] hk(x̄)|

|x̄ ∈ X̄ |
,

where f(x̄) is the ground truth label of x̄, while h(x̄) = (h1(x̄), · · · , hK(x̄))⊤ is the label predicted
by the presented algorithms and the baselines.

Real-world Datasets: The experiment details of the proposed method and the four baselines are
basically the same as the synthetic datasets. We note that the mushroom dataset is an imbalanced
dataset which means that each category contains a different number of instances. Therefore, we
preprocess this dataset using a random oversampling technique (KMeansSMOTE (Last et al., 2017))
and use balanced accuracy (Brodersen et al., 2010) instead of ordinary classification accuracy to
compare model performance on the mushroom dataset. The definition of balanced accuracy is shown
as follows:

Balanced Accuracy = 1
K

K∑
k=1

(Recall of k-th class),

Recall = TP/(TP + FN),

where TP is true positive, TN is true negative, FP is false positive and FN is false negative. After the
process of the random oversampling technique, the data of each category in the mushroom dataset
is expanded to 30. In addition, the Wilcoxon rank-sum test results of the method, which obtains the
best performance, compared to the other methods are given on real-world datasets.

INPP Framework: The structure of INPP framework is shown in Figure 4. We randomly divide
the original dataset (letter recognition dataset selected from the UCI Machine Learning Repository)
into a raw dataset from the data owner(s) (70%) and a new dataset (30%) from the results’ party. We
choose L = 6, T = 15 and set q = 0.20, 0.30, 0.50. From Table 3, Mv-IIE with SVM-rbf (SVM
with radial basis kernel function) achieve best outcomes on the second synthetic dataset. Therefore,
we use SVM-rbf as the basic classifier of Mv-IIE in this experiment. The experimental details of
Mv-IIE are the same as the aforementioned. The experiment details of the four well-known machine
learning methods on the original dataset are the same as the experiment details of the four baselines
on the synthetic datasets.

E DETAILS OF THE TWO REAL-WORLD DATASETS DESCRIPTIONS

In this section, we briefly introduce the two real-world datasets used in the experiments.

Mushroom Dataset : The first dataset is extracted from https://www.mykoweb.com/CAF/, which
contains 248 instances in 17 fungi species categories. There are five interval-valued variables: the
pileus cap width Pw, the stipe length Sl, the stipe thickness St, the spores major axis length Sma,
and the spores minor axis length Smi. Some instances of the mushroom dataset are shown in Table
1. The goal of our experiment on this dataset is to predict the species category of the California
mushroom using five interval-valued features.
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Raw data: Interval-valued data:
first interval 

 method

select a small  
amount of data

Interval-valued data:

Model 1

Model 2
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to finetune  
the Model 1

New data :
interval method Model 2

predict

same method

Input party (data owner) Computation party (algorithm owner)

Results’ party 

second interval 
 method

Figure 4: INPP framework: The input party (denoted in orange) applies two interval methods to transfer the
raw data into two interval-valued datasets. The computation party (denoted in blue) uses DEN to train Model
1 by applying Mv-IIE framework and DIN is used to fine-tune Model 1 to obtain Model 2. The results’ party
(denoted in green) uses Model 2 for new data prediction.

Table 8: Some Instances of the Weather Dataset
Local times T P0 P U Td Y

31/12/2021 [10.6, 13.3] [757.8, 760.3] [759.4, 762.1] [81, 93] [9.4, 11.1] 1

24/12/2021 [4.4, 12.2] [757.3, 762.1] [759.0, 763.6] [40, 61] [-5.0, 1.7] 0

23/12/2021 [-1.1, 5.0] [763.4, 768.2] [762.2, 769.9] [38, 55] [-10.0, 5.0] 0

22/12/2021 [2.8, 10.6] [752.5, 761.6] [754.0, 763.2] [34, 93] [-9.4, 2.2] 1

Weather Dataset : The second dataset is the meteorological data of Washington (from January
1, 2016 to December 31, 2021), provided by the ‘Reliable Prognosis’ site (https://rp5.ru/), which
contains 2191 instances. Each instance in this dataset is the meteorological data for one day in
Washington, which is described by five interval-valued variables (air temperature T , atmospheric
pressure at weather station level P0, atmospheric pressure reduced to main sea level P , humidity U
and dew-point temperature Td) and one category variable (Precipitation or not: 0 ≡ No Precipita-
tion, 1 ≡ Precipitation). Some instances of this dataset are shown in Table 8. We aim to use the five
interval-valued features for precipitation prediction.
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