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ABSTRACT

The classification problem concerning crisp-valued data has been well resolved.
However, interval-valued data, where all of the observations’ features are de-
scribed by intervals, is also a common type of data in real-world scenarios. For
example, the data extracted by many measuring devices are not exact numbers but
intervals. In this paper, we focus on a highly challenging problem called learning
from interval-valued data (LIND), where we aim to learn a classifier with high
performance on interval-valued observations. First, we obtain the estimation error
bound of the LIND problem based on Rademacher complexity. Then, we give the
theoretical analysis to show the strengths of multi-view learning on classification
problems, which inspires us to construct a new framework called multi-view inter-
val information extraction (Mv-IIE) approach for improving classification accu-
racy on interval-valued data. The experiment comparisons with several baselines
on both synthetic and real-world datasets illustrate the superiority of the proposed
framework in handling interval-valued data. Moreover, we describe an application
of the Mv-IIE framework that we can prevent data privacy leakage by transform-
ing crisp-valued (raw) data into interval-valued data.

1 INTRODUCTION

Machine learning methods for the classification problem (Pan et al., 2018} [Li et al.| 2018) have
made great achievements in many areas, including medical imaging (Raghu et al.l 2019), natural
language processing (Otter et al.l [2020), biology (Llorente et al., [2021)) and computer vision (Tran
et al.L[2019). The well-known classification machine learning algorithms incorporate logistic regres-
sion (Efronl [1975; [Kayabol, |2020), support vector machines (Noble, [2006}; |Kafai & Eshghi, [2019)),
random forests (Breiman, 2001}, [Biau), |2012) and neural networks (Anderson, |1995; Zhang et al.|
2021). Moreover, the theoretical analysis of these well-known algorithms has been well researched
by applying different types of complexity, such as Rademacher complexity (Bartlett et al., |2006;
Mohri et al.,|2012) and VC-dimension (Mohri et al.|[2012; [Daniely & Shalev-Shwartz,2014). Most
existing works for the classification problem only focus on crisp-valued data classification.

However, in many real-world scenarios, observations with crisp-valued features are not always avail-
able. Interval-valued data (Dombil [1990; Billard & Didayl, [2003) is a common type of data where
all of the observations’ features are described by intervals, not crisp-valued numbers. For example,
the mushroom dataset (see Table[T) is a real-world interval-valued dataset described by five interval-
valued features and one category variable. Moreover, the data extracted by many measuring devices
are not exact numbers but intervals because there are only a limited number of decimals available on
most of these measuring devices. Existing well-known machine learning methods cannot be directly
used to handle interval-valued data. Recently, some researchers have begun exploring imprecise
data from different perspectives, such as superset label learning and data disambiguation (Cour et al.
(2011); ILin & Cercone|(2012); |Hiillermeier (2014)); [Liu & Dietterich| (2014). Unfortunately, the ex-
isting research related to analyzing interval-valued data mainly focuses on decision-making (Jahan-
shahloo et al.} 2006), clustering analysis (De Carvalho & Tenorio, [2010), regression analysis (Hao,
2009; \Utkin & Coolenl 2011; Souza et al.l [2017), and feature selection (Li et al.| [2022), yet less
on classification tasks (Utkin & Coolen, 2011). Besides, limited research on interval-valued clas-
sification only gives some simple framework and no relevant experimental analysis on real-world
interval-valued datasets.

In this paper, we focus on a highly challenging problem called learning from interval-valued data
(LIND), where we aim to learn a classifier that can obtain high classification accuracy on interval-
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Table 1: Some instances of the mushroom dataset. The first column of this table shows the name of each
instance. The 2nd-6th columns of this table are five interval-valued features of the mushroom dataset, and the
last column of this table shows the category of each instance (label).

Name Pw(cm) Sl(cm) St(cm) Sma(cm) Smi(pm) Category
Arorae [3, 8] [4,9] [0.5, 2.5] [4.5, 5] [3,3.5] Agaricus
Moronii [6, 12] [2,71 [1.5,3] [6,7.5] [4, 5] Agaricus
Appendiculatus [7,14] [5,9] [3, 6] [11.5,13.5] [3.5,4.5] Boletus
Fragans [6, 15] [4, 10] [1,3.5] [13,17.5] [5,7.8] Boletus
Augusta [6, 12] [9,17] [1,2] [9.5, 11.5] [8.5, 10] Amanita

valued observations. Throughout existing research involving interval-valued data, no research dis-
cusses a theory regarding the interval-valued data classification problem. To fill this gap, we first
present theoretical analysis to obtain the estimation error bound of the LIND problem based on
Rademacher complexity (Theorem I)). This Rademacher complexity-based bound demonstrates that
we can always train a classifier with high classification accuracy when enough interval-valued in-
stances can be collected. Next, we provide a theorem to show the strengths of multi-view learning
in addressing classification problems (Theorems [4] and [5). This theorem inspires us to propose
a new framework called the multi-view interval information extraction (Mv-1IE) approach using
multi-view learning (Blum & Mitchell, 1998} |Zhang et al.,[2018a; |Wang et al.| 202 1azb).

The proposed framework, which comprises two main parts (Figure[I)), applies multi-view learning
to classify crisp-valued information extracted from the interval-valued observations. The first part is
used to extract crisp-valued information from the interval-valued observations. The most commonly
used method is to take the midpoint of the intervals to extract crisp-valued information, however us-
ing this method will result in the loss of a lot of critical information from the intervals. For example,
suppose we have two intervals Z; = [1,5] and Zo = [2, 4], we will obtain the same crisp-valued in-
formation x = 3 from different intervals by taking the midpoint of the intervals. However, Z; clearly
has a larger interval than Z5 has, thus it is improper to consider them as the same instance in the view
of midpoint. Therefore, in this paper, we propose a membership function-based method (Dombi,
1990; |Delgado et al., |1998} |Oussalahl [2002)) to extract multi-view information (crisp-valued). The
second part is a multi-view classifier to handle the extracted multi-view information. In this paper,
support vector machines, random forests and neural networks are used as the basic structures of the
multi-view classifier. This multi-view classifier guided by the proposed theorem is trained on the
view-fusion representation vectors constructed by integrating an appropriate number of candidate
views (more details and motivation are discussed in Section [)).

Finally, we compare the performance of the Mv-IIE framework with several baselines on both syn-
thetic and real-world datasets. The experiment results illustrate the superiority of the proposed model
in handling interval-valued data. Moreover, we detail an application of the Mv-IIF framework that
we present a novel framework for protecting data privacy called interval privacy-preserving (INPP),
see Section[5.4] Through experiments on one real-world dataset, it demonstrates that applying INPP
can prevent raw (crisp-valued) data leakage while ensuring high performance.

2 PROBLEM SETTING
In this section, we introduce the problem of learning from interval-valued data.

LetX = (Z1,--- ,Z,) ' beap-dimension interval-valued vector, where Z; = [}, 23], j € [p]. Here,
we denote [p] = {1,---,p}. R is denoted as the set of all real-valued intervals (closed) and R? is
denoted as the set of all p-dimension interval-valued vector, i.e., R = {[z!,27] : 2!, 2" € R, 2! <27}
and R? = {([z}, 23], , [z}, 2p)) T : 2}, 2% e R, 2 <a,j € [p]}.

Key Definitions. In this part, we introduce some basic definitions to identify the LIND problem.
We first show the definition of the interval-valued random variable.

Definition 1 (Interval-valued Random Variable). Suppose X', X* € R are two real-valued ran-
dom variables (Jeffreys, |1998) defined in R. We define X = [X', X*| € R as an interval-valued
random variable, as long as X L'< X Then, a p-dimension interval-valued random vector
X = (X1,--+,X,)" € RPisak-tuple of the interval-valued random variables, where X; (j € [p])
is an interval-valued random variable.
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The interval-valued random variable is a natural extension of the ordinary real-valued random vari-
able. Then, we define D as the interval probability distribution of X = (X7, - - - 7Xp)T (denoted as
X ~ D). Note that the strict definitions related to interval probability distribution and i.i.d. interval-
valued random vectors are given in Appendix B} Next, we introduce the definition of the interval
expectation for an interval-valued random vector.

Definition 2 (Interval Expectation). Suppose X = (X1,---,X,)" ~ D is an interval-valued
random vector. We denote X' = (X},--- ,X})" and X* = (X},--- ,X}) ", which are two real-

valued random vectors following probability distribution D' and D*. Then, the interval expectation
of an interval-valued random vector X is defined as,

Ep[X] = % / xdD\(x) + % / xdD"(x) = %]E[Xl] + %]E[Xf].

Based on the above definitions and the introduction of ordinary classification problems with crisp-
valued observations (Mohri et al.,|2012), we can identify the LIND problem.

Learning from Interval-valued Data: Let X C R? be the input space and ) = [K] be the output
space. Suppose S = {(X;,y;)}™, is a sample drawn i.i.d. from D, where X; = (Z;1,- -+ ,Z;p) | €
X and y; = f(X;) € ) be the ground-truth function. Let H C {h : X — R} be the hypothesis
space of the LIND problem and for any h € H,

h(iz) : .)E — RK
X; — (hl(ii)v T ahK(Xi))T'

Without loss of generality, we suppose that Z,I::l hi(x;) = 1 and each hy(X;) represents the
probability of instance X; belonging to the k-th category. Therefore, we have supy ¢y || b [l < 1.
Let L3y = {{(h(X),y) : X € X,h € H,y € YV} be the class of functions with respect to the
loss ¢ and H, where £ : RE x Y — R, . Based on the ordinary classification problem, we denote
Ri(h) =Ep[¢(h(X),y)] as the risk of the LIND problem. Therefore, the aim of the LIND problem
is to find the optimal classifier h* € H such that h* = argminpecy Rp(h).

Remark 1: Most previous works considering that the expectation of an interval is itself an inter-
val (Aumann, |1965) were primarily focused on the operation of interval-valued data. However, in
this paper, we focus on learning this type of data (interval) from a machine learning perspective.
Therefore, we give a different definition of the expectation of an interval (Definition [2)).

3 THEORETICAL ANALYSIS

This section presents the main theoretical outcome of the LIND problem (all proofs and further
analysis are shown in Appendix [B).

Let Sg = {%;}™, be a sample drawn i.i.d. from D. Based on the Rademacher complexity of H
with respect to S'; (see Definition|7|in Appendix , we can obtain the following theorem.

Theorem 1. Suppose that sup, <1 maxy L(h,y) < Cy, and all functions in L3 are Ly-Lipschitz
Sfunctions. For any 6 > 0, with probability at least 1 — 6, each of the following holds for all h € H.:

|Rp(h) — Rp(h)| < 2v/2L¢Rg_(H) + 3Ce/ &2 (1)

This theorem presents a generalization bound of the discrepancy between the risk and empirical
risk of h based on empirical Rademacher complexity. R 5. (M) is in the order of O(1/y/m) under
some certain restrictions of # (Bach et al.l|2004; |Cortes et al.l|2010; Kloft et al.| 2011}, for example
‘H has limited-VC dimension or H is a kernel class with bounded trace. According to Eq.
and if ﬁg}z (H) = O(1/y/m), we notice that as m — oo, Rs(h) — Rp(h). Therefore, this
bound demonstrates that we can always well handle the LIND problem when enough interval-valued
instances can be collected.

In addition, we prove two theorems (See Appendix for details) to illustrate the advantage of
using multi-view learning to address the LIND problem in terms of error rate and estimation er-
ror bound. Theorem @ shows that the error rate of a multi-view prediction function is lower than
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Figure 1: Mv-IIE framework. The first part (denoted in green) is to extract the multi-view information from
the interval-valued dataset D. Then, the multi-view classifier with two structures is used to handle the extracted
multi-view information. The first structure (denoted in red) is used to select well-performed candidate views.
The second structure (denoted in yellow) aims to train the final multi-view classifiers by using the view-fusion
representation vectors.

that of any single-view prediction function under some certain restrictions, which means that us-
ing multi-view methodology can reduce the error rate of the predict function for the classification
tasks. Theorem [5] demonstrates that we can obtain tighter estimation error bounds by applying the
multi-view methodology. Inspired by the theoretical analysis of Theorems [ and [5] we decide to
find appropriate multi-view features that can achieve well and similar performance on some specific
classifiers to train our multi-view classifiers.

4 CONSTRUCT MODEL FOR INTERVAL-VALUED DATA CLASSIFICATION

In this section, a new framework called multi-view interval information extraction (Mv-IIE) ap-
proach is presented to address the LIND problem. The structure of the Mv-1IE framework is shown
in Figure[T] We describe this proposed framework in detail in the following paragraph.

We denote D = {(X;,y;)}™, as the interval-valued dataset, where X; = (Z;1, -+ ,Z;p) ' € RPis
the interval-valued feature vector and y; € [K] is the label. First, we construct a set of membership
function-based transformation functions to extract multi-view information (crisp-valued) from the
interval-valued dataset D (denoted in green in Figure . T = {T,(;;8)}7_; is denoted as the set
of transformation functions, where
Tl = MOM o Fl, T2 =COGo Fl, T3 =COGo FQ, T4 =ALCo Fl,
T5 == ALC o FQ,T6 == VAL (e] F17T7 == VAL e} FQ.

Here, F1(+; 8), F2(+; 8) are two functions that are used to transfer a interval-valued feature vector
into a triangular fuzzy vector and a Gaussian fuzzy vector, and MOM, COG, ALC, VAL (Delgado

et al.,|1998} |Oussalah, [2002)) are four different membership function-based defuzzification methods
(see Appendixfor details). F1(+; 8), Fa(+; 8) are defined as:

FT()_(’i; ﬁ) = (F‘r(jil;ﬁ)u e 7F‘r(jip; ﬁ))T7T = ]-7 2.
Fy(Tij; ) = Tr(ayy, By + (1 — B)xy;, x5;),
FQ(-fij;B) = Ga(ﬁxlij + (1 - ﬁ)$§j751j’52j)7
Slj = \/V&I‘(Aj),ng = \/Var(Bj),
Aj ={azj; i€ [m], (X, ;) € D}, B; = {x}; :i € [m], (Xs,y:) € D}, j € [p],

where Tr(a:ij,ﬂxij + (1 — B)zj;, xj;) and Ga(ﬂxﬁj + (1 — B)xj;, S5, S2;) are represented two
types of fuzzy numbers (see Appendix [C| for details). Through the above process, one interval-

valued feature X; can be transferred into seven different parts XMV = (x},--- ,x7), where for
any ¢ € [m],v € [7],x} = T,(X;;8),T, € T. Then, we obtain the multi-view informa-
tion Dyvy = {(x},9i, 1), , (x],vi, 7)}™, by using the above mentioned method. For any

(x¥,yi,v) € Dy, yi € [K] is the category label, and v € [7] is the view label.
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Algorithm 1 Mv-IIE

1: Input data D = {(X;, y:) }i~1, the basic classifiers Cq, ¢ € [3];

2: Initial network parameters of C3 and split D into a training set D' with size m1, a validation set D** with
size mo and a test set D*® with size ma;

3: Compute extract multi-view information : x{ = T, (X;; 8), Tv € T,i € [m],v € [7];

4: Train single-view classifiers Cy),v € [7], ¢ € [3] on the training set {(x}, y)|(X:, y:) € D" }i%;

5: Compute classification accuracy of the single-view classifier C;,v € [7],¢q € [3] on the validation set

{6, yo)| (i, 9i) € DY HA;

6: Select ¢ candidate views for each ¢ € [3], denoted as V¢ = {v7,--- , v}, that achieve higher classification
accuracy than the rest of the views;

7: Compute view-fusion representation vector :

q
co,q _ (¥1:Ca, 5v&:Cq

X; (¥:" %y )i € [m), g € [3]

where y;”cq € R¥ is the category prediction for the v-th view of the i-th data by applying Cy;

8: Train multi-view classifiers C}", ¢ € [3] on the training set {(x{*'?, y;)|(X:,vi) € D™}

9: Select the optimal hyperparameters that can obtain the highest classification accuracy on the validation set
{620 ) (%4, w:) € D™ H

10: Output C)", ¢ € [3] with optimal hyperparameters and use these model to test the performance on the
test set {(x5%, )| (%i, i) € D}

i

Motivation of transformation functions construction: The interval-valued features contain simi-
lar structures and properties with fuzzy numbers |Delgado et al.|(1998)), which both exist a consider-
able amount of uncertainty. Further, the a-cut of a fuzzy number z is defined as {t € R|uz(t) < a}
(1z(t) is the membership function of ), which is a closed and bounded interval. Therefore, we
design two fuzzilization methods to transfer the interval-valued features into two well-defined fuzzy
numbers. Moreover, the four membership function-based methods can extract different crucial dis-
criminant information from fuzzy numbers. For example, MOM finds the maximum membership
level but ignores the changing trend of the membership function, while COG takes into account the
trend and finds the centroid of the area bounded by the membership function. Through the above
analysis, it inspired us to construct a set of transformation functions by fusing the two fuzzilization
methods and the four membership function-based methods to extract multi-view discriminant infor-
mation. Experimental results shown in Sections [5.2]and [5.3] verify the rationality and efficacy of the
fuzzy transformation functions.

Next, we propose a multi-view classifier with two parts to train the multi-view information, which

aims to minimize the empirical risk ﬁp(hco) in Section 3] The first part (denoted in red in Fig-
ure [I) is used to select appropriate multi-view information. We apply support vector machines,
random forests and neural networks as three basic classifiers, which denoted as C;,Cs and Cs.
Then, we apply the three basic classifiers to train single-view classifiers Cy,v € [7],q € [3] on
the training set, and we select several well-performed views with the number of ¢ as the candi-
date views for each basic classifier on the validation set (we set ¢ = 2 for our experiments in this
paper). This selected approach is inspired by the theoretical analysis of Theorem [ and [5} Let

&;’C“ € RX i € [m],v € [7],q € [3] denoted as the category prediction for the v-th view of the
i-th data by applying the basic classifier C,, and V7 = {v{,--- ,v%}, ¢ € [3] denoted as the selected
candidate views for basic classifier C,. The second part (denoted in yellow in Figure |I[) aims to
train the final multi-view classifiers by using the selected candidate views. For each basic classi-
fier Cy4,q € [3], the category predictions of the selected candidate views are integrated to obtain

~v{,C ~vd,Cqy : : :
x:}%q = (yfl I ;y;’c "),i € [m],q € [3] as view-fusion representation vector, and we use

x;~'? as input and C, as a classifier to train the multi-view classifier CS/IV on the training set and
select the optimal hyperparameters of Cg/[" on the validation set. Finally, the trained multi-view

classifiers Cg/l", q € [3] with optimal hyperparameters are used to get the final category prediction
y? on the test set. More detail of the Mv-IIE framework is shown in Algorithm

5 EXPERIMENTS

In this section, we compare the proposed model with several baselines on both synthetic and real-
world datasets, and introduce an application of our method.
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Figure 2: Synthetic datasets. From (a) and (c), each rectangle represents one interval-valued instance. (b) and
(d) plot the the center of the interval-valued data (rectangle) to show the separability of the synthetic dataset.

5.1 BASELINES

This section gives a brief introduction of seven baselines. The first two baselines called DF-SVM
and DF-MLP are proposed in [2022). Next three baselines called L-IIE, U-IIE and
M-IIE that take the low bound, upper bound and midpoint values from intervals to train the three
basic classifiers. The other two baselines called Mv-IIE-2 and Mv-IIE-3 are constructed based
on our proposed framework in this paper. Instead of using the membership function-based method
to extract multi-view information in the proposed framework, Mv-IIE-2 uses the upper and lower
bounds of intervals as two views. Mv-IIE-3 uses the two views mentioned above and the midpoint
of intervals as another view and integrates all these views to get the final prediction.

5.2 EXPERIMENTS ON SYNTHETIC DATASETS

In this section, we verify the efficacy of the proposed framework on three synthetic datasets. First,
we introduce the process of the synthetic datasets generation.

Interval-valued Dataset Generation. We use two different mechanisms to construct synthetic
interval-valued datasets. In the first data-generation mechanism, we generate the crisp-valued
dataset {(x; = (z41,42)",%:)}, in two categories by the double moon data generator. Then,
we use the generated crisp-valued dataset to construct the first interval-valued dataset {x; =
(Ti1, Ti2) T, yi i1, where each Z;; is an interval characterized by [x;; — a;j, zi; + b;;]. We let
a;j,bij ~ U[0,4] and n = 1000 to generate the first synthetic dataset and let a;; ~ U[0.5, 1], b;; ~
UJ2,4] and n = 2000 to generate the second synthetic dataset (U |a, b] denotes the uniform distribu-
tion over [a, b]). Visualizations of the first two synthetic datasets are shown in Figure

In the second data-generation mechanism, we first select one dataset (Letter Recognition dataset
selected from the UCI Machine Learning Repository https://archive-beta.ics.uci.edu/) denoted as
Dr = {(xi,yi)}",, where x; = (z41, - , %) € RP, and y; € [K]. Then, we present one
intervalization approach to generate the second synthetic interval-valued dataset (see Figure 3). We
select the first L features in Dy and find the maximum value z;"** and minimum value x?‘in of each
feature [, so for any [ € [L],i € [n],z;p € [z, 21"8%]. We bisect the interval [z}, z1"®*] into T'

intervals [z?, 21], [z2, 23], -, [2] ~', ¥]. We denote forany | € [L], t € [L], and k € [K],

T = {(xi:) € D 2w € o} af] s = ).

Finally, we transfer set I}; into an interval-valued data (([},z1],--- , [z}, z5]) ", k), where z}; =

min(y, pyery, Tij: Tj = MaX(x, pyert, Tij:J € [p]. Then, let L = 4,T = 12, we generate the third
synthetic interval-valued dataset by using the aforementioned data-generation mechanism.

Experiment Results Analysis. In our experiments, we compare the performance of the Mv-IIE
framework with the seven baselines on the three generated synthetic datasets. All the experiment
details are shown in Appendix [D] The experimental results are shown in Table[2] From these results,
it can be seen that the proposed model achieves the best classification accuracy on the three synthetic
datasets. Further, results of the Wilcoxon rank-sum test (1992) show that our approach
outperforms DF-MLP, L-1IE, U-IIE, M-IIE and Mv-IIE-2 significantly at the 0.05 significance
level in most cases. Further, our method outperforms Mv-IIE-2 and Mv-IIE-3, which verifies the
rationality of the theoretical analysis of Theorems[]and[3](see Section[3). All these results verify the
superiority of the proposed model in addressing classification problems with interval-valued data.
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select Feature1

1 >

T=2

Number |Feature 1|Feature 2|Feature 3| Label
1 8 3 7 0
2 6 5 2 0
3 12 4 12
4 5 6 8 1
5 4 9 10 0
6 2 1 4 1

Feature1| Label |Number Feature 1|Feature 2|Feature 3( Label
[2.7] 0 2,5 transfer into [2,7] | [59] | [210] 0
interval-valued data
1 4,6 [2,7] [1,6] [4,8] 1
[7,12] 0 1 [7,12] [3,3] [7.7] 0
1 3 [7,12] [4,4]1 [[12,12] 1

Figure 3: The intervalization approach.

Table 2: Experiment results (accuracy=+standard deviation of accuracies) on the three synthetic datasets. The bold value represents the
highest accuracy in each column. p is the p-value of the Wilcoxon rank-sum test between the best performance and other algorithms.
represents p < 0.05, meaning that Mv-IIE outperforms other baselines significantly at the 0.05 significance level (Rice|[2006).

15% synthetic 29 gynthetic 374 synthetic
Algorithms basic classifier Test accuracy p Test accuracy p Test accuracy p
DF-SVM 71.30% +1.62% 0.73 97.82% +0.61% 0.43 94.26% +2.10% 0.59
DF-MLP 70.60% £1.67% 0.35 97.13% +1.04% 0.034* 92.21% £2.15% 0.032*
L-TIE Cq 67.35% £2.95% 0.0051* 97.90% £0.76% 0.47 90.34% +1.64% 0.0012*
Cao 63.90% £2.71% 0.00016*  97.80% +0.64% 0.43 89.17% +1.32% 0.00067*
Cs 66.15% +2.40% 0.00016*  97.10% +0.84% 0.034* 90.49% +1.88% 0.0012*
U-IIE Cy 66.90% +1.37% 0.00016*  76.95% +1.43% 0.0016* 88.04% +2.59% 0.048*
Cao 65.20% £2.61% 0.00016*  75.68% +1.31% 0.0016* 89.31% +2.94% 0.00067*
Cs 66.65% +£1.21% 0.00016*  75.95% +1.63% 0.0016* 87.01% +2.90% 0.00034*
M-IIE Cq 71.15% £2.09% 0.60 89.85% £0.92% 0.0016* 94.02% £2.07% 0.048*
Cao 70.25% +2.17% 0.11 88.58% +0.72% 0.0016* 90.54% +1.92% 0.0012*
Cs 69.95% £2.11% 0.048* 86.95% +1.44% 0.0016* 91.67% £1.81% 0.0094*
Mv-IIE-2 Cq 70.35% £2.09% 0.15 98.20% +0.81% 0.94 93.14% +£1.95% 0.048*
Co 69.85% £2.92% 0.045* 97.03% £0.96% 0.0011* 90.44% £2.60% 0.0011%*
Cs 65.82% +3.12% 0.00016*  97.90% +0.72% 0.47 84.17% +3.14% 0.00034*
Mv-IIE-3 Cq 71.05% £2.21% 0.57 98.17% +0.72% 0.88 94.46% £2.15% 0.79
Co 70.90% +2.88% 0.44 97.25% +0.84% 0.044* 91.37% £2.70% 0.0081*
Cs 66.25% £1.95% 0.00016*  97.85% +0.65% 0.43 80.59% +4.43% 0.00034*
Mv-IIE Cq 71.25% £2.11% 0.68 98.25% + 0.69% — 94.66% + 1.81% —
Cao 71.65% + 2.05% — 97.13% £1.18% 0.034* 90.49% £2.51% 0.0012*
Cs 71.05% £1.67% 0.57 98.05% +0.72% 0.74 86.96% +1.35% 0.00034*

Table 3: Experiment results (accuracy=+standard deviation of accuracies) on the two real-world datasets. The bold value represents the
highest accuracy in each column. p is the p-value of the Wilcoxon rank-sum test between the best performance and other algorithms.
represents p < 0.05, meaning that Mv-IIE outperforms other baselines significantly at the 0.05 significance level (Rice}[2006).

Mushroom dataset

Weather dataset

Algorithms basic classifier Test accuracy P Test accuracy P
DF-SVM 76.67% +3.86% 0.00067* 97.12% £0.98% 0.79
DF-MLP 79.39% £3.32% 0.019* 96.83% £0.98% 0.048™

L-IIE Cq 71.18% £6.30% 0.00034* 93.56% +0.96% 0.00016*
Co 76.36% +6.62% 0.00067* 93.33% £0.73% 0.00016*
Cs 76.19% +£4.13% 0.00067* 93.54% £0.85% 0.00016*
U-IIE Cq 74.50% +2.88% 0.00054* 94.06% £0.90% 0.00016*
Ca 79.14% £3.58% 0.015* 93.15% £1.16% 0.00016*
C3 76.01% +4.29% 0.00067* 93.93% £1.03% 0.00016*
M-IIE Cq 75.60% £3.11% 0.00054* 97.03% £0.96% 0.75
Ca 79.34% +4.75% 0.019* 97.08% £0.73% 0.77
Cs 76.01% +£4.29% 0.00067* 96.85% +0.88% 0.048*
Mv-IIE-2 Cq 81.74% +5.13% 0.045* 96.76% £0.91% 0.047*
Ca 80.47% +3.69% 0.022* 95.50% +£1.25% 0.0032*
Cs 76.55% +5.58% 0.00067* 93.72% £1.00% 0.00016*
Mv-IIE-3 Cy 82.34% +3.79% 0.56 97.12% £0.90% 0.79
Cao 82.57% +4.54% 0.69 97.10% £0.74% 0.77
Cs 73.79% +£4.69% 0.00034* 93.52% +£1.16% 0.00016*
Mv-1IE Cq 81.75% +4.09% 0.045* 97.26% + 0.81% e
Co 83.69% + 3.39% — 96.46% £0.73% 0.041*
Cs 82.67% +3.14% 0.72 96.62% £1.20% 0.046*
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Table 4: Experiment results (accuracy=standard deviation of accuracies) of the ablation study on the synthetic and real-world datasets.

The bold value represents the highest accuracy in each column.

Algorithms Basic classifier 18t synthetic ond synthetic grd synthetic Mushroom Weather
view 1 Cq 70.70% £2.16% 97.97% £0.80% 94.22% £2.05% 76.81% £3.07% 96.94% £0.96%
Co 69.75% +2.32% 97.85% +£0.92% 91.27% +£2.31% 82.29% +5.26% 97.03% +0.68%
Cs 71.45% £2.25% 98.12% +0.66% 92.21% +£1.76% 71.56% £3.36% 96.80% +£1.25%
view 2 Cq 70.95% +1.62% 96.50% +0.56% 94.26% +£1.99% 76.66% +3.83% 97.12% +0.74%
Co 69.75% +1.74% 95.10% £1.10% 91.81% +£1.87% 83.35% +5.06% 96.83% £0.97%
Cs 70.25% +£1.93% 96.47% +0.68% 92.45% +1.85% 79.62% +4.15% 96.83% £0.96%
view 3 Cq 71.20% +2.17% 95.20% £0.56% 94.41% £2.05% 76.55% £3.25% 97.01% £0.94%
Ca 69.45% +2.27% 94.00% +0.81% 91.67% +£2.28% 82.44% +4.65% 96.69% £0.99%
Cs 71.20% +1.68% 94.30% £0.91% 91.52% £2.62% 79.62% £3.32% 96.78% £1.12%
view 4 Cq 71.30% +£1.62% 97.82% +0.61% 94.26% £2.10% 76.67% +£3.86% 97.12% £0.98%
Ca 69.15% +3.24% 97.13% £1.04% 90.88% +£2.98% 82.45% +5.26% 96.72% £1.20%
Cs 70.60% +1.67% 97.62% +0.93% 92.21% £2.15% 79.39% £3.32% 96.76% +0.98%
view 5 Cq 70.60% £1.73% 97.97% £0.80% 94.17% £1.87% 75.07% £3.18% 96.96% +0.89%
Ca 69.75% +2.32% 97.50% +0.78% 91.08% £2.49% 82.70% +4.88% 96.96% +0.69%
Cs 71.20% £2.11% 98.12% £0.66% 90.49% £2.19% 71.38% £5.94% 96.42% £1.03%
view 6 Cq 70.65% £2.13% 98.00% +0.80% 94.17% £2.13% 77.12% £3.14% 97.01% £0.87%
Co 69.75% +2.32% 98.05% £0.76% 90.54% £2.11% 82.78% +5.08% 96.94% £0.70%
Cs 70.35% +£2.47% 98.12% +0.66% 92.55% +£1.65% 77.90% +4.48% 96.58% +£1.05%
view 7 Cq 70.60% +1.74% 97.95% +0.77% 94.36% +£2.02% 76.81% £3.07% 97.05% +0.75%
Co 69.75% +2.32% 97.38% £1.03% 90.54% £2.07% 82.89% +5.13% 97.03% £0.68%
Cs 70.60% £1.67% 98.12% £0.66% 91.57% £2.33% 75.13% £4.82% 96.96% £1.04%
Mv-IIE Cq 71.25% +2.11% 98.25% + 0.69% 94.66% + 1.81%  81.75% +£4.09% 97.26% + 0.81%
Ca 71.65% + 2.05%  97.13% +1.18% 90.49% +£2.51% 83.69% + 3.39%  96.46% +0.73%
Cs 71.05% £1.67% 98.05% £0.72% 86.96% +1.35% 82.67% +3.14% 96.62% £1.20%

5.3 EXPERIMENTS ON REAL-WORLD DATASETS

This section illustrates the experimental results on two real-world datasets which are used to verify
the efficacy of the proposed framework. The briefly introduction of the two real-world datasets used
in our experiments is shown in Appendix [E]

Experiment Results Analysis. All the experiment details on the two real-world datasets are shown
in Appendix [D] The experiment results on the two real-world datasets are shown in Table[3] From
the results of classification accuracy and the Wilcoxon rank-sum test, it can be seen that the proposed
model outperforms DF-SVM, DF-MLP, L-1IE, U-IIE, M-IIE and Mv-IIE-2 significantly at the
0.05 significance level nearly in all cases. DF-SVM and DF-MLP perform much worse than our
methods on the mushroom dataset because they ignore some crucial discriminant information from
this dataset. In comparison, our methods via multi-view learning and fuzzy transformation functions
can extract more discriminant information. In addition, although Mv-1IE-3 applies 3 views, our
method still get better outcomes than Mv-IIE-3. These results again demonstrate the superiority of
our method in addressing classification problems with interval-valued data.

Ablation Study. To verify the advantage of using multi-view methodology, we apply all single-view
classifiers (CY,v € [7],q € [3], see Section [4) to test classification performance on both synthetic
and real-world datasets. All results are report in Table ] which verifies the proposed framework’s
superiority and rationality in addressing interval-valued data classification problems.

5.4 APPLICATION

In this section, we describe an application of Mv-IIE, where a novel framework for protecting data
privacy called interval privacy-preserving (INPP) is presented. The structure of the INPP framework
is shown in Figure ] (see Appendix[D). There are three roles involved in each machine learning task:
the input party (data owners), the computation party and the results’ party. In such systems, the data
owner(s) send their data to the computation party. Then, the computation party trains a model using
these data and sends this model to the results’ party. Finally, the results’ party uses this model to
predict new data. If all three roles are from the same entity, then privacy is naturally preserved.
However, when these roles are from two or more entities, privacy-preserving is necessary. For
example, an online clothing retailer wants to know different customers’ preferences to adjust the
quantity of each garment. In this situation, different customers play the first role and online clothing
retailers play the second and third roles.
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Table 5: Experiment results of INPP framework on letter recognition dataset. R is equal to the ratio of the outcomes of INPP framework
to the best outcome on the original dataset.

Method L T q Test accuracy R EN
original dataset — — — 95.86% +0.19% — —
INPP 6 15 0.20 88.85% £0.71% 92.69% 66.82%
6 15 0.30 91.19% £0.75% 95.13% 56.84%
6 15 0.50 93.24% +0.50% 97.27% 37.19%

In the proposed framework, we denote Dr, = {(x;, y;) }7; as the raw data from the data owner(s),
where x; = (zj1, - ,xip)T € RP y; € [K]. First, the data owner(s) use the intervalization
approach (see Figure [3) to transfer Dy into the interval-valued data Dex = {(X;,y;)}7, and
an interval method the same as the first data-generation mechanism described in Section [5.2] to
transfer D¢, which contains n*q instances randomly selected from Dg, into the interval-valued data
Din = {(Xi,y:)};=4. Then, the data owner(s) send these two interval-valued datasets Dgn, Dy to
the computation party. Secondly, the computation party uses the interval-valued data Dgy to train
Model 1 by applying Mv-IIE and the interval-valued data Dy is used to fine-tune Model 1 to obtain
Model 2. Then, the computation party sends Model 2 to the results’ party. Finally, the results’ party
uses the same interval method described in Section[5.2]to transfer X,y iNt0 X6y and uses Model 2
to predict X0\ for new data prediction. According to the above methods, the intervalization process
of our proposed framework is irreversible and the raw data is largely compressed. Therefore, the
computation party and other parties cannot obtain the raw data from Dgy and Diy;, so this process
achieve the purpose of preventing data leakage. We define EN = 1 — (m + n x ¢)/n, where
(m 4 n * ¢) is the amount of data that the computation party can receive from the data owner(s)
and n is the amount of raw data. A smaller EN means the computation party will receive more data
from the data owner(s), so the computation party may receive more information about the raw data.
Therefore, EN can be used to measure the degree of privacy-preserving by applying INPP. Greater
EN means greater privacy protection by applying INPP.

Differential privacy (DP) Dwork et al.|(2014); Papernot et al.| (2018) and homomorphic encryption
(Gilad-Bachrach et al.l 2016} Zhang et al., 2018b}, Lou & Jiang} [2021)) are common used schemes
to achieve privacy-preserving. DP and homomorphic encryption can be applied to the raw data or
the algorithm, but our method only applies to the raw data. DP applied to the raw data is based on
data-perturbation, and homomorphic encryption is based on data-encryption, but the amount of data
is not changed. Moreover, if the keys of the encryption schemes are compromised, the information
of the raw data will also be compromised. While our method compresses the raw data into interval-
valued data with fewer instances through an irreversible process to protect data privacy. Further,
DP and our approach can not be easily applied to image data, which is a meaningful problem worth
considering in the future.

Experiments on one real-world dataset are conducted to verify the efficacy and feasibility of the
INPP framework. We use four well-known machine learning methods (logistic regression, support
vector machines, random forests and neural networks) to classify the original dataset and compare
the best outcome of these four methods on the original dataset with the outcomes of the INPP
framework. The experiment details of the INPP are shown in Appendix [D} All the experiment
results are shown in Table We note that the proposed framework can achieve 93.24% classification
accuracy on the new data with R = 97.27% when L = 6,7 = 15,q = 0.5, which demonstrates
that applying the proposed framework can prevent crisp-valued data leakage while ensuring high
classification accuracy of the model that has been trained by the computation party.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we focus on a highly challenging called LIND and obtain the estimation error bound
of this problem based on Rademacher complexity. Moreover, we construct a new framework called
Mv-IIE by applying multi-view learning for interval-valued data classification. Through experimen-
tal comparisons with seven baselines on both synthetic and real-world datasets, it demonstrates the
superiority of the proposed model. Finally, we detail an application of the proposed framework
that we can prevent crisp-valued data leakage by transforming crisp-valued data into interval-valued
data. However, we only consider the situation where the observations with interval-valued features
in the training and test sets are drawn from the same distribution in this paper. Therefore, we plan
to consider more complicated issues related to interval-valued data analysis in future research, for
example, covariate shift and domain adaptation with interval-valued observations.
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REPRODUCIBILITY STATEMENT

All the codes and processed data in this paper will be publicly released on our GitHub website after
this paper is accepted. Moreover, we include all complete proofs proofs for our theoretical results in
Appendix [B} and additional experiment details in Appendix
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Table 6: Main notations and their descriptions.

Notation

Description

e Spaces and Labels

R = {[z',2"]|z!, 2" € R, 2! < 2"}
B = {([eh,at], - b, 23T}
X CcRe

X, CRP, v €[]
X=X1 X XX CRP x---
Yy

[K]=A1,---,K}

o Distributions

X, X7
()Z'l’...
X! = (XL"'
X' = (X1,
D', D*

D

D

x RP

X =
X = X)T
LX) "
LX) "

)

) fip)—r}?il
Sxv = {x{ = (z31,- -~ »l‘;}p)T =1
Sx = {Xi = (xi,, x) L

e Loss Function ad Function Spaces
o)

H

Ho

Heo

fo

feo

o Risks and Complexities

Rp(h)

Rp(heo)

Rs (H)

Sz ={xi=(za, -

Rs, (H)
RSXU (Hv)
RSX (HCO)

the set of all real-valued intervals

the set of all p-dimension interval-valued vector
input (feature) space of LIND problem
single-view input (feature) space

multi-view input (feature) space

output (label) space

1,---, K represent the labels in )

interval-valued random variable
interval-valued random vector

real-valued random vector

distribution of real-valued random vector X!, X*
interval distribution over X

multi-view distribution over X’

a sample drawn i.i.d. from X

the single-view sample drawn i.i.d. from &,

the multi-view sample drawn i.i.d. from X

loss : RE x YV — R,

hypothesis space of the LIND problem
hypothesis space of v-th view,v =1,--- ,c
multi-view hypothesis space

predict function of h, € Hy, v =1,--- Jc
predict function of hco € Heo

risk of h € H
risk of heo € Heo

empirical Rademacher complexity of H with respect to the sam-
ple Sx

Rademacher complexity of  with respect to the sample S¢
Rademacher complexity of H, with respect to the sample Sxv

Rademacher complexity of H., with respect to the sample Sx

A NOTATIONS

In this section, we summarize important notations in Table @

To prove Theorem[d} [5|and Corollary ([T} for any h, € H,, we let

hy(x?) :

T

X, - RE
x7 = (hor(x§), -

chorc (7)) T

13
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Without loss of generality, we suppose that f: hyr(x?) = 1 and the predict function f, of h, is
defined as =

fo(x}) = argmax;<p<x hor(xY).
Then, for any h., € Hco, wWe let

heo(Xi): X — RE
Xi = (Xl

it

' ’qu) - (h’%o(xi)’ e 7h§)(xi))T7

C
where hd (X;) = > wih,(xV),w? = (wl), - ,wl)T and without loss of generality, we
v=1

K

suppose » h,(X;) = 1. Therefore, we have sup;, <3, || Pco [|co < 1. The predict function fe,
qg=1

of h, is defined as

feo(Xi) = argmaxi<q< ik b, (X).

B PROOFS AND FURTHER ANALYSIS

B.1 PROOFS

In this section, we prove Theorem [I]in Section[3] To prove Theorem|[I] we first give some related
definitions and prove the Azuma'’s Inequality and McDiarmid’s Inequality of interval-valued random
variables.

B.1.1 RELATED DEFINITIONS AND THEOREMS TO PROVE THEOREM ]I

Definition 3 (Interval Probability Density Function). Suppose X', X" are two real-valued random
variables and have the same continuous pdf px (x). We define px (x) as the interval pdf of interval-
valued random variable X, where

pX(x):|: min  px(x), max pX(x)}.

z€[X1,X7] z€[X!,X7)
Let X = (Xy,--- ,XP)T be a p-interval-valued random vector and the interval pdf of X'j is
Px,(x),J € [p|. Then, we denote the joint interval pdf of X as
B p ) p -
px(x) =[] min  px,(x;), [ max px,(z;)|,x=(21,---,2) .
j=1z;€[X}, X j=1=z;€[X}, X7

Definition 4 (Interval Probability Distribution). Let X = (Xi,---,X,)" be a p-interval-valued
random vector with the joint interval pdf pg (x). Let X! = (X1, - ,X}))T, Xr = (X7, ,X;,)T
be two real-valued random vectors following probability distribution D!, D*. We define D as the
interval probability distribution of X (denoted as X ~ D), if

D(R?) = [px(x)dx = 1,
where [pg(x)dx = 1 [dD\(x) + %ﬁf dD*(x). Therefore, X ~ D if and only if X' ~ D! and

X' ~ Dr. Then, we denote P(X € B) = D(B) as the probability of the event {X € B}, where
B € B and B is the Borel o-algebra in R? (Jeffreys, |1998).

Definition 5. Let X = (X1, -+, XP)T be a p-interval-valued random vector with the joint interval
pdf px(x) and X' = (X3,---, X))T ~ DLX" = (X],---,X})" ~ D" are two real-valued
random vectors. Then, the probability with respect to the function g : X — R is defined as:

POX) > ¢) = 5 [ a9+ 5 [ ap),

where A = {X!' € RP : g(X) > ¢},B = {X" € R? : g(X) > ¢}.

14
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Definition 6 (Independence). The interval-valued random vectors X1, - - - ,X,, are said to be (mu-
tually) independent if and only if the real-valued random vectors XL XL Xy XY are
(mutually) independent. Then, we denote X1,--- ,X,, as i.i.d. interval-valued random vectors if
and only if X4, - - - , X, are independent and have the same interval probability distribution.

Definition 7. The empirical Rademacher complexity of H with respect to Sk is defined as:

~ m K
Rg}? (H) = Eo- sup % Z Z Uikhk(ii) s (2)
heH  i=1k=1

where o = [0ik|mxk is a m x K matrix, with o, independent random variables drawn from
the Rademacher distribution, i.e. P(oy, = +1) = P(oy, = —1) = 1,i € [m],k € [K]. The
Rademacher complexity R _ (H) is equal to the interval expectation of R Sy (H).
Definition 8. A sequence of V1, Vs, - - - is a martingale difference sequence with respect to interval-
valued random variables X1, Xo, - - - if for any i > 0, V; is a real-value function of X1, - - ., X; and
]ED[ 2+1|X17 ) ]70
Theorem 2 (Azuma’s Inequality of Interval-valued Random Variables). Let V1, Va,--- be a mar-
tingale difference sequence with respect to the interval-valued random variables X1, Xo,--- and

assume that for any i > 0 there is a constant ¢; > 0 and Z;, which is a real-value function of
X1, , X1, satisfies
Z; <Vi< Zi+¢.

Then for any ¢ > 0 and m € N7, the following inequalities hold:

P

gt

Proof. Suppose X = [X!, X"] is an interval-valued random variable. According to Deﬁnition we
have

Vize} < exp &

'MS

Il
-

1 3

S
Il

iH

i

V; < 6} < exp 525
PR

i

3)

Lz

P(g(X) > ¢) :g( [y e t9X) s Dl (z) 4 [, et etalX )dDr(x))
Sefts% (fAe le f tg(X)dDr ))
< eftsEﬁ[etg(X)].

By the convexity of z — €7, for any z € [a, b], the following holds:

tx b=z _ta T—a tb
e < b—a® + b—a® -

Thus, using Ep[Vii1|X1,- -+, X;] = 0, then

_[otVit1| Y . Y. _ | Zit1tcit1— ‘/7+1 tZL 1 z+1 Z7,+1 t Zit1+civ1 .. Y.
]ED[e + |X17 7X1] <E [ Cit1 4 Cit1 (Zit + )|X17 7Xz
_ Zit1+cit1 tZLJrl + = —Zit1 t(ZL+1+c1+1) < et cl+1/8
Cit1 Ci41

k
Let St = Y_ V;. Then, for any ¢ > 0, we can write

i=1
P[S,, > ¢] <e *Eplet] o B
= eitE]E@[etS""flEfD [etv’" Xl, )(27 s ,mel]]
< e e Ep|etSm—1]et” /8 (iterating previous argument)
m 725
2 2
> ci/8 2
<e e =1 7 (lett = 4e/ Z 2) = :
the second statement is shown in a similar way. [
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Theorem 3 (McDiarmid’s Inequality of Interval-valued Random Variables). Let Xi,--- ,X,, €
X C RP be a set of m > 1 interval-valued random vectors and assume that there exist
C1,Coy+ yCm > 0 such that f : X™ — R satisfies the following conditions:

|f(X17 o XM"'?Xm)if(Xl? X X )‘Sch

for any i € [m] and any points Xy, , X;, - - € X. Let f(S) denote f(X1, -+, Xpm),

then, for any € > 0, the following mequaltttes hold:

- 4)

Proof. Define a sequence of random variables Vi, k € [m], as follows:

V = f(S) - Eslf(S)],
Vi =Eg[V|Xi] — Eg[V], ~ _
Vi =Eg[V[Xy, -, Xp] - Eg[VIXy, -, Xl

m _ _

Note that V' = ) V;. Furthermore, the interval-valued random vector Eg[V|Xy, - ,Xj] is a
i=1

function of X4, - - - , Xy, therefore:

ES'[]ES’[V|X]J 7Xk]|xla"' )kal] = ES‘[V|X1> ;kal];

which implies Eg[V;|X1,- - ,Xj_1] = 0. Thus, the sequence (Vi),k € [m] is a martingale
difference sequence. Next, observe that, since Eg[f(5)] is a scalar, V}, can be expressed as follows:

Vie = Eg[f(S)[ X1, -, Xi] = Eg[f(9) X1, -, Xp—a].
Thus, we can define an upper bound W}, and lower bound U}, for Vj, by:
Wi, = sup Eg[f(S)|Xq, -+ X, X] = Eg[£(S)[ Xy, -+, Xy,
Ui = inf B[Sy, K, X~ Bl (SR, K,

X{ES[ FSXe, o X, X] = Eg[f(9) Xy, X, X}
;{p{E (oym=r[|f(S1) = F(S2)]] + Eprym-r [|£(S1) — f(S2)I]}

Wi — Uk

IN
[T ><\

IA
o

k>

where Sl = (Xl, e 7Xk7X,Xk+1, s ,Xm), 51 = (Xh R ,Xk, X/, X}g+1, cee ,Xm) ThU.S,

Ui < Vi < Wi < Ug+cy. Inthe view of these inequalities, we can apply Theoremto V=3V,
i=1

which yields the result. O

B.1.2 PROOF OF THEOREM/[I]

For any sample S = {Z; = (X;,;)}™, ~ D™ and any ¢ € L4, we denote

B(3) = sup {Epl(z)] — L 3 0(z)} = sup {Ep[t(z)] — Bs[t(z)]}.

leLy i=1 LeLy

Let S and S be two samples differing by exactly one point, say Z,, in S and z in S'. Then, since
the difference of suprema does not exceed the supremum of the difference, we have

®(S') — ®(S) < sup {Eg[l(z)] - Eg [((2)]} < sup “Emloflu) < G
eLy LeLy
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’

Similarly, we can obtain ®(S) — ®(S") < &, thus |#(S) — ®(S5)| < <. Based on Deﬁnition
®(9) is a function of random variables X} and X% and we have

m

Es {Es (@)} = 3{Epnh fnj 0(z;)] + Epr[L P 0z}

=i ZJEDI[( D]+ EEDr[ 7))}
= HEpll(@ /@) + Enrl0(@)]} = Eg [6(2)].

Then, by Theorem for any § > 0, with probability at least 1 — §/2, the following holds:

®(S) < Eg[®(S)] + Cpy/ 12820

Eg[®(S)] = Eg| sup {Eg [((z)] — E5[¢(Z)]}] = Eg[sup Eg {Eg[((z)] — E5[¢(Z)]}]-

LELy LeLy
Because
sup Eg {Eg [0(z)] — Esle(2)]}
= sup 3{Eye [Eg [6Z)] - Eslt(2)]] + By [Eg [(2)] - Egle(2)]]}
< L sup {Epiyn [Bg [0(2)] — Es[l(2)]] + Epryn [Bg [6(2)] - E[e(2)]]}
< HEun sup [Eg [0(z)] — Eg0(@)] + Epryn sup [Eg [0(z)] — Esle(@)]}
= Eg sup {Ey [K ) - Eslt2)]}

Then, we have

Es[®(9)] < Egsr sup {Eg [0(z)] - Esll(z)]} =Eg g sup {L > [0(z;) — £(z:)]}.

ELy LeELy =1

We introduce Rademacher variables o;s, that are uniformly distributed independent random vari-
ables taking values in {—1,+1},

Eg[®(9)] <EggEq Sup{ Z[Uz( i) = Uz)]}(sup(U + V) < sup U +sup V)

<EgEo sup {;; S 0illz )} +EsEo sup {X 5SS —0ul()}.
teLy  i=1 LeLy  i=1

Because the definition of Rademacher complexity and the fact that the variables o; and —o; are
distributed in the same way, then

E5[2(9)) < 2B sup {3 iaiﬂ(ii)} — R4 (Lx).

Then using ¢ instead of 4/2, with probability 1 — ¢, the following holds :

0(S) < 2Rs(Ln) + Co/ 2512
" — 5)
Banlt(@)] = & 3 () < 2Rs(Lw) + o512,

We observe that changing one point in S changes ﬁg(ﬁq{) by at most Cy/m. Then, again using
Theorem with probability 1 — ¢ /2 the following holds:

Rs(Ly) < Rg(Ly) + Coy/ log(2/0)

17
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Then with probability at least 1 — 4:

B(S) < 2R5(L) + 30/ 2D
E,plt(@)] - L 3 €(z:) < 2Rs(Ln) +3Ce /2412, ©)
Next we let,
U(S) = inf (B, pll@)] — & 3" 4(z)} = — sup {~E,_pll(2)] + Es[t(@)]).

leLly i=1 eLy

In the same way, with probability at least 1 — ¢ the following holds:

Eapll(2)] = 5 35 45) 2 —2Rs (L) — o/ #5510
=1
m _ (7
Eypll(2)] = 5 X 0(2) > ~2Rs(Lx) = 3Cs/ 530,
=1
Since ¢ is Lipschitz continuous, according to (2016), we have
Rs(Lw) < V2LRg, (H). ®)

Following from Egs. (3)), (6), (7) and for any § > 0, with probability at least 1 — 4, each of the
following holds for all £ € Ly:

Eavnlt(@)] — % 3 020)] < 2Rs(Cw) + 30/ 2520 ©)

m

Using Rp(h) = Ep[l(h(X),y)] and Egs. (8) and (EI), we have for any > 0, with probability at
least 1 — 9, each of the following holds for all £ € L4:

|Rp(h) — Rp(h)| < 2V2LiRs, (H) +3Cs/ 22,

B.2 FURTHER ANALYSIS

In this section, we consider why using multi-view learning to address the LIND problem in terms of
error rate and estimation error bound.

Let X, (v € [c]) be the single-view input space and X = X x - - - X X be the muti-view input space.
Let Sx = {X; = (x},--+,x$)}™, C X be the multi-view sample drawn i.i.d. form D, where x?
is the single-view observation, X; € X and y; = f(X;) € ) is the ground-truth function. Let H,
be the hypothesis space of v-th view, where for any h,, € H,, h, : X, — RX. Then, f, : RE = )
is a predict function induced by h,,. Lastly, we set H, to be the multi-view hypothesis space, where

forany heo € Heos Beo : X — RX. Then, we can induce a predict function f, : RE 5y by h

B.2.1 ERROR RATE

First, we propose a notion called discrepancy set to measure the predict functions difference across
different view. Then, we denote D £(f1,- - , f.) as the discrepancy set between the predict func-
tions f1,--- , f. over X, which is shown as follow:

D]:(flv"'vfc>_{X_(le"’axc)€X: \/ fm(xvl)#fm(xw)}v
1<v1<v2<c

here \/ represents the logical relation “or”. Next, we give the following assumption:

For X = (x!,--- ,x9), if fi(x!) = -+ = f.(x¢), we have f.o(X) = f1(x!). (10)

This assumption means that if all single-view predictions are same, the multi-view predict function
also has the same outcome, which is a trivial assumption. Then, we obtain the following theorem.
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Theorem 4. We assert that there exists a uniform constant M € (0,1) such that for any predict
function fo, satisfies assumption ({I0), if

Pp(feoX) Zy|X € De(f1,: -+, fe)) < M, where y is the ground-truth label,

we assert er1( feo) < min, e[ err(f,), where err(feo) = Pp(feo(X) # y).

Proof. Without loss of generality, we suppose err(f;) < --- < err(f.). First, we consider the case
where ¢ = 2. Then, we provide an upper bound on the error rate of f,.

err(fco) = PD(fCO(X) # y)
- ]P(fco(x) 7£ y|X € Dg(fhf?)) +]P>(fC0(X) 7£ y|X € D]:(flan))
< glerr(f1) + err(f2) = Pp(X € Dx(f1, f2))] + P(feo(X) # y|X € Dx(f1, fzzh)
where DZ(f1, f2) 1s denoted as the complement set of D= (f1, f2). According to Egq. and
err(f1) < err(fa),if

P(feo(X) # yIX € Dx(f1, f2)) < glerr(f1) — err(fa) + Pp(X € D£(f1, f2))],

we have err(fe,) < err(f1). Next, we consider the case where ¢ > 2. For ¢ > 2, we have
hCO 6 7-lCO’

[

B (X) = 3 wi TRy (%) = Wi TRy (x1) + 52 wi TRy (x°
co( ) Z:lwv U(X) Wi 1(X)+22Wv U(X )

N

C

So exists oy € Ry, such that Z Z wd " h,(xV) = 1, then exists
=1 =2

C
het € HES N (%2, -+, x€), where hS 19 = oy S0 wi T hy(xY).
v=2
We combine the last ¢ — 1 views i.e., X = (x2,---,x%),X = (x},X). So exists

hegt € He M (x2, -+ x%) C H(X), such that hd,(X) = wi by (x!) + Lheg1e(X)).
Therefore we have he, € Heo(x',X'). Let £&71(X) = arg max<,<x hS 9(X) denoted as the
predict function of hS; !, Because the conclusion is true when ¢ = 2, so exists M € (0,1), such
that

if P(foo(X) # y|X € D£(f1, f51)) < M, we have err(fo) < err(f1).
Because D (f1, f51) € Dx(f1,- - ,fc),so
P(feo(X) # yIX € Dr(f1, f571)) < P(feo(X) # yIX € Dr(fi, -+, fo))-

Therefore, the conclusion is true when ¢ > 2 which yields the result. O

We can easily find M < 1 that satisfies the condition in Theorem[] According to Theorem 4] we
always have the error rate of a multi-view prediction function f., is lower than that of any single-
view prediction function f,,v € [¢] when Pp(feo(X) # y|X € Dx(f1, -+, fc)) — 0, which
means that using multi-view methodology can reduce the error rate of the predict function for the
classification tasks. We can achieve Pp(fco(X) # y|X € Dx(f1,---, fc)) — 0 by reducing the
size of the discrepancy set D z(f1,- - , f.). Based on the above theoretical analysis, we decide to
find appropriate multi-view features that can achieve well and similar performance on all single-view
classifiers to reduce the size of the discrepancy set Dz (f1, -+, fe).

B.2.2 ESTIMATION ERROR BOUND

L., = {l(heo(X),y) : X € X,heo € Heo,y € YV} be the class of functions with respect
to the loss ¢ and Ho, where £ : RE x ) — R,. The risk of h., is denoted as Rp(he,) =
Ep[l(heo(X),y)]. According to Theorem 3.1 and 3.2 in Mohri et al.| (2012) and Theorem 2 in
(2016)), we obtain the following corollary.
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Corollary 1. Suppose that sup|p, || <1 maxy {(heo,y) < Cé, and all functions in Ly, are Le-

Lipschitz functions, and |[W || < A (W see Appendix|[B). For any § > 0, with probability at least
1 — 6, each of the following holds for any hco € Heo:

R (heo) — Bip(heo)] < 2Leay/ 2N 4 0 [11/0), (12)

Proof. According to Theorem 3.1, 3.2 in Mobhri et al.| (2012) and Theorem 2 in (2016)), we
have

RD hco - ED hco < 2\/§LCORS Hco +C/ M- (13)
X L 2m

Next, let

T
_ 1T 1T KT KT
W*(wl sy We it W e, W 5

m m T
= <Z onhi(x})T, Z oinhe(x$)T, -, Z oixkhi(x})T, - Y Uith(Xf)T> .

i=1 i=1 i=1 i=1

Then, we have

Ry (Heo) :%ED,G[ sup Z Zazq 4,(X5)]
COEHCOZ lq

= wEpo[  sup > Z Tig Z wi Ry (x})]
h;€H,,||W]|2<A i=1g=1 v=
= %]ED o sup W, H)]
Ry €Hy, | [W([2<A
< LlEpg| sup ||W||2||H][|2] (using Cauchy-Schwarz inequality)

hvEHv7Hw||2<

< ABp o[ sup [ Z | Zazq o(x})I13])2]

h,€H, v=1q= i=1
(using Jensen’s 1nequa11ty and i # j = Ez[oy,05p] = 0)
1

<A [ED[ sup K3 5 |hv<xy>||%1]

hj€H; i=lv=1

A _ [ KcA?
< VKem = prea

Then, we yield the final result

B (Feo) — R (heo)| < 2Looy/2KEX 4 €108l (14)

O

Corollary [T presents a generalization bound of the discrepancy between the risk and empirical risk
of h... Finally, we give the following theorem to bound R (Hco)-

Theorem 5. For any m > 1, we have Rsy (Heo) < max,e( Rsyo (Ho), where Sxv = {x} }i% .

K ¢ K
Proof. Because . > > w? hyi(xV) = 1and forany v € [c],k € [K],0 < hy(x}) < 1, s0

| \
,_.
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m K
Rsx(Heo) = %ED,G[}I Sul; El El Uiqhgo(xi)]
coEHeo 1=1g=
m K c

= iEpo[ s 53 o, Y wiThy ()
h,€Hoy, | |[W][2<Ai=1 g= 1 v=1

= %E’D,a[ 5up Z Z E ka Z Oiq vk( )]

m
%ED,U[ sup > oikhok (x7)]
hoeH, ve[C] qE[K i=1k=1

ma[o]cRsXv (Hy)
ve|c
min Rs,., (Hy) + max Rg,. (Hy) — min R, (Hy)

vE [c] ve [C] IS [C]

INIA

O

According to Theorem if max,cqg Rsyo (Ho) — mingep Reyo (Ho) — 0, we have
Rsx (Heo) < mingyeig Rsxo (Ho), Wthh demonstrates that we can obtain tighter estimation er-
ror bound by applying the multi-view methodology. Inspired by the above theoretical analysis, we
achieve max, ¢ R o (Hy) —ming,e(g Rsy. (Ho) — 0by finding appropriate multi-view features
that can achieve similar performance on all single-view classifiers.

C MEMBERSHIP FUNCTION-BASED METHOD

In this section, we give further details of the membership function-based method to extract multi-
view information from interval-valued data.

First, we introduce two types of fuzzy number and four different defuzzification methods used to
construct the membership function-based method. The first type of fuzzy number called triangular
fuzzy number. A triangular fuzzy number Z can be characterized by Tr(a1, by, as) and the member-
ship function is shown as follows:

0, t<a
t—a
71, a <t<b
b1—a1
pE(t) = 4 _,
2
—_, b1<t<a2
b1—a2
0, tZag.

Gaussian fuzzy number is the second type of fuzzy number. A Gaussian fuzzy number = can be
characterized by Ga(c, d1, d2) and the membership function is given in the following equation:

(1) = exp(—(t —¢)/261)%, t<c
Hel) = exp(—(t - )27, 1>

Next, we introduce the four different defuzzification methods.

MOM. The first method is called Mean/Middle of Maxima (MOM) (Oussalahl 2002) which is
widely-used due to its calculation simplicity. MOM is defined as:

MOM(Z) = Mean(t = arg max; pz(t)). (15)

COG. The Centre of Gravity (COG) (Oussalah, 2002)) is another widely-used defuzzification
method. The definitions of COG for discrete and continuous membership functions are shown as
follows:

J tuz(t)dt

2 tpa(t)
COG(7) = =1\ T

> nz(t)

(discrete) = (continuous). (16)
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Table 7: Hyperparameters for the proposed method and four baselines

Algorithm Basic classifier Hyperparameters Ranges
DF-SVM regularization parameter, kernel type, {0.1,0.2,---,1,2,---,10}, {‘linear’,
shape parameter 3 ‘poly’, ‘rbf’}, {0,0.1,--- , 1}
DF-MLP learning rate, shape parameter 3 {0.001,0.01,0.1}, {0,0.1,--- ,1}
L-1IE, U-IIE, M-1IE, SVM regularization parameter, kernel type {0.1,0.2,---,1,2,---,10}, {‘linear’,
MVv-IIE-2, Mv-IIE-3 ‘poly’, ‘rbf’}
RF min samples leaf, the number of trees {1,---,10}, {5,10,--- ,100}
Net learning rate {0.001,0.01,0.1}
Mv-IIE same above same above, shape parameter /3 same above, {0,0.1,--- ,1}

ALC. The third approach, called averaging level cuts (ALC) (Oussalahl|[2002), is defined as the flat
averaging of all midpoints of the a-cuts.

ALC(Z) = 1 [} @k + 7Y)da. (17

VAL. The final method is called value of a fuzzy number (VAL) (Delgado et al., |[1998) which uses
a-levels as weighting factors in averaging the a-cut midpoints. VAL is defined as :

VAL(Z fo x Jrz )dav. (18)

We denote D = {(X;,y;)}™, as the interval-valued dataset, where X; = (Zi1, -, %) €
RP y; € [K]. Then, the construction process of the membership function-based method is intro-
duced. We divide this method into two parts. In the first part, we use two functions Fy (-; 8), Fa(+; )
to transfer a interval-valued feature to a triangular fuzzy number and a Gaussian fuzzy number re-
spectively. Fy(+; 3), Fa(+; 8) are defined as:

Fl(‘i‘lﬁﬁ): ( 1]7ﬁ$1]+(1_ﬁ) 7]’x£j)
Fy(z:5;8) = Ga(ﬂx +(1-p)x z]?Slj’SQJ)

S1; =4/ Var(4 Szj— Var( )5

Aj = {ai; i € [m], (%i,5:) € D}, B, ={zi;ielm J. (ke.) € DY, € o,

where 5 € [0, 1] is a hyperparameter to control the shape of the membership function, Var(-) is
used to find the variance of the set. Using the above process, one interval-valued feature X; can be

transferred into two fuzzy-valued features X} = (71, -+, 7} )" and X2 = (32, ,72,) ", where

) ip »Vip
SEZ— - F'r(xuﬂ) - (F'r(:fil;ﬁ)v’ o 7F'r(fip;5))—rv7— = 172

In the second part, we use the four defuzzification methods to transfer the two fuzzy-valued features

X}, X? into eight crisp-valued features

MOM o F,(%;; 8), COG o F.(%;;8),ALCo F,(X;; 8), VAL o F.(X;; 8), 7 = 1,2.

According to Eq. (15), we find that MOM o F,(%X;;3) = MOM o Fy(x;;3). Therefore, we
can use the aforementioned membership function-based method to extract multi-view information,
which contains seven parts: MOM o Fy(%;; 8) and COG o F.(x;;),ALC o F.(x;; ), VAL o
F,(%;;8),7 = 1,2. We denote T = {T,(-;8)}7_, as a set of transfer functions constructed by
using the membershlp function-based method, where

T1:MOMOF1,T2 COGOFl,Tg COGOFQ,T4—ALCOF1,
T5 = ALCOFQ,TG =VALo F17T7 = VALOF2

By applying the aforementioned transfer functions to extract crisp-valued information from the
interval-valued data, one interval-valued feature x; can be transferred into seven different parts
XMY = (x} x!), where for any i € [m],v € [7],x? = T,(X;; 8), T, € T.

10

D EXPERIMENTAL DETAILS

In this section, the experiment details of all the baselines and our approach on both synthetic and
real-world datasets are given. Moreover, the experiment details of the INPP framework are given.
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We implement the model with PyTorch 1.9.0. All experiments are conducted on a NVIDIA Quadro
GV100 GPU with 32 GB memory.

Synthetic Datasets: For L-IIE, U-IIE, M-IIE, DF-MLP and Mv-IIE with basic classifier Cg,
Adam (Kingma & Bal 2015) is used as the optimization algorithm with momentum = 0.9,
weight decay = 0.0001, and cross-entropy loss is used as the category label prediction loss. We
set epochs equal to 200 and the mini-batch size equal to 200 for all datasets. The network struc-
ture of the basic classifier Cg is a two-layer network with ReLU and Dropout in all the layers
(100 x 100 x #classes). For each algorithm on each dataset, we randomly divide each dataset into a
training set (60%), a validation set (20%) and a test set (20%). First, we select the hyperparameters
that can obtain the highest classification accuracy on the validation set. The hyperparameters that
need to be selected are shown in Table|/| Then, the selected optimal hyperparameters are used to
test the performance of each algorithm on the test set. In addition, the validation set is also used to
select the candidate views of our proposed framework. We repeat the entire experiment process 10
times. Thus, the final results are shown in the form of “mean+ standard deviation”. Classification
accuracy is used to evaluate the performance of the proposed model. The definition of classification
accuracy is shown as follows:

X € X : f(X) = argmingep g hi (X))
|x € X| ’

Accuracy =

where f(x) is the ground truth label of %, while h(X) = (hy(X), -, hx (X)) is the label predicted
by the presented algorithms and the baselines.

Real-world Datasets: The experiment details of the proposed method and the four baselines are
basically the same as the synthetic datasets. We note that the mushroom dataset is an imbalanced
dataset which means that each category contains a different number of instances. Therefore, we
preprocess this dataset using a random oversampling technique (KMeansSMOTE (Last et al., 2017))
and use balanced accuracy (Brodersen et al., [2010) instead of ordinary classification accuracy to
compare model performance on the mushroom dataset. The definition of balanced accuracy is shown
as follows:

K

Balanced Accuracy = + > (Recall of k-th class),
=1

k
Recall = TP/(TP + FN),

where TP is true positive, TN is true negative, FP is false positive and FN is false negative. After the
process of the random oversampling technique, the data of each category in the mushroom dataset
is expanded to 30. In addition, the Wilcoxon rank-sum test results of the method, which obtains the
best performance, compared to the other methods are given on real-world datasets.

INPP Framework: The structure of INPP framework is shown in Figure 4, We randomly divide
the original dataset (letter recognition dataset selected from the UCI Machine Learning Repository)
into a raw dataset from the data owner(s) (70%) and a new dataset (30%) from the results’ party. We
choose L = 6,7 = 15 and set ¢ = 0.20,0.30,0.50. From Table 3] Mv-IIE with SVM-rbf (SVM
with radial basis kernel function) achieve best outcomes on the second synthetic dataset. Therefore,
we use SVM-rbf as the basic classifier of Mv-1IE in this experiment. The experimental details of
Myv-IIE are the same as the aforementioned. The experiment details of the four well-known machine
learning methods on the original dataset are the same as the experiment details of the four baselines
on the synthetic datasets.

E DETAILS OF THE TWO REAL-WORLD DATASETS DESCRIPTIONS

In this section, we briefly introduce the two real-world datasets used in the experiments.

Mushroom Dataset : The first dataset is extracted from https://www.mykoweb.com/CAF/, which
contains 248 instances in 17 fungi species categories. There are five interval-valued variables: the
pileus cap width Pw, the stipe length S, the stipe thickness S, the spores major axis length Sma,
and the spores minor axis length Smi. Some instances of the mushroom dataset are shown in Table
[Il The goal of our experiment on this dataset is to predict the species category of the California
mushroom using five interval-valued features.
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Figure 4: INPP framework: The input party (denoted in orange) applies two interval methods to transfer the
raw data into two interval-valued datasets. The computation party (denoted in blue) uses Dgn to train Model
1 by applying Mv-IIE framework and Dy is used to fine-tune Model 1 to obtain Model 2. The results’ party
(denoted in green) uses Model 2 for new data prediction.

Table 8: Some Instances of the Weather Dataset

Local times T PO P U Td Y
31/12/2021  [10.6, 13.3] [757.8,760.3] [759.4,762.1] [81, 93] [9.4,11.1] 1
24/12/2021 [4.4,12.2] [757.3,762.1] [759.0,763.6] [40, 61] [-5.0, 1.7] 0
23/12/2021 [-1.1,5.0] [763.4,768.2] [762.2,769.9] [38, 55] [-10.0, 5.0] 0
22/12/2021 [2.8,10.6] [752.5,761.6] [754.0,763.2] [34, 93] [-94,2.2] 1

Weather Dataset : The second dataset is the meteorological data of Washington (from January
1, 2016 to December 31, 2021), provided by the ‘Reliable Prognosis’ site (https://rp5.ru/), which
contains 2191 instances. Each instance in this dataset is the meteorological data for one day in
Washington, which is described by five interval-valued variables (air temperature 7', atmospheric
pressure at weather station level P0, atmospheric pressure reduced to main sea level P, humidity U
and dew-point temperature 7'd) and one category variable (Precipitation or not: 0 = No Precipita-
tion, 1 = Precipitation). Some instances of this dataset are shown in Table[8] We aim to use the five
interval-valued features for precipitation prediction.
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