Structural activity prediction models recover known kinase binding modes

Michael Backenkohler “! Joschka GroB “? Paula Linh Kramer! Verena Wolf? Andrea Volkamer !

Structural ML for kinase drug discovery Drug discov-
ery pipelines nowadays rely on machine learning models
to explore and evaluate large chemical spaces. Especially
in context of small molecular ligands for protein targets,
three-dimensional structural models are a natural represen-
tation. While such information is beneficial, not enough
protein-ligand (PL) complex structures are available to train
models on these expressive representations. Addressing ki-
nase protein targets specifically, this issue can be tackled by
generating in silico kinase-ligand complex data using tem-
plate docking for the kinase compound subset of available
ChEMBL assay data (Schaller et al., 2023). The docking is
based on a suitable “template” complex with a structurally
close ligand bound to the same target. We leveraged the
strong performance of template docking on this protein class
to create kinodata-3D — a large in silico structural dataset of
~ 120, 000 PL complexes. This data was shown to indeed
aid machine learning models leading to a statistically signif-
icant improvement of binding affinity prediction compared
to baselines without access to the 3D structure. Details
on the dataset creation and the comparative affinity predic-
tion study are given in previous work (Backenkohler et al.,
2024).

Explaining binding affinity predictions Our work builds
on these structural binding affinity models trained this large
dataset of in silico complexes. The binding affinity predic-
tion model is an E(3)-invariant GNN that takes a complex
graph as an input. In this work, we are interested in un-
derstanding what aspects of protein-ligand interaction the
model learned from the docking data. Such insight can be
gained by observing how model outputs change based on
targeted perturbations to its input (Ivanovs et al., 2021).

The complex graph is composed of atoms with two types
of edges: covalent bonds and spatial edges that are added
due to closeness of atom pairs. We focus our attention
on how different parts of the protein structure influence
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binding affinity prediction. To this end, we mask single
residues from the protein-ligand graph and compare the
masked prediction against the reference on the entire protein.
The method is summarized in Figure 1.

As protein-ligand interactions are typically analyzed on the
level of residues, we cut all spatial PL edges for each residue
of the 85 binding pocket residues separately. This way we
observe the effect of message passing between a single
residue and the ligand component. We observe the largest
changes in prediction for residues commonly associated
with ligand binding such as the hinge and DFG region of the
binding pocket (Kanev et al., 2020) (see Figure 2). We fur-
ther observe that outside of these regions removal of spatial
edges has a low impact on prediction. This indicates that the
model successfully learned common binding mechanisms.

Prospective evaluation Having seen that simple meth-
ods can be used to recover import patterns underlying the
kinase binding mechanisms we hope to enhance our XAl
approaches and the analysis of their respective explanations
for the sake of guiding the exploration of potentially novel
kinase binding mechanisms. It allows users to understand
the processes that influence model predictions, enabling er-
ror detection and a more detailed understanding of a model’s
ability to make reasonable predictions. This transparency
may also support scientific discovery by elucidating com-
plex patterns and relationships within data.
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Figure 1. Residue masking: (a) PL complexes are generated using template docking. An E(3)-invariant GNN is trained for binding affinity
prediction on the resulting dataset. (b) We occlude each pocket residue once by masking the complex graph. (c¢) The prediction on the
unmasked reference is compared to the masked prediction. (d) The resulting changes are analyzed with respect to their biochemical
interpretation and known binding mechanisms in kinases.
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Figure 2. Comparison of residue importance. The upper plot shows average minimum distance between the residue on a given position of
the pocket sequence to the ligand molecule. The template row summarizes average importance of residues for binding. The importance is
given in terms of the mean number of PL interactions in the template complex from KLIFS (Kanev et al., 2020). Additionally, prevalence
of residue types at different positions is indicated by residue letter size. The darker the letter, the more interactions are present on average.
The docked complex row shows similar data for the docked complex aggregating interaction analyses with PLIP (Salentin et al., 2015).
The bottom section summarizes results of the residue masking procedure (this work). The influence are given in terms of the variance of
the difference between the reference and the masked prediction A.



