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Abstract

We introduce r-loopy Weisfeiler-Leman (r-`WL), a novel hierarchy of graph
isomorphism tests and a corresponding GNN framework, r-`MPNN, that can
count cycles up to length r+2. Most notably, we show that r-`WL can count
homomorphisms of cactus graphs. This extends 1-WL, which can only count
homomorphisms of trees and, in fact, we prove that r-`WL is incomparable to
k-WL for any fixed k. We empirically validate the expressive and counting power
of r-`MPNN on several synthetic datasets and demonstrate the scalability and
strong performance on various real-world datasets, particularly on sparse graphs.
Our code is available on GitHub.

1 Introduction

Graph Neural Networks (GNNs) (Scarselli et al., 2009; Bronstein et al., 2017) have become a
prevalent architecture for processing graph-structured data, contributing significantly to various
applied sciences, such as drug discovery (Stokes et al., 2020), recommender systems (Fan et al.,
2019), and fake news detection (Monti et al., 2019).

Among various architectures, Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017)
are widely used in practice, as they encompass only local computation, leading to fast and scalable
models. Despite their success, the representational power of MPNNs is bounded by the Weisfeiler-
Leman (WL) test, a classical algorithm for graph isomorphism testing (Xu et al., 2019; Morris et al.,
2019). This limitation hinders MPNNs from recognizing basic substructures like cycles (Chen et al.,
2020). However, specific substructures can be crucial in many applications. For example, in organic
chemistry, the presence of cycles can impact various chemical properties of the underlying molecules
(Deshpande et al., 2002; Koyutürk et al., 2004). Therefore, it is crucial to investigate whether GNNs
can count certain substructures and to design architectures that surpass the limited power of MPNNs.

Several models have been proposed to surpass the limitations of WL. Many of these models draw
inspiration from higher-order WL variants (Morris et al., 2019), enabling them to count a broader
range of substructures. For instance, GNNs emulating 3-WL can count cycles up to length 7. However,
this increased expressivity comes at a high computational cost, as 3-WL does not respect the sparsity
of real-world graphs, posing serious scalability issues. Hence, there is a critical need to design
expressive GNNs that respect the inherent sparsity of real-world graphs (Morris et al., 2023).
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Figure 1: Visual depiction of r-`GIN: During preprocessing, we calculate the path neighborhoods
Nr(v) for each node v in the graph G. Paths of varying lengths are processed separately using simple
GINs, and their embeddings are pooled to obtain the final graph embedding. The forward complexity
scales linearly with the sizes of Nr(v), enabling efficient computation on sparse graphs.

Main Contributions. We introduce a novel class of color refinement algorithms called r-loopy
Weisfeiler-Leman test (r-`WL) and a corresponding class of GNNs named r-loopy Graph Isomorphism
Networks (r-`GIN). The key idea is to collect messages not only from neighboring nodes but also from
the paths connecting any two distinct neighboring nodes, as illustrated in Figure 1. This approach
enhances the resulting GNNs’ expressivity beyond 1-WL. In particular, r-`WL can count cycles up
to length r+2, even surpassing the k-WL hierarchy.

Furthermore, we prove that r-`WL can homomorphism-count any cactus graph with cycles up to
length r+2. Cactus graphs are valuable due to their structural properties and simplicity, making them
useful for modeling in areas such as electrical engineering (Nishi et al., 1986) and computational
biology (Paten et al., 2011). For instance, aromatic compounds often form cactus graphs, where
the molecular core, usually a cycle, is coonected to functional groups (e.g., carboxyl groups) that
can significantly impact the properties of the molecule. Thus, the ability to homomorphism-count
cactus graphs can enhance model performance, and it allows us to compare the expressive power of
r-`WL with other popular GNNs in a quantitative manner (Barceló et al., 2021; B. Zhang et al., 2024).
Specifically, we show that r-`WL is more expressive than GNNs that include explicit homomorphism
counts of cycle graphs, known as F-Hom-GNNs (Barceló et al., 2021). Additionally, 1-`WL can
already separate infinitely many graphs that Subgraph k-GNNs (Frasca et al., 2022; Qian et al., 2022)
cannot (see, e.g., Figure 7). The higher expressivity, paired with the local computations, highlights
the enhanced potential of r-`GIN, showing its competitive performance and the efficiency of its
forward pass on real-world datasets, see Section 7.

2 Related Work

The notion of expressivity in standard neural networks is linked to the ability to approximate any
continuous function (Cybenko, 1989; Hornik et al., 1989). In contrast, GNN expressivity is measured
by the ability to distinguish non-isomorphic graphs. According to the Stone-Weierstrass theorem,
these criteria are equivalent (Chen et al., 2019; Dasoulas et al., 2021): a network that can distinguish
all graphs can approximate any continuous function. Therefore, research often focuses on determining
which graphs a GNN can distinguish (Morris et al., 2023).

Xu et al. (2019) and Morris et al. (2019) proved that the expressive power of MPNNs is bounded by 1-
WL. Subsequent works (Maron et al., 2018; Morris et al., 2019, 2020) introduced higher-order GNNs
that have the same expressive power as k-WL or its local variants (Geerts et al., 2022). Although
these networks are universal (Maron et al., 2019b; Keriven et al., 2019), their exponential time and
space complexity in k renders them impractical. Abboud et al. (2022) proposed k-hop GNNs which
aggregate information from k-hop neighbors, thus, enhancing expressivity beyond 1-WL but within
3-WL (Feng et al., 2022). Michel et al. (2023) and Graziani et al. (2024) construct GNNs that process
paths emanating from each node to overcome 1-WL. Subgraph GNNs (Bevilacqua et al., 2021; You
et al., 2021; Frasca et al., 2022; Huang et al., 2022) surpass 1-WL by decomposing the initial input

2



graph into a bag of subgraphs. However, subgraph GNNs are upper-bounded by 3-WL (Frasca et al.,
2022). A different line of work leverages positional encoding through unique node identifiers (Vignac
et al., 2020), random features (Abboud et al., 2021; Sato et al., 2021) or eigenvectors (Lim et al.,
2022; Maskey et al., 2022) to augment the expressive power of MPNNs.

While the predominant approach for gauging the expressive power of GNNs is within the k-WL
hierarchy, such a measure is inherently qualitative, as it cannot shed light on substructures a particular
GNN can encode. Lovász (1967) showed that homomorphism counts is a complete graph invariant,
meaning two graphs are isomorphic if and only if their homomorphism counts are identical. Building
on this result, B. Zhang et al. (2024) advocate for homomorphism-count as a quantitative measure of
expressivity, as GNN architectures can homomorphism-count particular families of motifs. Tinhofer
(1986, 1991) established that 1-WL is equivalent to counting homomorphisms from graphs with
tree-width one, while Dell et al. (2018) proved the equivalence between k-WL and the ability to
count homomorphisms from graphs with tree-width k. Nguyen et al. (2020), Barceló et al. (2021),
Welke et al. (2023), and Jin et al. (2024) used homomorphism counts to develop expressive GNNs.

Manually augmenting node features with homomorphism counts can be disadvantageous as perfor-
mance depends on the chosen substructures. This can be alleviated by designing domain-agnostic
GNNs that can learn structural information suitable for the task at hand. For instance, higher-order
GNNs can count a large class of substructures as homomorphisms (B. Zhang et al., 2024), but they
suffer from scalability issues. We propose r-`WL and r-`GIN, which can count homomorphisms of
cactus graphs without adding explicit substructure counts. Our method is scalable to large datasets,
particularly when the graphs in these datasets are sparse.

3 Preliminaries

Let G be the set of all simple and undirected graphs, and let G ∈ G. We denote the set of nodes by
V (G) and the set of edges by E(G). The direct neighborhood of a node v ∈ V (G) is defined as
N (v) := {u ∈ V (G) | {v, u} ∈ E(G)}.
Definition 1. Let F,G ∈ G. A homomorphism from F to G is a map h : V (F )→ V (G) such that
{u, v} ∈ E(F ) implies {h(u), h(v)} ∈ E(G). A subgraph isomorphism is an injective homomor-
phism.

Intuitively, a homomorphism from F to G is an edge-preserving map. A subgraph isomorphism
ensures that F actually occurs as a subgraph of G. Consequently, it also maps distinct edges to
distinct edges. A visual explanation can be found in Figure 5. We denote by Hom(F,G) the set of
homomorphisms from F to G and by hom(F,G) its cardinality. Similarly, we denote by Sub(F,G)
the set of subgraph isomorphisms from F to G and by and sub(F,G) its cardinality.

3.1 Graph Invariants

In order to unify different expressivity measures, we recall the definition of graph invariants.

Definition 2. Let P be a designated set, referred to as the palette. A graph invariant is a function
ζ : G → P such that ζ(G) = ζ(H) for all isomorphic pairs G,H ∈ G. ζ is a complete graph
invariant if ζ(G) 6= ζ(F ) for all non-isomorphic pairs G,F ∈ G.

Complete graph invariants have maximal expressive power. However, no polynomial-time algorithm
to compute a complete graph invariant is known. To compare the expressive power of different graph
invariants, such as graph colorings and GNN architectures, we introduce the following definition.

Definition 3. Let γ, ζ be two graph invariants. We say that γ is more powerful than ζ (γ v ζ) if for
every pair G,H ∈ G, γ(G) = γ(H) implies ζ(G) = ζ(H). We say that γ is strictly more powerful
than ζ if γ v ζ and there exists a pair F,G ∈ G such that γ(G) 6= γ(H) and ζ(G) = ζ(H).

3.2 Message Passing Neural Networks and Weisfeiler-Leman

Message passing is an iterative algorithm that updates the colors of each node v ∈ V (G) as

c(t+1)(v)← f (t+1)
(
c(t)(v), g(t+1)

({{
c(t)(u) | u ∈ N (v)

}}))
. (1)
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The graph output after t iterations is given by

c(t)(G) := h
({{

c(t)(v) | v ∈ V (G)
}})

.

Here, g(t), h are functions on the domain of multisets and f (t) is a function on the domain of tuples.
For each t, the colorings c(t) are graph invariants. When the subsets of nodes with the same colors
cannot be further split into different color groups, the algorithm terminates; the stable coloring after
convergence is denoted by c(G).

Choosing injective functions for all f (t) and setting g(t) and h as the identity function results in 1-WL
(Weisfeiler et al., 1968). If f (t), g(t), h are chosen as suitable neural networks, one obtains a Message
Passing Neural Network (MPNN). Xu et al. (2019) proved that MPNNs are as powerful as 1-WL if
the functions f (t), g(t), and h are injective on their respective domains. The k-WL algorithms uplift
the expressive power of 1-WL by considering interactions between k-tuples of nodes. This results in
a hierarchy of strictly more powerful graph invariants (see Appendix B.1 for a formal definition).

3.3 Homomorphism and Subgraph Counting Expressivity

A more nuanced graph invariant can be built by considering the occurrences of a motif F .
Definition 4. Let F ∈ G. A graph invariant ζ can homomorphism-count F if for all pairs G,H ∈ G
ζ(G) = ζ(H) implies hom(F,G) = hom(F,H). By analogy, ζ can subgraph-count F if for all
pairs G,H ∈ G, ζ(G) = ζ(H) implies sub(F,G) = sub(F,H).

If F is a family of graphs, we say that ζ can homomorphism-count F if ζ can homomorphism-count
every F ∈ F ; we denote the vector of homomorphism-count by hom(F , G) := (hom(F,G))F∈F .
Interpreting hom(F , ·) as a graph invariant, given by G 7→ hom(F , G), another graph invariant ζ
can homomorphism-count F if and only if ζ v hom(F , ·).
The ability of a graph invariant to count homomorphisms is highly relevant because hom(G, ·) is a
complete graph invariant. Conversely, if ζ is a complete graph invariant, then ζ can homomorphism-
count all graphs (Lovász, 1967). Additionally, homomorphism-counting serves as a quantitative
expressivity measure to compare different WL variants and GNNs, such as k-WL, Subgraph GNNs,
and other methods (Lanzinger et al., 2024; B. Zhang et al., 2024), and allows for relating them to our
proposed r-`WL variant, as detailed in Corollary 2.

4 Loopy Weisfeiler-Leman Algorithm

In this section, we introduce a new graph invariant by enhancing the direct neighborhood of nodes
with simple paths between neighbors.

Definition 5. Let G ∈ G. A simple path of length r is a collection p = {pi}r+1
i=1 of r+1 nodes such

that {pi, pi+1} ∈ E(G) and i 6= j =⇒ pi 6= pj for every i, j ∈ {1, . . . , r},.

Simple paths are the building blocks of r-neighborhoods, which in turn are the backbone of our
r-`WL algorithm. The following definition is inspired by (Cantwell et al., 2019; Kirkley et al., 2021).

Definition 6. Let G ∈ G and r ∈ N \ {0}, we define the r-neighborhood Nr(v) of v ∈ V (G) as
Nr(v) := {p | p simple path of length r, p1, pr+1 ∈ N (v), v /∈ p} .

v N0(v)

N1(v)

N2(v)

Figure 2: Example of r-neighborhoods.

For consistency, we set N0(v) := N (v). An ex-
ample of the construction of r-neighborhood
is shown in Figure 2, where different r-
neighborhoods of node v are represented with
different colors.

We generalize 1-WL in (1) as follows.
Definition 7. We define the r-loopy Weisfeiler-Leman (r-`WL) test by the following color update:

c(t+1)
r (v)← HASHr

(
c(t)r (v),

{{
c(t)r (p) | p ∈ N0(v)

}}
, . . . ,

{{
c(t)r (p) | p ∈ Nr(v)

}})
, (2)

where c(t)r (p) :=
(
c
(t)
r (p1), c

(t)
r (p2), . . . , c

(t)
r (pr+1)

)
is the sequence of colors of nodes in the path.
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We denote by c(t)r (G) the final graph output after t iterations of r-`WL, i.e.,

c(t)r (G) = HASHr

({{
c(t)r (v) | v ∈ V (G)

}})
,

and by cr(G) the stable coloring after convergence. The stable coloring cr serves as graph invariant
and will be referred to as r-`WL.

5 Expressivity of r-`WL

We analyze the expressivity of r-`WL in terms of its ability to distinguish non-isomorphic graphs,
subgraph-count, and homomorphism-count motifs. The proofs for all statements are in Appendix D.

5.1 Isomorphism Expressivity

It is straightforward to check that 0-`WL corresponds to 1-WL, since N0(v) = N (v) for all nodes v.
However, increasing r leads to a strict increase in expressivity.

Proposition 1. Let 0 ≤ q < r. Then, r-`WL is strictly more powerful than q-`WL. In particular,
every r-`WL is strictly more powerful than 1-WL.

This shows that the number of graphs we can distinguish monotonically increases with r. We
empirically verify this fact on several synthetic datasets in Section 7.

5.2 Subgraph Expressivity

Recent studies highlight limitations in the ability of certain graph invariants to subgraph-count cycles.
For instance, 1-WL cannot subgraph-count cycles (Chen et al., 2020, Theorem 3.3), while 3-WL can
only subgraph-count cycles of length up to 7 (Arvind et al., 2020, Theorem 3.5). Similarly, Subgraph
GNNs have limited cycle-counting ability (Huang et al., 2022, Proposition 3.1). In contrast, r-`WL
can count cycles of arbitrary length, as shown in the following statement.

Theorem 1. For any r ≥ 1, r-`WL can subgraph-count all cycles with at most r + 2 nodes.

Since 3-WL cannot subgraph-count any cycle with more than 7 nodes, Theorem 1 implies that 6-`WL
is not less powerful than 3-WL. This observation generalizes to any k-WL, as shown next.

Corollary 1. Let k ∈ N. There exists r ∈ N, such that r-`WL is not less powerful than k-WL.
Specifically, r ∈ O(k2), with r ≤ k(k+1)

2 − 2 for even k and r ≤ (k+1)2

2 − 2 for odd k.

The r-`WL color refinement algorithm surpasses the limits of the k-WL hierarchy while only using
local computation. This is particularly important since already 3-WL is computationally infeasible,
whereas our method can scale efficiently to higher orders if the graphs are sparse, which is commonly
the case in real-world applications.

5.3 Homomorphism Expressivity

The following section unveils a close connection between the expressivity of r-`WL and cactus
graphs (Harary et al., 1953), a significant class between trees and graphs with tree-width 2.

Definition 8. A cactus graph is a graph where every edge lies on at most one simple cycle. For r ≥ 2,
an r-cactus graph is a cactus where every simple cycle has at most r vertices. We denote byM the
set of all cactus graphs, and byMr the set of all q-cactus graphs for q ≤ r.

Figure 6 shows two examples of cactus graphs. From the expressivity perspective, the ability to
homomorphism-count cactus graphs establishes a lower bound strictly between the homomorphism-
counting capabilities of 1-WL and 3-WL (Neuen, 2024), as cactus graphs are a strict superset of all
trees and a strict subset of all graphs of treewidth two. With this in mind, we are now ready to present
our significant result on the homomorphism expressivity of our r-`WL algorithm.

Theorem 2. Let r ≥ 0. Then, r-`WL can homomorphism-countMr+2.
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We refer to Appendix G for a detailed proof of Theorem 2, which is fairly involved and requires
defining canonical tree decompositions of cactus graphs and unfolding trees of r-`WL. Demonstrating
their strong connection, we then follow the approach in (Dell et al., 2018; B. Zhang et al., 2024) to
decompose homomorphism counts of cactus graphs. In fact, we prove a more general result, showing
that r-`WL can count all fan-cactus graphs, see Appendix G for more details.

The classM2 contains only forests; hence, Theorem 2 implies the standard results on the ability of
1-WL to count forests. Since forests are the only class of graphs 1-WL can count, Theorem 2 implies
that r-`WL is always strictly more powerful than 1-WL, corroborating the claim in Proposition 1.

The implications of Theorem 2 are profound: it establishes that r-`WL can homomorphism-count
a large class of graphs. Specifically, Theorem 2 provides a quantitative expressivity measure that
enables comparison of r-`WL’s expressivity with other WL variants and GNNs. This comparison
is achieved by examining the range of graphs that r-`WL can homomorphism-count against those
countable by other models, as detailed in works by Barceló et al. (2021) and B. Zhang et al. (2024).
For instance, B. Zhang et al. (2024) showed that Subgraph GNNs (Bevilacqua et al., 2021; You
et al., 2021; Frasca et al., 2022; Huang et al., 2022) are limited to homomorphism-count graphs with
end-point shared NED. Hence, Subgraph GNNs can not homomorphism-count F =

{ }
, while

1-`WL can. Based on this, we can identify pairs of graphs that 1-`WL can distinguish but Subgraph
GNNs cannot. We summarize these and other implications of Theorem 2 in the following corollary.
Corollary 2. Let r ∈ N \ {0}. Then,

i) r-`WL is more powerful than F-Hom-GNNs, where F = {C3, . . . , Cr+2}.

ii) 1-`WL is not less powerful than Subgraph GNNs. In particular, any r-`WL can separate
infinitely many graphs that Subgraph GNNs fail to distinguish.

iii) For any k > 0, 1-`WL is not less powerful than Subgraph k-GNNs. In particular, any r-`WL
can separate infinitely many graphs that Subgraph k-GNNs fail to distinguish.

iv) r-`WL can subgraph-count all graphs F such that spasm(F ) ⊂ Mr+2, where
spasm(F ) := {H ∈ G | ∃ surjective h ∈ Hom(F,H)}. In particular, if 1 ≤ r ≤ 4, then
r-`WL can subgraph-count all paths up to length r + 3.

A detailed explanation of Subgraph (k-)GNNs, F -Hom-GNNs, along with the proofs of Corollary 2,
can be found in Appendix H. Finally, we note that Theorem 2 states a loose lower bound on the
homomorphism expressivity of r-`WL. This observation opens the avenue for future research to
explore tight lower bounds, or upper bounds, on the homomorphism expressivity of r-`WL.

6 Loopy Message Passing

In this section, we build a GNN emulating r-`WL.
Definition 9. For t ∈ {0, . . . , T − 1} and k ∈ {0, . . . , r}, r-`MPNN applies the following message,
update and readout functions:

m
(t+1)
k (v) = f

(t+1)
k

({{
c
(t)
k (p) | p ∈ Nk(v)

}})
,

c(t+1)
r (v) = g(t+1)

(
c(t)r (v), m

(t+1)
0 (v), . . . ,m(t+1)

r (v)
)
,

(3)

and final readout layer c(T )
r (G) = h

({{
c
(T )
r (v) | v ∈ V (G)

}})
.

In the following statement, we link the expressive power of r-`MPNN and r-`WL.
Theorem 3. For fixed t, r ≥ 0, t iterations of r-`WL are more powerful than r-`MPNN with t layers.
Conversely, r-`MPNN is more powerful than r-`WL if the functions f (t), g(t) in (3) are injective.

The previous result derives conditions under which r-`MPNN is as expressive as r-`WL. To imple-
ment r-`MPNN in practice, we choose suitable neural layers for f (t)k , g(t), and h in Definition 9. As
a consequence of (Xu et al., 2019, Lemma 5), the aggregation function in (3) can be written as

f
(t+1)
k

({{
c
(t)
k (p) | p ∈ Nk(v)

}})
:= f

 ∑
p∈Nk(v)

g(p)

 ,
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for suitable functions f, g. Since 1-WL is injective on forests (Arvind et al., 2015), hence on paths,
and since GIN can approximate 1-WL (Xu et al., 2019), we choose f = MLP and g = GIN. Hence,
r-`GIN is defined as an r-`MPNN that updates node features via

x(t+1)
r (v) := MLP

x(t)r (v) + (1 + ε0)
∑

u∈N0(v)

x(t)r (u) +

r∑
k=1

(1 + εk)
∑

p∈Nk(v)

GINk(p)

 . (4)

To reduce the number of learnable parameters in (4), the GINk can be shared among all k. Nothing
prevents from choosing a different path-processing layer; we opted for GIN because it is simple yet
maximally expressive on paths. We refer to Figure 1 for a visual depiction of r-`GIN.

Computational Complexity The complexity of r-`GIN is O(|E|+
∑

v∈V (G)

∑r
k=1 2k|Nk(v)|).

The former addend is the standard message complexity, while the latter arises from applying GIN to
paths of length k ≤ r. This implies that our model’s complexity scales linearly with the number of
edges, and with the number of paths withinNk(v). The number of such paths is typically less than the
number of edges. For example, ZINC12K has overall 598K edges while only containing 374K paths
in Nr(v) for 1 ≤ r ≤ 5. Hence, the runtime overhead is small in practice. Compared to 3-WLGNN
(Dwivedi et al., 2022a), which has the same cycle-counting expressivity, our model requires ca.
10 seconds/epoch while 3-WLGNN takes ca. 329.49 seconds/epoch on ZINC12K. Our runtime is
comparable to that of GAT, MoNet, or GatedGCN (see Table 10 for a thorough comparison).

Comparison with (Michel et al., 2023) PathNN updates node features by computing all possible
paths starting from each node. In contrast, our approach selects paths between distinct neighbors,
potentially resulting in fewer paths. For instance, a tree’s r-neighborhoods (r ≥ 1) are empty, while
counts of paths between nodes are quadratic. Notably, Michel et al. (2023) do not explore the impact
of increasing the path length on architecture expressiveness, a consideration we address (see, e.g.,
Proposition 1 and Corollary 1). Another significant contribution of our work, which we assert does
not hold (at least not trivially) for PathNN, is the provable ability to subgraph-count cycle graphs
(see, e.g., Theorem 1) and homomorphism-count cactus graphs (see, e.g., Theorem 2).

7 Experiments

All instructions to reproduce the experiments are available on GitHub (MIT license). Additional
information on the training and test details can be found in Appendix C.

Expressive Power. We showcase the expressive power of r-`GIN on synthetic datasets:

• GRAPH8C (Balcilar et al., 2021) comprises 11 117 connected non-isomorphic simple graphs
on 8 nodes; 312 pairs are 1-WL equivalent but none is 3-WL equivalent.

• EXP_ISO (Abboud et al., 2022) comprises 600 pairs of 1-WL equivalent graphs.
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Figure 3: Indistinguishable pairs at initialization, symlog scale. For GRAPH8C and EXP_ISO,
we report the proportion of indistinguished pairs: 2 graphs are deemed indistinguishable if the L1

distance of their embeddings is less than 10−3. For COSPECTRAL10 and SR16622, we report the
L1 distance between graph embeddings. We report the mean and standard deviation over 100 seeds.
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Table 1: Num. of distinguished pairs (↑). Results from (Wang et al., 2024).

Model Basic (60) Regular (140) Extension (100) CFI (100)

3-WL 60 50 100 60
PPGN 60 50 100 23
NestedGNN 59 48 59 0
GSN 60 99 95 0
OSAN 52 41 82 2

4-`GIN 60 100 95 2
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r
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r
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Figure 4: Test accuracy on synthetic classification task: (left) shared and (right) non-shared weights.

• COSPECTRAL10 (van Dam et al., 2003): the dataset comprises two cospectral 4-regular
non-isomorphic graphs on 10 nodes which are 1-WL equivalent (see, e.g., Figure 8a).

• SR16622 (Michel et al., 2023) comprises two strongly regular graphs on 16 nodes, namely
the Shrikhande and the 4×4 rook graph, which are 3-WL equivalent (see, e.g., Figure 8b).

The goal is to check whether the model can distinguish non-isomorphic pairs at initialization. The
results are shown in Figure 3.

Additionally, Table 1 shows the performance on BREC (Wang et al., 2024), which includes 400 pairs
of non-isomorphic graphs ranging from 1-WL to 4-WL equivalent. The baselines include PPGN,
which is 3-WL equivalent and can count up to 7-cycles and homomorphism-count all graphs of
tree-width 2; NestedGNN which is between 1-WL and 3-WL; GSN which is more powerful than
1-WL but whose expressive power depends on the chosen pattern.

Finally, Figure 4 reports the performance on synthetic classification tasks:

• EXP, CEXP (Abboud et al., 2021) require expressive power beyond 1-WL.

• CSL (Murphy et al., 2019) comprises 150 cycle graphs with skip links (see, e.g., Figure 8c).
The task is to predict the length of the skip link.

Counting Power. Following (B. Zhang et al., 2024), we use the SUBGRAPHCOUNT dataset
(Chen et al., 2020) to test the ability to homomorphism- and subgraphs-count exemplary motifs.

Table 2: Test MAE for homomorphism- and subgraph-counts. Results from (B. Zhang et al., 2024).

hom(F,G) sub(F,G)

Model

MPNN 0.300 0.233 0.254 0.358 0.208 0.188 0.146 0.261 0.205
Subgraph GNN 0.011 0.015 0.012 0.010 0.020 0.024 0.046 0.007 0.027
Local 2-GNN 0.008 0.008 0.010 0.008 0.011 0.017 0.034 0.007 0.016

Local 2-FGNN 0.003 0.005 0.004 0.003 0.004 0.010 0.020 0.003 0.010

r-`GIN 0.001
(r=2)

0.006
(r=3)

0.009
(r=3)

0.0005
(r=1)

0.0005
(r=2)

0.0003
(r=3)

0.0003
(r=4)

0.001
(r=2)

0.0004
(r=3)
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There is a strict hierarchy in the expressive power of the baselines: MPNN v Subgraph GNN v local
2-GNN v local 2-FGNN. These variants, apart from MPNNs, are more expressive than 1-WL and
can subgraph-count up to 7-cycles.

Real-World Datasets. We experimented with three benchmark datasets: ZINC250K (Irwin et al.,
2012), ZINC12K (Dwivedi et al., 2022a), and QM9 (Wu et al., 2018) which consist of 250 000,
12 000, and 130 831 molecular graphs, respectively. We report the mean and standard deviation over
4 random seeds.

Table 3: Test MAE (↓) on ZINC dataset.

Model ZINC12K ZINC250K

GIN 0.163± 0.004 0.088± 0.002

GCN 0.321± 0.009 -
GAT 0.384± 0.007 -
GSN 0.115± 0.012 -
CIN 0.079± 0.006 0.022± 0.002

NestedGNN 0.111± 0.003 0.029± 0.001

SUN 0.083± 0.003 -
GNNAK+ 0.080± 0.001 -
I2-GNN 0.083± 0.001 0.023± 0.001

DRFWL 0.077± 0.002 0.025± 0.003

SignNet 0.084± 0.004 0.024± 0.003

HIMP 0.151± 0.006 0.036± 0.002

PathNN 0.090± 0.004 -

5-`GIN 0.072± 0.002 0.022± 0.001

For ZINC250K and ZINC12K, we selected as base-
line models standard MPNNs (GIN, GCN, GAT),
Subgraph GNNs (NestedGNN, GNNAK+, SUN),
domain-agnostic GNNs fed with substructure counts
(GSN, CIN), a GNN processing paths (PathNN), and
expressive GNNs with provable cycle counting power
(HIMP, SignNet, I2-GNN, DRFWL). Following the
standard procedure, we kept the number of parame-
ters under 500K (Dwivedi et al., 2022a) for ZINC12K.
The results are detailed in Table 3.

For the QM9 dataset, we followed the setup of
(Huang et al., 2022; Zhou et al., 2023). Specifically,
the test MAE is multiplied by the standard deviation
of the target and divided by the corresponding con-
version unit. The baseline results and models were
obtained from (Zhou et al., 2023), including expres-
sive GNNs with provable cycle counting power. We
omit methods that use additional geometric features
to focus on the model’s expressive power. The results
are presented in Table 4.

Table 4: Normalized test MAE (↓) on QM9 dataset. Top three models as 1st , 2nd , 3rd.

Model

Target 1-GNN 1-2-3-GNN DTNN Deep LRP NestedGNN I2-GNN DRFWL 5-`GIN

µ 0.493 0.476 0.244 0.364 0.428 0.428 0.346 0.350 ±0.011

α 0.78 0.27 0.95 0.298 0.290 0.230 0.222 0.217 ±0.025

εhomo 0.00321 0.00337 0.00388 0.00254 0.00265 0.00261 0.00226 0.00205 ±0.00005

εlumo 0.00355 0.00351 0.00512 0.00277 0.00297 0.00267 0.00225 0.00216 ±0.00004

∆(ε) 0.0049 0.0048 0.0112 0.00353 0.0038 0.0038 0.00324 0.00321 ±0.00014

R2 34.1 22.9 17.0 19.3 20.5 18.64 15.04 13.21 ±0.19

ZVPE 0.00124 0.00019 0.00172 0.00055 0.0002 0.00014 0.00017 0.000127 ±0.000003

U0 2.32 0.0427 2.43 0.413 0.295 0.211 0.156 0.0418 ±0.0520

U 2.08 0.111 2.43 0.413 0.361 0.206 0.153 0.023 ±0.023

H 2.23 0.0419 2.43 0.413 0.305 0.269 0.145 0.0352 ±0.0304

G 1.94 0.0469 2.43 0.413 0.489 0.261 0.156 0.0118 ±0.0015

Cv 0.27 0.0944 2.43 0.129 0.174 0.0730 0.0901 0.0702 ±0.0024

Discussion of Results The results in Figures 3 and 4 and Table 1 constitute a strong empirical
validation of our theory: increasing r leads to more expressive r-`MPNN. Albeit 6-`WL is not less
powerful than 3-WL (see, e.g., Section 5.2), in practice, smaller values of r can already distinguish
pair of graphs that are 3-WL equivalent, such as the Shrikhande and the (4×4) rook graphs. In the
BREC dataset, 4-`GIN distinguishes all pairs of strongly regular graphs, significantly outperforming
3-WL (0/50 graphs). Notably, 4-`GIN can already distinguish 257 out of 400 total pairs of graphs,
surpassing other expressive GNNs like PPGN (233/400), theoretically equivalent to 3-WL, and
NestedGNN (166/400). Refer to (Wang et al., 2024, Table 2) for detailed baseline results.

The results in Table 2 further substantiate our theory, as r-`WL can effectively count cycles of length
r+2 (see, e.g., Theorem 1).
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On molecular datasets, we observe that r-`GIN, although designed for subgraph-counting cycles and
homomorphism-counting cactus graphs, is highly competitive. Notably, we outperform the baseline
0-`GIN by 226% on ZINC12K and 400% on ZINC250K and surpass domain-agnostic methods such
as CIN or GSN. We conjecture that this is attributed to straightforward optimization, driven by the
simplicity of the architecture (see, e.g., Figure 1) and its inductive bias towards counting cycles.

Limitations Path calculations can become infeasible for dense graphs due to O(N dr) complexity,
where N is the number of nodes and d is the average degree. However, for sparse graphs, the runtime
remains reasonably low. For instance, preprocessing ZINC12K for r = 5 takes just over a minute.

8 Conclusion

In this paper,we introduce a novel hierarchy of color refinement algorithms, denoted as r-`WL, which
incorporates an augmented neighborhood mechanism accounting for nearby paths. We establish
connections between r-`WL and the classical k-WL. We construct a GNN (r-`MPNN) designed to
emulate and match the expressive powerof r-`WL. Theoretical and empirical evidence support the
claim that r-`MPNN can effectively subgraph-count cycles and homomorphism-count cactus graphs.

Future research could focus on precisely characterizing the expressivity of r-`WL tests by iden-
tifying the maximal class of graphs that r-`WL can homomorphism-count. This would facilitate
comparisons by constructing pairs of graphs that r-`WL cannot separate, but other WL variants can.
Another promising direction involves exploring the generalization capabilities of GNNs with prov-
able homomorphism-counting properties. The ability to homomorphism-count certain motifs could
provide a mathematical framework to support the intuitive notion that the capacity to count relevant
features may improve generalization. We observed this improved generalization experimentally in
our ablation study on ZINC12K (see, e.g., Table 8).
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A Additional Figures

Homomorphism

Subgraph
Isomorphism

Bijective
Homomorphism

Isomorphism

Figure 5: Examples of non-injective homomorphism (row 1), subgraph isomorphism (row 2), bijective
homomorphism with non-homomorphic inverse (row 3), and isomorphism (row 4). For better clarity,
the mappings h : V (F )→ V (G) are visually represented with colors, where F is consistently on the
left, and G is on the right in each row.

v v

N0(v) N1(v)

(a) r = 0

v v

N0(v) N2(v)

(b) r = 1

Figure 6: Example of two non-isomorphic graphs that are r-`WL equivalent but not (r+1)-`WL
equivalent: a chordal cycle (left) and a cactus graph (right).
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(a) Input graph F .
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(b) Fürer graph G(F ): hom(F,G(F )) = 68.

6, {4, 5}
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1, {2, 3}
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5, {4, 6}
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(c) Twisted Fürer graph H(F ): hom(F,H(F )) = 34.

Figure 7: Example of graphs that Subgraph GNNs cannot separate but 1-`WL can: Subgraph GNNs
cannot separate G(F ) and H(F ). However, since hom(F,G(F )) 6= hom(F,H(F )) and F is a
cactus graph, 1-`WL can separate G(F ) and H(F ) by Theorem 2.
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v

v

(a) COSPECTRAL10.

v v

(b) SR16622.

v v

(c) CSL example, skip length 2 (left) and 3 (right).

Figure 8: Some synthetic datasets. The dotted lines are the common edges. The orange edges
identifies N1(v).

B Additional Notions

B.1 Higher-Order Weisfeiler-Leman Tests

It is possible to uplift the expressive power of WL by considering higher-order interactions. The
simplest higher-order variant of WL is the k-dimensional Weisfeiler-Leman test, denoted by k-WL.
Given a graph G with nodes V (G) and edges E(G), the algorithm generates a new graph H where
each node is a k-tuple of elements of V (G)

V (H) =
{
v = {vi}ki=1 | vi ∈ V (G)

}
= V (G)k,

and edges E(H) are built among those k-tuples that differ in one entry only

E(H) = {{v,u} | dH(v,u) = 1 , u,v ∈ V (H)}
where dH is the Hamming distance. The algorithm assigns to each node v ∈ V (H) an initial color
depending on the isomorphic type of the induced subgraph G[v]. The color refinements scheme is

18



exactly (1) applied to H . While H can be generated by a simple algorithm, the approach quickly
becomes impractical as the number of nodes and edges grows exponentially in k.

(a) Input graphs.

(b) 1-WL after one iteration.

(c) 3-WL at initialization.

(d) 1-`WL after one iteration.

Figure 9: The input graphs cannot be distinguished by 1-WL, since the color distribution after
convergence of the algorithm is equal. 3-WL can distinguish them at the cost of creating new dense
graphs. Our proposed 1-`WL can distinguish the two graphs heeding the original graph sparsity.

C Experimental Details

Our model is implemented in PyTorch (BSD-3 license) (Paszke et al., 2019), using PyTorch
Geometric (MIT license) (Fey et al., 2019). The r-neighborhoods are computed with NetworkX
(Creative Commons Zero v1.0 Universal) (Hagberg et al., 2008) as preprocessing. Hyperparameters
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on real-world datasets were tuned using grid search; for synthetic experiments, we fixed one configu-
ration of hyperparameters. All experiments were run on an internal cluster with Intel Xeon CPUs (28
cores, 192GB RAM) and GeForce RTX 3090 Ti GPUs (4 units, 24GB memory each), as well as Intel
Xeon CPUs (32 cores, 192GB RAM) and NVIDIA RTX A6000 GPUs (3 units, 48GB memory each).
All models are trained with Adam optimizer (Kingma et al., 2015).

C.1 Synthetic Datasets

The SR16622 dataset is retrieved from the official PATHNN repository (MIT license) (Michel et al.,
2023). The GRAPH8C dataset is downloaded from Australian National University webpage (Creative
Commons Attribution 4.0 International (CC BY 4.0) license). The EXP, EXP_ISO, and CEXP
datasets are downloaded from GNN-RNI official repository (GPL-3.0 license) (Abboud et al., 2021),
while the corresponding splits are generated via Stratified 5-fold cross-validation. The CSL dataset
is provided by torch_geometric, while the corresponding splits are taken from PathNN official
repository. The SUBGRAPHCOUNT dataset is taken from the official repository (MIT license)
of (Zhao et al., 2022). The BREC dataset is downloaded from its official repository (MIT license)
(Wang et al., 2024). The configuration of hyperparameters can be found in Table 5. For the synthetic
datasets, we fixed one configuration and studied the effect of increasing r on the expressive and
counting power of the architecture.

For the SR16622, GRAPH8C, EXP_ISO, and COSPECTRAL10 datasets, we report the mean and
standard deviation over 100 random seeds. For the EXP, CEXP, and CSL datasets, we report the
mean and standard deviation of 5-fold cross-validation. For BREC, we follow the original setup
and perform an α-level Hotellings T-square test; see (Wang et al., 2024) for more details. For the
SUBGRAPHCOUNT dataset, we report the mean and standard deviation over 4 random seeds, using
the original splits from (Zhao et al., 2022).

Table 5: Hyperparameter configuration for synthetic experiments.
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Epochs - - - - 103 103 103 1.2 103 40
Learning Rate - - - - 10−3 10−3 10−3 10−3 10−4

Early Stopping - - - - lr < 10−5 lr < 10−5 lr < 10−5 - lr < 10−5

Scheduler - - - - {50, 0.5} {50, 0.5} {50, 0.5} {10, 0.9} {50, 0.5}
Hidden Size 64 64 64 64 64 64 64 64 32
Num. Layers 3 3 3 3 3 3 3 5 5
Num. Encoder Layers 2 2 2 2 2 2 2 2 2
Num. Decoder Layers 2 2 2 2 2 2 2 2 2
Batch Size 64 64 64 64 64 64 64 128 64
Dropout 0 0 0 0 0 0 0 0 0
Readout sum sum sum sum sum sum sum sum sum

C.2 Real-World Datasets

All real-world datasets are provided by torch_geometric. The splits for both ZINC datasets are
also provided by torch_geometric. For QM9, we follow the set-up of (Zhou et al., 2023) and use
random 80/10/10 splits. Details for the datasets are provided in Table 6.

Hyperparameters were tuned using grid search. For ZINC12K, the grid was defined by Hidden Size
∈ {64, 128} and Num. Layers ∈ {3, 4, 5}. For ZINC250K, the grid was defined by Hidden Size
∈ {128, 256} and Num. Layers ∈ {4}. For the QM9 tasks, the grid was defined by Hidden Size
∈ {64, 128} and Num. Layers ∈ {3, 4, 5}. For the QM9 tasks, we followed the training set-up of
(Zhou et al., 2023), training for 400 epochs with a ReduceLROnPlateau scheduler, reducing the
learning rate by a factor of 0.9 if the validation metric did not decrease for 10 epochs. The exact
hyperparameters are given in Table 7.
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All real-world datasets come with edge features. We use an encoder layer, followed by a linear
layer to encode node, edge features, and atomic types before passing them to the r-`GIN. Within the
r-`GIN layers, we process the edge features via a 2-layered learnable MLP, and replace the GIN in
(4) by GINE layers (Hu* et al., 2020a). After t rounds of r-`GIN layer, we apply a two-layered MLP
as decoder layer. In all experiments, BatchNorm1D (Ioffe et al., 2015) is used in the MLP layers. We
refer to Figure 1 for a depiction of the architecture.

Table 6: Statistics of real-world datasets.

Dataset Number of graphs Average number of nodes Average number of edges

QM9 130 831 18.0 18.7
ZINC12K 12 000 23.2 24.9
ZINC250K 249 456 23.2 24.9

Table 7: Hyperparameters configuration for real-world experiments.

ZINC12K ZINC250K QM9 (µ) QM9 (α) QM9 (εhomo)

Epochs 1000 2000 400 400 400
Learning Rate 0.001 0.001 0.001 0.001 0.001
Early Stopping lr < 10−5 lr < 10−6 lr < 10−5 lr < 10−5 lr < 10−5

Scheduler {50, 0.5} {50, 0.5} {10, 0.9} {10, 0.9} {10, 0.9}
r 5 5 5 5 5
Hidden Size 64 256 64 64 64
Depth 3 4 4 5 5
Batch Size 64 128 64 64 64
Dropout 0 0 0 0 0
Readout sum sum sum sum sum
# Parameters 452 633 2 379 041 418 481 519 677 519 677

Preprocessing Time [sec] 77.4 1278.5 427.5 425.9 517.4
Run Time per Seed [h] 2.8 45.6 13.6 15.9 21.1

Table 8: Ablation study on the effect of r in r-`GIN, ZINC12K.

MAE (↓)

Model Train Test

0-`GIN 0.060± 0.009 0.209± 0.007

1-`GIN 0.060± 0.012 0.201± 0.004

2-`GIN 0.068± 0.011 0.198± 0.008

3-`GIN 0.056± 0.013 0.184± 0.007

4-`GIN 0.0203± 0.0002 0.077± 0.001

5-`GIN 0.022± 0.004 0.072± 0.002

6-`GIN 0.028± 0.000 0.077± 0.000
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Table 9: Test metrics on long-range graph benchmark datasets (Dwivedi et al., 2022b). The baseline
results are obtained from (Dwivedi et al., 2022b, Table 4). Our method is able to enhance performance
over standard baselines.

PEPTIDES

Model STRUCT (MAE ↓) FUNC (AP ↑)

GCN 0.3496± 0.0013 59.30± 0.23

GINE 0.3496± 0.0013 59.30± 0.23

GatedGCN 0.3420± 0.0013 58.64± 0.77

7-`GIN 0.2513± 0.0021 65.70± 0.60

Table 10: Empirical time complexity for QM9 dataset; results from (Zhou et al., 2023). In parenthesis
the size of the dataset after the computation of r-neighborhoods.

Model Memory usage [GB] Preprocessing [sec] Training [sec/epoch]

MPNN 2.28 64 45.3

NestedGNN 13.72 2 354 107.8

I2-GNN 19.69 5 287 209.9

2-DRFWL 2.31 430 141.9

0-`GIN 0.02 (0.39) 191 44.7

1-`GIN 0.03 (0.48) 370 66.4

2-`GIN 0.05 (0.57) 388 84.0

3-`GIN 0.07 (0.66) 408 85.2

4-`GIN 0.10 (0.82) 427 96.9

5-`GIN 0.12 (0.91) 444 130.6
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D Preparation for Proofs

We begin by recalling some core concepts that are relevant for Section 5 and the proofs therein.
Definition 10. A node invariant ζ(·) is a mapping that assigns to each graph G ∈ G a function
ζG : V (G)→ P , which satisfies

∀v ∈ V (G), ζG(v) = ζH(h(v)),

where H is any graph isomorphic to G and h is the corresponding isomorphism from H to G.

The following definition enables us to compare the expressive power of different node invariants.
Definition 11 (Node Invariant Refinement). Given two node invariants γ and ζ . We say that ζ refines
γ if for every fixed graph G and nodes u, v ∈ V (G), it holds ζG(u) = ζG(v) ⇒ γG(u) = γG(v).
We write ζ v γ.

We emphasize that every node invariant ζ induces a graph invariant A[γ] by collecting the multiset,
i.e., G 7→ {{ζG(v)}}v∈V (G). We denote the induced graph invariant of a node invariant γ as A[γ].

The following lemma establishes a connection between the expressive power of two node invariants
(see Definition 11) and that of their induced graph invariants (see Definition 3).
Lemma 1. Let ζ, γ be node invariant. If ζ v γ, then A[ζ] is more powerful than A[γ].

Proof. Let G,H be two graphs, and let P be the underlying palette of ζ, γ. Consider the function

φ : P −→ P, ζ(u) 7→ γ(u) ∀u ∈ V (G) ∪ V (H).

As a consequence of ζ v γ, φ is well-defined, since

ζ(u) = ζ(v) =⇒ (φ ◦ ζ) (u) = γ(u) = γ(v) = (φ ◦ ζ) (v).

Assume that A[ζ](G) = A[ζ](H), i.e,

{{ζ(u) | u ∈ V (G)}} = {{ζ(v) | v ∈ V (H)}} .

As φ is well-defined, we have

{{φ ◦ ζ(u) | u ∈ V (G)}} = {{φ ◦ ζ(x) | v ∈ V (H)}} ,

which leads to A[γ](G) = A[γ](H).

E Appendix for Section 5.1

In this section, we provide the proof of Proposition 1 from the main paper.
Proposition 1. Let 0 ≤ q < r. Then, r-`WL is strictly more powerful than q-`WL. In particular,
every r-`WL is strictly more powerful than 1-WL.

Proof of Proposition 1. Let r ≥ 0. We aim to prove that (r + 1)-`WL is strictly more powerful than
r-`WL. We begin by demonstrating that (r + 1)-`WL is more powerful than r-`WL.

To establish this, we rely on Lemma 1. Specifically, we demonstrate that the underlying (r+ 1)-`WL
node invariant cr+1 refines cr. Moreover, we go beyond and show that the node invariant c(t)r+1 refines
c
(t)
r at every iteration t ≥ 0, which shows that t iterations of (r + 1)-`WL are more powerful than t

iterations of r-`WL.

For this purpose, let G be a graph with node set V (G). For t = 0, c(0)r+1 v c
(0)
r since both algorithms

start with the same labels. By induction, we assume that

c
(t)
r+1(u) = c

(t)
r+1(v) =⇒ c(t)r (u) = c(t)r (v) (5)

holds; we need to prove that (5) implies

c
(t+1)
r+1 (u) = c

(t+1)
r+1 (v) =⇒ c(t+1)

r (u) = c(t+1)
r (v). (6)
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Since HASH in Definition 7 is injective, c(t)r+1(u) = c
(t)
r+1(v) in (5) leads to{{

c
(t)
r+1(p) | p ∈ Nq(u)

}}
=
{{

c
(t)
r+1(p) | p ∈ Nq(v)

}}
for all q ∈ {0, . . . , r}. The assumption c(t)r (uql,k) = c

(t)
r (vql,k) in (5) is satisfied for every path uq

l ={
uql,k

}
∈ Nq(u) and vq

l =
{
vql,k

}
∈ Nq(v) for q = 0, . . . , r, l = 1, . . . , |Nv| and k = 1, . . . , q + 1.

Hence, {{
c(t)r (p) | p ∈ Nk(u)

}}
=
{{

c(t)r (p) | p ∈ Nk(v)
}}

Inputting this into Definition 7, we get (6), i.e, c(t+1)
r+1 v c

(t+1)
r .

The “strictly” can be deduced as follows. The cycle graph on (2r + 6) nodes equipped with a
chord between nodes 1 and r + 4 is r-`WL equivalent to the graph consisting of two (r + 3)-cycles
connected by one edge; however, they are not (r + 1)-`WL equivalent (see, e.g., Figure 6).

F Appendix for Section 5.2

The goal of this subsection is to provide a proof for Theorem 1 and Corollary 1. In fact, we present
and prove a more general statement. Specifically, for a graph G and v ∈ V (G), we introduce the
node invariant sub(F x, Gv), defined as the count of subgraph isomorphisms from F to G that are
rooted, meaning that x is mapped to v. Let us denote this node invariant as sub(F x, ·). Our result
establishes that c(1)r (·) refines sub(Cx, ·) for every cycle graph C with at most r nodes. In simpler
terms, c(1)r can determine how often node v appears in a cycle C.

Lemma 2. Let r ≥ 1. For every cycle graph C with at most r + 2 nodes and x ∈ V (C), it holds
c
(1)
r (·) v sub(Cx, ·).

Proof of Lemma 2. Let G be any graph, u, v ∈ V (G), and q = 1, . . . , r + 2. Let C be a cycle
graph with q nodes. It is important to note that for every x1, x2 ∈ C, we have sub(Cx1 , Gv) =
sub(Cx2 , Gv) since every node in C is automorphic to each other. Therefore, we can arbitrarily
choose any x ∈ V (C).

We show that
sub (Cx, Gu) 6= sub (Cx, Gv) =⇒ c(1)r (u) 6= c(1)r (v)

The number of injective homomorphisms from the q-long cycles Cx to Gv, i.e., sub(Ca
q , G

v), is
equal to the number of paths of length (q − 2) between distinct neighbors of v.

The neighborhood N(q−2)(v) comprises exactly all paths of length (q − 2) between any two distinct
neighbors of v. Therefore,

sub (Cx, Gv) =
∣∣N(q−2)(v)

∣∣ .
Thus

sub (Cx, Gu) 6= sub (Cx, Gv) =⇒
∣∣N(q−2)(u)

∣∣ 6= ∣∣N(q−2)(v)
∣∣ ,

which implies {{
c
(0)
q−2(p) : p ∈ N(q−2)(u)

}}
6=
{{

c
(0)
q−2(p) : p ∈ N(q−2)(v)

}}
.

Finally, as HASH in Definition 7 is injective, we get the thesis c(1)q−2(u) 6= c
(1)
q−2(v).

Now, Theorem 1 from the main paper is a simple corollary of Lemma 2.

Theorem 1. For any r ≥ 1, r-`WL can subgraph-count all cycles with at most r + 2 nodes.

Proof of Theorem 1. Combining Lemma 2 and Lemma 1, we get that c(1)r (as a graph invariant) is
stronger than the induced graph invariant A [sub(Cx, ·)]. Now, consider graphs G,H , and assume
without loss of generality that |V (G)| = n = |V (H)|.
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If c(1)r (G) = c
(1)
r (H), we have A [sub(Cx, ·)] (G) = A [sub(Cx, ·)] (H). Hence, by definition of

induced graph invariants,

{{sub(Cx, Gv) | v ∈ V (G)}} = {{sub(Cx,Hw) |w ∈ V (H)}} .

Hence,
1

n

∑
v∈V (G)

sub(Cx, Gv) =
1

n

∑
w∈V (H)

sub(Cx,Hw),

which is equivalent to sub(C,G) = sub(C,H).

We proceed to restate Corollary 1 and provide its proof.
Corollary 1. Let k ∈ N. There exists r ∈ N, such that r-`WL is not less powerful than k-WL.
Specifically, r ∈ O(k2), with r ≤ k(k+1)

2 − 2 for even k and r ≤ (k+1)2

2 − 2 for odd k.

Proof of Corollary 1. Let k > 0. We need to show that there exist rk ∈ N and a pair of graphs G,H ,
such that k−WL(G) = k−WL(H) and rk-`WL(G) 6= rk-`WL(H).

The hereditary treewidth hdtw(F ) of a graph F is the maximum treewidth of ϕ(F ) where ϕ is an
edge surjective homomorphism. Neuen (2024) has shown that k-WL can subgraph-count a graph F
if and only if hdtw(F ) ≤ k. This directly implies that for F with hereditary treewidth larger than k,
there exist graphs GF ,HF with k−WL(GF ) = k−WL(HF ) and sub(F,G) 6= sub(F,H).

Since the hereditary tree-width of cycle graphs is not uniformly bounded (Arvind et al., 2020), for
every k > 0 there exists a cycle Cck of length ck ∈ N with hereditary treewidth larger than k. Setting
F = Cck concludes the existence proof with rk = ck − 2.

To see that rk ∈ O(k2), note that the complete graph Kn on n vertices has treewidth n − 1 and
exactly

(
n
2

)
edges. For odd n, Kn is Eulerian, i.e., there exists an edge surjective homomorphism

from a cycle to Kn which uses each edge exactly once, i.e., from C(n2)
. If n is odd, the minimum

T -join which makes Kn Eulerian contains exactly n
2 edges (see, e.g., Korte et al., 2018). As a

result, there exists an edge surjective homomorphism from C(n2)
to Kn if n is odd, and an edge

surjective homomorphism from C(n2)+
n
2

to Kn if n is even. This implies that hdtw(Cck) > k for

ck =
(
k+1
2

)
+ dk+1

2 e. Hence, rk := ck − 2 ∈ O(k2).

G Appendix on Homomorphism Counting and Section 5.3

In this section, we provide background information and all proofs related to homomorphism counts.
We begin by introducing additional definitions and notation.
Definition 12 (Induced Subgraph). Let G = (V (G), E(G)) and S ⊂ V (G). The induced subgraph
G[S] of G over S is defined as the graph G[S] with vertices V (G[S]) = S and edges E(G[S]) =
{{u, v} ∈ E(G) |u, v ∈ S}.

The following definition indicates whether a pair of nodes is connected by an edge or not.
Definition 13 (Atomic Type). For a tuple of nodes (u1, u2), the atomic type atpG ((u1, u2)) of G
over (u1, u2) indicates where {u1, u2} ∈ E(G), i.e., atpG((u1, u2)) = 1 if {u1, u2} ∈ E(G) and
zero otherwise.

We continue by defining tree graphs, an important class of graphs closely related to the 1-WL test.
Definition 14 (Tree Graph). A graph T is called a tree (graph) if it is connected and does not
contain cycles. A rooted tree T s = (V (T s), E(T s)) is a tree in which a node s ∈ V (T s) is
singled out. This node is called the root of the tree. For each vertex t ∈ V (T s), we define its
depth depT s(t) := distT s(t, s), where dist denotes the shortest path distance between t and s.
The depth of T s is then the maximum depth among all nodes t ∈ V (T ). We define DescT s(t) the
set of descendants of t, i.e., DescT s(t) = {t′ ∈ T s | depT s(t′) = depT s(t) + distT s(t, t′)}. For
each t ∈ V (T s) \ {s}, we define the parent node paT s(t) of t as the unique node t′ ∈ N (t)
such that depT s(t) = depT s(t′) + 1. We define the subtree of T s rooted at node t by T s[t], i.e.,
T s[t] := T s[DescT s(t)].
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The remainder of this section is structured as follows. Appendix G.1 introduces the basics of tree
decompositions. In Appendix G.2, we present the class of fan cactus graphs, encompassing all cactus
graphs, and develop its canonical tree decomposition. We present an alternative formulation of r-`WL
in Appendix G.3 for technical reasons. Subsequently, in Appendix G.4, we define the unfolding tree
of r-`WL and illustrate its relation to the r-`WL colors and canonical tree decompositions of fan
cactus graphs. Finally, in Appendix G.4.1, we establish the groundwork to conclude the proof of
Theorem 2, a simple corollary of all the results in this section.

G.1 Tree Decomposition Preliminaries

Along with its notation, this subsection closely adheres to the conventions outlined by B. Zhang et al.
(2024, Section C). We start with a formal definition of a tree decomposition for a graph.

Definition 15 (Tree Decomposition). Let G = (V (G), E(G)). A tree decomposition of G is a
tree T = (V (T ), E(T )) together with a function βT : V (T ) → 2V (G) satisfying the following
conditions:

1. Each tree node t ∈ V (T ) is mapped to a non-empty subset of vertices βT (t) ⊂ V (G) in G,
referred to as a bag. We say tree node t contains vertex u if u ∈ βT (t).

2. For each edge {u, v} ∈ E(G), there exists at least one tree node t ∈ V (T ) such that
{u, v} ⊂ βT (t).

3. For each vertex u ∈ V (G), all tree nodes t containing u form a connected subtree, i.e., the
induced subgraph T [{t ∈ V (T ) : u ∈ βT (t)}] is connected.

If (T, βT ) is a tree decomposition of G, we refer to the tuple (G,T, βT ) as a tree-decomposed graph.
The width of the tree decomposition T of G is defined as

max
t∈V (T )

|βT (t)| − 1.

If T has root s, we also denote it as (G,T s, βT ).

Definition 16 (Treewidth). The treewidth of a graph G, denoted as tw(G), is the minimum positive
integer k such that there exists a tree decomposition of width k.

G.2 Cactus Graphs and their Canonical Tree Decomposition

Cactus graphs play a crucial role in graph theory due to their unique structural properties. Before
delving into their canonical tree decomposition, we define the concept of a rooted r-cactus graph. To
simplify the notation, we assume that graphs in this section are connected and that V (G) ⊆ N for all
graphs G. Further, we assume that r ∈ N throughout this section.

Definition 17 (Rooted r-Cactus Graph). A cactus graph is a graph where every edge lies on at most
one simple cycle. An r-cactus graph is a cactus graph where every simple cycle has at most r vertices.
A rooted cactus (graph) Gs is a cactus graph G with a root node s ∈ V (G).

Now, we introduce the notion of a fan cactus, which is an essential concept for our subsequent
discussions on the canonical tree decomposition of these graphs.

Definition 18 (Fan Cactus). Let Gs be a rooted r-cactus. For every simple cycle C in G let vC be
the unique vertex in C that is closest to s. We obtain a fan r-cactus F s from a rooted r-cactus Gs

by adding an arbitrary number of edges {vC , w} to any cycle C with w ∈ V (C). LetMr+2 be the
class of graphs F with s ∈ V (F ) such that F s is a fan r-cactus.

Remark 1. Every r-cactus is a fan r-cactus. Every fan r-cactus is outerplanar. Every outerplanar
graph has tree-width at most 2.

Figure 10 shows an example of a fan 6-cactus. As fan cacti are outerplanar, graph isomorphism can
be decided in linear time. One way to do so is to use a canonicalization function, that maps graphs to
a unique representative of each set of isomorphic graphs. We denote the set of all such representatives
asMr+2/ ∼= ⊆Mr+2.

Lemma 3 (Colbourn et al. (1981)). There exists a function canon :Mr+2 →Mr+2/ ∼= such that
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1. G ∼= canon(G)

2. G ∼= H ⇐⇒ V (canon(G)) = V (canon(H)) ∧ E(canon(G)) = E(canon(H)).

Moreover, given G ∈Mr+2, canon(G) can be computed in linear time.

For each G ∈ Mr+2 we denote the isomorphism between G and canon(G) as canonG. Colbourn
et al. (1981) describe a bottom-up algorithm to obtain canon(G) of a fan r-cactus G. We will
implicitly use the results of this canonicalization to define a canonical tree decomposition of fan
r-cacti. The crucial point in the algorithm is a simple way to decide which “direction” to use when
dealing with a cycle in the underlying cactus graph. Each undirected, rooted cycle allows for a choice
between two directions when building a tree decomposition. We will first define a tree decomposition
for a rooted cycle which depends on a choice of direction and then define a canonical direction of
cycles in G based on canonG.
Definition 19 (Tree Decomposition of Rooted Cycle). Let Cn be a cycle graph on n nodes v0 to
vn−1. The path T on nodes w1, . . . , w2n−3 with bags β(w1) = {v0, v1} and for i ≥ 2

β(wi) =

{
β(wi−1) ∪

{
vi/2+1

}
if i is even

β(wi−1) \
{
v(i−1)/2

}
if i is odd

is a tree decomposition of Cn. We say that v0 and v1 correspond to w1 and vi corresponds to w2i−1

for i ≥ 2.

A depiction of the tree decomposition T 0 (right) of C6 (left) is shown below. Note that we have to
choose one of two possible orientations of the undirected cycle to construct T 0. We address this
choice in the next definition.
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4 5

{0, 1}

{0, 1, 2}{0, 2}

{5, 0}{0, 4, 5}

{0, 2, 3}

{0, 3}

{0, 3, 4}

{0, 4}

Definition 20 (Canonical Tree Decomposition of Undirected Rooted Cycle). Let F s be a fan r-cactus
and C be a simple cycle in the underlying cactus G. Let vC , v1, . . . , vn−1 and vC , vn−1, . . . , v1 be
the two directions of C rooted at vC . We define the canonical tree decomposition of C in G as the tree
decomposition of the smaller of the two orientations canonF (vC), canonF (v1), . . . , canonF (vn−1)
and canonF (vC), canonF (vn−1), . . . , canonF (v1).

The choice of “smaller” does not matter as long as it defines a total order. One can, for example, use
a lexicographical order. Based on Definition 20, we now define a canonical tree decomposition of
fan cactus graphs, in the sense that any two isomorphic fan cactus graphs will have isomorphic tree
decompositions.
Definition 21 (Canonical Tree Decomposition of Fan r-Cactus Graphs). Let F s be a fan r-cactus
and Gs its underlying r-cactus. We define the canonical tree decomposition T s̃ of F rooted at s̃ as
follows

1. Node Gadget: For all v ∈ V (F ) add a node t to V (T ) and set β(t) = {v}. We choose s̃
such that β(s̃) = {s}.

2. Tree Edge Gadget: For all {v, w} ∈ E(G) that are not on a simple cycle in F add a node
x{v,w} to V (T ) with β(x{v,w}) = {v, w} and edges

{
v, x{v,w}

}
and

{
w, x{v,w}

}
to E(T )

3. Cycle Gadget: For each (undirected) cycle C in the underlying cactus G, add a copy of
its canonical tree decomposition T vC

C of C rooted at vC to T and connect nodes in it to the
corresponding node gadgets.

See Figure 10 for an illustration. For the discussions in subsequent sections, we introduce the
following definition.
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Figure 10: Example of a fan 6-cactus F 1 (left) and its canonical tree decomposition (T, 1). The
underlying rooted 6-cactusG1 (on colored, thick edges) of F 1 contains three simple cyclesC1, C2, C3.
Additional diagonal edges must have vCi

as one endpoint.

Definition 22 (Depth in the Canonical Tree Decomposition of Fan r-Cactus Graphs). Let (F, T s) be
a canonical tree decomposition of a fan r-cactus. We define the depth dep(t) of t ∈ V (T ) recursively
as follows:

1. dep(s) = 0

2. For v ∈ V (T ) with parent node p: dep(v) =
{
dep(p) + 1 if |β(v)| = 1 or |β(p)| = 1

dep(p) otherwise

The depth of (F, T s) is then the maximum depth of any node t ∈ V (T s).

Intuitively, for a given fan r-cactus graph F with its canonical tree decomposition T s, Definition 22
captures the depth (see Definition 15) of the tree T s, if cycles in F and the corresponding bags in T s

were replaced by single edges.

Lemma 4. Let F s be a fan r-cactus. The canonical tree decomposition (F, T s̃) is a tree decomposi-
tion of F s.

Proof. We need to show that (1) T is a tree, (2) for every edge e ∈ E(F ) there exists some bag β(v)
with e ⊆ β(v), and (3) T [{t ∈ V (T ) : u ∈ β(t)}] is connected.

To see that T does not contain cycles, note that we replace each cycle with its cycle gadget, which is
a path. It is easy to see that T is connected as G is connected.

For (2), note that tree edges e ∈ V (F ) have their own gadget node in xe with β(xe) = e. Similarly,
each edge e on a simple cycle C of the underlying cactus F of G is contained in some bag within the
cycle gadget of C. Finally, for diagonal edges {vC , w} ∈ E(F ) \ E(G), vC is contained in any bag
of the cycle gadget of C. As a result, {vC , v} is contained in the bag of the corresponding node of v.
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For (3), note that in the tree edge gadget, nodes t with v ∈ β(t) are connected to the node gadget of
v. In the cycle gadget, any node t with w ∈ β(t) is either directly or via its neighbor connected to the
node gadget of w if w 6= vC . As the cycle gadget is connected and vC is in any bag of the gadget, a
path to the node gadget of vC exists where every bag contains vC .

We conclude this subsection with a formal definition of when two canonical tree decompositions are
isomorphic and prove the main result of this section, i.e., that canonical tree decompositions of fan
r-cacti Gs,Ht are isomorphic whenever Gs,Ht are isomorphic.
Definition 23 (Isomorphism between canonical tree-decomposed graphs). Given two canonical
tree-decomposed graphs (G,T s) and (G̃, T̃ s̃), a pair of mappings (ρ, τ) is called an isomorphism
between (G,T s) and (G̃, T̃ s̃), denoted by (G,T s) ∼= (G̃, T̃ s̃), if the following holds:

• ρ is an isomorphism between G and G̃,

• τ is an isomorphism between T s and T̃ s̃,

• For any t ∈ T s, we have ρ(βT (t)) = βT̃ (τ(t)).

Lemma 5. Let Gs ∼= Ht be rooted r-fan cacti. Then (Gs, T [Gs]) ∼= (Ht, T [Ht]).

Proof. Let ρ be a root preserving isomorphism between Gs and Ht. According to Lemma 3
then there exist isomorphisms canonG and canonH with ρ = canonG ◦ canon−1

H . We construct
τ : V (T [Gs])→ V (T [Ht]) from ρ as follows: It is easy to see that ρ induces a bijective mapping τ
between the nodes of T [Gs] and T [Ht] that assigns each gadget node v ∈ V (T [Gs]) to the unique
gadget node τ(v) ∈ V (T [Ht]) with β(τ(v)) = ρ(β(v)). By the same argument, τ maps the root of
T [Gs] to the root of T [Ht].

Now assume by contradiction that τ is not an isomorphism between T [Gs] and T [Ht]. That means
that w.l.o.g. there exists {v, w} ∈ E(T [Gs]) with {τ(v), τ(w)} /∈ E(T [Ht]). However, for the
bags of v, w it holds canonG(β(v)) = canonH(β(τ(v))) and canonG(β(w)) = canonH(β(τ(w))).
This cannot happen, as the addition of edges in Definition 21 depends only on the images of the bags
under canon.

G.3 Alternative r-`WL

In this subsection, we define slightly modified versions of 1-WL and r-`WL that we consider in the
subsequent sections.
Definition 24 (Alternative 1-WL and r-`WL). The alternative 1-WL test refines vertices’ colors as

c(t+1)(v)← HASH
(
c(t)(v),

{{(
atp(v, u), c(t)(u)

)
| u ∈ V (G)

}})
.

Equivalently, we define the alternative r-`WL via

c(t+1)
r (v)← HASHr

(
c(t)r (v),

{{(
atp(v, u), c(t)(u)

)
| u ∈ V (G)

}}
,{{

c(t)r (p) | p ∈ N1(v)
}}

,

...{{
c(t)r (p) | p ∈ Nr(v)

}})
,

It is well-known that both the alternative 1-WL test and the standard 1-WL test are equally powerful
(in terms of their expressive power). Similarly, the alternative k-WL test and the standard k-WL test
are equally powerful. For the sake of simplicity in the subsequent discussion, we will refer to both
the alternative 1-WL and k-WL tests simply as the 1-WL and k-WL tests, respectively. Although this
practice may seem like a slight abuse of notation, it is justified because the expressive power of these
tests remains unaffected.
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Finally, as noted in Section 6, we alter the r-`WL algorithm slightly by incorporating atomic types
into the path representation. Hence, we update node features according to

c(t+1)
r (v)← HASHr

(
c(t)r (v),

{{(
atp(v, u), c(t)(u)

)
| u ∈ V (G)

}}
,{{(

atp(v,p), c(t)r (p)
)
| p ∈ N1(v)

}}
,

...{{(
atp(v,p), c(t)r (p)

)
| p ∈ Nr(v)

}})
,

(7)

where
(
atp(v,p), c

(t)
r (p)

)
:=
((

atp(v, p1), c
(t)
r (p1)

)
, . . . ,

(
atp(v, pq+1), c

(t)
r (pq+1)

))
for p =

{pi}q+1
i=1 ∈ Nq(v). The definition of atomic types atp(·, ·) is given in Definition 13. Clearly this

version of r-`WL is more powerful than the standard version, according to Definition 3. However, it
is unclear whether r-`WL with atomic types is strictly more powerful than standard r-`WL.

G.4 The Unfolding Tree of r-`WL

Given Definition 20, we assume, for the remainder of this appendix, that every fan cactus graph has a
unique labeling function, allowing us to select a unique orientation for every cycle in the graph. We
call this orientation the canonical orientation. If not otherwise mentioned, we consider the canonical
orientation of cycle graphs.

We begin this section by introducing a critical concept known as bag isomorphism (Dell et al., 2018;
B. Zhang et al., 2024).
Definition 25 (Bag Isomorphism). Let (F, T s) be a tree-decomposed graph, and G be a graph. A
homomorphism f from F to G is called a bag isomorphism from (F, T s) to G if, for all t ∈ V (T s),
the mapping f is an isomorphism from F [βT s(t)] to G[f(βT s(t))]. We denote by BIso((F, T s), G)
the set of all bag isomorphisms from (F, T s) to G, and set bIso((F, T s), G) = |BIso((F, T s), G)|.

Moving forward, we proceed to define r-`WL unfolding trees, which intuitively construct, for a given
graph and a node in the graph, the computational graph of the r-`WL algorithm and its canonical tree
decomposition.
Definition 26 (Unfolding tree of r-`WL). Given a graph G, vertex v ∈ V (G) and a non-negative
D ∈ Z, the depth-2D r-`WL unfolding tree of a graph G ∈ Mr+2 at node v, denoted as(
F (D)(v), T (D)(v)

)
, is a tree-decomposition (F, T s) constructed in the following way:

1. Initialization: V (F ) = {v} without edges, and T s only has a root node s with βT s(s) =
{v}. Define a mapping V (F )→ V (G) as π(v) = v.

2. Introduce nodes: For each leaf node t with |βT s(t)| = 1 in T s, do the following procedure:

Let βT (t) = {g}. For each w ∈ V (G) do the following:

a) Add a fresh child tw to t in T s.
b) Add a fresh vertex f to F and extend π with [f 7→ w].
c) Define the bag of tw by βT s(tw) = βT s(t) ∪ {f}.
d) Add an edge between f and g if {π(f), π(g)} ∈ E(G).

3. Introduce paths: For each q = 1, . . . , r, do:
For each length q path with canonical orientation p = {pi}q+1

i=1 ∈ Nq(g), do the following:

a) Add a fresh path tp =
{
t{p1}, t{p1,p2}, t{p2}, . . . , t{pq}, t{pq,pq+1}, t{pq+1}

}
to t in

T s.
b) Add q + 1 fresh vertices f1, . . . , fq+1 to F and extend π with [fi 7→ pi] for every

i = 1, . . . , q + 1.
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Figure 11: The depth-2 unfolding tree of graph G at vertex 1 for 2-`WL.

c) For i = 1, . . . , q, let the bag of t{pi,pi+1} be defined via βT s(t{pi,pi+1}) = βT s(t) ∪
{fi, fi+1}.

d) For i = 1, . . . , q + 1, let the bag of t{pi} be defined via βT s(t{pi}) = βT s(t) ∪ {fi}.
e) For i = 1, . . . , q + 1, add edges between fi and fi+1.
f) Add edges between g and f1, . . . , fq+1 such that for every i = 1, . . . , q, we have
F [βT s(t{pi,pi+1})] = F [{fi, fi+1, g}] ∼= G[π(βT s(t{pi,pi+1}))], i.e., add edges be-
tween g and fi if and only if there is an edge between {π(g), π(fi)} ∈ E(G).

4. Forget nodes: If t is a leaf node of T s with |βT s(t)| = 2 and parent t′ with |βT s(t)| = 1,
do the following:

a) Add a fresh child t1 of t to T s.
b) Let f be that vertex introduced at t, that is, we have βT s(t) \ βT s(t′) = {f}.
c) We set βT s(t1) = {f}.

5. Forget paths: If tp =
{
t{p1}, t{p1,p2}, t{p2}, . . . , t{pq}, t{pq,pq+1}, t{pq+1}

}
is a leaf path

of T s with parent t′ of t{p1}, do the following:

a) For i = 2, . . . , q + 1, add a fresh child t̃{pi} to t{pi}.
b) Let f2, . . . , fq+1 be the vertices introduced at tp, that is, we have βT s(t{pi}) \

βT s(t′) = {fi}.
c) For i = 2, . . . , q + 1, we set βT s(t̃{pi}) = {fi}.

We refer to Figure 11 for the depth-2 2-`WL unfolding tree of an example graph.
Theorem 4. Let r ≥ 1. For any graph G, any vertex v ∈ V (G), and any non-negative integer
D, let

(
F (D)(v), T (D)(v)

)
be its depth-2D r-`WL unfolding tree at node v. Then, F (D)(v) is a

fan r-cactus graph, and T (D)(v) is an r-canonical tree decomposition of F (D)(v). Moreover, the
constructed mapping π in Definition 26 is a bag isomorphism from

(
F (D)(v), T (D)(v)

)
to the graph

G.

Proof. Clear by the definition of the depth-2D unfolding tree of r-`WL.

We present the following results that fully characterize when two graphs and their respective nodes
have the same r-`WL colors in terms of their r-`WL unfolding trees.
Theorem 5. Let r ∈ N. For any two connected graphs G,H , any vertices v ∈ V (G) and x ∈ V (H)

and any D ∈ N, it holds: c(D)
r (v) = c

(D)
r (x) if and only if there exists a root preserving isomorphism

between
(
F (D)(v), T (D)(v)

)
and

(
F (D)(x), T (D)(x)

)
.

Proof of “=⇒”. The proof is based on induction over D. When D = 0, the theorem obviously
holds. Assume that the theorem holds for D ≤ d, and consider D = d + 1. We show that if
c
(d+1)
r (v) = c

(d+1)
r (x), then there exists an isomorphism (ρ, τ) from

(
F (d+1)(v), T (d+1)(v)

)
to(

F (d+1)(x), T (d+1)(x)
)

such that ρ(v) = x.

If c(d+1)
r (v) = c

(d+1)
r (x), then{{(

atp(v, u), c(d)r (u)
)
|u ∈ V (G)

}}
=
{{(

atp(x, y), c(d)r (y)
)
| y ∈ V (H)

}}
,
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i.e., |V (G)| = |V (H)|, and we set n = |V (G)|. We enumerate V (G) = {w1, . . . , wn} and
V (H) = {z1, . . . , zn} such that

c(d)r (wi) = c(d)r (zi) (8)

for all i = 1, . . . , n. Also, again since c(d+1)
r (v) = c

(d+1)
r (x), we have for every q = 1, . . . , r,{{((

atp(v, u1), c
(d)
r (u1)

)
, . . . ,

(
atp(v, uq+1), c

(d)
r (uq+1)

))
| {u1, . . . , uq+1} = u ∈ Nq(v)

}}
=
{{((

atp(x, y1), c
(d)
r (y1)

)
, . . . ,

(
atp(x, yq+1), c

(d)
r (yq+1)

))
| {y1, . . . , yq+1} = y ∈ Nq(x)

}}
.

In particular, |Nq(v)| = |Nq(x)| and we can enumerate the paths in Nq(v) and Nq(x) such that

c(d)r (uq
l ) = c(d)r (yq

l ) and atp(v,uq
l ) = atp(v,yq

l ) (9)

for every l = 1, . . . , |Nq(v)|.

Now, by definition of the r-`WL unfolding tree, the graph F (d+1)(v) is isomorphic to the union of: a)
all graphs F (d)(wi) for i = 1, . . . , n, plus additional edges between wi to v if {wi, v} ∈ E(G), and
b) all graphs F (d)(pql,k) for q = 1, . . . , r, l = 1, . . . , |Nq(v)| for any path pq

l =
{
pql,1, . . . , p

q
l,q+1

}
∈

Nq(v). And adding, for k = 1, . . . q, edges between pql,k and pql,k+1. And adding, for k = 1, . . . q+1,

edges pql,k and v if there is one in G, i.e., if
{
pql,k, v

}
∈ E(G).

Similarly, the tree T (d+1)(v) is isomorphic to the disjoint union of all trees T (d)(wi) (for i = 1, . . . , n)
and T (d)(pql,k) (for q = 1, . . . , r, k = 1, . . . , q+1 and l = 1, . . . , |N (v)|). Plus adding the following
fresh tree nodes and edges: a root node s, nodes twi

(for i = 1, . . . , n) that connects to s and the root
of T (d)(wi). And for q = 1, . . . , r, l = 1, . . . , |Nq(v)| for any path pq

l ∈ Nq(v) a path of length 2q,

given by tpq
l
=

{
t{

pq
l,1

}, t{
pq
l,1,p

q
l,2

}, . . . , t{
pq
l,q,p

q
l,q+1

}, t{
pq
l,q+1

}}, where s is attached to t{
pq
l,1

}.

And finally, connecting the trees T (d)(pql,k) at root node pql,k to t{
pq
l,k

}.

By (8) and induction, there exist isomorphisms (ρi, τi) from (F (d)(wi), T
(d)(wi)) to

(F (d)(zi), T
(d)(zi)) such that ρi(wi) = zi for i = 1, . . . , n. By (9) and induction, there exist isomor-

phisms (ρql,k, τ
q
l,k) from (F (d)(uql,k), T

(d)(uql,k)) to (F (d)(yql,k), T
(d)(yql,k)) such ρi(u

q
l,k) = yql,k for

q = 1, . . . , r, k = 1, . . . , q + 1 and l = 1, . . . , |Nq(v)|.
We now construct ρ by merging all ρi and ρql,k, and construct τ by merging all τi and τ ql,k. We
finally specify an appropriate mapping for the tree root, its direct children and the paths attached
to the tree root. Then, it is easy to see that (ρ, τ) is well-defined and an isomorphism between(
F (d+1)(v), T (d+1)(v)

)
and

(
F (d+1)(x), T (d+1)(x)

)
such that ρ(v) = x.

Proof of “⇐=”. We now prove the other direction, again via induction over D. When D = 0 the
assertion obviously holds. Assume that the assertion holds for D ≤ d. Now, assume that there
exists an isomorphism (ρ, τ) between

(
F (d+1)(v), T (d+1)(v)

)
and

(
F (d+1)(x), T (d+1)(x)

)
such

that ρ(v) = x. We show that c(d+1)
r (v) = c

(d+1)
r (x).

We begin our proof by establishing the equality of two multisets:{{
(c

(d)
r (w), atp(v, w))|w ∈ V (G)

}}
and

{{
(c

(d)
r (z), atp(v, z))|z ∈ V (H)

}}
. The proof

of this equivalence closely mirrors the argument presented in the proof of B. Zhang et al. (2024,
Lemma C.14). Since τ is an isomorphism it maps all tree nodes T (d+1)(v) of depth 2 with 1 element
in their bag to the corresponding tree nodes in T (d+1)(x). Let s1, . . . , sn and t1, . . . , tn be the nodes
in T (d+1)(v) and T (d+1)(x) of depth 2 with 1 element in their bag, respectively. For i = 1, . . . , n,
let s′i and t′i the parents of si and ti, respectively. We then choose the order such that the following
holds for all i = 1, . . . , n

1. Let βT (d+1)(v)(s
′
i) = {v, w̃i} and βT (d+1)(x)(t

′
i) = {x, z̃i}. Then, ρ(v) = x and ρ(w̃i) = z̃i

and thus, per assumption, {v, w̃i} ∈ E(F (d+1)(v)) if and only if {x, z̃i} ∈ E(F (d+1)(x)).
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2. τ is an isomorphism from the subtree rooted at si in T (d+1)(v), i.e., T (d+1)(v)[si], the
subtree rooted at ti in T (d+1)(x), i.e., T (d+1)(v)[ti].

3. For all s ∈ DescT (d+1)(v)(si), it holds ρ(βT (d+1)(v)(s)) = βT (d+1)(x)(τ(s)).

4. By the definition of the unfolding tree, ρ is an isomorphism from the induced subgraph
F (d+1)(v)

[
T (d+1)(v)[si]

]
and the induced subgraph F (d+1)(x)

[
T (d+1)(x)[ti]

]
.

By the last three items, we get that
(
F (d+1)(v)

[
T (d+1)(v)[si]

]
, T (d+1)(v)[si]

)
and(

F (d+1)(x)
[
T (d+1)(x)[ti]

]
, T (d+1)(x)[ti]

)
are isomorphic. By definition of the r-`WL unfold-

ing tree,
(
F (d+1)(v)

[
T (d+1)(v)[si]

]
, T (d+1)(v)[si]

)
is isomorphic to (F (d)(wi), T

(d)(wi)) for
some wi ∈ V (G) that satisfies {w̃i, v} ∈ EF (d+1)(v) if and only if {wi, v} ∈ E(G). And(
F (d+1)(x)

[
T (d+1)(x)[ti]

]
, T (d+1)(x)[ti]

)
is isomorphic to (F (d)(zi), F

(d)(zi)) for some zi ∈
V (H) that satisfies {z̃i, x} ∈ E(F (d+1)(x)) if and only if {zi, x} ∈ E(G). Hence, by induction, we
have atp (v, wi) = atp (x, zi) and c(d)r (wi) = c

(d)
r (zi) for all i = 1, . . . , n.

It remains to show that, for every q = 1, . . . , r,{{((
atp(v, u1), c

(d)
r (u1)

)
, . . . ,

(
atp(v, uq+1), c

(d)
r (uq+1)

))
| {u1, . . . , uq+1} = u ∈ Nq(v)

}}
=
{{((

atp(x, y1), c
(d)
r (y1)

)
, . . . ,

(
atp(x, yq+1), c

(d)
r (yq+1)

))
| {y1, . . . , yq+1} = y ∈ Nq(x)

}}
.

Fix q = 1, . . . , r. Since τ is an isomorphism it maps all paths of length q in T (d+1)(v) connected to
v to paths of length q in T (d+1)(x) connected to x.

By construction of the r-`WL unfolding tree and since (ρ, τ) is an isomorphism, it holds |Nq(v)| =
|Nq(x)|. Denote the relevant bags at depth 2 by s′ql,k for l = 1, . . . , |Nq(v)| and k = 1, . . . , q + 1.
Denote by sql,k and tql,k the parents of s′ql,k and t′ql,k, respectively. We then choose the order l =
1, . . . , |Nq(v)| and k = 1, . . . , q + 1 such that it holds

1. Let βT (d+1)(s
′q
l,k) =

{
v, w̃q

l,k

}
and βT (d+1)(t

′q
l,k) =

{
x, z̃ql,k

}
. Then, ρ(w̃q

l,k) = z̃ql,k and

thus, per assumption,
{
v, w̃q

l,k

}
∈ E(F (d+1)(v)) if and only if

{
x, z̃ql,k

}
∈ E(F (d+1)(x))

2. τ is an isomorphism from the subtree rooted at sql,k in T (d+1)(v), i.e., T (d+1)(v)[sql,k], to
the subtree rooted at tql,k in T (d+1)(x), i.e., T (d+1)(x)[tql,k].

3. For all s ∈ DescT (d+1)(v)(s
q
l,k), it holds ρ(βT (d+1)(v)(s)) = βT (d+1)(x)(τ(s)).

4. By the definition of the unfolding tree, ρ is an isomorphism from the induced subgraph
F (d+1)(v)

[
T (d+1)(v)[sql,k]

]
and the induced subgraph F (d+1)(x)

[
T (d+1)(x)[tql,k]

]
.

By the last three items, we get that
(
F (d+1)(v)

[
T (d+1)(v)[sql,k]

]
, T (d+1)(v)[sql,k]

)
and(

F (d+1)(x)
[
T (d+1)(x)[tql,k]

]
, T (d+1)(x)[tql,k]

)
are isomorphic. By definition of the r-`WL unfold-

ing tree,
(
F (d+1)(v)

[
T (d+1)(v)[sql,k]

]
, T (d+1)(v)[sql,k]

)
is isomorphic to (F (d)(wq

l,k), T
(d)(wq

l,k))

for wq
l,k ∈ V (G) that satisfies

{
w̃q

l,k, v
}
∈ EF (d+1)(v) if and only if

{
wq

l,k, v
}
∈ E(G).

And
(
F (d+1)(x)

[
T (d+1)(x)[tql,k]

]
, T (d+1)(x)[tql,k]

)
is isomorphic to (F (d)(zql,k), T

(d)(zql,k)) for

zql,k ∈ V (G) that satisfies
{
z̃ql,k, v

}
∈ E(F (d+1)(v)) if and only if

{
zql,k, v

}
∈ E(G). Hence, by

induction, we have c(d)r (wq
l,k) = c

(d)
r (zql,k) for all indices. By Item 1, we then have c(d)r (wq

l ) =

c
(d)
r (zql ) and atp(v,wq

l ) = atp(v, zql ) for every q = 1, . . . , r and l = 1, . . . , |Nq(v)|.
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We introduce the following definition that provides a similarity measure between a graph and a
tree-decomposed graph.
Definition 27. Given a graph G and a tree-decomposed graph (F, T s), define

cnt ((F, T s), G) =
∣∣∣{v ∈ V | ∃D ∈ N s.t. (F (D)(v), T (D)(v)) ∼= (F, T s)

}∣∣∣ ,
where (F (D)(v), T (D)(v)) is the depth-2D r-`WL unfolding tree of G at v.

The counting function cnt ((F, T s), G) serves as a key metric, allowing us to draw connections
between r-`WL colorings of two different graphs.
Corollary 3. Let r ∈ N. Let G and H be two graphs. Then, cr(G) = cr(H) if and only if
cnt ((F, T s), G) = cnt ((F, T s),H) holds for all graphs (F, T s) ∈Mr+2.

Proof of “=⇒”. Let cr(G) = cr(H), i.e.,

{{cr(v) | v ∈ V (G)}} = {{cr(x) |x ∈ V (H)}} .

Assume, by contradiction, that there exists a tuple (F, T s) ∈ Mr+2 such that cnt ((F, T s), G) 6=
cnt ((F, T s),H). Let c1, . . . , ck be the final colors of nodes in V (G) and V (H). Then, define for
i = 1, . . . , k

cnt ((F, T s), G[ci]) :=
∣∣∣{v ∈ V (G) | cr(v) = ci and ∃D ∈ N s.t. (F (D)(v), T (D)(v)) ∼= (F, T s)

}∣∣∣ .
We have

cnt ((F, T s), G) =

k∑
i=1

cnt ((F, T s), G[ci]) ,

and

cnt ((F, T s),H) =

k∑
i=1

cnt ((F, T s),H[ci]) .

Since cnt ((F, T s), G) 6= cnt ((F, T s),H), there exist an index i = 1, . . . , k such that

cnt ((F, T s), G[ci]) 6= cnt ((F, T s),H[ci]) . (10)

Furthermore, there exists in ∈ N such that there are exactly n nodes v1, . . . , vn and x1, . . . , xn such
that

cr(v1) = . . . = cr(vin) = ci and cr(x1) = . . . = cr(xin) = ci.

Hence, as cr refines c(D)
r , we have

c(D)
r (v1) = . . . = c(D)

r (vin) = c(D)
r (x1) = . . . = c(D)

r (xin).

By (10), there exists some D ∈ N such that (without loss of generality) (F (D)(v1), T
(D)(v1)) ∼=

(F, T s). Then, by Theorem 5, we have

(F (D)(v1), T
(D)(v1)) ∼= . . . ∼= (F (D)(vin), T

(D)(vin))
∼= (F (D)(xin), T

(D)(xin))

∼= . . . ∼= (F (D)(x1), T
(D)(x1)).

There does not exist any other node w with cr(w) = c1 such that the corresponding unfolding tree is
isomorphic to (F (D)(v1), T

(D)(v1)). Hence, cnt((F, T s), G[ci]) = cnt((F, T s),H[ci]), which is a
contradiction.

Proof of “⇐=”. Suppose that cnt((F, T s), G) = cnt((F, T s),H) for all (F, T s) ∈ Mr+2. Let
c1, . . . , ckG

with multiplicities m1, . . . ,mkG
and c̃1, . . . , c̃kH

with multiplicities m̃1, . . . , m̃kG

be the final colors of r-`WL applied to G and H , respectively. Consider some v ∈ V (G)
such that cr(v) = c1. Let D be sufficiently large (any D after convergence of r-`WL), then
cnt((F (D)(v), T (D)(v)), G) = cnt((F (D)(v), T (D)(v)),H) since (F (D)(v), T (D)(v)) ∈ Mr+2.
Hence, without loss of generality, c1 = c̃1 and m1 = m̃1. Repeating this argument for all colors
finishes the proof.
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G.4.1 Proof of Theorem 2

In this section, we employ techniques adapted from the works of Dell et al. (2018) and B. Zhang et al.
(2024) to derive a proof for Theorem 2 from the established result in Corollary 3.

Definition 28 (Definition 20 in (Dell et al., 2018)). Let (F, T t) and (F̃, T̃ s) be two tree-decomposed
graphs. A pair of mappings (ρ, τ) is said to be a bag isomorphism homomorphism from (F, T t) to
(F̃, T̃ s) if it satisfies the following conditions

1. ρ is a homomorphism from F to F̃ .

2. τ is a homomorphism from T t to T̃ s.

3. τ is depth-surjective, i.e., the image of T t under τ contains vertices at every depth present
in T̃ s.

4. For all t′ ∈ T t, we have depT t(t′) = depT̃ s(τ(t′)) and F [βT t(t′)] ∼= F̃ [βT̃ s(τ(t′))].

5. For all t′ ∈ T t, the set equality ρ(βT t(t′)) = βT̃ s(τ(t′)) holds.

6. The depth of T t and T̃ s is equal.

We denote the set of bag isomorphism homomorphisms from (F, T t) to

(F̃, T̃ s) by BIsoHom
(
(F, T t), (F̃, T̃ s)

)
and set bIsoHom

(
(F, T t), (F̃, T̃ s)

)
=

|BIsoHom
(
(F, T t), (F̃, T̃ s)

)
|.

We continue with the following lemma that shows a linear relation between the number of bag
isomorphisms and the output of the counting function in Definition 27.
Lemma 6. Let r ∈ N. For any tree-decomposed graph (F, T s) ∈Mr+2 and any graph G, it holds

bIso ((F, T s), G) =
∑

(F̃,T̃ t)∈Mr+2

bIsoHom
(
(F, T s) ,

(
F̃, T̃ t

))
· cnt

((
F̃, T̃ t

)
, G
)
. (11)

Proof. Let (F, T s) be a tree-decomposed graph such that T s has depth 2D. The sum is over all
isomorphism types (F̃, T̃ t) of tree-decomposed graphs. This sum is finite and thus well-defined
as bIsoHom

(
(F, T s),

(
F̃, T̃ t

))
= 0 holds if T̃ t has depth unequal to 2D or nodes with at least

(r + 1) · (|V (G)| − 1) children.

Assume that for the root bag of (F, T s) it holds βT s(s) = {v}. Let x ∈ V (G) be any vertex in
G, and denote by (F (D)(x), T (D)(x)) the depth-2D r-`WL-unfolding tree at node x. Define the
following two sets,

S1(x) = {h ∈ BIso((F, T s), G) | h(v) = x} ,

S2(x) =
{
(ρ, τ) ∈ BIsoHom

(
(F, T s) ,

(
F (D)(x), T (D)(x)

))
| ρ(v) = x

}
.

We prove that |S1(x)| = |S2(x)| for every x ∈ V (G), which is equivalent to (11). For this, we show
for any bag isomorphism h from (F, T s) to G with h(v) = x, there exists a unique bag isomorphism
homomorphism σ from (F, T s) to (F (D)(x), T (D)(x)) with σ(v) = x such that h = π ◦ σ, where
π is the bag isomorphism from (F (D)(x), T (D)(x)) to G, defined in Definition 26 and Theorem 4,
respectively. To visualize this proof idea, see Figure 12.

First, define ρ(v) := x. Let v1, . . . , vn ∈ V (F ) be nodes that correspond to bags in T s of depth 2
with one element inside the bag and their parents having two elements in their bag, i.e., {vi} are
the corresponding bags. Similarly, set x1, . . . , xm ∈ V (F (D)(x)) nodes that correspond to bags
of depth 2 in T (D)(x), with one element inside the bag and their parents having two elements in
their bag. Since h is a bag isomorphism and π as well, for every i = 1, . . . , n there exists a ji such
that h(vi) = x̃ji = π(xji), where x̃ji ∈ V (G) and xji ∈ V

(
F (D)(x)

)
. Since π and h are bag

isomorphisms, we have

F [{{v, vi}}] ∼= G[{{x, x̃ji}}] ∼= F (D)(x)[{{x, xji}}]. (12)
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Now, set ρ(vi) = xji for every i = 1, . . . , n. Based on (12), we can easily define τ such that τ
satisfies Definition 28 with respect to bags that are of depth 1 and 2.

For q = 1, . . . , r and l = 1, . . . , |Nq(v)|, let pq
l be a path of length 2q starting from the root node s

in T s. Every such path pq
l in T s corresponds to unique path vq

l , that is in Nq(x), of length q in F .

We represent the path by
{
vql,1, v

q
l,2, . . . , v

q
l,q+1

}
, where every consecutive node is connected to each

other and for k = 1, . . . q + 1, we have
{
v, vql,k

}
∈ E(F ) iff

{
h(v), h(vql,k)

}
∈ E(G) as h is a bag

isomorphism. Further for every node k = 1, . . . , q + 1 there exists a jql,k such that h(vql,k) = x̃jql,k =

π(xjql,k), where x̃jql,k ∈ V (G),
{
x̃jql,1 , . . . , x̃j

q
l,q+1

}
∈ Nq(x) and

{
xjql,1 , . . . , xj

q
l,q+1

}
∈ Nq(x). We

set σ(vql,k) = xjql,k for every k = 1, . . . , q + 1. Clearly, we have

F [{{v, vi, vi+1}}] ∼= G
[{{

x, x̃ji , x̃ji+1

}}] ∼= F (D)(x)
[{{

x, xji , xji+1

}}]
. (13)

Now, based on (13), we can easily define τ such that τ satisfies Definition 28 with respect to bags that
correspond to paths in Nq(v) for q = 1, . . . , r. Now, following this construction recursively leads to
a bag isomorphism ρ such that h = π ◦ ρ.

It remains to show that (ρ, τ) is unique (up to isomorphism). For this, let (ρ1, τ1) be another bag
isomorphism homomorphism between (F, T s) and (F (D)(x), T (D)(x)) such that ρ1(v) = x and
h = π ◦ ρ1. We show that ρ = ρ1.

We begin by showing that ρ(v) = ρ1(v) for every v that is not in a cycle. Adopting the previous
notations, consider v1, . . . , vn ∈ V (F ) and x1, . . . , xm ∈ V (F (D)(x)). For each i = 1, . . . , n, let
ki and li be the indices such that ρ(vi) = xki

and ρ1(vi) = xli . Consequently, π(xki
) = π(xli). We

note that the image of h(vi) is not contained in a cycle in G, as otherwise, h would not be a bag
isomorphism. Similarly, xki

and xli are not contained in a cycle; otherwise, ρ and ρ1 would not be
bag isomorphisms. Now, π is an injective mapping if the domain is restricted to nodes that are of
depth 1 and 2, and not contained in a cycle. Hence, xki = xli .

We continue by showing that for everyw ∈ V (F ), that is contained in a cycle, we have ρ(w) = ρ1(w).
This follows a similar argument as the nodes that are not included in any cycle. We summarize
the argument shortly: It must hold that ρ(w) and ρ1(w) are contained in a cycle, and π(ρ(w)) and
π(ρ1(w)) as well. Now, π is injective if the domain is restricted to nodes that are only contained in
cycles. Hence, ρ1 = ρ.

We continue this subsection by introducing the concept of a bag extension in the context of tree-
decomposed graphs. This definition formalizes the notion of one tree-decomposed graph being an
extension of another.
Definition 29 (Definition 20 in (Dell et al., 2018)). Let (F, T t) be a tree-decomposed graph. A
bag extension of (F, T t) is a graph (H,T t) with V (H) = V (F ) such that for every t ∈ V (T t)
the induced subgraph H[βT t(t)] is an extension of F [βT t(T )], i.e., if e ∈ E (F [βT t(T )]), then

e ∈ E (H[βT t(T )]). We define bExt
(
(F, T t), (F̃, T̃ s)

)
as the number of bag extensions of (F, T t)

that are isomorphic to (F̃, T̃ s).

Intuitively, a bag extension of a tree-decomposed graph (F, T s) can be achieved by adding an arbitrary
number of edges to F . Each added edge must be contained within a bag that corresponds to a node in
the tree T s.
Definition 30 (Definition C.28 in (B. Zhang et al., 2024)). Given a tree-decomposed graph (F, T r)
and a graph G, a bag-strong homomorphism from (F, T s) to G is a homomorphism f from F to
G such that, for all t ∈ V (T r), f is a strong homomorphism from F [βT s(t)] to G[f(βT s(t))], i.e.,
{u, v} ∈ E (F [βT s(t)]) iff {f(u), f(v)} ∈ E (G[f(βT s(t))]). Denote BStrHom((F, T s), G) to be
the set of all bag-strong homomorphisms from (F, T s) to G, and denote bStrHom((F, T s), G) =
|BStrHom((F, T s), G)|.

We continue with decomposing the number of homomorphism from a fan cactus graph to any graph.
Lemma 7. Let r ∈ N. For any tree-decomposed graph (F, T s) ∈Mr+2 and any graph G, it holds

hom (F,G) =
∑

(F̃,T̃ t)∈Mr+2

bExt
(
(F, T s) ,

(
F̃, T̃ t

))
· bStrHom

((
F̃, T̃ t

)
, G
)
. (14)
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Figure 12: Visualization of proof idea of Lemma 6

Proof. The proof follows the lines of Lemma C.29. in (B. Zhang et al., 2024). First, (14) is
well-defined as T s is finite, hence, there can only be finitely many bag extensions of (F, T s).

Further, consider the set

S =
{((

F̃, T̃ t
)
, (ρ, τ) , g

)
|
(
F̃, T̃ t

)
∈Mr+2 , (ρ, τ) ∈ BExt

(
(F, T s) ,

(
F̃, T̃ t

))
,

g ∈ BstrHom
((
F̃, T̃ t

)
, G
)}

.

We consider the mapping σ from S to hom(F,G) via ((ρ, τ) , g) 7→ g ◦ ρ. We show that for every
homomorphism h there exists a unique, up to automorphisms,

(
F̃, T̃ t

)
∈Mr+2, (ρ, τ) and g such

that h = g ◦ ρ.

We begin with the existence part. For h ∈ hom(F,G), we define
(
F̃, T̃ t

)
∈Mr+2, (ρ, τ) and g as

follows.

• We define F̃ by adding the edges given by

{{u, v} |u, v ∈ V (F ),∃t ∈ T s s.t. {u, v} ∈ βT s(t), {h(u), h(v)} ∈ E(G)} . (15)
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We define T̃ t := T s. Clearly,
(
F̃, T̃ t

)
∈Mr+2 and it is a bag extension as only edges are

added that are contained within a bag that corresponds to a node in T s.

• We define ρ and τ as the identity mappings on their respective domain, leading to (ρ, τ) ∈
BExt

(
(F, T s) ,

(
F̃, T̃ t

))
.

• We define g = h. For x ∈ T̃ t, we show that g is a strong homomorphism from F̃ [βT̃ t(x)] to

G[g (βT̃ t(x))]. Let {u, v} ∈ E
(
F̃ [βT̃ t(x)]

)
, then {g(u), g(v)} ∈ E (G[g (βT̃ t(x))]) as h

is a homomorphism with respect to the edges E(F ) and in (15) only edge {u, v} were added
that satisfy {h(u), h(v)} ∈ E(G). On the other hand {g(u), g(v)} ∈ E (G[g (βT̃ t(x))]),

but {u, v} 6∈ E
(
F̃ [βT̃ t(x)]

)
would contradict (15) as u, v are contained in the same bag

βT̃ t(x). Hence, g ∈ BstrHom
((
F̃, T̃ t

)
, G
)

.

We finally prove the uniqueness part, i.e., that σ
(
(F̃1, T̃

t1
1 ), (ρ1, τ1), g1

)
= h implies that there

exists an isomorphism (ρ̃, τ̃) from
(
F̃1, T̃

t1
1

)
to
(
F̃, T̃ t

)
such that ρ̃ ◦ ρ1 = ρ, τ̃ ◦ τ1 = τ . We first

prove that F̃1
∼= F̃ and T̃ t1

1
∼= T̃ t.

1. For any u, v ∈ V (F ), we obviously have ρ(u) = ρ(v) iff u = v iff ρ1(u) = ρ1(v) as ρ and
ρ1 are injective mappings.

2. Let u, v ∈ V (F ). Consider {ρ1(u), ρ1(v)} ∈ E(F̃1), we show that {ρ(u), ρ(v)} ∈ E(F̃ ).
If {u, v} ∈ E(F ), then clearly {ρ(u), ρ(v)} ∈ E(F̃ ) as ρ is a homomorphism. Hence,
assume that {u, v} 6∈ E(F ). Then, u, v must be contained in the same bag of T s as ρ1 is a
bag extension and only node pairs are added if they are in the same bag. Hence, ρ(u) and ρ(v)
are contained in the same bag. As g1 is a homomorphism, we have {g1(ρ1(u)), g1(ρ1(v))} ∈
E(G). But, then also {g(ρ(u)), g(ρ(v))} ∈ E(G), and as g is a strong homomorphism (with
respect to the bag in which ρ(u) and ρ(v) are contained), we have {ρ(u), ρ(v)} ∈ E(F̃ ).
By symmetry of the argument, we have {ρ1(u), ρ1(v)} ∈ E(F̃1) iff {ρ(u), ρ(v)} ∈ E(F̃ ).

3. Since ρ1 and ρ are bag extension, they are bijective on their respective domain. Hence,
ρ̃ = ρ ◦ ρ−1

1 defines an isomorphism from F̃1 to F̃ . On the other hand, T̃ t1
1
∼= T̃ t trivially

holds, again with τ̃ = τ ◦ τ−1
1 .

We have ρ̃ ◦ ρ1 = ρ, τ̃ ◦ τ1 = τ . We show that the tuple (ρ̃, τ̃) is an isomorphism, i.e., it remains to
show that for any b ∈ T̃ t1

1 , we have ρ̃(β
T̃

t1
1
(b)) = βT̃ t(τ̃(b)). Since τ1 is surjective, we can choose a

such that τ1(a) = b. Then,

ρ̃(β
T̃

t1
1
(τ1(a))) = ρ̃(ρ1(βT s(a))) = ρ(βT s(a)) = βT̃ t(τ(a)) = βT̃ t(τ̃ ◦ τ1(a)) = βT̃ t(τ̃(b)).

The first and third equalities hold since (ρ1, τ1) and (ρ, τ) are bag extensions.

Definition 31 (Definition 30 in (B. Zhang et al., 2024)). Given two tree-decomposed graphs (F, T s)

and (F̃, T̃ t), a homomorphism (ρ, τ) from (F, T s) to (F̃, T̃ t) is called bag-strong surjective if ρ is
a bag-strong homomorphism from (F, T s) to F̃ and is surjective on both vertices and edges, and
τ is an isomorphism from T s to T̃ t such that for all x ∈ V (T s), we have ρ(βT s(x)) = βT̃ t(τ(x)).
Denote BStrSurj((F, T s), (F̃, T̃ t)) to be the set of all bag-strong subjective homomorphisms from
(F, T s) to (F̃, T̃ t), and denote bStrSurj((F, T s), (F̃, T̃ t)) = |BStrSurj((F, T s), (F̃, T̃ t))|.
Lemma 8. Let r ∈ N. For any tree-decomposed graph (F, T s) ∈Mr+2 and any graph G, it holds

bStrHom ((F, T s) , G) =
∑

(F̃,T̃ t)∈Mr+2

bStrSurj
(
(F, T s) ,

(
F̃, T̃ t

)) bIso
((
F̃, T̃ t

)
, G
)

aut
(
F̃, T̃ t

) ,

(16)
where aut(F̃, T̃ t) counts the number of automorphisms of (F̃, T̃ t).
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Proof. The proof follows the lines of Lemma C.31. in (B. Zhang et al., 2024).

Consider the set

S =
{((

F̃, T̃ t
)
, (ρ, τ) , g

)
|
(
F̃, T̃ t

)
∈Mr+2 , (ρ, τ) ∈ BStrSurj

(
(F, T s) ,

(
F̃, T̃ t

))
,

g ∈ BIso
((
F̃, T̃ t

)
, G
)}

.

We consider the mapping σ from S to BStrHom ((F, T s) , G) via ((ρ, τ) , g) 7→ g ◦ ρ. We show that
for every bag-strong homomorphism h there exists a unique, up to automorphisms,

(
F̃, T̃ t

)
∈Mr+2,

bag-strong surjective homomorphism (ρ, τ) and g such that h = g ◦ ρ.

We begin with the existence part. For h ∈ BStrHom ((F, T s) , G), we define
(
F̃, T̃ t

)
∈

Mr+2, (ρ, τ) and g as follows.

We define F̃ by defining an equivalence relation ∼ on V (F ): u ∼ v if h(u) = h(v) and there exists
a path P in T s with endpoints t1, t2 ∈ V (T s) such that u ∈ βT s(t1), v ∈ βT s(t2), and all nodes t
on the path P satisfies that h(u) = h(v) ∈ h(βT s(t)). We then define ρ as the quotient map with
respect to ∼ and set F̃ = F/ ∼, i.e.,

V (F̃ ) = {ρ(u) | u ∈ V (F )} , E(F̃ ) = {{ρ(u), ρ(v)} | {u, v} ∈ E(F )} ,
which is well-defined as {u, v} ∈ E(F ) imples ρ(u) 6= ρ(v) since h is a homomorphism. Then, ρ is
surjective per construction.

We define the mapping g : V (F̃ )→ V (G) such that g(ρ(u)) = h(u) for all u ∈ V (F ). This mapping
g is well-defined since ρ(u) = ρ(v) implies h(u) = h(v), and ρ : V (F ) → V (F̃ ) is surjective.
This leads to the equality h = g ◦ ρ. To demonstrate that g is a homomorphism, consider any edge
(x, y) ∈ E(F̃ ). There exists an edge (u, v) ∈ E(F ) such that ρ(u) = x and ρ(v) = y, which implies
(h(u), h(v)) ∈ E(G), since h is a homomorphism. Consequently, this means (g(x), g(y)) ∈ E(G).

We continue by defining the tree T̃ t := (V (T ), E(T ), βT̃ t). We set t = s, and define τ to be the
identity. Furthermore, we have βT̃ t(x) = ρ(βT s(x)) for all x ∈ V (T ). It remains to prove that
(F̃, T̃ t) ∈ Mr+2 is a valid tree decomposition. For this, it suffices to prove that for any vertex
x ∈ V (F̃ ) the subgraph BT̃ t(x) is connected. For this, let x ∈ V (F̃ ) and t1, t2 ∈ BT̃ t(x). Then,
there exists u ∈ βT s(t1), v ∈ βT s(t2) such that ρ(u) = x, ρ(v) = x. Therefore, u ∼ v. As such,
there exists a path P ∈ T s such that all nodes b on P satisfy h(u) ∈ h(βT s(b)). Hence, for every
b ∈ P there exists some wb ∈ βT s(b) such that h(wb) = h(u), and consequently wb ∼ u. Finally,
x = ρ(u) = ρ(wb) ∈ ρ(βT s(b)) = βT̃ t(b) for all b in the path P . Hence,

(
F̃, T̃ t

)
∈Mr+2.

It remains to prove that ρ is a bag-strong surjective homomorphism and g is a bag isomorphism.
We begin by showing that ρ is a bag-strong surjective homomorphism. For this, let t ∈ V (T s)
and u, v ∈ βT s(t). If {u, v} 6∈ E(F ) , then {h(u), h(v)} 6∈ E(G) (since h is a bag-strong
homomorphism). Therefore, {ρ(u), ρ(v)} 6∈ E(F̃ ) since g is a homomorphism. Hence, ρ is a
bag-strong surjective homomorphism.

We show that g is a bag isomorphism. Let x ∈ V (T̃ t), and consider ũ, ṽ ∈ βT̃ t(x). Since ρ is
surjective, there exist u, v ∈ βT s(x) such that ρ(u) = ũ and ρ(v) = ṽ. We have {ρ(u), ρ(v)} 6∈
E(F̃ ) iff {h(u), h(v)} 6∈ E(G), since both ρ and h are bag-strong homomorphisms. Therefore, g is
a bag isomorphism.

We finally prove that σ
(
(F̃1, T̃

t1), (ρ1, τ1), g1

)
= σ

(
(F̃, T̃ t), (ρ, τ), g

)
implies there exists an

isomorphism (ρ̃, τ̃) from (F̃1, T̃
t1
1 ) to (F̃, T̃ t) such that ρ̃ ◦ ρ1 = ρ, τ̃ ◦ τ1 = τ, g1 = g ◦ ρ̃. Let

h = g1 ◦ ρ1 = g ◦ ρ. We will only show that F̃1
∼= F̃ since the remaining procedure is almost the

same as in previous proofs. It suffices to prove that, for all u, v ∈ V (F ), ρ1(u) = ρ1(v) iff

a) h(u) = h(v), and

b) There exists a path P in T s with endpoints t1, t2 ∈ V (T ) such that u ∈ βT s(t1), v ∈
βT s(t2), and all node x on path P satisfies that h(u) ∈ h(βT s(x)).
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We begin by showing the first direction, i.e., ρ1(u) = ρ1(v) implies Items a) and b). If ρ1(u) = ρ1(v),
we clearly have h(u) = h(v) as g1 is well-defined. Also, there exists x1 ∈ BT s(u), x2 ∈ BT s(v),
i.e., u ∈ βT s(x1) and v ∈ βT s(x2). Hence, ρ(u) ∈ ρ(βT s(x1)) ⊂ β

T̃
t1
1
(τ1(x1)) and ρ1(u) =

ρ1(v) ∈ ρ1(βT s(x2)) ⊂ βT̃ t1
1
(τ1(x2)) since (ρ1, τ1) is a homomorphism. Hence, τ1(x1), τ1(x2) ∈

B
T̃

t1
1
(ρ1(u)). Since T̃ t1

1 [B
T̃

t1
1
(ρ1(u))] is connected, there is a path P in T̃ t1

1 [B
T̃

t1
1
(ρ1(u))] with

endpoints τ1(x1), τ1(x2) such that all nodes x on P satisfies ρ1(u) ∈ βT̃ t1
1
(x) = β

T̃
t1
1
(τ ◦τ−1(x)) =

ρ1
(
βT s(τ−1

1 (x))
)
. We conclude h(u) = g1(ρ1(u)) ∈ g1(ρ1(βT s(τ−1

1 (x)))) = h(βT s(τ−1
1 (x))).

We continue by showing the second direction, i.e., ρ1(u) = ρ1(v) if Items a) and b). We prove this
by contradiction, i.e., assume ρ1(u) 6= ρ1(v) but the above items (a) and (b) hold. We consider two
cases.First, assume that u and v are in the same bag of T s. Then, as (ρ1, τ1) is a homomorphism,
the nodes ρ1(u) and ρ1(v) are in the same bag of T̃ t1

1 . Since g1 is a bag isomorphism, we have
g1(ρ1(u)) 6= g1(ρ1(v)). This contradicts Item (a) above.

Now, consider the second case. For this, assume that u and v are not in the same bag of T s.
Then, there exist two adjacent nodes x1, x2 on path P such that u ∈ βT s(x1), u 6∈ βT s(x2). We
have βT s(x2) ⊂ βT s(x1) as for every pair of nodes t1, t2 in a canonical tree decomposition with
{t1, t2} ∈ E(T s) we have either βT s(t1) ⊂ βT s(t2) or βT s(t2) ⊂ βT s(t1). Now, item (b) implies
that there exists w ∈ βT s(x2) such that w 6= u and h(w) = h(u). Then, ρ1(w) ∈ ρ1 (βT s(x2)) ⊂
ρ1 (βT s(x1)) ⊂ βT̃ t1

1
(τ1(x1)). Therefore, ρ1(u) and ρ1(w) are two different nodes in β

T̃
t1
1

(τ1(x1))

with g1(ρ1(u)) = h(u) = h(w) = g1(ρ1(w)). This contradicts the condition that g1 is a bag
isomorphism. This yields the desired result that F̃ ∼= F̃1.

Finally, we restate Theorem 2, with its proof now being a straightforward corollary of the preceding
results in this section.

Theorem 2. Let r ≥ 0. Then, r-`WL can homomorphism-countMr+2.

Proof. According to Corollary 3, if cr(G) = cr(H), then cnt(F,G) = cnt(F,H) for every F ∈
Mr+2. Utilizing Lemma 6, we extend this result to bag isomorphism counts: bIso(F,G) =
bIso(F,H) holds for every F ∈Mr+2. Finally, invoking Lemma 7 and Lemma 8, we conclude that
hom(F,G) = hom(F,H) for all F ∈Mr+2.

H Implications of Theorem 2

In this section, we discuss important implications of Theorem 2 and provide proofs for the results in
Corollary 2.

H.1 Appendix on F-Hom-GNNs and Proof of Corollary 2 i)

Recent work in the domain of MPNNs has explored enhancing the initial node features by incorporat-
ing homomorphism counts (Barceló et al., 2021). We summarize this approach in this section and
compare it to our r-`WL algorithm.

Define F = {P s
1 , . . . , P

s
l } as a collection of rooted graphs, termed as patterns. In F-Hom-MPNNs,

the initial feature vector of a vertex v in a graph G combines a one-hot encoding of the label χG(v)
with homomorphism counts corresponding to each pattern in F . The feature vector for each vertex v
is recursively defined over rounds of message passing as follows:

x
(0)
F,G,v = (χG(v),hom(P s

1 , G
v), . . . , hom(P s

l , G
v))

x
(t+1)
F,G,v = g(t+1)

(
x
(t)
F,G,v, f

(t+1)
(
x
(t)
F,G,u | u ∈ NG(v)

)) (17)

Here, g(t) and f (t) represent the update and aggregation functions at depth t, respectively.
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H.1.1 Expressivity of F-Hom-MPNNs

In this section, we summarize known results about the expressivity of F-Hom-MPNNs. The main
result from Barceló et al., 2021 can be summarized as follows.

Theorem 6. For any two graphs G and H , it holds F-Hom-MPNNs can separate G and H if and
only if hom(T,G) = hom(T,H), for every F-pattern tree.

To understand the above theorem, we need to define the concept of F-pattern trees. For this, we
define the graph join operator ∗ as follows. Given two rooted graphs Gv and Hw, the join graph
(G ∗H)v is obtained by taking the disjoint union of Gv and Hw, followed by identifying w with v.
The root of the join graph is v. Further, if G is a graph and P r is a rooted graph, then joining a vertex
v in G with P r results in the disjoint union of G and P r, where r is identified with v.

Let F = {P1, . . . , Pl}. An F-pattern tree T r is constructed from a standard rooted tree Sr =
(V,E, χ), which serves as the core structure, or the "backbone", of T r. To form T r, each vertex s ∈ V
of the backbone may be joined to any number of duplicates of any patterns from F . Conceptually,
an F-pattern tree is a tree graph enhanced by attaching multiple instances of any pattern from F to
the nodes of the backbone tree. However, it is important to note that additional patterns may not be
attached to any node that already derives from a pattern in F . Our method can homomorphism-count
graphs where this is allowed, see Appendix H.1.2.

Examples of F-pattern trees for F =
{ }

are

where grey vertices are part of the backbones of the F-pattern trees, black vertices are the joined
node and white vertices are part of the attached patterns. We define the set of F -pattern trees by FTr.

H.1.2 Comparison with r-`WL

We compare our proposed r-`GIN against Fr-Hom-MPNNs, where Fr = {C3, . . . , Cr+2} consists
of cycle graphs up to length r + 2. Both MPNN variants exhibit equivalent preprocessing complexity.
However, after the initial layer, the computational complexity of our method is marginally higher, yet
it increases linearly with the number of cycles present in the underlying graph.

According to Theorem 2, our method r-`GIN can homomorphism-count all fan (r+2)-cactus graphs.
In particular, r-`GIN can homomorphism-count all Fr-pattern trees. For example, there are infinitely
many fan r-cactus graphs that cannot be represented as Fr-pattern trees, e.g., for r = 1

We restate Corollary 2 ii) and give a short proof.

Corollary 4. Let r ∈ N \ {0}. Then, r-`WL is more powerful than F-Hom-MPNNs, where
F = {C3, . . . , Cr+2}.

Proof. The proof of Corollary 2 ii) can be stated as a summary of all finding of the previous subsection:
By Theorem 2, we have r-`WL v hom(Mr+2, ·). By Theorem 6, we have F-Hom-MPNNs
v hom(FTr, ·) and hom(FTr, ·) v F-Hom-MPNNs. Clearly, FTr ⊂ Mr+2. Hence, r-`WL
v hom(Mr+2, ·) v hom(FTr, ·). Hence, r-`WL is more powerful than F-Hom-MPNNs.

H.2 Appendix on Subgraph GNNs and Proof of Corollary 2 ii)

Subgraph GNNs treat a graph as a collection of graphs {Gu | u ∈ N(v)}, where Gu is a graph
obtained by marking the corresponding node u. For every graph Gu it runs an independent WL-

41



algorithm, i.e.,

x
(0)
Sub,Gu(v) = (χG(v),1v=u(v))

x
(t+1)
Sub,Gu(v) = g(t+1)

(
x
(t)
Sub,Gu(v), f

(t+1)
(
x
(t)
Sub,Gu(w) | w ∈ NG(v)

))
.

(18)

Here, g(t) and f (t) represent the update and aggregation functions at depth t, respectively. The final
node representations after t rounds are then calculated by

xt
Sub,G(u) = h

(
x
(t)
Sub,Gu(v) | v ∈ V (G)

)
.

H.2.1 Expressivity of Subgraph GNNs and Comparison with r-`WL

The expressivity of subgraph GNNs is fully characterized by the class

F sub := {F | ∃u ∈ V (F ) s.t. F \ {u} is a forest} ,
i.e., Subgraph GNNs can separate a pair of graphs G,H if and only if hom(F sub, G) 6=
hom(F sub,H). Furthermore, the set F sub is the maximal set that satisfies this property (B. Zhang
et al., 2024, Theorem 3.4). We restate Corollary 2 ii) and provide a proof.
Corollary 5. 1-`WL is not less powerful than Subgraph GNNs. In particular, any r-`WL can separate
infinitely many graphs that Subgraph GNNs fail to distinguish.

Proof. We show that already 1-`WL can separate infinitely many graphs that Subgraph GNNs fail to
distinguish. The other statements then follow as a simple corollary of Proposition 1.

For clarity, we begin by demonstrating that there exists a pair of graphs that 1-`GIN can separate, but
Subgraph GNNs cannot distinguish. Consider the graph F defined as follows: F =

{ }
. It

holds that F ∈M3 \F sub, where F sub is the maximal set that Subgraph GNNs can homomorphism-
count. Then, by (B. Zhang et al., 2024, Theorem 3.4), there exists a pair of graphs G(F ) and
H(F ) such that hom(F,G(F )) 6= hom(F,H(F )) and hom(F sub, G(F )) = hom(F sub,H(F )).
Hence, Subgraph GNNs cannot separate G(F ) and H(F ). Since F ∈ M3, by hom(F,G(F )) 6=
hom(F,H(F )) and Theorem 2, 1-`WL can separate G(F ) and H(F ).

This argument can be repeated for every F ∈M3 \ F sub. Since there are infinitely many graphs in
M3 \ F sub, the corollary follows.

We mention that the construction of the pair of graphs G(F ) and H(F ) in the previous proof is
based on (twisted) Fürer graphs and is largely motivated by the constructions by Fürer (2001) and
B. Zhang et al. (2024). More precisely, we can define G(F ) as the Fürer graph of F and H(F ) as the
corresponding twisted Fürer graph. See Figure 7c for a visualization of F,G(F ), and H(F ).

H.3 Appendix on Subgraph k-GNNs and Proof of Corollary 2 iii)

Qian et al. (2022) introduced a higher-order version of Subgraph GNNs that compute representations
for subgraphs made of tuples of nodes. Specifically, Subgraph k-GNNs – referred to as vertex-
subgraph k-OSANs in the original work (Qian et al., 2022) – treat a graph as a collection of graphs{
Gu | u ∈ V (G)k

}
, where Gu is a graph obtained by marking the corresponding nodes u. For every

graph Gu it runs an independent WL-algorithm, i.e.,

x
(0)
Sub(k),Gu(v) = (χG(v), atp(u),1v=u1

(v), . . . ,1v=uk
(v))

x
(t+1)
Sub(k),Gu(v) = g(t+1)

(
x
(t)
Sub(k),Gu(v), f

(t+1)
(
x
(t)
Sub(k),Gu(w) | w ∈ NG(v)

))
.

(19)

Here, g(t) and f (t) represent the update and aggregation functions at depth t, respectively. For every
k-tuple u, the final representations after t rounds are then calculated by

x
(t)
Sub(k),G(u) = h

(
x
(t)
Sub(k),Gu(v) | v ∈ V (G)

)
.

The final graph representation is then given by

x
(t)
Sub(k)(G) = j

(
x
(t)
Sub(k),G(u) | u ∈ V (G)k

)
.

The homomorphism-expressivity of these GNNs is characterized as follows:
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Theorem 7 (B. Zhang et al., 2024). The homomorphism-expressivity of Subgraph k-GNN is given by
F sub(k) = {F : ∃U ⊂ VF s.t. |U | ≤ k and F \ U is a forest }.

Since the set F sub(k) is the maximal set of graphs that Subgraph k-GNNs can homomorphism-count,
we can derive the following corollary, which restates Corollary 2 iii) and provides a proof.

Corollary 6. For any k ≥ 1, 1-`WL is not less powerful than Subgraph k-GNNs. In particular, any
r-`WL can separate infinitely many graphs that Subgraph k-GNNs fail to distinguish.

Proof. The proof parallels the proof of Corollary 2. We present it here for completeness.

Let k ≥ 1. We will show that there exists a pair of graphs that 1-`GIN can distinguish, but Subgraph
k-GNNs cannot. Consider the graph F , defined as the unique graph with k triangle graphs, all
connected by an edge to a single node.

It holds that F ∈ M3 \ F sub(k), where F sub(k) is the maximal set that Subgraph k-GNNs can
homomorphism-count. Then, by (B. Zhang et al., 2024, Theorem 3.8), there exists a pair of
graphs G(F ) and H(F ) such that hom(F,G(F )) 6= hom(F,H(F )) and hom(F sub(k), G(F )) =
hom(F sub(k),H(F )). Hence, Subgraph k-GNNs cannot separate G(F ) and H(F ). Since F ∈M3,
by hom(F,G(F )) 6= hom(F,H(F )) and Theorem 2, 1-`WL can separate G(F ) and H(F ).

This argument can be repeated for every F ∈ M3 \ F sub(k). Since there are infinitely many
non-isomorphic graphs inM3 \ F sub(k), the corollary follows.

H.4 Proof of Corollary 2 iv)

Proof of Corollary 2 iv). Given graphs F and G, it is well-known (see, e.g., (Neuen, 2024; Curtica-
pean et al., 2017)) that sub(F,G) can be decomposed as:

sub(F,G) =
∑

F ′∈spasm(F )/∼

α(F ′)hom(F ′, G). (20)

Here, the sum ranges over all non-isomorphic graphs in spasm(F ). The sum in (20) is finite since the
homomorphic image of F has at most |V (F )| nodes. Per assumption, we have spasm(F ) ⊂Mr+2,
i.e., by Theorem 2, r-`WL can homomorphism-count spasm(F ). In particular, if r-`WL cannot
separate two graphs G and H , we have hom(spasm(F ), G) = hom(spasm(F ),H), and hence,
sub(F,G) = sub(F,H).

The result on subgraph-counting paths follows directly as the homomorphic image of a path Pr+3 of
length r + 3 lies inMr.

I Appendix for Section 6

Theorem 3. For fixed t, r ≥ 0, t iterations of r-`WL are more powerful than r-`MPNN with t layers.
Conversely, r-`MPNN is more powerful than r-`WL if the functions f (t), g(t) in (3) are injective.

Proof of Theorem 3. We begin by proving that c(t)r v h
(t)
r . We argue by induction over t for any

fixed r ≥ 0.

Initially, c(0)r = h
(0)
r as both labeling functions start with the same base labels. Now assume

c
(t+1)
r (u) = c

(t+1)
r (v) for some u, v ∈ V (G). By definition,

HASH
(
c(t)r (u),

{{
c(t)r (p) |p ∈ N0(u)

}}
, . . .

)
= HASH

(
c(t)r (v),

{{
c(t)r (p) |p ∈ N0(v)

}}
, . . .

)
.

This implies c(t)r (u) = c
(t)
r (v) and{{

c(t)r (p) |p ∈ Nk(u)
}}

=
{{

c(t)r (p) |p ∈ Nk(v)
}}

, ∀k ∈ {0, . . . , r} ,

as HASH is an injective function.

43



By induction hypothesis, we hence have h(t)r (u) = h
(t)
r (v) and{{

h(t)r (p) |p ∈ Nk(u)
}}

=
{{

h(t)r (p) |p ∈ Nk(v)
}}

, ∀k ∈ {0, . . . , r} ,

which implies that any function, in particular f (t+1)
k and g(t+1) have to return the same result.

Therefore, we have h(t+1)
r (u) = h

(t+1)
r (v).

We proceed to prove h(t)r v c
(t)
r if all message, update, and readout functions are injective in

Definition 9. For this, we show that for each t ≥ 0 there exists an injective function φ such that
h
(t)
r = φ ◦ c(t)r . For t = 0, we can choose φ to be the identity function. Assume that for t− 1 there

exists an injective function φ such that h(t−1)
r (v) = φ ◦ c(t−1)

r (v). Then, we can write

h(t)r (v) = g(t)
(
h(t−1)(v),m

(t)
0 (v), . . . ,m(t)

r (v)
)

= g(t)
(
φ ◦ c(t−1)

r (v), φ ◦m(t)
0 (v), . . . , φ ◦m(t)

r (v)
)
,

where for every q = 0, . . . , r, we set φ ◦m(t)
q (v) :=

{{
(φ ◦ c(t−1)

r (p)) | p ∈ Nq(v)
}}

and (φ ◦

c
(t−1)
r (p)) = (φ ◦ c(t−1)

r (p1), . . . , φ ◦ c(t−1)
r (pq+1)) for p = {pi}q+1

i=1 ∈ Nq(v). By assumption, all
message, update, and readout functions are injective in Definition 9. Since the concatenation of
injective functions is injective, there exists an injective function ψ such that

h(t)r (v) = ψ

(
c(t−1)
r (v),

{{
c(t−1)
r (p) | p ∈ N0(v)

}}
,{{

c(t−1)
r (p) | p ∈ N1(v)

}}
,

...{{
c(t−1)
r (p) | p ∈ Nr(v)

}})
.

As HASH in Definition 7 is injective, the inverse HASH−1 exists and is also injective. Hence,

h(t)r (v) = ψ ◦HASH−1 ◦HASH

(
c(t−1)
r (v),

{{
c(t−1)
r (p) | p ∈ N0(v)

}}
,{{

(c(t−1)
r (p) | p ∈ N1(v)

}}
,

...{{
(c(t−1)

r (p) | p ∈ Nr(v)
}})

= ψ ◦HASH−1
(
c(t)r (v)

)
.

Choosing φ = ψ ◦HASH−1 finishes the proof.

We conclude this section with the following lemma that justifies our architectural choice in (4).
Lemma 9. Let x ∈ Qr. Then there exist ε ∈ Rr such that

ϕ(x) =

r∑
k=0

εkxk (21)

is an injective function.

Proof. We prove this claim by induction. For r = 0, any x 6= 0 ∈ R fulfills the claim. Now, let
ε ∈ Rr such that ϕ(x) : Qr → R is injective. The set Q[ε1, . . . , εr] = {

∑r
k=0 εkxk |x ∈ Qr} is
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countable and hence a proper subset of R. It follows that there exists εr+1 ∈ R with εr+1 /∈ Q[ε].
Note that 0 ∈ Q and hence εr+1 6= 0. We now prove our claim by contradiction.

Assume there exist x 6= x′ ∈ Qr+1 with
∑r+1

k=0 εkxk =
∑r+1

k=0 εkx
′
k. We distinguish two cases:

xi = x′i for all i ≤ r and xr+1 6= x′r+1: Then immediately

xr+1 6= x′r+1

⇒ εr+1xr+1 6= εr+1x
′
r+1

⇒
r∑

k=0

εkxk + εr+1xr+1 6=
r∑

k=0

εkxk + εr+1x
′
r+1

⇒
r+1∑
k=0

εkxk 6=
r+1∑
k=0

εkxk .

∑r
k=0 εkxk 6=

∑r
k=0 εkx

′
k: But then

r∑
k=0

εkxk + εr+1xr+1 =

r∑
k=0

εkx
′
k + εr+1x

′
r+1

⇔
r∑

k=0

εkxk −
r∑

k=0

εkx
′
k = εr+1(x

′
r+1 − xr+1)

The left hand side is an element of Q[ε1, . . . , εr]. However, εr+1(x
′
r+1 − xr+1) /∈ Q[ε1, . . . , εr] by

choice of εr+1, leading to a contradiction.
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Answer: [Yes]
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and provide proofs for all claims (see Appendix E ff.) and code for all experiments (see our
GitHub repository). We clearly state the scope of our theoretical results and emphasize that
our method provides an expressive architecture suitable for sparse real-world graphs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We describe the computational complexity of our method in a separate para-
graph (see Section 6). We specifically address its preprocessing complexity on dense graphs
in a separate paragraph (see Section 7). We also mention important future work that would
complement our theoretical contributions in the conclusion section (see Section 8).
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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and how they scale with dataset size.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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(see Appendix E ff.).
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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they appear in the supplemental material, the authors are encouraged to provide a short
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Justification: All hyperparameters, hyperparameter ranges, and used resources are given
in Appendix C. Our GitHub repository provides instructions on how to reproduce all
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All hyperparameters, hyperparameter ranges, and used resources are given in
the appendix (see Appendix C). Our GitHub repository contains instructions to reproduce
all experiments.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Data splits, hyperparameters, hyperparameter grids (if used), optimizer, etc. are
detailed in the main paper (see Section 7) and appendix (see Appendix C), with additional
instructions provided in the anonymous GitHub link (see our GitHub repository).
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We report error bars and confidence intervals for our experimental results
(see Section 7), capturing the variability due to different random seeds and initialization.
Detailed information about statistical significance tests is provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All information on the compute resources is given in the appendix (see
Appendix C). For the real-world experiments, we provide run times, and for the synthetic
experiments, the run times are negligible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We respect the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: While our work has numerous potential societal consequences, none of which
we feel must be explicitly emphasized here, its impact lies in providing a theoretical
foundation for improved graph representation learning methodologies.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not release data or models with a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All used assets are properly cited, and the licenses are mentioned.
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Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce new assets in the form of code. All details about training,
datasets, and models are given in the submitted paper and/or in our GitHub repository,
including detailed instructions to run the code. The license is provided under the MIT
license.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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