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ABSTRACT

This paper introduces 3DGrid-VQGAN, a generative framework for the repre-
sentation and reconstruction of molecular electronic structures as electron charge
densities on 3D grid produced by quantum chemical simulations. The model
efficiently encodes high-dimensional data into compact latent representations, en-
abling downstream tasks such as molecular property prediction with enhanced
accuracy. Evaluation on the QM9 dataset, which contains quantum chemical
properties computed at the density functional theory (DFT) level, demonstrates
the model’s ability to capture essential features of the electronic structure. The
reconstructed charge densities achieve high fidelity, preserving critical details such
as electron density cusps at nuclear positions. This is quantified using metrics
such as Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio
(PSNR), and Fréchet Inception Distance (FID). These metrics, alongside visual and
numerical analyses, demonstrate the model’s robustness across diverse molecular
structures, including complex geometries and chemical environments. The results
suggest that generative approaches like 3DGrid-VQGAN could significantly re-
duce reliance on computationally intensive quantum chemical simulations, offering
simulation-grade data derived directly from learned representations. Future work
will focus on extending the model to larger and more complex molecular systems,
improving interpretability of latent representations, and integrating the framework
into workflows for molecular property prediction and generative design.

1 INTRODUCTION

Generative modeling, particularly in multimodal domains, has recently demonstrated substantial
advancements in tackling complex problems across various disciplines (Anstine & Isayev, 2023;
Ingraham et al., 2023; Sankaran & Holmes, 2023). The ability to integrate text and visual modalities
has progressed to a level where physical phenomena can be accurately represented (Liang et al., 2024).
For instance, GameNGen, a recent model built on stable diffusion, enables real-time, interactive
simulations of first-person shooter games (Valevski et al., 2024). Similar to video game simulations,
molecular simulations aim to construct accurate and realistic representations of complex, dynamic
environments. This raises a critical question: can generative AI produce simulation-grade molecular
data without relying on computationally expensive simulations?

Such a capability would be fundamentally different from the popular track of learning neural potentials
that still implies running simulations to obtain results informed by physics. It would establish new
theoretical frameworks for the computational treatment of molecular systems, significantly reducing
the dependence on specialized software and hardware, such as quantum chemical simulation codes
on high-performance computing infrastructures (Liu et al., 2024; Shang et al., 2023). Moreover, the
envisioned generative AI capability would be fully compatible with existing computational chemistry
approaches, enabling direct validation of results or seamless progression to simulations using higher
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levels of theory. This paradigm shift would also lower costs and reduce barriers to entry, alleviating
the need for specialized expertise in computational chemistry (Gangwal et al., 2024; Ananikov, 2024).

We present preliminary results of a generative approach capable of producing simulation-grade
molecular electronic structures at the level of Hartree-Fock (HF) approximation (Lykos & Pratt, 1963)
and density functional theory (DFT) (Hohenberg & Kohn, 1964). These simulations, which involve
solving the electronic Schrödinger equation (Hermann et al., 2020), yield the electron density — a
probabilistic representation of electron distribution in three-dimensional space (March, 1982). The
electron density is the central and most information-rich artifact of quantum chemical simulations,
making it an ideal candidate for generative modeling. The electron density encodes detailed molecular
information enabling reconstruction of the atomic structure by identifying charge density cusps at
nuclear positions, partitioning the electron density into atomic volumes and reconstructing atomic
charges and types, using methods such as the atoms-in-molecules formalism (Bader et al., 1987;
Alibakhshi & Schäfer, 2024). Moreover, per holographic electron density theorem (Mezey, 1999) a
nonzero segment of the ground-state electron density uniquely determines the full molecular electron
density thus opening a possibility of generative design of molecular electronic structure constrained
by a fractional segment of the electron charge density. Our work demonstrates the potential of
generative AI to bypass traditional simulation-based computational pipelines, paving the way for
efficient and accessible simulation-grade molecular modeling.

2 OVERVIEW OF THE PROPOSED APPROACH

This section provides an overview of the 3DGrid-VQGAN foundation model developed for rep-
resenting 3D electron density grids. The methodology begins with a description of the processes
involved in collecting, curating, and pre-processing the data used for pre-training. This is followed by
an explanation of the encoder-decoder architecture employed for learning compact and expressive
representations of the 3D data. Key aspects of the data pipeline and model architecture are outlined
to contextualize the approach within the broader framework of 3D representation learning.

2.1 PRE-TRAINING DATA

The dataset for VQGAN included approx. 855K molecules from PubChem database, such that the
molecules in the constructed dataset contained only main-group elements up to Barium, the number of
heavy atoms did not exceed 30, the molecules were charge-neutral and did not have charge separation.
For each molecule represented as a SMILES string we generated and optimized 50 conformations
using distance geometry algorithm and molecular force field as implemented in rdkit Landrum et al.
(2024). We reoptimized 5 lowest-energy conformations using MINDO3 semi-empirical level of
theory as implemented in pyscf electronic structure library Sun et al. (2020). The conformation
with the lowest energy at MINDO3 level of theory went into restricted Hartree-Fock evaluation with
the minimal basis set STO-3G to produce ab initio electron density and output it in volumetric grid
format, aka voxeled charge density.

2.2 MODEL ARCHITECTURE

To transform 3D electron density grids into a meaningful latent representation, vector quantized
autoencoders have proven to be a viable solution, particularly for addressing the issue of blurry outputs
commonly encountered in variational autoencoders (Van Den Oord et al., 2017; Razavi et al., 2019).
These models achieve this by mapping the latent feature vectors at the bottleneck of the autoencoder
to a quantized representation drawn from a learned codebook (Esser et al., 2021). The VQ-GAN
architecture, a class of vector quantized autoencoders, further enhances image reconstruction quality
by incorporating a discriminator loss at its output (Yu et al., 2021).

In this framework, 3D electron density grids are passed through the encoder to generate a latent code
ze ∈ R(

H
s )×(

W
s )×k, where H represents the height, W represents the width, C is the number of

channels, k is the number of latent feature maps, and s is a compression factor. During the vector
quantization step, these latent feature vectors are quantized by substituting each vector with its closest
match from the learned codebook Z (see Fig. 1). The image is then reconstructed by feeding the
quantized feature vectors into the decoder G. The learning objective is to minimize a combination
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of three losses: the reconstruction loss Lrec, the codebook loss Lcodebook, and the commitment loss
Lcommit. To extend this architecture to support 3D inputs, we follow the (Ge et al., 2022; Khader et al.,
2022) and replace the 2D convolutions by 3D convolutions.

2.3 PRE-TRAINING STRATEGIES

The training of the 3DGrid-VQGAN model was conducted using a batch size of 1, necessitated by
the large size of the input 3D grids. The training process was distributed across 600 NVIDIA A100
GPUs, running for a total of 43 epochs and consuming approximately 5000 GPU node hours. The
model pre-training was performed on the Polaris cluster at the Argonne National Laboratory using
discretionary allocation of the INCITE program.

The input to the model consists of 3D electron density grids with a resolution of 128× 128× 128.
During the vector quantization step, the latent features generated by the encoder are mapped to
a codebook with 16,384 entries. Each codebook entry (or prototype vector) represents a distinct
cluster or region within the latent feature space. This quantization step enforces the alignment of
latent features with predefined discrete prototypes, replacing the continuous representation of the
latent space with a structured and interpretable discrete representation. To manage the complexity
of the data and enhance the efficiency of representation learning, an internal downsampling scheme
with a factor of [4, 4, 4] is employed. This approach reduces the spatial dimensions of the encoded
representation, preserving essential features while lowering computational costs. The model is
optimized using a learning rate of 3× 10−4, facilitating convergence over the training period.

2.4 FINE-TUNING STRATEGIES

To further enhance the 3D energy grid VQ-GAN model on downstream tasks, we conducted a fine-
tuning strategy. The model architecture includes a feature extractor and feature predictor. The feature
extractor reuses the pre-trained encoder weights from the 3DGrid-VQGAN model (see Fig 2). This
module receives the 3D electron density grids to obtain the grid embeddings of size 32×32×32×256,
which contains the learned representations of the input. Then, we used a mean pooling to obtain an
embedding representing a unique molecule, resulting in an embedding size of 2048. The feature
predictor is a fully connected network with 2 hidden layers and Dropout (dropout=0.1) to prevent
overfitting. This module receives the molecular embeddings from the encoder and estimates the
downstream tasks. The fine-tuning experiments were conducted using a NVIDIA A100 GPU with a
batch size of 8, since only the weights of feature extractor and predictor are updated. To achieve a
better converge through the fine-tuning, the model was optimized using a learning rate of 3× 10−5

for the first 30 epochs and a learning rate of 1× 10−5 for the remaining epochs.

3 EXPERIMENTS

To evaluate the effectiveness of the latent space representations learned by our 3DGrid-VQGAN
model, we conducted a series of experiments using the QM9 dataset, obtained through MoleculeNet
(Wu et al., 2018), as outlined in Table 4. QM9 is a benchmark dataset in computational chemistry,
providing quantum chemical properties computed at the density functional theory (DFT) level using
the B3LYP/6-31G(2df,p) functional. The dataset consists of approximately 134,000 small organic
molecules, each containing up to nine heavy atoms selected from a predefined set of elements (H, C,
O, N, F). To ensure an unbiased assessment, we adopted identical train/validation/test splits for all
tasks as in Wu et al. (2018).

To evaluate the reconstruction capability of the 3DGrid-VQGAN model, a subset of 4,141 samples was
randomly selected from the 854,919 samples used during pre-training. This sample size corresponds
to a confidence level of 99% and a margin of error of 2%, ensuring statistical validity for the analysis.
The selection process aimed to provide a representative distribution of the dataset without introducing
sampling bias.
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4 RESULTS AND DISCUSSION

The performance of the 3DGrid-VQGAN model for predicting quantum chemical properties is
analyzed using the QM9 benchmark dataset. Table 1 presents a comparative evaluation of the
mean absolute error (MAE) achieved by the 3DGrid-VQGAN model and several state-of-the-art
methods, as reported in prior studies. The evaluation adheres to the protocol established in the original
MoleculeNet work by Wu et al. (2018), where the average MAE is used as metric for this task.

Table 1: Performance for quantum chemical properties prediction.

Method QM9 Dataset
D-MPNN Yang et al. (2019) 3.241
GC Altae-Tran et al. (2017) 4.356
A-FP Xiong et al. (2019) 4.353
MPNN Gilmer et al. (2017) 3.189
N-Gram Liu et al. (2019) 2.510
MolCLRGIN Wang et al. (2022) 2.357
Hu et al. Hu et al. (2020) 4.349
GEM Fang et al. (2022) 2.970
Uni-Mol Zhou et al. 1.830
MoLFormer-XL Ross et al. (2022) 1.589
SELFIES-TED289M Priyadarsini et al. (2024) 4.263
SMI-TED289M Soares et al. (2024) 1.324
3DGrid-VQGAN 1.217

The QM9 dataset provides a diverse set of molecular quantum chemical properties derived from
density functional theory calculations, offering a testing ground for evaluating machine learning
methods. The comparison includes models employing graph-based neural architectures, such as
D-MPNN (Yang et al., 2019) and MolCLRGIN (Wang et al., 2022), as well as transformer-based
architectures, including MoLFormer-XL (Ross et al., 2022) and SMI-TED289M (Soares et al., 2024).
These methods represent different approaches to modeling molecular systems, ranging from graph
convolutional frameworks to self-supervised pre-training strategies.

The results in Table 1 indicate that the 3DGrid-VQGAN model achieves the lowest MAE of 1.2197,
outperforming all competing methods. For comparison, SMI-TED289M , a fine-tuned large-scale
transformer model, achieves an MAE of 1.3246, while MoLFormer-XL achieves an MAE of 1.5894.
The performance of 3DGrid-VQGAN can be attributed to its ability to encode the 3D electron density
grids directly, preserving critical spatial and electronic information that underpins the molecular
properties.

The performance of 3DGrid-VQGAN suggests that generative models operating on 3D data represen-
tations offer distinct advantages over methods relying on 2D graph-based or SMILES representations.
By incorporating spatial and electronic context into the latent representations, the model captures
essential features of the molecular structure and dynamics that are often lost in lower-dimensional
representations.

3D ELECTRON DENSITY RECONSTRUCTION EVALUATION

To evaluate the reconstruction capability of the 3DGrid-VQGAN model, a subset of 4,141 samples
was randomly selected from the 854,919 samples used during pre-training. This subset size was
determined to achieve a confidence level of 99% with a margin of error of 2%, ensuring statistical
robustness and a representative evaluation of the model’s reconstruction performance. The random
sampling process was designed to preserve the distributional characteristics of the dataset, minimizing
sampling bias and providing reliable insights into the model’s behavior across the broader data
distribution.

The results summarized in Table 2 demonstrate the model’s progressive improvement in reconstruction
quality as training epochs advance. At early stages (e.g., Epoch 1), the reconstructions show relatively
low SSIM (0.049297) and high MAE (0.020376), reflecting the model’s initial learning phase where
latent space representations are not yet optimized. By Epoch 10, significant improvements are
observed across all metrics, with SSIM increasing to 0.102990 and MAE dropping to 0.005006,
indicating better alignment between the reconstructed and original grids.
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Table 2: 3D electron density reconstruction evaluation.

Epoch SSIM ↑ MS-SSIM ↑ PSNR (dB) ↑ FID ↓ KID ↓ LPIPS ↓ Reconstruction
(MAE) ↓

VQGAN - Epoch 01 0.049297 0.718320 28.266564 2.111260 0.008810 0.224641 0.020376
VQGAN - Epoch 10 0.102990 0.781453 33.195561 0.308362 0.000661 0.174354 0.005006
VQGAN - Epoch 20 0.480144 0.913850 34.866451 0.141509 0.000155 0.169709 0.003550
VQGAN - Epoch 30 0.095842 0.778469 34.751817 0.195592 0.000335 0.138630 0.003838
VQGAN - Epoch 40 0.350813 0.902409 34.747153 0.185152 0.000363 0.127490 0.003994
VQGAN - Epoch 43 0.055365 0.724635 35.515505 0.099327 0.000027 0.134057 0.003300

The steady improvement in performance metrics indicates that the 3DGrid-VQGAN model effectively
learns a compact and meaningful latent representation of the 3D electron density grids. The ability to
accurately reconstruct these grids is critical for preserving the spatial and electronic features essential
for downstream applications, such as quantum chemical property prediction or generative tasks. The
diverse set of evaluation metrics provides a comprehensive assessment, ensuring that the model’s
capabilities are validated from both numerical and perceptual perspectives.

The reconstructed grids demonstrate a high degree of structural fidelity, with spatial distributions and
key features, such as the electron density cusps at nuclear positions, closely matching those in the
original grids (see Fig. 3). These results indicate that the model effectively encodes and reconstructs
high-dimensional electron density data, maintaining essential properties for tasks requiring accurate
quantum chemical representations. The preservation of these features is particularly significant as
they carry critical information about atomic positions and molecular geometry.

The selected molecules include a range of chemical configurations, such as functional groups,
unsaturated bonds, and cyclic structures, providing evidence of the model’s generalizability across
diverse molecular environments. The consistency of reconstruction quality across these examples
suggests that the 3DGrid-VQGAN latent space effectively captures the inherent variability in the
dataset. However, subtle deviations in grid intensities and spatial details highlight potential challenges,
particularly for molecules with complex electronic delocalization or pronounced spatial anisotropy.
These challenges warrant further investigation to ensure robust performance across all regions of
chemical space.

5 CONCLUSION

This paper presents the 3DGrid-VQGAN model, a generative approach designed to encode and
reconstruct high-dimensional 3D electron density grids with high fidelity. Through a series of
evaluations, the model demonstrates its ability to capture and preserve critical spatial and electronic
features, as evidenced by the accurate reconstruction of diverse molecular configurations from the
QM9 dataset. Quantitative metrics and visual analyses highlight the effectiveness of the latent space
learned by the model in representing complex molecular structures.

The results indicate that 3DGrid-VQGAN outperforms several state-of-the-art methods in tasks such
as quantum chemical property prediction and 3D electron density reconstruction. By leveraging the
intrinsic spatial and electronic properties encoded in the electron density grids, the model provides a
robust framework for applications in molecular modeling, property prediction, and generative tasks in
quantum chemistry. Additionally, the ability to reconstruct simulation-grade molecular data directly
from the learned representations underscores the potential for reducing computational reliance on
traditional quantum chemical methods.

Despite these findings, challenges remain, particularly in reconstructing highly complex molecular
systems or handling datasets with larger molecular geometries. Future work should focus on ex-
panding the evaluation to include broader datasets, refining latent space representations to improve
interpretability, and exploring the integration of the model into practical workflows for predictive and
generative applications.
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6 SUPPLEMENTARY MATERIALS

6.1 3DGRID-VG-GAN GENERAL ARCHITECTURE

Fig. 1 illustrates the general architecture of the 3D energy grid VQ-GAN model.

Figure 1: This figure illustrates the general architecture of the 3D electron density grids VQ-GAN
model.

6.2 3DGRID-VG-GAN FINE-TUNING ARCHITECTURE

Fig. 2 illustrates the general architecture of fine-tuning the 3D energy grid VQ-GAN model.

Table 3 provides a detailed overview of the hyper-parameters considered for the fine-tuning of 3D
energy grid VQ-GAN model.

8

https://doi.org/10.1063/5.0006074


Published as a conference paper at ICLR 2025

Figure 2: This figure illustrates the general architecture of fine-tuning the 3D electron density grids
VQ-GAN model.

6.3 QM9 DETAILS

The QM9 dataset encompasses a range of quantum chemical properties, including dipole moments,
polarizability, HOMO and LUMO energies, HOMO-LUMO gaps, and thermodynamic quantities
such as internal energy, enthalpy, and heat capacity. These properties make QM9 a robust and
comprehensive benchmark for evaluating machine learning models’ ability to encode, reconstruct,
and predict quantum mechanical features of molecular systems. By leveraging these diverse and
information-rich properties, we aim to rigorously assess the fidelity and utility of the learned latent
space in capturing the underlying quantum mechanical characteristics of molecular systems.

6.4 METRICS FOR RECONSTRUCTION EVALUATION

The reconstruction quality was assessed using a range of metrics, each providing a distinct perspective
on performance (see Table 2):

• Structural Similarity Index Measure (SSIM) and Multi-Scale SSIM (MS-SSIM) quan-
tify the structural fidelity of the reconstructed grids relative to the original, emphasizing
perceptual and spatial coherence.

• Peak Signal-to-Noise Ratio (PSNR) measures the pixel-wise accuracy of the reconstruc-
tions, with higher values indicating closer agreement to the original grids.

• Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) evaluate the
similarity between the distributions of the reconstructed and original grids, capturing higher-
order statistical consistency.

• Learned Perceptual Image Patch Similarity (LPIPS) assesses perceptual similarity,
providing a complementary perspective on the quality of reconstructions.

• Mean Absolute Error (MAE) reflects the average absolute deviation between reconstructed
and original grid values, offering a straightforward measure of numerical accuracy.

The analysis demonstrates the model’s ability to reconstruct key features of the 3D electron density
grids while preserving critical structural and numerical properties.

A deeper analysis over the QM9 benchmark: In this subsection, we present a detailed analysis
of the results for the QM9 dataset. Table 5 summarizes the performance of state-of-the-art (SOTA)
approaches across the molecular properties included in QM9. Our comparative analysis benchmarks
the proposed encoder-decoder foundation model against SOTA models from four different materials
representations: (i) Graph-based, (ii) Geometry-based, and (iii) SMILES-based approaches for

Table 3: 3DGrid-VQGAN fine-tuning architecture specificity.

Grid hidden size 256.
Molecular hidden size 2048
Codebook size 16,384
Downsample [4, 4, 4]
Dropout 0.1
Learning rate 3e-5 and 1e-5

# batch 8
# epochs 100
# seeds 5
# GPUs 1 NVIDIA A100 (80G)
Total params 27M
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Table 4: Properties Included in the QM9 Dataset.

Property Description
Dipole moment (µ) Measure of the molecular polarity, representing the separation of positive and negative charges

within the molecule.
Polarizability (α) Ability of a molecule to be polarized in the presence of an external electric field.

HOMO energy (ϵHOMO) Energy of the highest occupied molecular orbital, indicative of a molecule’s ability to donate
electrons.

LUMO energy (ϵLUMO) Energy of the lowest unoccupied molecular orbital, indicative of a molecule’s ability to accept
electrons.

HOMO-LUMO gap (∆ϵ) Energy difference between the HOMO and LUMO orbitals, related to a molecule’s electronic
excitation energy.

Electronic spatial extent (⟨R2⟩) Spatial spread of the electron density, providing insights into molecular size and shape.
Zero-point vibrational energy (ZPVE) Quantum mechanical energy of a molecule at 0 K due to vibrational motion.

Internal energy at 0 K (U0) Total electronic energy of the molecule at 0 K.
Internal energy at 298.15 K (U ) Total energy of the molecule at standard temperature (298.15 K).

Enthalpy (H) Total energy of the molecule, including internal energy and the energy required to displace the
environment.

Free energy (G) Energy available to perform work at constant temperature and pressure.
Heat capacity (Cv) Amount of heat energy required to raise the temperature of the molecule by one degree under

constant volume.

molecular property prediction. The baseline models considered in this comparison include 123-gnn
(Morris et al., 2019), a multitask neural network utilizing the Coulomb Matrix (CM) (Rupp et al.,
2012), its graph neural network (GNN) extension, the deep tensor neural network (DTNN) (Schütt
et al., 2017), MoLFormer-XL (Ross et al., 2022), SELFIES-TED (Priyadarsini et al., 2024), and
SMI-TED289M (Soares et al., 2024).

Table 5: Comparing state-of-the-art models performance over the QM9 dataset.

Graph-based Geometry-based SMILES SELFIES 3D grids
Measure A-FP 123-

gnn
GC CM DTNN MPNN MoLFormer-

XL
SMI-
TED289M

SELFIES-
TED

3DGrid-
VQGAN

α 0.49 0.27 1.37 0.85 0.95 0.89 0.33 0.27 0.66 0.93
Cv 0.25 0.09 0.65 0.39 0.27 0.42 0.14 0.12 0.43 0.34
G 0.89 0.05 3.41 2.27 2.43 2.02 0.34 0.11 2.29 0.89

∆ϵ 0.0052 0.0048 0.01126 0.0086 0.0112 0.0066 0.0038 0.0036 0.0084 0.0088
H 0.89 0.04 3.41 2.27 2.43 2.02 0.25 0.09 2.70 1.31

ϵHOMO 0.0036 0.0034 0.0072 0.0051 0.0038 0.0054 0.0029 0.0027 0.0054 0.0058
ϵLUMO 0.0041 0.0035 0.0092 0.0064 0.0051 0.0062 0.0027 0.0026 0.0071 0.0057

µ 0.451 0.476 0.583 0.519 0.244 0.358 0.361 0.384 0.6223 0.206
⟨R2⟩ 26.84 22.90 35.97 46.00 17.00 28.5 17.06 14.72 38.83 8.35

U0 0.898 0.0427 3.41 2.27 2.43 2.05 0.3211 0.0850 2.9195 1.14
U 0.89 0.111 3.41 2.27 2.43 2.00 0.25 0.0905 2.6551 1.39

ZPVE 0.00207 0.0002 0.00299 0.00207 0.0017 0.00216 0.0003 0.0002 0.0032 0.0003

Avg. MAE 2.6355 1.9995 4.3536 4.7384 2.3504 3.1898 1.5894 1.3246 4.263 1.2148

The performance comparison in Table 5 highlights the strengths of the 3DGrid-VQGAN model
in predicting quantum chemical properties using the QM9 dataset. The model, which utilizes 3D
electron density grids as input, achieves the lowest average mean absolute error (MAE) of 1.2148,
outperforming state-of-the-art methods across graph-based, geometry-based, and SMILES-based
approaches.

One of the key strengths of 3DGrid-VQGAN lies in its ability to accurately predict spatially dependent
properties, such as the electronic spatial extent (⟨R2⟩) and the dipole moment (µ). For ⟨R2⟩, the
model achieves an MAE of 8.35, which is significantly lower than the second-best model, SMI-
TED289M (14.72), and geometry-based approaches like MPNN (28.5). This performance underscores
the model’s ability to leverage the volumetric data of 3D electron density grids, effectively capturing
spatial distributions that are critical for this property. Similarly, the model achieves the lowest MAE
for µ (0.206), outperforming all other methods. These results highlight the advantage of utilizing
3D grids, which provide rich spatial and electronic context that traditional methods relying solely on
atomic coordinates or SMILES strings lack.

For thermodynamic properties such as enthalpy (H), internal energy (U ), and zero-point vibrational
energy (ZPVE), the model performs competitively, though it does not outperform SMILES-based
methods like SMI-TED289M . This suggests that while 3DGrid-VQGAN captures a substantial amount
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of the underlying electronic and spatial information, certain features relevant to these properties
might be better captured by complementary representations, such as those derived from SMILES.
Similarly, for electronic properties like HOMO and LUMO energies, the model’s performance is
comparable but slightly behind SMILES-based approaches, which excel in encoding the localized
electronic environments.

The consistency of 3DGrid-VQGAN’s performance, as evidenced by its lower MAE metric, high-
lights its reliability across diverse molecular properties. This robustness can be attributed to its ability
to represent high-dimensional electron density data in a compact latent space, ensuring effective gen-
eralization across various chemical environments and molecular geometries. Furthermore, the model
surpasses geometry-based methods, such as DTNN and MPNN, which rely on atomic coordinates
but lack the detailed electronic information inherent in 3D density grids.

While the 3DGrid-VQGAN model excels in spatially sensitive properties and demonstrates overall
superior performance, there is room for improvement in properties where SMILES-based methods,
such as SMI-TED289M , perform better. Hybrid approaches that combine the strengths of SMILES-
derived features with the rich spatial data from 3D grids could further enhance its predictive power,
particularly for electronic and thermodynamic properties.

6.5 RECONSTRUCTION ILUSTRATION

Figure 3 investigates the reconstruction capabilities of the 3DGrid-VQGAN model by comparing
original and reconstructed 3D electron density grids for selected molecular examples. The analysis
focuses on the model’s ability to preserve essential spatial and electronic features that are critical for
downstream quantum chemical applications.
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Figure 3: This figure illustrates the original and reconstructed 3D electron density grids for selected
molecular examples.
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