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Abstract

Prompt-based fine-tuning has boosted the per-001
formance of Pre-trained Language Models002
(PLMs) on few-shot learning by employing003
task-specific prompts. However, PLMs are004
unfamiliar with the prompt-style expressions005
during pre-training, which limits the few-shot006
learning performance on downstream tasks.007
It would be desirable if models can acquire008
some prompting knowledge before task adap-009
tation. We present the Unified Prompt Tun-010
ing (UPT) framework, leading to better few-011
shot learning for BERT-style models by ex-012
plicitly capturing prompting semantics from013
non-target NLP datasets. In UPT, a novel014
paradigm Prompt-Options-Verbalizer is pro-015
posed for joint prompt learning across differ-016
ent NLP tasks, forcing PLMs to capture task-017
invariant prompting knowledge. We further de-018
sign a self-supervised task named Knowledge-019
enhanced Selective Masked Language Model-020
ing to improve the PLM’s generalization abil-021
ities for accurate adaptation to previously un-022
seen tasks. After multi-task learning, the PLM023
can be fine-tuned for any target few-shot NLP024
tasks using the same prompting paradigm. Ex-025
periments over a variety of NLP tasks show026
that UPT consistently outperforms state-of-027
the-arts for prompt-based fine-tuning. 1028

1 Introduction029

The emergence of Pre-trained Language Models030

(PLMs) has boosted the performance of a variety031

of NLP tasks (Qiu et al., 2020; Han et al., 2021a).032

However, during fine-tuning, PLMs can perform033

poorly with few training samples due to model034

over-fitting (Gao et al., 2021).035

To alleviate this problem for low-resourced sce-036

narios, natural language prompts have been ap-037

plied to enable few-shot or zero-shot learning with038

PLMs (Liu et al., 2021a). To make prompts more039

1All the datasets are publicly available. Source codes are
provided in attachments and will be released upon acceptance.

flexible and task-adaptive, prompt tuning freezes 040

the PLM backbone and adjusts the representations 041

of prompts (Lester et al., 2021). This type of meth- 042

ods is especially suitable for ultra-large PLMs that 043

are difficult to tune. For BERT-style PLMs, prompt- 044

based fine-tuning has been proposed, transforming 045

most NLP tasks into cloze-style problems (Schick 046

and Schütze, 2021a,b; Gao et al., 2021). To spec- 047

ify, task-specific prompt templates, together with 048

token masks, are added to input texts. The result 049

tokens of the masked positions predicted by the 050

Masked Language Modeling (MLM) head of the 051

model are used for class label prediction. 2 There- 052

fore, the pre-trained knowledge acquired by PLMs 053

can be better utilized by “re-using” the MLM train- 054

ing objective. Witnessing the successful usage of 055

prompts for few-shot learning, various following- 056

up works have been conducted, such as continuous 057

prompt encoding (Liu et al., 2021c), knowledge- 058

able prompt learning (Hu et al., 2021) and prompt 059

generation (Shin et al., 2020). 060

Recently, a few works (Wei et al., 2021; Zhong 061

et al., 2021a; Mishra et al., 2021) focus on multi- 062

task prompt tuning on ultra-large PLMs. Specifi- 063

cally, they tune PLMs on full training samples from 064

different tasks to force PLMs learn more prompting 065

knowledge, and directly make predictions over the 066

target task by zero-shot learning. Yet, we observe 067

that for BERT-style small PLMs, the performance 068

is not satisfactory for two reasons. 1) These PLMs 069

are sensitive to different designs of prompt tem- 070

plates and verbalizers (Liu et al., 2021c), which 071

fail to adapt to target tasks with new prompts and 072

verbalizers. 2) There are word distribution differ- 073

ences between prompt-style texts and sentences 074

in pre-training corpora. It would be better if the 075

BERT-style PLMs can acquire some prompting 076

2For example, in the review analysis task, given an input
“It is a wonderful movie.”, one can add the prompt template
“Based on the review, it is [MASK].” to the input. The output
of the masked token “great” and “terrible” can be mapped to
the positive and negative class, respectively.
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It is a wonderful movie.  

Input Text PromptOptions

It is sunny today. [SEP] 
There is no rain today.

a. Supervised Learning Tasks

Input Text Pairs PromptOptions

Is it great or terrible? It is [MASK].

Is it entailment, neural 
or contradictory? 

It is [MASK].

b. Self-supervised Learning Task

The positive results in the
clinical trivial confirmed
that the treatment for 
COVID-19 was [MASK].

Is it effective or 
ineffective? 

PromptKnowledge-
induced Options

It is [MASK].

Input Text

Options
Knowl. Repo.

Query: 
effective

Single-sentence Classification Task

Sentence-pair Classification Task

The positive results in the clinical
trivial confirmed that the 
treatment for COVID-19 was 
effective.

Pre-training 
Sentence

Figure 1: UPT is a unified framework that learns prompting knowledge from non-target NLP datasets to improve
the performance on target tasks, in the format of Prompt-Options-Verbalizer (Sect. 2.2). Figures a) and b) show
examples of supervised and the self-supervised learning task (i.e., Knowledge-enhanced Selective MLM, Sect. 2.3).
(Best viewed in color.)

knowledge before they are adapted to downstream077

tasks. Therefore, a natural question arises: how can078

we make BERT-style PLMs to adapt to target NLP079

tasks accurately with more prompting knowledge?080

To address these issues, we introduce a novel081

framework named Unified Prompt Tuning (UPT),082

facilitating better few-shot learning for BERT-style083

models by explicitly capturing general prompt-084

ing semantics from non-target datasets. Specially,085

we propose a unified paradigm named Prompt-086

Options-Verbalizer (POV), which enables the mix-087

ture training of PLMs over a series of non-target088

NLP tasks of varied types. To further improve the089

model’s generalization abilities on previously un-090

seen tasks, the PLM is also jointly trained over a091

self-supervised task named Knowledge-enhanced092

Selective MLM (KSMLM), which mimics the be-093

havior of MLM with explicit usage of prompts094

and background knowledge mined from massive095

corpora. After the multi-task training process is096

completed, the underlying PLM can be fine-tuned097

to fit any target few-shot NLP tasks using the same098

prompting paradigm.099

In the experiments, we verify the effectiveness100

of UPT over 9 public NLP datasets of various tasks.101

Experimental results show that UPT consistently102

outperforms state-of-the-art approaches for prompt-103

based few-shot fine-tuning. Overall, the averaged104

accuracy is improved by over 4.56%.105

In summary, we make the following major con-106

tributions:107

• We introduce the novel UPT framework to108

improve prompt-based few-shot learning for109

BERT-style models. To our knowledge, our110

work is the first to leverage other NLP datasets111

to help these PLMs capture unified prompting112

semantics for few-shot learning on new tasks.113

• In UPT, a new paradigm POV is proposed for 114

joint prompt tuning across different NLP tasks. 115

We further design the self-supervised KSMLM 116

task to improve the PLM’s generalization abil- 117

ities for accurate task adaptation. 118

• Extensive experiments over 9 public NLP 119

datasets show that UPT consistently outper- 120

forms state-of-the-arts for prompt-based few- 121

shot fine-tuning by a relatively large margin. 122

2 UPT: The Proposed Framework 123

We start with a brief overview of the UPT frame- 124

work, followed by its detailed techniques. 125

2.1 A Brief Overview of UPT 126

For clarity, we introduce some basic notations. Let 127

D∗ be the N -way-K-shot training set of a target 128

NLP task T ∗. The underlying PLM is parameter- 129

ized by Θ. The basic goal of few-shot learning is 130

to obtain a high-performing model for T ∗ based 131

on D∗, with parameters initialized from Θ. As the 132

size of D∗ is only N ×K, the model performance 133

would be highly limited. Here, we assume that 134

there are M other NLP tasks that are dissimilar to 135

T ∗, i.e., T (1), · · · , T (M), with their (usually non 136

few-shot) training sets denoted as D(1), · · · ,D(M), 137

respectively. 3 The UPT framework seeks to ex- 138

plore how to employ D(1), · · · ,D(M) to enhance 139

the performance of the PLM on a new task (such 140

as T ∗) based on its own few-shot training set D∗. 141

Hence in UPT, the model is firstly trained over 142

all the tasks T (1), · · · , T (M), aiming to learn the 143

3Note that we constrain that T (1), · · · , T (M) are dissimi-
lar to T ∗ to deal with true low-resourced scenarios where no
training sets of similar tasks are available. If T (1), · · · , T (M)

are similar to T ∗, one can directly apply transfer learning
techniques to train the model, which is considered a relatively
trivial problem and not the major focus of this work.
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semantics of prompts and the general methodology144

of solving downstream tasks by prompting. After145

that, it is prompt-tuned over a specific task T ∗. To146

unify the learning process, each training sample147

i in all different tasks (either T (1), · · · , T (M) or148

T ∗) is augmented in the same format, by means149

of the Prompt-Options-Verbalizer (POV) triple150

(Pi, Oi, Vi). Here, Pi is the prompt. Oi is the151

expression containing all possible options of the152

masked language token appearing in the prompt153

Pi (i.e., the collection of label words). Vi is the154

verbalizer that maps the target token predicted by155

the MLM head of the PLM to the class label. Read-156

ers can also refer to the examples of supervised157

learning tasks in Figure 1.158

In addition, we observe that the diversity of label159

words in T (1), · · · , T (M) is limited. For previously160

unseen tasks, the optimization of these tasks alone161

often leads to a poorly generalized model that are162

biased towards these tasks. Therefore, we further163

introduce the self-supervised Knowledge-enhanced164

Selective MLM (KSMLM) task T̃ as an auxiliary165

task, which takes pre-training sentences as inputs166

(with the self-supervised training set denoted as167

D̃.). These sentences are selectively masked, with168

options generated by rich options knowledge mined169

from a massive corpus. An example is also shown170

in Figure 1. Hence, the model has a better general-171

ization abilities and avoids catastrophic forgetting172

of the pre-training knowledge, before it is adapted173

to specific target tasks.174

2.2 The Unified Prompting Paradigm175

A fundamental challenge for prompt-based training176

across D(1), · · · ,D(M) for BERT-style models is177

that different NLP tasks have diverse sets of label178

words w.r.t. masked language tokens. When deal-179

ing with a mixture of training samples, a naive so-180

lution is to build a unified output prediction space,181

consisting of candidate label words from all tasks.182

However, the enlarged output space makes it chal-183

lenging for the PLM to optimize. Additionally, the184

output prediction space may not cover the label185

words of all possible unseen tasks.186

Here, we propose a unified prompting paradigm187

that augments each sample i by a Prompt-Options-188

Verbalizer (POV) triple (Pi, Oi, Vi). Pi is the189

prompt that provides task guidance (in line with190

PET (Schick and Schütze, 2021a,b)). Oi is a fixed191

expression that explicitly provides selection for the192

model over all its candidate label words. To fa-193

cilitate the fast adaptation of arbitrary tasks, the 194

verbalizer Vi maps the output of the masked lan- 195

guage token to the entire vocabulary V .4 We can 196

see that the options are crucial as they give strong 197

indications on the possible outputs of the PLM 198

(i.e., the candidates). Overall, the output probabil- 199

ity q(v|i, Pi, Oi,Θ) of the token v ∈ V w.r.t. the 200

training sample i is computed as follows: 201

q(v|i, Pi, Oi,Θ) =
exp(s(v|i, Pi, Oi,Θ))∑

v′∈V exp(s(v′ |i, Pi, Oi,Θ))
202

where s(v|i, Pi, Oi,Θ) is the un-normalized score 203

of the MLM head (before the softmax function) for 204

generating token v at the position of the masked 205

language token with i, Pi and Oi as inputs. Denote 206

the entire prediction vector (of the length |V|) as 207

Q(V|i, Pi, Oi,Θ). The multi-task prompting loss 208

(denoted as LMP ) can be written as follows: 209

LMP =−
∑
i∈D

P (V|i, Pi, Oi,Θ)·

logQ(V|i, Pi, Oi,Θ)

210

where D =
⋃M
k=1D(k), and P (V|i, Pi, Oi,Θ) is 211

the one-hot ground-truth prediction vector. 212

In addition, we notice that D(1), · · · ,D(M) can 213

be arbitrary labeled datasets with varied sizes. Op- 214

timizing LMP directly on their original datasets 215

would make the few-shot learner more likely to be 216

biased towards larger datasets. In our work, we do 217

stratified sampling to form a batch where a train- 218

ing sample i from D(1), · · · ,D(M) is picked with 219

the probability proportional to its own dataset size 220

(denoted as wi), i.e., wi = log |D(k)|+γ
M ·γ+

∑M

k
′
=1

log |D(k
′
)|

221

where γ > 0 is a smoothing factor and i ∈ D(k). 222

Hence, we re-formulate our loss function LPT as 223

the weighted multi-task prompting loss LWMP : 224

LWMP =−
∑
i∈D

wi · P (V|i, Pi, Oi,Θ)·

logQ(V|i, Pi, Oi,Θ)

225

2.3 Extending Unified Prompting to 226

Self-supervised Learning 227

One drawback of the above approach is that the 228

diversity of label words in these supervised learning 229

tasks is usually limited, covering a narrow spectrum 230

of the vocabulary V . The model would not be 231

well generalized for tasks with new label words. 232

4The list of prompts, options and verbalizers of all the
tasks are given in the appendix.
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Options 
Knowl. Repo.

Pre-training Sentences
The positive results in
the clinical trivial
confirmed that the
treatment for COVID-19 
was effective.
…

good
great

amazing

effective

successful

horrible

terrible
bad

Cluster
A Cluster

B

Cluster C

Query: 
effective

Dissimilar

Output: 
ineffective

Is it effective or 
ineffective?

Knowledge-
induced
Options

It is [MASK].The positive results in the clinical trivial confirmed
that the treatment for COVID-19 was [MASK].

Input Text O-Generation P-Generation

effective→ Class: Correct
ineffective→ Class: IncorrectV-Generation

Offline 
Construction

Figure 2: An illustrated example of the POV generation
process for the KSMLM task.

Hence, we leverage the idea of MLM pre-training,233

formulated by the POV paradigm.234

As a naive approach, given a sentence, we can235

randomly mask a word and generate the options236

of the correct and a randomly selected word, and237

then ask the model to make the prediction. Un-238

fortunately, the seemingly feasible approach may239

ruin the training process, because not all words240

are suitable label words. For example, stop words241

and a large number of verbs and adverbs have not242

been used in any verbalizers in downstream tasks.243

The alternatives used in options should be reason-244

able, in order to make the model learn truly use-245

ful knowledge. To address the issue, we present246

the self-supervised KSMLM task, with an example247

shown in Figure 2. In the following, we describe248

the POV construction process for KSMLM. After249

that, the loss function of the task is given.250

P-Generation. The prompt for all training samples251

for KSMLM is universal, which is fixed to be “It is252

[MASK].”. During training, the PLM is asked to253

predict the actual word of the masked position.254

O-Generation. From Gao et al. (2021), we can255

see that most label words for language understand-256

ing tasks are adjectives (such as “great” and “terri-257

ble” for sentiment analysis). Thus in our work, we258

detect all adjectives in the pre-training corpus by259

part-of-speech tagging models and filter out low-260

frequency adjectives5. The adjectives are then clus-261

5We use the spacy toolkit in our work. URL: https:
//spacy.io/.

tered by K-Means, with their token representations 262

generated from the underlying PLM as features. 263

Formally, We construct a knowledge repository 264

named Options Knowledge Repository (OKR), in 265

the form of triples R = {(v,~v, cv)}, where v is a 266

candidate label word. ~v and cv denote the repre- 267

sentation vector and the cluster membership of v, 268

respectively. The cluster centroids are also stored. 269

We do not use existing lexicons such as WordNet 270

because they may have limited coverage of label 271

words. Additionally, the automatic construction 272

process allows us to extend our algorithm to arbi- 273

trary languages and domains. 274

With the availability of R, we can generate 275

knowledge-induced options. Given a pre-training 276

sentence with the masked word as v, we query 277

v against R for the most dissimilar cluster w.r.t. 278

v, denoted as c̃v, where the cosine similarity of 279

the vector representation ~v and the cluster centroid 280

is employed as the similarity measure. Finally, 281

we randomly select one adjective from c̃v as the 282

alternative label word to generate the knowledge- 283

induced options. The text expressions of options 284

is fixed, i.e., “Is it [x1] or [x2]?”. Readers can 285

further refer to the example in Figure 2. 286

V-Generation. For verbalizers, we map the true 287

and the generated label words in the options to two 288

classes, namely Class: Correct and Class: Incor- 289

rect. For instance, the verbalizers of the sample 290

sentence in Figure 2 are: 291

It is “effective”.→“Class: Correct”

It is “ineffective”.→“Class: Incorrect”
292

Loss Function. The KSMLM loss is significantly 293

different from the auxiliary MLM loss used 294

in Schick and Schütze (2021a,b). In D̃, each 295

sample i consists of a pre-training sentence with 296

exactly one masked token, the knowledge-induced 297

options Oi and the prompt Pi. The PLM is 298

trained to predict the correct masked word in the 299

sentence, with the loss function LKSMLM = 300

−
∑

i∈D̃ P (V|i, Pi, Oi,Θ) logQ(V|i, Pi, Oi,Θ). 301

Overall, the loss function of UPT L is defined as 302

the summation of the WMP and KSMLM loss: 303

L = LWMP + λ · LKSMLM 304

where λ > 0 is the balancing hyper-parameter. 305

Discussion. To our knowledge, external knowl- 306

edge has also been applied to other prompt-based 307

methods, such as KPT (Hu et al., 2021). The ma- 308

jor difference between KPT and ours is that UPT 309
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Group Category Task #Training #Testing N Class Labels

G1: Sentiment Analysis Single Sentence
SST-2 6,920 872 2 positive, negative
MR 8,662 2,000 2 positive, negative
CR 1,775 2,000 2 positive, negative

G2: NLI Sentence Pair

MNLI 392,702 9,815 3 entailment, neutral, contradiction
SNLI 549,367 9,842 3 entailment, neutral, contradiction
QNLI 104,743 5,463 2 entailment, not entailment
RTE 2,490 277 2 entailment, not entailment

G3: Paraphrase Sentence Pair MRPC 3,668 408 2 equivalent, not equivalent
QQP 363,846 40,431 2 equivalent, not equivalent

Table 1: Dataset statistics. We only sample N ×K instances from the original training sets to form the few-shot
training and development sets. The testing sets used in the experiments are full datasets.

uses the knowledge for options creation of the self-310

supervised task KSMLM that we proposed, in order311

to improve the model generalization abilities for312

accurate adaptation on new tasks. In contrast, pre-313

vious works consider the expansion of verbalizers314

for specific downstream NLP tasks.315

2.4 Few-shot Fine-tuning316

For a specific downstream task T ∗, the samples in317

the target few-shot training setD∗ can be processed318

and computed in the same way as those supervised319

tasks used during UPT. The learning consistency320

in the two stages ensures that the underlying PLM321

has already acquired prompting knowledge for T ∗.322

In addition, one can prompt-tune a single PLM323

over various tasks and uses it to fine-tune over any324

target tasks, making it computationally efficient to325

produce models for these applications.326

3 Experiments327

We conduct extensive experiments on a variety of328

NLP tasks to evaluate the UPT framework.329

3.1 Experimental Settings330

In the experiments, we employ nine public datasets331

to evaluate the proposed UPT framework, which332

are divided into three groups: sentiment analysis333

(SST-2 (Socher et al., 2013), MR (Hu and Liu,334

2004), CR (Pang and Lee, 2005)), Natural Lan-335

guage Inference (NLI) (MNLI (Williams et al.,336

2018), SNLI (Bowman et al., 2015), QNLI (Wang337

et al., 2019a), RTE (Dagan et al., 2005)) and para-338

phrase (MRPC (Dolan and Brockett, 2005), QQP6).339

Table 1 lists the statistics of each dataset. In default,340

K = 16 (the number of training samples per class).341

As mentioned above, during UPT, we leverage342

full training data from all dissimilar task groups,343

and then prompt-tune the model on the target task344

in the few-shot learning setting. For example,345

6https://www.quora.com/q/quoradata/.

when the target task is SST-2, the training data 346

during UPT is from NLI and paraphrase. The un- 347

derlying PLM is the RoBERTa-large model (with 348

335M parameters) (Liu et al., 2019), unless other- 349

wise specified. The baselines include standard fine- 350

tuning, and three recently proposed few-shot learn- 351

ing algorithms: PET (Schick and Schütze, 2021a) 7, 352

LM-BFF (Gao et al., 2021) 8 and P-tuning (Liu 353

et al., 2021c) 9. A variant of our approach (denoted 354

as UPT-Single) is also implemented, which is our 355

few-shot fine-tuning method based on the POV 356

paradigm without the usage of dissimilar super- 357

vised or self-supervised datasets. 358

As we use other dissimilar datasets to train our 359

model, we include two multi-task methods that 360

are meta-tuned using the same dissimilar datasets 361

as strong baselines, namely MT (Zero-shot) and 362

MT (Few-shot) (Zhong et al., 2021a).10 In addition, 363

given a supervised NLP task, multiple prompts can 364

be manually crafted. By augmenting one train- 365

ing sample with these prompts, we can automati- 366

cally realize self-ensemble learning. For the self- 367

ensemble version of UPT, we employ five differ- 368

ent prompts. For each input sample, we randomly 369

select one expression of options and one set of 370

verbalizers. We denote this method as UPT-SE. 371

The designed prompts, options and verbalizers are 372

listed in the Appendix A. All the results of these 373

models are evaluated in terms of averaged accuracy, 374

7https://github.com/timoschick/pet
8https://github.com/princeton-nlp/

LM-BFF
9https://github.com/THUDM/P-tuning

10In Zhong et al. (2021a), the authors only conduct zero-
shot learning using larger PLMs. To make their work compara-
ble to ours, we re-implement their algorithm over the Roberta
model on our datasets under two settings. MT (Zero-shot)
refers to the model tuned only using dissimilar full datasets.
MT (Few-shot) further tunes the entire model over the target
few-shot training set based on the prompts. Note that a few
contemporaneous works (such as Wei et al. (2021)) also con-
sider multi-task zero-shot learning. Because the settings and
model scales are significantly different from us, they are not
directly comparable.
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Paradigm Method G1: Sentiment Analysis G2: NLI G3: Paraphrase Avg.SST-2 MR CR MNLI SNLI QNLI RTE MRPC QQP
Single-task methods w/o. the usage of dissimilar datasets (K = 16)

FT Fine-tuning 81.42 76.90 75.80 45.80 48.40 60.21 54.50 76.72 60.70 64.49

PT

PET 91.86 86.45 90.50 58.46 59.43 61.30 65.70 74.51 67.65 72.87
LM-BFF 91.62 87.25 91.80 64.25 71.21 69.19 69.51 74.23 60.59 75.52
P-Tuning 91.85 86.60 91.75 62.41 70.28 68.79 70.81 66.42 60.57 74.39

UPT-Single 92.89 87.65 91.15 64.47 70.20 68.33 68.23 71.57 69.36 75.98
Multi-task methods w. the usage of dissimilar datasets (K = 16)

PT

MT (Zero-shot) 58.72 59.00 58.90 36.33 39.20 40.93 54.87 70.59 42.86 51.27
MT (Few-shot) 92.09 86.55 91.00 69.60 67.12 68.94 68.59 71.08 77.83 76.98

UPT 93.46 88.15 92.05 70.17 68.26 71.87 72.56 76.96 78.79 79.14
UPT-SE 93.12 88.45 92.10 71.39 73.58 70.51 75.81 76.23 79.57 80.08

Table 2: Comparison between UPT and baselines over all testing sets in terms of accuracy (%). “FT” and “PT”
refer to the fine-tuning and prompt-based fine-tuning paradigm, respectively. The methods in bold refer to our
approach and its variants. The scores of baselines are re-produced using their open-source codes.

over 5 random seeds.375

Our UPT framework is implemented in PyTorch376

and run with NVIDIA V100 GPUs. Specifically,377

we train our model by the Adam optimizer. The378

learning rate for all training stages is fixed to be379

1e-5. We set the default hyper-parameters as γ =380

0.001 and λ = 0.1, which are also tuned over the381

development sets. The parameter regularizers are382

the same as in Gao et al. (2021).383

3.2 Main Results384

In Table 2, we report the general experimental re-385

sults of UPT and all the baselines. The results386

show that: 1) Prompt-based methods (such as387

PET (Schick and Schütze, 2021a), LM-BFF (Gao388

et al., 2021) and P-tuning (Liu et al., 2021c)) have389

large improvements over standard fine-tuning. Ad-390

ditionally, UPT-Single slightly outperforms previ-391

ous few-shot learning models in average. 2) UPT392

(both the original and the ensemble versions) con-393

sistently outperforms all baselines on all tasks and394

improves by over 4.56%, which demonstrates that395

our framework possesses better generalization by396

learning from dissimilar groups of tasks.11 3) MT397

(Zero-shot) (Zhong et al., 2021a) does not yields398

satisfactory results on BERT-style models. Differ-399

ent from ultra-large models, we suggest that few-400

shot prompt tuning is necessary for BERT-style401

models to produce good results over these tasks.402

By comparing UPT against MT (Few-shot), we403

can see that the proposed POV paradigm and the404

self-supervised KSMLM task are more effective for405

few-shot learning. 4) Generally, UPT-SE improves406

the averaged accuracy on all tasks by 0.94% than407

UPT. It means that self-ensemble learning can en-408

11We also conduct the single-tail paired t-test to compare
our approach against few-shot baselines across tasks. The
result is p < 0.05, indicating the statistical significance.

hance model generalization, but the improvement 409

is not consistent across all tasks. A possible cause 410

is that some prompts and options are not optimal 411

for the target task. 412
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Figure 3: Parameter analysis w.r.t. hyper-parameter λ.

3.3 Model Analysis 413

Parameter Analysis. We conduct parameter anal- 414

ysis to investigate the best choice of the balance co- 415

efficient λ. Results over SST-2 and RTE are shown 416

in Figure 3. We have the best performance when 417

λ = 0.1, which indicates that our proposed UPT 418

possess generalization when it is jointly trained 419

with over the self-supervised KSMLM task. We 420

also observe that the performance decreases when 421

λ becomes larger. This means KSMLM is a suitable 422

regularization task, but also may introduce a lot of 423

prompts and options that are irrelevant to down- 424

stream tasks. This opens up new opportunities for 425

model improvement. 426

Ablation Study. To clearly verify the contributions 427

of each component in UPT, we conduct an ablation 428

study. As shown in Table 4, w/o. POV denotes the 429

method with manually designed prompts without 430

the usage of any options. w/o. KSMLM equals 431

the setting with λ = 0. w/o. OKR means that we 432

randomly choose the alternative label words in the 433

options without knowledge guidance, when we op- 434

timize the KSMLM task. w/o. POV & KSMLM 435

denotes the method without any options and the 436

auxiliary KSMLM task. The results show that no 437
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Backbone #Layer #Dimension #Param. SST-2 MR CR Avg.
BERT-base 12 768 110M 82.57 (+3.79) 71.10 (+9.25) 78.05 (+8.85) 77.24 (+7.30)

BERT-medium 8 512 70M 68.00 (+2.98) 63.35 (+4.15) 70.15 (+6.10) 67.17 (+4.41)
BERT-small 4 512 31M 66.28 (+3.67) 58.10 (+4.55) 68.15 (+5.50) 64.18 (+4.57)
BERT-mini 4 256 22M 58.83 (+3.09) 59.40 (+7.60) 65.75 (+7.45) 61.33 (+6.05)
BERT-tiny 2 128 14M 54.13 (+3.79) 53.95 (+1.30) 54.40 (+5.20) 54.16 (+3.43)

Table 3: Results of model scale analysis. We report the accuracy (%) of UPT based on BERT with other scales,
and relative improvements, compared to the models w/o. prompt learning over dissimilar datasets.

Method/Task SST-2 MR RTE QQP
UPT 93.46 88.15 72.56 78.79

w/o. POV 91.51 86.55 66.43 78.64
w/o. KSMLM 91.86 87.15 63.90 78.34
w/o. POV&KSMLM 91.17 86.25 60.65 77.99
w/o. OKR 93.00 87.75 65.35 78.43

Table 4: Ablation study in terms of accuracy (%).

matter which module is removed, the model per-438

formance is affected. Particularly, when we re-439

move both POV and KSMLM, the performance is440

decreased by 2.29%, 1.6%, 11.91% and 0.8%, re-441

spectively. The accuracy values of this setting are442

lower than w/o. POV and w/o. KSMLM. It suggests443

that both of two components highly contribute to444

the high performance of our framework. In addi-445

tion, the performance is further improved over MR,446

RTE and QQP by using the self-ensemble learning447

technique, which verifies the success of the combi-448

nation of each components. Additionally, we find449

that if we use KSMLM but remove OKR, the results450

decreases over all these tasks, but are still higher451

than w/o. KSMLM. It means that the options knowl-452

edge that we mine from the corpus is suitable for453

the self-supervised learning task.454

Sample Efficiency. We further explore the model455

effects with different numbers of training samples456

per class (K) from 32 to 512. We also use standard457

fine-tuning as the reference. As shown in Figure 4,458

each point refers the averaged score across 5 ran-459

domly sampled datasets. We observe that our UPT460

consistently achieves higher scores regardless of461

the number of training samples. In addition, the462

variance of UPT is lower than fine-tuning, meaning463

that the stability of our method is better. This is464

different from other prompt-based methods (Schick465

and Schütze, 2021a,b; Gao et al., 2021).466

Model Scale Analysis. To further show that UPT467

can improve the model performance regardless of468

the scales, we regard multiple small-scale BERT469

as model backbones12. Due to space limitation, we470

only illustrate the results in Table 3 over SST-2,471

12https://github.com/google-research/
bert
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Figure 4: Results of sample efficiency analysis. We
compare UPT with standard fine-tuning with different
numbers of training samples K over two tasks.

MR, and CR. To make a fair comparison, we also 472

test the performance without the usage of dissimilar 473

NLP datasets, and show the relative improvements. 474

The results demonstrate that the model scale plays 475

an important role in the ability of model general- 476

ization. We also find that UPT that uses dissimilar 477

datasets can highly improve the effectiveness, espe- 478

cially on small-scale PLMs. Therefore, our method 479

is better suitable for producing high-performing 480

small PLMs for online applications. 481

Adaptation Efficiency of Task Groups. As for 482

aforementioned, our framework focuses on multi- 483

task prompt-based fine-tuning before fine-tuning on 484

the few-shot target task. Therefore, it is worth ex- 485

ploring which group of tasks has a better effect on 486

the adaptation improvement over the given target 487

task. In this part, we re-design the multi-task train- 488

ing process. Specifically, when given a target task 489

(e.g., MNLI), we only choose one group of tasks 490

(e.g., MRPC and QQP of Group 3 (Paraphrase)) 491

for multi-task prompt-tuning, and then fine-tune 492

the model on the target task. As shown in Figure 5, 493

the cell in the i-th row and j-th column denotes 494

the relative improvement from single-task learn- 495

ing over the j-th task to the setting where the i-th 496

group is added for multi-task prompt learning. We 497

normalize the values of each column to show the 498

percentage of influence of each group. 499

The results show that the performance of a tar- 500

get task improves the most when we add data 501

samples from other datasets within the same task 502

group. However, in low-resourced scenarios, sim- 503
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Figure 5: Adaptation efficiency between task groups.
The shade of color indicates the degree of adaptation.

ilar datasets are not available. By using UPT, we504

can even transfer the knowledge from the datasets505

from dissimilar tasks to the target task.506

4 Related Work507

In this section, we summarize the related work on508

PLMs and prompt-based learning for PLMs.509

4.1 Pre-trained Language Models510

Recently, benefited from the powerful modeling511

abilities of PLMs and computational resources, we512

have witnessed the qualitative improvement of mul-513

tiple NLP tasks (Qiu et al., 2020; Han et al., 2021a).514

For examples, the large GPT model series (Rad-515

ford et al., 2019; Brown et al., 2020) utilizes multi-516

layer transformer decoders to capture left-to-right517

semantics of natural languages. BERT (Devlin518

et al., 2019) focuses on the learning of bidirectional519

contextual representations based on transformer en-520

coders. Other notable PLMs include Transformer-521

XL (Dai et al., 2019), ELMo (Peters et al., 2018),522

RoBERTa (Liu et al., 2019), AlBERT (Lan et al.,523

2020), ERNIE (Zhang et al., 2019), XLNet (Yang524

et al., 2019), StructBERT (Wang et al., 2019b), Big525

Bird (Zaheer et al., 2020), SpanBERT (Joshi et al.,526

2020), T5 (Raffel et al., 2020), etc. As the model527

architecture of PLMs is not the focus of our work,528

we do not further elaborate.529

4.2 Prompt-based Learning for PLMs530

Fine-tuning PLMs directly by learning the [CLS]531

head may perform poorly with few training sam-532

ples due to model overfitting (Liu et al., 2021a). Re-533

cently, the huge GPT-3 model (Brown et al., 2020)534

has been proposed to enable in-context learning,535

which introduces handcrafted prompts and demon-536

strations. Schick and Schütze (2021a) apply hand-537

crafted prompts to prompt-based fine-tuning for538

BERT-style models. To facilitate automatic prompt539

generation, Gao et al. (2021) present LM-BFF to540

generate discrete templates (Raffel et al., 2020).541

Other works (Shin et al., 2020; Han et al., 2021b;542

Scao and Rush, 2021; Utama et al., 2021) mine543

prompts from the training corpus based on heuris- 544

tic rules or semantic relations. However, these 545

methods are time-consuming for mining optimized 546

prompts for target tasks. To deal with this problem, 547

a series of methods are proposed to learn contin- 548

uous/soft prompt embeddings with differentiable 549

parameters, such as P-tuning (Liu et al., 2021c), P- 550

tuning-V2 (Liu et al., 2021b), OptiPrompt (Zhong 551

et al., 2021b), Prefix-tuning (Li and Liang, 2021). 552

Zhao and Schütze (2021); Gu et al. (2021) focus 553

on the hybrid training with both discrete and con- 554

tinuous prompts. Hu et al. (2021) consider the 555

automatic expansion of label words, and presents 556

Knowledgeable Prompt-tuning (KPT) to utilize 557

knowledge from knowledge bases for the construc- 558

tion of verbalizers. Sun et al. (2021) and Wang 559

et al. (2021b) prompt the PLMs to make language 560

inference in zero-shot learning. In addition, Wang 561

et al. (2021a); Vu et al. (2021) consider transfer 562

learning on continuous prompt-tuning, and achieve 563

better performance on cross-task training. Li et al. 564

(2021); Chen et al. (2021); Ma et al. (2021) focus 565

on prompts for specific NLP tasks, such as senti- 566

ment analysis, information extraction and question 567

answering. 568

Recently, Wei et al. (2021); Zhong et al. (2021a); 569

Min et al. (2021); Mishra et al. (2021) tune PLMs 570

on mixed data samples drawn from different NLP 571

tasks with manually designed task-specific prompts. 572

The resulting PLMs are then utilized to solve un- 573

seen tasks by zero-shot learning. These methods 574

successfully work for large PLMs such as GPT- 575

3 (Brown et al., 2020) and T5 (Raffel et al., 2020), 576

but consume a large amount of computational re- 577

sources. Our work further leverages data from 578

non-target tasks for BERT-style PLMs, which in- 579

cludes a unified prompting paradigm that makes 580

the prompt-tuned PLMs have better capacities of 581

adapting to previously unseen NLP tasks. 582

5 Conclusion 583

In this paper, we present the Unified Prompt Tun- 584

ing framework (UPT) that enables better few-shot 585

learning for BERT-style models by explicitly cap- 586

turing prompting semantics from non-target NLP 587

datasets. Extensive experiments are conducted on 588

a variety of tasks, showing that UPT consistently 589

outperforms state-of-the-arts for prompt-based fine- 590

tuning. As for future work, we seek to extend UPT 591

to other tasks such as named entity recognition, text 592

generation, and machine translation. 593
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Task Prompt Option Label word

SST-2

Template 1: [<s1>]. It was [MASK].
Template 2: [<s1>]. I thought it was [MASK].
Template 3: [<s1>]. It is [MASK].
Template 4: [<s1>]. The review is [MASK].
Template 5: [<s1>]. A [MASK] one.

Option 1: Is <x1> or <x2>?
Option 2: Does <x1> or <x2>?
Option 3: <x1> or <x2>?

Verbalizer 1: Negative (Bad), Positive (Wonderful)
Verbalizer 2: Negative (Silly), Positive (Solid)
Verbalizer 3: Negative (Pathetic), Positive (Irresistible)

MR

Template 1: [<s1>]. It was [MASK].
Template 2: [<s1>]. A [MASK] piece of work.
Template 3: [<s1>]. It is [MASK].
Template 4: [<s1>]. The film is [MASK].
Template 5: [<s1>]. A really [MASK] movie.

Option 1: Is <x1> or <x2>?
Option 2: Does <x1> or <x2>?
Option 3: <x1> or <x2>?

Verbalizer 1: Negative (Horrible), Positive (Exquisite)
Verbalizer 2: Negative (Silly), Positive (Solid)
Verbalizer 3: Negative (Bad), Positive (Wonderful)

CR

Template 1: [<s1>]. It was [MASK].
Template 2: [<s1>]. It looks [MASK].
Template 3: [<s1>]. It is [MASK].
Template 4: [<s1>]. The quality is [MASK].
Template 5: [<s1>]. I thought it was [MASK].

Option 1: Is <x1> or <x2>?
Option 2: Does <x1> or <x2>?
Option 3: <x1> or <x2>?

Verbalizer 1: Negative (Horrible), Positive (Fantastic)
Verbalizer 2: Negative (Silly), Positive (Solid)
Verbalizer 3: Negative (Bad), Positive (Wonderful)
Verbalizer 4: Negative (Pointless), Positive (Neat)

MNLI

Template 1: [<s1>]. You are right, [MASK]. [<s2>].
Template 2: [<s1>]. It was [MASK]. [<s2>].
Template 3: [<s1>], [<s2>]. It is [MASK].
Template 4: [<s1>]. It is true that [MASK], [<s2>].
Template 5: [<s1>]. [MASK]. Then, [<s2>].

Option 1: Is <x1> or <x2> or<x3> ?
Option 2: Based on the paragraph above, is the
following <x1> or <x2> or <x3>?

Verbalizer 1: Contradiction (Next),
Entailment (Exactly), Neutral (Indeed)
Verbalizer 2: Contradiction (Wrong),
Entailment (True), Neutral (Uncertain)
Verbalizer 3: Contradiction (Otherwise),
Entailment (Fine), Neutral (Plus)
Verbalizer 4: Contradiction (Otherwise),
Entailment (Exactly), Neutral (Naturally)

SNLI

Template 1: [<s1>]. [MASK], no, [<s2>].
Template 2: [<s1>]. [MASK], in this case, [<s2>].
Template 3: [<s1>]. [MASK], I think, [<s2>].
Template 4: [<s1>], [<s2>]. It was [MASK].
Template 5: [<s1>]. [MASK], [<s2>].

Option 1: Is <x1> or <x2> or<x3> ?
Option 2: Based on the paragraph above, is the
following <x1> or <x2> or <x3>?

Verbalizer 1: Contradiction (Next),
Entailment (Exactly), Neutral (Indeed)
Verbalizer 2: Contradiction (Wrong),
Entailment (True), Neutral (Uncertain)
Verbalizer 3: Contradiction (Instead),
Entailment (Indeed), Neutral (Basically)
Verbalizer 4: Contradiction (Except),
Entailment (Alright), Neutral (Watch)

QNLI

Template 1: Question: [<s1>]? [<s2>]. The answer:
[MASK].
Template 2: Question: [<s1>]? [<s2>]. [MASK].
Template 3: Question: [<s1>]? [MASK], Yes, [<s2>].
Template 4: [<s1>]? [MASK], it is known that [<s2>].
Template 5: [<s1>]? [MASK]. Then, [<s2>].

Option 1: Is <x1> or <x2> ?
Option 2: Based on the question, is the
following <x1> or <x2>?
Option 3: Is the answer <x1> or <x2>?

Verbalizer 1: Entailment (Yes), Not Entailment (No)
Verbalizer 2: Entailment (Okay),
Not Entailment (Nonetheless)
Verbalizer 3: Entailment (Notably), Not Entailment (Yet)

RTE

Template 1: [<s1>]. [<s2>]. The answer: [MASK].
Template 2: [<s1>]. [<s2>]. [MASK].
Template 3: [<s1>]. [MASK], I think, [<s2>].
Template 4: [<s1>]. The question: [<s2>]? It is [MASK].
Template 5: [<s1>]. [MASK]. I believe, [<s2>].

Option 1: Is <x1> or <x2> ?
Option 2: Based on the question, the answer
is <x1> or <x2>?
Option 3: Is the answer <x1> or <x2>?

Verbalizer 1: Entailment (So),
Not Entailment (Meanwhile)
Verbalizer 2: Entailment (Yes), Not Entailment (No)
Verbalizer 3: Entailment (Notably), Not Entailment (Yet)

MRPC

Template 1: [<s1>]. [<s2>]. The answer: [MASK].
Template 2: [<s1>]. [<s2>]. [MASK].
Template 3: [<s1>]. [MASK], however, [<s2>].
Template 4: [<s1>]. [<s2>]. In fact [MASK].
Template 5: [<s1>]. [MASK]. that’s right, [<s2>].

Option 1: Is <x1> or <x2> ?
Option 2: Are two question <x1> or <x2>?
Option 3: <x1> or <x2>?

Verbalizer 1: 0 (Alas), 1 (Rather)
Verbalizer 2: 0 (Different), 1 (Same)
Verbalizer 3: 0 (Wrong), 1 (Right)

QQP

Template 1: [<s1>]. [<s2>]. The answer: [MASK].
Template 2: [<s1>]. [<s2>]. [MASK].
Template 3: [<s1>]. [MASK], however, [<s2>].
Template 4: [<s1>]. [<s2>]. In fact [MASK].
Template 5: [<s1>]. [MASK]. that’s right, [<s2>].

Option 1: Is <x1> or <x2> ?
Option 2: Are two question <x1> or <x2>?
Option 3: <x1> or <x2>?

Verbalizer 1: 0 (Alas), 1 (Rather)
Verbalizer 2: 0 (Different), 1 (Same)
Verbalizer 3: 0 (Wrong), 1 (Right)

Table 5: The Prompts, Options and Verbalizers (POV) for each task. <s1> and <s2> denote the input sentences.
<x1>, <x2> and <x3> denote the label words.

A The POV Settings of All Tasks808

As shown in Table 5, we list all the designed POVs809

for each task. Note that for each task group, the op-810

tions are the same, but verbalizers may be different.811

For example, SST-2, MR, and CR have the same812

schema of options, but with different verbalizers.813
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