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ABSTRACT

Dynamic node classification is critical for modeling evolving systems like financial
transactions and academic collaborations. In such systems, dynamically capturing
node information changes is critical for dynamic node classification, which usually
requires all labels at every timestamp. However, it is difficult to collect all dynamic
labels in real-world scenarios due to high annotation costs and label uncertainty
(e.g., ambiguous or delayed labels in fraud detection). In contrast, final timestamp
labels are easier to obtain as they rely on complete temporal patterns and are
usually maintained as a unique label for each user in many open platforms, without
tracking the history data. To bridge this gap, we propose a pioneering method
PTCL (Pseudo-label Temporal Curriculum Learning), combining the variational
EM framework with a novel Temporal Curriculum Learning strategy to effectively
leverage both final timestamp labels and pseudo-labels. We also contribute a new
academic dataset (CoOAG), capturing long-range research interest in dynamic
graph. Experiments across real-world scenarios demonstrate PTCL’s consistent
superiority over other methods adapted to this task. Beyond methodology, we
propose a unified framework FLiD (Framework for Label-Limited Dynamic Node
Classification), consisting of a complete preparation workflow, training pipeline,
and evaluation standards, and supporting various models and datasets. Code details
can be found in supplementary materials.

1 INTRODUCTION

Graph-structured data is widespread in domains such as social networks (Ying et al., 2018} Newman
et al., [2002; [Feng et al.| [2022), biological systems (Zitnik et al., 2018} |Li et al., 2022al), financial
transactions (Huang et al., [2022; L1 & Yang, |2023), and academic collaborations (Hu et al., 2021}
Zhou et al.| [2022)). Graphs effectively capture relationships between entities, enabling powerful
modeling of complex systems (Bronstein et al.l 2017). A key task is node classification, which
assigns labels to nodes based on features and structure (Xiao et al.,|2022; Bhagat et al., 2011; Rong
et al.,[2019), and has been extensively studied in static graphs. However, many real-world graphs
are dynamic, with evolving nodes, edges, and labels over time (Rossi et al., 2020; [Kumar et al.,
2019; [Xu et al., 2020). For instance, authors may shift research areas (Jia et al.,|2017)) or users may
change behaviors in transaction networks (Huang et al.| |2022), highlighting the need for dynamic
node classification that accounts for temporal label changes.

Ideally, training on a complete dynamic trajectory yields a strong classifier. However, dynamic
node classification is challenged by the high cost of acquiring dynamic labels, requiring continuous
monitoring, manual annotation, and coping with uncertainty (e.g., delayed or ambiguous fraud labels).
Existing dynamic datasets often provide weak or rarely changing labels (Kumar et al.,[2019), limiting
their ability to reflect evolving node behavior. While labeling nodes at every timestamp is difficult,
obtaining a final label (e.g., fraud status) at the end of a period is more feasible, as illustrated in
FigureE] (Huang et al.| 2022). Many platforms, such as OAG (Sinha et al.; Zhang et al bja}; |Tang
et al.)), also offer only final static labels (e.g., fixed research interests). This motivates our core task:
label-limited dynamic node classification. The goal is to classify nodes in dynamic graphs using
limited label information, especially final timestamp labels, which implicitly summarize long-term
behavior. Effectively leveraging unlabeled historical data thus requires robust modeling of temporal
dynamics.
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Building on the foundation of SSL (Yang et al., 2022} Zhou et al.l 2020} Zhul 2005} [Learning), 2006
Chapelle et al., [2006; Van Engelen & Hoos, [2020) and pseudo-labeling (Lee et al., 2013} |Kage
et al.| [2024), we propose PTCL (Pseudo-label Temporal Curriculum Learning), which consists of
a dynamic graph encoder (backbone) and a label predictor (decoder) (Yu et al.| 2023} [Rossi et al.|
2020). Inspired by the variational EM framework (Qul [2024; |Qu et al., |2019; Zhao et al., [2022;
Neal & Hinton, |1998; Dempster et al.l [1977), we decouple their optimization: the decoder is trained
solely on final timestamp labels to ensure label fidelity, then used to generate pseudo-labels for earlier
timestamps. These pseudo-labels, combined with the final labels, guide the backbone training via
a weighted loss, allowing it to learn temporal label dynamics effectively. To mitigate the impact of
low-quality pseudo-labels in early EM iterations, we introduce a Temporal Curriculum Learning
strategy inspired by Curriculum Learning (Bengio et al.|[2009; Wang et al.,|2021b; Soviany et al.,
2021). Following the easy-to-hard principle, we assign higher weights to pseudo-labels near the
final timestamps—where predictions are more reliable—at early stages of training. Over time, the
model gradually incorporates earlier, harder timestamps, enabling progressive learning of temporal
dynamics.

Extensive experiments show that PTCL consistently outperforms other methods adapted to this task
across multiple datasets, validating its effectiveness in capturing the temporal evolution of nodes.
Additionally, we conduct a series of additional studies to verify the contribution of each design of
PTCL.

To sum up, our contributions are as follows:

* Pioneering Study: To the best of our knowledge, this is a pioneering study to systematically
investigate the problem of label-limited dynamic node classification. We formalize the task, identify
its unique challenges, and propose a comprehensive method to address them.

* Novel Method: We introduce a new method PTCL, which captures the dynamic nature of nodes
with limited labels, advancing dynamic graph study by constructing highly varying history infor-
mation. Various experiments demonstrate the effectiveness of PTCL and the necessity of each
design.

. NeWgDataset: We contribute a new dataset, CoOOAG, which is derived from academic collaboration
networks and designed for dynamic graph learning. It captures the dynamic nature of research
interests, providing a rich testbed for evaluating PTCL.

* Unified Framework: We propose a unified framework, FLiD (Framework for Label-Limited
Dynamic Node Classification), for our task, which includes a complete preparation workflow,
a training pipeline, and evaluation protocols. Our framework supports various backbones and
datasets, offering a flexible and extensible solution.

2 PROBLEM FORMULATION

A dynamic graph with dynamic labels can be mathematically represented as a sequence of chrono-
logically ordered events: G = {x(¢;)} = {(wi, vs, ;) }, where 0 < ¢; <5 < ---. Each event x(t;)
describes an interaction between a source node u; € V and a destination node v; € V at time ;.
And ylj ,yii € Y are their respective labels at ¢;. V denotes the set of all nodes, and ) is the class
set of all nodes. For eachnode u € V, T, = {t; | u = u; oru = v; in z(¢;) € G} is the set of all
timestamps at which u participates in any event in G. The last occurrence time 7;, = max 7, is the
most recent timestamp in 7,,. We further define Vp = {yf u € V1, the set of ground-truth labels at
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Figure 2: Overview of our proposed method. PTCL consists of a Variational EM process with a
dynamic graph backbone and a decoder. During the warmup phase, the dynamic graph backbone is
trained on a link prediction task, where the dynamic graph structure serves as the target. After warmup,
in each M-step, the backbone receives final timestamp labels, pseudo-labels, and the dynamic graph
structure as input, while the decoder is trained in the E-step to refine pseudo-labels. Additionally, the
Temporal Curriculum Learning strategy prioritizes pseudo-labels based on their temporal proximity
to the final timestamp labels, ensuring higher-quality training.

the final timestamps, and Vi = {y’, | u € V,t € T, \ {T\,}}. the set of labels at non-last timestamps
of every node. In most cases, |Vg| > |Vr|. In our research scenario, YV are known, whereas
Vg are considered unknown due to data collection constraints. Following the training-evaluation
paradigm, we determine a boundary time 7’5 to separate the training and evaluation datasets. The final
timestamp label set V- is then divided into two subsets: Vp g = {yl* | u € V,T,, < T} consisting
of labels for nodes whose final timestamps are before 75, and Yr 4 = {y.* | v € V,T,, > T}
containing labels for nodes whose final timestamps is after Tz. Similarly, Jg is partitioned into
Ve ={y, lue Vit € Tu,\{Tu},t <Tp}and Ve a = {y, |uecV,t € T,\{Tu.},t > Tp},
representing labels whose corresponding timestamps are before and after 7’5, respectively.

The dynamic graph backbone generates node embeddings h!, for each node u at each timestamp
t € T,. The backbone takes the node features as input n,, € R and edge features el,, € Rz If

the graph is non-attributed, we assume n,, = 0 and ef“) = 0 for all nodes and edges, respectively.

Given a dynamic graph G with dynamic labels and |Vg| > |Vr|, our task label-limited dynamic
node classification aims to maximize log p(Vr |G). Specifically, our goal is to learn a model that
can finally accurately predict V.

3 METHODOLOGY

In this section, we present our proposed method for label-limited dynamic label learning. As shown
in Figure 2] our approach combines the variational EM framework with a novel Temporal Curriculum
Learning strategy to effectively leverage both final timestamp labels and pseudo-labels in a dynamic
graph setting.

3.1 VARIATIONAL EM FRAMEWORK

Following previous work (Zhao et al., 2022} |Qu et al.||2019), we adopt the variational EM framework
(Dempster et al.l {1977; Neal & Hinton, [1998)) to maximize log p(Yr 5|G).
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3.1.1 EVIDENCE LOWER BOUND (ELBO)

To handle the unknown labels Vg g, instead of directly optimizing log pg(Vr 5|G), we maximize
the evidence lower bound (ELBO) of the log-likelihood function:

log p(Vr 5|G) > By, (vs.516)l0gpe(VE B, VE, B|G) — log qs(VE,B|G)] )

where pg(Vr 5, Ve, 5|G) is the joint distribution of observed and unknown labels, modeled by the
dynamic graph backbone with parameters 6. ¢4(YVg 5|G) is the variational distribution that approx-
imates the true posterior distribution pg(Vg 5|Vr 5, G), modeled by the decoder with parameters

0.

To facilitate optimization, we follow mean field assumption (Getoor et al.,[2001), which yields the
following factorization:

wVesld) =] ] wln), ©)
ueV teT, \{Tu}
t<Tp

where g4 (y! |h!)) is the label distribution predicted by the decoder.
The ELBO can be optimized by alternating between the E-step and the M-step.

3.1.2 E-STEP

In the E-step, we use the wake-sleep algorithm (Hinton et al.,|1993)), following (Zhao et al., 2022)). We
fix the dynamic graph backbone 6 and optimize the decoder ¢ to minimize the KL divergence between
the true posterior distribution pp (Vg |G, Vr p) and the variational distribution ¢4 (Vg |G). The
objective function for the decoder is:

Op=>_ Y Epyg.ymmlogas(ylhl)],

wEV te T\ {Tu} (3
t<Tp

Following (Zhao et al.,[2022)), we use the pseudo-labels Y ., B generated by the decoder to approximate
the distribution pg(vy%,|G, Vr B):
p@(ymgayF,B)QPG(yz‘g7yF,B7j}E,B\5)}2’,3), (4)

where jﬁ}g g =1{05 |t € Tu\{Tu},t <Tp} is the set of pseudo-labels of node w. Then the objective
function of the decoder changes to:

Op=0ad > Epgiioyemlogasihl)+(1—a) > loggs(yi[hi),

ueV te T, \{Tu} ueVT,<Tp ®)
t<Tgp

where « is a hyperparameter that balances the weight of pseudo-labels and final timestamp labels.
But in practice, as shown in Section[4.2} we find that setting « to 0 yields the best performance, which

means we train the decoder only with final timestamp labels. Therefore, the final objective function
for the decoder is:

Op= > loggy(yi*hl*), 6)
uey
T,<Tp

3.1.3 M-STEP

In the M-step, following the previous work (Zhao et al.} 2022} |Qu et al.|[2019), we aim to maximize
the following pseudo-likelihood (Besag, [1975). Specifically, we fix the decoder ¢ and optimize the

dynamic graph backbone ¢ using both the final timestamp labels Vg p and the pseudo-labels Vg g
generated in the E-step. The objective is to maximize the pseudo-likelihood:

Op =B Z Z log po(y.|G, Vr,5. Ve, B \575,3)

wEV T, \{Tu}

t=Ts (N
+(1-5) Z log po(yL*|G, Yr,5 \ {yl*}. VE,B),

ueVT,<Tg
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where [ is a hyperparameter that balances the weight of pseudo-labels and final timestamp labels.
Note that the backbone can only generate embeddings, so we cascade the backbone and decoder,
fixing the decoder ¢ to use final timestamp labels and pseudo-labels generated by the decoder to train
the backbone.

3.2 TEMPORAL CURRICULUM LEARNING

In the M-step, the backbone is trained on both final labels Vr g and pseudo-labels J>E - To mitigate
noise from unreliable pseudo-labels at earlier timestamps, we introduce a Temporal Curriculum
Learning strategy that dynamically adjusts pseudo-label weights based on their temporal proximity
to the final timestamp and the EM iteration 7.

Specifically, we design a weighting mechanism for pseudo-labels based on their temporal order
relative to the final timestamp T,,. Specifically, for each node v € V, timestamp ¢ € 7, in 7-th
iteration, we define a weight wff as follows:

1 ifdl, <t
t,T ’ ¢
T — t Tu’ = .
Wy, Jrw(t,u, 7, Ty, ) {exp (—y-(dt, — 7)), ifd, >,

di, = |{t' e Tu | t' > t}], )

(®)

where d!, is the discrete temporal distance between of timestamp ¢ and T, in 7,,. v > 0is a
hyperparameter that controls the rate of Temporal Curriculum Learning decay. The weight w?;"
dynamically adjusts the importance of pseudo-labels during training. If d!, < 7, the timestamp ¢ is
considered close to the final timestamp 7, and the pseudo-label is assigned a weight of 1, indicating
high confidence in its quality. And if d’, > T, the timestamp ¢ is considered far from 7T,,, and the
pseudo-label weight decays exponentially with the distance 7 — d!,, reducing its influence on the
training process.

With the pseudo-label temporal weights w?;™, the objective function for the M-step is modified as
follows:

Op=B>_ Y. wi logps(y}|G,Vrp Ve 5\ Vi p)
WEV teT \{Tu }
=Te . (10)
+(1-5) Z log po (16, Yr.e \ {ye"}, Ve.B)-

uey
Tuw<TB

By incorporating temporal weight w7, the backbone is trained to prioritize high-quality pseudo-
labels.

3.3 LEARNING AND OPTIMIZATION

Since the initial parameters of the EM algorithm are crucial for its performance (Dy & Brodley,
2004; Kwedlo) 2015)), we first warm up the backbone by training it on a link prediction task. Then
we proceed with the variational EM algorithm, which alternates between the E-step and the M-step.
Finally, we use the decoder to predict Vi 4. The complete algorithm is summarized in Appendix@

4 EXPERIMENTS

Our experiments are designed to address the following key research questions (RQs):

RQ1: How does PTCL perform compared to other baselines when evaluated on the final timestamp
labels? RQ2: Does pseudo-labels generated by PTCL improve performance by capturing the dynamic
information of nodes? RQ3: Does the proposed Temporal Curriculum Learning strategy improve
performance? RQ4: Is PTCL stable and computationally efficient? More experiments can be found

in Appendix[E]
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Figure 3: Architectures of baselines and PTCL. ‘B’: backbone, ‘D’: decoder.

4.1 EXPERIMENT SETTINGS
4.1.1 DATASETS

We evaluate PTCL on four datasets: Wikipedia (Kumar et al., 2019), Reddit (Kumar et al.| [2019),
Dsub (a subgraph of Dgraph (Huang et al.| [2022)), and our proposed CoOAG. CoOAG is a novel
academic co-authorship graph derived from OAG (Open Academic Graph (Sinha et al.;[Zhang et al.,
bia; Tang et al.)), where nodes represent authors and edges denote co-authorship on Al conference
papers. Node labels reflect evolving research interests across five fields: Computer Vision (CV),
Natural Language Processing (NLP), Robotics (ROB), Data Mining/Web Search (DM/WS), and
other AI/ML fields. Crucially, CoOAG provides temporally grounded intermediate labels, enabling
explicit modeling of label dynamics—43.2% of nodes change labels at least once. The construction
and labeling procedure of CoOAG is detailed in Appendix [B.2.2] while comprehensive details for all
datasets are provided in Appendix [B} For the binary tasks (Wikipedia, Reddit, Dsub), we report AUC
(for Dsub, we exclude background nodes); for the multi-class CoOAG, we use ACC.

To reflect real-world scenarios where only final labels are available, we adopt a timestamp-based split
and evaluate solely on final labels (Vr 4). Nodes are split into train/val/test sets at a 7:1.5:1.5 ratio
based on label distributions. All results are averaged over five random seeds. Implementation and
hyperparameters are in Appendix[[]and[]]

4.1.2 BASELINES

We compare PTCL with several different methods that can be adapted to our task. And specifically,
we use five different dynamic backbones as backbones: TGAT (Xu et al.l 2020), GraphMixer (Cong
et al.,[2023), TCL (Wang et al., 2021a), TGN (Rossi et al.} [2020), and DyGFormer (Yu et al., 2023),
and apply a simple 3-layer MLP as the decoder. More backbone details are in Appendix|C| As shown
in Figure 3] the baselines are designed to cover a range of approaches:

* CFT (Copy-Final Timestamp labels): A naive baseline that simply copies the final timestamp
labels (Y, p) to earlier timestamps as approximations of dynamic labels (Vg p) for training.

* DLS (Dynamic Label Supervision): A baseline that performs supervised training directly using
the dynamic labels provided by the dataset (e.g., Wikipedia, Reddit), where available (Yu et al.,
2023 Rossi et al .l [2020).

* NPL (Naive Pseudo-Labels): A variant of PTCL that uses pseudo-labels but jointly optimizes the
backbone and decoder without EM optimization.

¢ PTCL-2D (PTCL with 2 Decoders): A variant of PTCL that uses two decoders: one decoder is
trained exclusively on the final timestamp labels (E-step), generating pseudo-labels, while the other
decoder is jointly optimized with the backbone on weighted pseudo-labels and final timestamp
labels (M-step). The final embeddings are provided by the backbone for the E-step training.

* SEM (Standard EM): A variant of PTCL where both the E-step and M-step are trained on
the weighted loss of pseudo-labels and final timestamp labels (Zhao et al.| [2022)), while other
components remain the same as PTCL. In this way, E-step uses Eq. (3)) as the objective function
instead of Eq. ().

4.1.3 FLI1D: A NOVEL FRAMEWORK

We introduce FLiD, a new code framework tailored for scenarios with only final timestamp labels.
Compared to existing frameworks (e.g., DyGLib (Yu et al.} 2023), TGL (Zhou et al.,|2022)), FLiD
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Table 1: Performance comparison across datasets (Wikipedia, Reddit, Dsub, CoOAG). We run
all experiments with five random seeds to ensure a consistent evaluation and report the average
performance as well as standard deviation in parentheses. Bold indicates the best performance,
underline the second best. Dsub and CoOAG datasets can not apply the DLS method due to a lack of

dynamic labels. TGN runs out of memory on Dsub due to its high space cost.

Backbone \ Method | Wikipedia Reddit Dsub CoOAG
‘ AUC AUC AUC ACC
CFT 7743 (£3.01) 82.68 (£0.06) 62.32(+1.27) 86.28 (+0.18)
DLS 79.56 (£2.55) 78.66 (+ 0.04) - -
TGAT NPL 78.52 (£2.28) 80.72 (£ 2.65) 61.71 (x£2.21) 87.67 (+0.61)
PTCL-2D | 78.20 (£ 6.83) 85.84 (£ 6.09) 60.76 (+2.91) 88.37 (+ 0.16)
SEM 81.09 (£3.62) 86.27(+£5.99) 64.34(4+0.99) 88.38 (4 0.38)
Ours 85.52 (£ 3.29) 87.31(+6.50) 65.07 (£1.57) 89.05(+0.63)
CFT 76.27 (£4.68) 84.48 (+5.53) 62.60 (£ 1.26) 86.12 (£ 1.11)
DLS 80.55 (£ 1.93) 82.85 (4 0.38) - -
TCL NPL 77.71 (£5.66) 84.20 (+3.86) 63.59 (£3.09) 87.59 (+ 0.26)
PTCL-2D | 76.68 (+2.86) 86.98 (+3.34) 60.64 (£ 1.41) 87.94 (+ 0.30)
SEM 81.02 (+£2.82) 87.56(+ 1.56) 65.11 (+ 1.26) 87.90 (4 0.18)
Ours 82.27 (£4.62) 89.41 (+3.32) 66.80 (=2.45) 88.24 (+ 0.26)
CFT 80.68 (+£2.02) 89.69 (+ 2.07) OOM 83.65 (£ 0.63)
DLS 78.48 (£ 1.60)  80.92 (£ 4.99) - -
TGN NPL 87.58 (+£2.14) 84.22 (+2.48) OOM 86.13 (£ 0.31)
PTCL-2D | 86.59 (+3.01) 86.76 (4 3.89) OOM 86.23 (+ 0.66)
SEM 86.34 (£ 2.66) 82.61 (+3.07) OOM 86.07 (£ 0.66)
Ours 87.97 (£2.90) 84.32 (+2.07) OOM 86.71 (£ 0.66)
CFT 76.60 (£ 2.00) 66.11 (£6.04) 62.78 (£ 1.90) 85.63 (+0.14)
DLS 80.70 (£ 4.00) 61.97 (+ 7.36) - -
GraphMixer NPL 80.86 (£ 1.62) 71.72(+6.48) 67.14 (£ 1.68) 86.98 (4 0.61)
PTCL-2D | 81.41 (£4.25) 66.86(+ 11.14) 62.33 (+ 1.35) 87.51(+0.51)
SEM 83.33 (£ 1.45) 68.65(£3.70) 69.23 (+1.92) 88.07 (£ 0.30)
Ours 84.09 (£ 0.95) 7193 (+7.94) 69.76 (£ 1.54) 88.26 (+ 0.38)
CFT 64.76 (£9.21) 67.14(+8.04) 68.48 (= 1.46) 85.27 (+ 0.83)
DLS 7195 (£2.29) 64.63 (£ 4.90) - -
DyGFormer NPL 73.85 (£ 5.44) 6744 (+3.47) 7031 (£ 1.11) 86.16 (+ 0.38)
PTCL-2D | 66.48 (+6.76) 71.14 (£6.27) 69.11 (£2.96) 86.04 (£ 0.30)
SEM 7091 (£8.80) 71.59 (+4.51) 69.75(£2.47) 86.07 (+ 0.66)
Ours 74.85 (+3.07) 75.86 (£8.04) 72.39(+191) 86.26 (+0.27)

offers complete support for our task, including raw data preprocessing, a flexible training pipeline
compatible with various backbones and pseudo-labeling strategies, and evaluation protocols for fair
comparison. All experiments in this paper are conducted in FLiD. More details are in Appendix D}

4.2 RQI1: MAIN RESULTS

To evaluate the effectiveness of PTCL, we conduct experiments using five different backbones and
compare against several baselines. As shown in Table[T] PTCL consistently improves performance
across all datasets and backbones.

» Effectiveness of Pseudo-Labels. PTCL significantly outperforms both CFT and DLS (up to
+11.23% in AUC/ACC), showing that learned pseudo-labels better capture node dynamics than
copied or even original dynamic labels (details in Section 4.3).

* Importance of Separate Optimization. Compared to NPL, PTCL achieves +2.74% improvement
on average, highlighting the benefit of optimizing the decoder solely with final labels. This ensures
alignment with ground truth and prevents error propagation from noisy pseudo-labels.

 Efficiency over PTCL-2D. PTCL achieves better performance with lower compute cost than the
two-decoder variant, indicating that a single shared decoder promotes more stable and consistent
training.

4.3 RQ2: PSEUDO-LABEL ANALYSIS

In this section, we evaluate the effectiveness of our pseudo-labels and their ability to capture dynamic
patterns through two experiments.



Under review as a conference paper at ICLR 2026

Table 2: AUC comparison of different backbones using Dynamic Label Supervised Learning (DLS)
and Pseudo-Label Supervised Learning (PLS) on Wikipedia Dataset.

| TGAT TCL TGN GraphMixer DyGFormer

DLS | 79.56 80.55 78.48 80.7 71.95
PLS | 81.11 8219 79.32 81.02 72.42
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Figure 4: (a) Pseudo-label consistency; (b) Convergence of backbones.

4.3.1 PSEUDO-LABEL SUPERVISION STUDY

To analyze the effectiveness of our pseudo-labels, we conduct the following experiment: We train
models from scratch using our generated pseudo-labels (from our trained model) as full supervision
labels and compare the results with DLS. As shown in Table 2} models trained with our pseudo-labels
consistently outperform those using original dynamic labels with an average improvement of 0.96%
in AUC.

4.3.2 LABEL CONSISTENCY ANALYSIS

To further investigate the temporal changes of labels, we analyze the labels’ consistency on
Wikipedia’s positive samples. Consistency is quantified as follows:

N = maxx {k € N* | gl = yur’ Vi € {|Tur| = by [ Tl = 1}, (11)
N,

Cp = —=—. 12

Tl -1 (12

where 1/ € Vyeg, Voeg = {t/ |t/ €V, yg"' = 1}. In Wikipedia, dynamic labels for negative samples
change abruptly (C,» = 0), while CFT enforces overly rigid continuity (C,, = 1), leading to feature
misalignment. In contrast, PTCL generates pseudo-labels with varying consistency (Figure {a)),
enabling smooth temporal transitions and better aligning features across time.

4.4 RQ3: TEMPORAL CURRICULUM LEARNING ANALYSIS

To comprehensively evaluate our Temporal Curriculum Learning design, we conduct a comparison
experiment against the naive solution which uses all the generated pseudo-labels, and two commonly
used baseline strategies to choose more reliable pseudo-labels in Curriculum Learning, as introduced
in Section [E1L

e Confidence Score Threshold (CST) (Sun et al.| 2019} [He et al.} 2022} [Cascante-Bonilla et al. [2020):
This method filters pseudo-labels based on their confidence scores, improving the overall quality
of the labels.

 Entropy of Softmax Trajectory (EST) (Song et al, 2019} [Pei et all, 2024): This method filters
pseudo-labels using the entropy of the softmax trajectory, which is an accumulated distribution
that summarizes the model’s disagreement across training rounds.
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Table 3: AUC comparison of our Temporal Curriculum Learning with other strategies. CST =
Confidence Score Threshold, EST = Entropy of Softmax Trajectory.

Backbone | Dataset | Naive CST EST  Ours

Wikipedia | 8238 7948 8189 85.52
TGAT Dsub | 64.12 6278 6380 65.07
oL | Wikipedia | 8L77 7806 8036 8227
Dsub | 6529 6368 6457 66.80

TGN | Wikipedia | 8633 83.63 8688 87.97
Dsub | OOM OOM OOM OOM

| Wikipedia | 8334 8159 81.13 84.09
GraphMixer | "nih ™ | 6808 6879 67.55 69.76
DeGFormer | Wikipedia | 6942 67.15 6839 74.85
Y Dsub | 7230 7086 6921 72.39

As shown in Table 3] our Temporal Curriculum Learning consistently achieves the best AUC across
all backbones and datasets, confirming its effectiveness. The Naive strategy underperforms PTCL by
an average of 1.74 %, reflecting the noise in unfiltered pseudo-labels. CST and EST perform even
worse, as their static filters fail to capture the temporal reliability of pseudo-labels. These results
highlight the advantage of leveraging temporal dynamics for curriculum learning.

4.5 RQ4: CONVERGENCE AND EFFICIENCY ANALYSIS

We assess the convergence and efficiency of PTCL on Wikipedia using 5 backbones, with CFT as
the baseline. As shown in Figure bl PTCL converges rapidly across all models: TGAT surpasses
its baseline at the first iteration, others within 2—4. All reach peak AUC in 610 iterations, with
DyGFormer showing the largest gain (+16.1%). Each EM iteration adds only 0.8 x—1.2x training
time, demonstrating both fast convergence and practical overhead.

5 RELATED WORK

5.1 DYNAMIC NODE CLASSIFICATION

Dynamic graph learning can be categorized into discrete-time methods, which segment graphs into
snapshots (Fan et al., 2021; [Sankar et al.,|2020), and continuous-time methods, which model fine-
grained temporal interactions for greater realism (Rossi et al., 2020; Wang et al., [2021a). While
most existing work focuses on link prediction (Qin & Yeung, |2023; Yu et al.,|2023), dynamic node
classification remains underexplored despite its practical value. Prior methods like JODIE (Kumar
et al.l [2019), DynPPE (Guo et al., [2021), and OTGNet (Feng et al., |2023)) assume access to full
dynamic labels and often overlook the evolving nature of node states—assumptions that rarely hold in
practice. We tackle the challenging yet realistic setting of label-limited dynamic node classification,
where only final timestamp labels are available. To address this, we propose PTCL, a continuous-time
approach that leverages pseudo-labeling with a Temporal Curriculum Learning strategy to capture
latent node dynamics. More related work can be found in Appendix [F

6 CONCLUSION

In this work, we address dynamic node classification under limited labels by proposing PTCL, an
extensible method based on temporally-weighted pseudo-labels and a variational EM framework.
PTCL achieves up to 11.23% AUC/ACC gain across diverse real-world scenarios, validating the
effectiveness of modeling temporal dynamics and our proposed Temporal Curriculum Learning. We
also introduce the CoOAG dataset and FLiD framework to support practical evaluation. Beyond
classification, PTCL is adaptable to other dynamic graph tasks, offering a solid foundation for future
research on learning node evolution under realistic supervision constraints.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors of this paper have read and agree to adhere to the ICLR Code of Ethics. Our work
involves the construction and release of a new academic collaboration dataset (CoOAG), derived
from publicly available data in the Open Academic Graph (OAG). All author labels in CoOOAG
are inferred using a large language model (Qwen-Plus (Yang et al., 2024)) based on anonymized
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is designed to reduce annotation costs in dynamic graph settings such as fraud detection or academic
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We have taken extensive measures to ensure the reproducibility of our results. The complete
implementation of our method PTCL, the FLiD framework, data preprocessing pipelines, and all
experimental configurations are included in the supplementary materials. Hyperparameters for each
backbone, training protocols, optimizer settings, and early stopping criteria are detailed in Appendix[J]
(Table[9), and model architectures are described in Appendix [C}] The CoOAG dataset construction
procedure, including prompt templates, feature extraction, and temporal splitting, is fully documented
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A ALGORITHM FOR TRAINING PTCL

First, we define the link prediction task. Given a dynamic graph G = {(u;, v;, t;)}, the link prediction
loss is defined as:

Lpy== > logo(MLP(Y b)) = > log(1-o(MLP(RY, b)), (13
(ui,viti)€G (uj,v;5,t5)€G

where o(+) is the sigmoid function, || means concatenation. The first term encourages the model to
predict existing edges correctly, while the second term penalizes the model for predicting non-existent
edges.

Then the algorithm for training PTCL can be summarized in Alg. [I]

Algorithm 1 Optimization Algorithm

Input: A dynamic graph G, final timestamp labels Vr g, and hyperparameter 3

Output: Predicted Vr 4.
0 < argming Ly,
T+ 1
repeat
E-Step: Decoder Optimization
¢ + argmaxy Oy
Ve, + argmax (Ve 5|G)
9: M-Step: Backbone Optimization
10: wz’q— — fTW(tau7T7 Tqu)
11: 0 + arg maxy Oy
12: T+ T174+1

P RXDINHERN 2

> Warm up the backbone
> Initialize iteration counter

> Update the decoder g
> Generate pseudo-labels

> Compute temporal weights
> Update backbone pg
> Update iteration counter

13: until Converged
14: Vp 4 < argmax ¢y (Vr,4|G) > Final prediction
15: return )A/F_y A

B DATASET DETAILS

Due to the lack of widely studied datasets for the label-limited dynamic node classification, we
utilize three existing datasets that align closely with our task and propose a new dataset CoOAG
specifically designed for this problem. The statistics of four datasets are introduced in Table ]

Table 4: Dataset Statistics.

| Wikipedia ~ Reddit Dsub  CoOAG

Nodes 9,227 10,984 150,000 9,559
Edges 15,7474 67,2447 16,8154 11,4337
Duration 1 month 1 month 1l year 22 years
Total classes 2 2 2 )
Bipartite v v X X
Node Feat Dim - - 34 384
Edge Feat Dim 172 172 1 384

B.1 PREVIOUS DATASETS
We use three publicly available datasets and do the preprocessing to adapt them to our task:

B.1.1 DsuB

Description: Dsub is a subgraph of the Dgraph (Huang et al.,|2022) dataset, which is a financial fraud
detection dataset where nodes represent users, and edges represent emergency contact relationships
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between users. Node labels indicate whether a user is ultimately identified as fraudulent (failing to
repay loans over an extended period). Node features are derived from user metadata. In addition
to confirmed fraudulent and non-fraudulent labels, the dataset includes background nodes that lack
sufficient information for labeling but are retained to maintain graph connectivity.

Preprocessing: To facilitate efficient training, we extract a subgraph called Dsub using Breadth-
First Search (BFS), ensuring that the subgraph remains connected and preserves the original label
distribution.

B.1.2 WIKIPEDIA

Description: Wikipedia (Kumar et al,, [2019) is a bipartite interaction graph that records edits
on Wikipedia pages over one month. Nodes represent users and pages, and edges denote editing
behaviors with timestamps. Each edge is associated with a 172-dimensional Linguistic Inquiry and
Word Count (LIWC) feature. The dataset includes dynamic labels indicating whether users are
temporarily banned from editing (Yu et al.| 2023)).

Task Adaptation: To simulate real-world scenarios where only the final labels are available, we
split the dynamic labels into Vg g (final labels) and Vg g (unobserved labels). During training, only
Y. B is used.

B.1.3 REDDIT

Description: Reddit (Kumar et al.,2019) is a bipartite graph that records user posts under subreddits
over one month. Nodes represent users and subreddits, and edges represent timestamped posting
requests. Each edge is associated with a 172-dimensional LIWC feature. The dataset includes
dynamic labels indicating whether users are banned from posting (Yu et al.| 2023).

Task Adaptation: Similar to Wikipedia, we split the dynamic labels into Vr g and Vg g, using only
Yr p for training to simulate real-world conditions.

B.2 Co0OAG
B.2.1 DESCRIPTION

To advance research in this domain, we introduce CoOAG, a novel dataset derived from the academic
sphere, inspired by the Coauthor CS and Coauthor Physics networks (Shchur et al.). This dataset has
undergone stringent quality control and temporal consistency checks. Label distributions are detailed
in Table

The CoOAG dataset is constructed using the Microsoft Academic Graph (MAG) portion from Open
Academic Graph 2.1(Sinha et al.; |[Zhang et al., |bza; |Tang et al.), with a focus on publications from
leading AI conferences. The node labels in CoOAG denote authors’ research interests, classified into
the following categories:

* CV (Computer Vision)

e NLP (Natural Language Processing)
¢ ROB (Robotics)

* DM/WS (Data Mining/Web Search)
* AI/ML (Other Al Fields)

Table 5: Label Distributions of CoOAG.

Field Label Distribution

ROB 2,845 (29.64%)
Ccv 1,700 (17.71%)
NLP 1,652 (17.21%)

AI/ML 1,971 (20.53%)
DM/WS 1,431 (14.91%)
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Research field Classification Prompt Template

Classify the author’s research field into one of the following

5 categories based on the given field keywords and weights:
: CV (Computer Vision)

: NLP (Natural Language Processing)

: ROB (Robotics)

: DM/WS (Data Mining/Web Search)

: AI/ML (Other AI Fields)

|
S W NP O

Input: Multiple field keywords with weights
Output requirements:
— *x (x@\textbf{Format}@«+)+*: Directly return classification

result (0-4)
— *x (x@\textbf{Constraint}@x*)«*: Answer must be a single digit

without explanation

Examples:
— Input: "[computer vision (0.53377)] [image filter (0.5337)]"
- Output: O

Input:
{fos_text}

\. J

B.2.2 PREPROCESSING

We employ structured prompts with the Qwen-Plus API (qwe} 2024} [Yang et al'}[2024) to categorize
research fields using paper Fields of Study (FoS) and abstracts. The prompt template, as illustrated in

Listing[B.2.T] encompasses:

» Category definitions with canonical examples
* Strict output format constraints

* Weighted keyword matching logic

* Interactive classification examples

This approach achieves 98.3% ACC on 120 manually verified samples. Edge features are generated
by concatenating paper metadata and abstracts, encoded using the all-MiniLM-L12-v2 model. Node
features are computed as the average of all paper features for each author. Conference submission
deadlines determine edge timestamps. The classification workflow maintains temporal consistency
by processing papers in chronological order.

B.2.3 EXAMPLES

To illustrate the temporal dynamics inherent in the CoOAG dataset, we present a concrete example of
label evolution for a single author node. Consider Node ID: 6816, a researcher whose publication
history spans 3,693 days (approximately 10 years). This node undergoes three label transitions across
distinct research fields, reflecting meaningful shifts in academic focus:

Table 6: Label transitions of node id: 6816 over time.

Time interval Number of papers Research field (label)
2010.11.15 -2012.09.10 5 Robotics (ROB)
2012.09.10 — 2014.12.15 7 Data Mining / Web Search (DM/WS)
2014.12.15 -2016.12.04 6 Robotics (ROB)
2016.12.04 — 2020.12.25 24 Data Mining / Web Search (DM/WS)
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This trajectory demonstrates repeated and substantial shifts between Robotics and Data Mining/Web
Search, underscoring the non-stationary nature of research interests over time. Such patterns are
not isolated: across the entire CoOOAG dataset, 43.2% of labeled nodes experience at least one label
transition during their publication lifetime, with an average of 1.19 label changes per node. These
statistics confirm that label dynamics in CoOAG are both frequent and semantically meaningful,
capturing real-world academic evolution.

C BACKBONE DETAILS

* TGAT (Xu et al.} 2020) leverages a self-attention mechanism to simultaneously capture spatial
and temporal dependencies. Initially, TGAT combines the raw node feature n,, with a learnable
time encoding z(t), forming n,(t) = [n,||2(t)], where z(t) = cos(tw + b). Subsequently,
self-attention is applied to generate the representation of node w at time t(, denoted as h!0 =
SAM(n,,(t), {n,(my) | v € Ny (u)}). Here, Ny, (u) represents the set of neighbors of node u
at time to, and m,, indicates the timestamp of the most recent interaction involving node v. Finally,
predictions for any node pair (u, v) at time ¢y are obtained via MLP([h%°||hf°]).

* TCL (Wang et al., 2021a)) adopts a contrastive learning framework. To construct interaction
sequences for each node, TCL employs a breadth-first search algorithm on the temporal dependency
subgraph. A graph transformer is then utilized to learn node representations by jointly considering
graph topology and temporal dynamics. Additionally, TCL integrates a cross-attention mechanism
to model the interdependencies between interacting nodes.

* TGN (Rossi et al.|, [2020) combines RNN-based and self-attention-based techniques. TGN main-
tains a memory module to store and update the state s, (t) of each node u, which serves as a
compact representation of u’s historical interactions. Given the memory updater as mem, when
an edge e, (t) connecting nodes u and v is observed, the memory state of node w is updated as
su(t) = mem(s,(t7), s,(t 7)€}, ,), where s, (™) denotes the memory state of u just prior to
time ¢, and efw represents the edge feature. The memory updater mem is implemented using a

recurrent neural network (RNN). Node embeddings h!, are computed by aggregating information
from the L-hop temporal neighborhood through self-attention.

* GraphMixer (Cong et al.,2023)) introduces a simple yet effective MLP-based architecture. Instead
of relying on trainable time encodings, GraphMixer utilizes a fixed time encoding function, which
is integrated into a link encoder based on MLP-Mixer to process temporal links. A node encoder
with neighbor mean-pooling is employed to aggregate node features. Specifically, for each node w,
GraphMixer computes its embedding h!, by summarizing the features of its neighbors within the
temporal context.

* DyGFormer (Yu et al.| 2023) employs a self-attention mechanism to model dynamic graphs. For
a given node u, DyGFormer retrieves the features of its involved neighbors and edges to represent
their encodings. It incorporates a neighbor co-occurrence encoding scheme, which captures the
frequency of each neighbor’s appearance in the interaction sequences of both the source and
destination nodes, thereby explicitly exploring pairwise correlations. Rather than operating at the
interaction level, DyGFormer divides the interaction sequences of each source or destination node
into multiple patches, which are then processed by a transformer to compute node embeddings ht,.

D MORE DETAILS ABOUT FLID

Existing frameworks such as DyGLib and TGL have made important progress in dynamic graph
learning: DyGLib unifies models for fully supervised link prediction and node classification, while
TGL focuses on scalable training for large dynamic graphs. However, neither framework directly
addresses the label-limited dynamic node classification setting considered in this work.

FLiD is specifically developed to tackle this challenge, featuring:

* Flexible support for multiple training paradigms, including CFT, DLS, NPL, SEM, PTCL, and
PTCL-2D;

* Pseudo-labeling enhancements such as Confidence Score Threshold (CST), Entropy of Softmax
Trajectory (EST), and Temporal Curriculum Learning;

* Compatibility with a variety of dynamic graph backbones, including TGAT, TGN, GraphMixer,
TCL, and DyGFormer; and
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* A custom data preprocessing and splitting strategy designed for the final-timestamp-only supervi-
sion scenario.

E MORE EXPERIMENTS

To further validate our framework, we additionally investigate the following research questions (RQs):

RQS5: How does decoder design impact PTCL’s performance? RQ6: Is PTCL robust to the choice of
temporal decay rate y?

E.1 RQ5: DECODER COMPARISON

In our framework, we follow the modular paradigm commonly adopted in temporal graph learning,
where the encoder (backbone) captures dynamic structural-temporal features, and the decoder serves
as a lightweight task-specific mapping function from node embeddings to labels (Ross1 et al., [2020).
While pseudo-labels play a critical role in training under the label-limited setting, their quality is
primarily determined by the encoder’s representation capacity rather than the complexity of the
decoder.

To further examine the role of the decoder, we conducted additional experiments with more expressive
designs, including deep 8-layer MLP and Transformer-based architectures. Interestingly, these
complex decoders often resulted in performance degradation, which can be attributed to overfitting,
increased variance, or optimization instability under the low-label regime. Figure [5| summarizes
the performance comparison on the Wikipedia dataset, showing that our lightweight MLP decoder
achieves competitive or superior results across backbones compared with deep MLP and Transformer
decoders.

95

90 88.0
85.0 84.8
84.1
85 83.0 523 828 83.5

80
77.0

AUC (%)
3

75

70

65 64.2

60
TGAT TCL TGN GraphMixer DyGFormer

MLP (ours) Deep MLP Transformer

Figure 5: Decoder Comparison on Wikipedia.

E.2 RQ6: HYPERPARAMETERS SENSITIVITY

To evaluate the sensitivity of our framework to the temporal decay rate y, we conducted additional
experiments on the Wikipedia dataset by varying « from 0.1 to 0.9. We report results across five
different backbones in Table[7} Overall, the performance remains relatively stable across settings,
with moderate standard deviations: TGAT (83.15 £ 1.39), TGN (86.25 % 0.76), GraphMixer (82.47
4 0.57), TCL (80.30 £ 1.75), and DyGFormer (71.85 = 2.24). These results suggest that our method
is robust to the choice of .
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Table 7: Sensitivity analysis of our framework to the temporal decay rate y on the Wikipedia dataset.

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Avg + Std

TGAT 80.94 81.58 8424 83.13 84.48 83.15 8194 8552 8340 83.15+1.39
TGN 85.58 87.03 8527 87.01 86.57 87.17 85.03 86.09 86.52 86.25+0.76
GraphMixer 82.37 81.23 83.44 8227 8292 8236 82.86 8250 8230 82.47+0.57
TCL 76.69 80.41 8197 8131 8093 8227 81.26 79.90 78.00 80.30+1.75

DyGFormer 73.64 73.74 7279 68.73 7390 7449 7029 70.84 68.24 71.85+2.24

F MORE RELATED WORK

F.1 PSEUDO-LABELING

Pseudo-labeling (Lee et al., [2013)) is a widely used semi-supervised learning method that assigns
labels to unlabeled data to reduce entropy and encourage low-density decision boundaries (Pei et al.
2024} (Chapelle & Zien, 2005} (Grandvalet & Bengio, [2004). It has proven effective in various fields
including computer vision (Lee et al., 2013;|Xu et al.| |2021]), graph learning (Li et al.,|2022b; [2018bza;
Sun et al.| 2019), knowledge distillation (Hinton et al.l 2015)), and adversarial training (Miyato
et al.l 2017} Xie et al 2019). However, performance heavily depends on label quality, as noisy
pseudo-labels may misguide training (Pei et al.,[2024). Curriculum Learning (Bengio et al.,[2009)
mitigates this by ordering training samples from easy to hard, using heuristics like confidence or
entropy (Cascante-Bonilla et al.,[2020; He et al., [2022; Pei et al., 2024} Song et al., [2019). In contrast,
our Temporal Curriculum Learning explicitly leverages temporal information to prioritize recent
(easier) timestamps first, then gradually incorporates earlier (harder) ones, better aligning model
training with evolving dynamics in time-dependent graphs.

A closely related work is ELI (Kamhoua et al.), which also addresses graph learning under limited
supervision by introducing pseudo-labels and decoupling their generation from final label supervision.
Despite this similarity, there are key differences. First, ELI is designed for static graphs with globally
sparse labels, whereas our work considers dynamic graphs where labels are typically only available
at the final timestamp, introducing temporally-driven label scarcity. Second, ELI infers pseudo-labels
through an unsupervised label distribution estimation and constructs a pseudo-label graph, while our
PTCL framework treats pseudo-labels as latent variables and refines them iteratively via a variational
EM procedure, with a decoder trained solely on ground-truth labels to ensure alignment with the true
label space. Finally, ELI integrates labels through graph-based regularization using the Laplacian
of the pseudo-label graph, whereas PTCL directly supervises the backbone with both pseudo- and
ground-truth labels, augmented by a temporal curriculum weighting scheme that prioritizes recent
timestamps. These distinctions highlight the novelty of our temporal perspective in pseudo-label
integration for dynamic graphs.

F.2 VARIATIONAL EM FRAMEWORK

The variational EM fram ework (Dempster et al., [1977; [Neal & Hintonl [1998) is a widely used
framework for parameter estimation in probabilistic models with latent variables. In the classical
EM algorithm, the goal is to maximize the likelihood of observed data by iteratively refining model
parameters through alternating E-steps (expectation computation) and M-steps (parameter maximiza-
tion). GMNN (Qu et al., 2019) applies EM for semi-supervised static graphs and GLEM (Zhao et al.|
2022)) combines GNNs with language models. Our contribution lies not in framework innovation but
in adapting this established paradigm to address label-limited dynamic node classification.

G RELATIONSHIP WITH OTHER TASKS

In Section 2] we define the label-limited dynamic node classification task. Specifically, when all
timestamps ¢; are identical or omitted, the graph degenerates into a static graph (Kipf & Welling|
2016;|Holme & Saramaiki}, 2012)), where each node v € V is associated with a single label y,,. Then
the problem degrades to a static node classification task. Alternatively, if labels are available for all
nodes at all timestamps, i.e., Vg is entirely known, the problem becomes a fully supervised dynamic
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node classification task, which has been extensively studied in prior research (Xu et al.|[2020; Rossi
et al.,[2020; [Cong et al., 2023} |Yu et al., [2023).

H DISCUSSION

Limitation. Due to the open-access nature and the unique characteristics of our task setting, we were
unable to evaluate our method on a broader range of datasets. This may limit the generalizability of our
findings to other domains or data types. Additionally, we observed that performance can be influenced
by the specific computational environment, including hardware and runtime configurations. As a
result, reproduction under different resource settings may lead to variations in absolute performance.

Future Work. Although our Temporal Curriculum Learning outperforms alternative dynamic
weighting strategies based on confidence or entropy (e.g., CST and EST), we acknowledge that
our current design still relies on a manually set temporal decay parameter . A valuable future
direction is to develop a confidence-aware weighting scheme that adaptively modulates pseudo-label
contributions according to their reliability. In addition, we plan to explore the integration of large
language models (LLMs) into our framework, leveraging their strong reasoning and representation
capabilities to further enhance pseudo-label generation and temporal modeling in dynamic graphs.

I IMPLEMENTATION DETAILS

We use PyTorch (Paszke et al.| 2019), scikit-learn (Pedregosa et al., 2011)), PyTorch Geometric (Fey
& Lenssen, [2019), DyGLib (Yu et al., [2023) library to implement our proposed framework FLiD. We
conduct experiments on two clusters: (1) 4xTesla V100 (32GB memory) using 16-core CPUs and
395GB RAM; (2) 8x2080Ti (11GB memory) using 12-core CPUs and 396GB RAM.

J  HYPERPARAMETERS

We optimize all methods across all models using the Adam optimizer (Kingma & Bal 2014])), with
cross-entropy loss as the objective function. Initially, we warm up all backbones through link
prediction tasks (Kumar et al.,|2019). Subsequently, the entire models are trained for 100 epochs,
employing an early stopping strategy with a patience of 15. For consistency, we set the learning
rate to 0.0001 and the batch size to 200 across all methods and datasets. To ensure robustness and
minimize deviations, we conduct five independent runs for each method with random seeds ranging
from O to 4 and report the average performance (Yu et al., 2023)).

J.1 MODEL CONFIGURATIONS

Here, we present the configurations for each model (Table : TGAT, TGN, TCL, GraphMixer, and
DyGFormer, all of which remain consistent across datasets.

J.2  PTCL HYPERPARAMETERS

Here, we present the hyperparameters of PTCL (Table[9): 3 is a hyperparameter that balances the
weight of pseudo-labels and final timestamp labels; y is a hyper-parameter that controls the rate of
Temporal Curriculum decay. Note that TGN runs out of memory on Dsub due to its high space cost.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed large language models (LLMs) as auxiliary tools to enhance the clarity and readability
of the text. Specifically, LLMs were used to assist in identifying and correcting grammar and spelling
errors, as well as refining the overall expression of our writing. The role of LLMs was limited to
language polishing, ensuring that the final manuscript meets academic writing standards.
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Table 8: Model Configurations Comparison.

Hyperparameter TGAT TGN TCL GraphMixer DyGFormer
Time encoding dim 100 100 100 100 100
Output dim 172 172 172 172 172
Attention heads 2 2 2 - 2
Graph conv layers 2 1 - - -
Transformer layers - - 2 - 2
MLP-Mixer layers - - - 2

Node memory dim - 172 - - -
Depth encoding dim - - 172 - -
Co-occurrence dim - - - - 50
Aligned encoding dim - - - - 50
Memory updater - GRU - - -
Time gap T’ - - - 2000 -

Table 9: Hyperparameters of PTCL.

Model | Hyperparameters | Wikipedia Reddit Dsub CoOAG

TGAT ; 02 01 03 oo
TL ; 06 09 03 00
TGN f o oo - 01
GraphMixer 5 (1)3 8:? 8:? 8:2
DyGFormer 3 00_ 071 09 651 8 51) (0) }
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