
Under review as submission to TMLR

Robust Feature Inference: A Test-time Defense Strategy
using Spectral Projections

Anonymous authors
Paper under double-blind review

Abstract

Test-time defenses are used to improve the robustness of deep neural networks to adversarial
examples during inference. However, existing methods either require an additional trained
classifier to detect and correct the adversarial samples, or perform additional complex
optimization on the model parameters or the input to adapt to the adversarial samples
at test-time, resulting in a significant increase in the inference time compared to the base
model. In this work, we propose a novel test-time defense strategy called Robust Feature
Inference (RFI) that is easy to integrate with any existing (robust) training procedure without
additional test-time computation. Based on the notion of robustness of features that we
present, the key idea is to project the trained models to the most robust feature space, thereby
reducing the vulnerability to adversarial attacks in non-robust directions. We theoretically
characterize the subspace of the eigenspectrum of the feature covariance that is the most
robust for a generalized additive model. Our extensive experiments on CIFAR-10, CIFAR-100,
tiny ImageNet and ImageNet datasets for several robustness benchmarks, including the
state-of-the-art methods in RobustBench show that RFI improves robustness across adaptive
and transfer attacks consistently. We also compare RFI with adaptive test-time defenses to
demonstrate the effectiveness of our proposed approach.

1 Introduction

Despite the phenomenal success of deep learning in several challenging tasks, they are prone to vulnerabilities
such as the addition of carefully crafted small imperceptible perturbations to the input known as adversarial
examples (Szegedy et al., 2013; Goodfellow et al., 2014). While adversarial examples are semantically similar
to the input data, they cause the networks to make wrong predictions with high confidence. The primary
focus of the community in building adversarially robust models is through modified training procedures. One
of the most popular and promising approaches is adversarial training (Madry et al., 2018), which minimizes
the maximum loss on the perturbed input samples. Extensive empirical and theoretical studies on the
robustness of deep neural networks (DNNs) using adversarial training reveals that adversarial examples are
inevitable (Ilyas et al., 2019; Athalye et al., 2018b; Shafahi et al., 2019; Tsipras et al., 2018) and developing
robust deployable models with safety guarantees require a huge amount of data and model complexity (Nie
et al., 2022; Wang et al., 2023; Carmon et al., 2019). For instance, the current state-of-the-art methods
(Wang et al., 2023; Peng et al., 2023; Gowal et al., 2021; Rebuffi et al., 2021) use additional one million to 100
million synthetic data along with the original 50000 training samples of CIFAR-10 and CIFAR-100. Although
the improvement in robust performance is convincing with this approach, there is an evident tradeoff with
huge computational costs both in terms of data and model.

While the deep learning community has focused on achieving robustness through different training paradigms
such as adversarial training, little attention has been on improving the robustness of trained models at
test-time. Test-time defenses refer to methods that improve the robustness of any trained model at test
time. This is typically achieved through two main strategies: (i) Static test-time defenses update the
model parameters or input stochastically independent of the test data (Cohen et al., 2019) or introduce fixed
mechanisms to detect and correct the adversarial input (Guo et al., 2018; Nayak et al., 2022). Although the
stochastic static defense based on randomized smoothing gives certifiable defense, there is no theoretically well

1

Under review as submission to TMLR

Figure 1: Illustration of our test-time defense mechanism. Given any trained model h(x), we first
post-process the penultimate layer features ϕ(x) to get the top most informative and robust features in
eigenspace Ũ using the training data. During inference of the test data xt, ϕ(xt) is projected onto the robust
feature space using ϕ(xt)ŨŨT , equivalently changing β to β̃ = ŨŨT β.

founded deterministic static defense. Most such defenses are based on heuristics. (ii) Dynamic/Adaptive
test-time defenses adapt the input (Alfarra et al., 2022; Wu et al., 2021) or the model parameters (Kang
et al., 2021; Chen et al., 2021) to the test data before making prediction. While the dynamic defenses seem
promising as it can adapt to the adversary, the inference is computationally more demanding as it adapts
to every single input at test-time. Moreover, the existing adaptive defenses do not necessarily improve the
robustness of the underlying model (Croce et al., 2022). Thus, efficiently improving the adversarial robustness
of the trained models at test-time without additional data or computation and with theoretical guarantees
remain a challenging problem.

Our contribution. In this work, we develop a novel test-time defense strategy with the same inference cost
as the underlying model and no additional data or model complexity. We define robust features, inspired
by Athalye et al. (2018b); Ilyas et al. (2019) in Definition 3.1, and subsequently describe the proposed
method, RFI, in Algorithm 1 that relies on the idea of retaining the most robust features of the trained
model. Notably, RFI is easy to integrate with any existing training paradigm. We provide a theoretical
justification for our method by analyzing the robustness of features in a generalized additive model (GAM)
setting (Corollary 3.4). We conduct extensive experiments using different architectures such as ResNet-18,
ResNet-50, WideResNet-28-10, WideResNet-34-10, WideResNet-50-2 and PreActResNet-18 on CIFAR-10,
CIFAR-100, tiny ImageNet and ImageNet where RFI yields consistent robustness gains over base models and
as well as other adaptive test-time defenses across datasets without additional cost at test time. Thus, we
provide the first theoretically guided method with 1× inference time as the base model, outperforming the
adaptive test-time defenses of comparable computation overhead. An interesting by-product of our analysis is
the learning dynamics of GAM showing that the features with large variation aligning with the original signal
are more robust and learned early during training (Proposition 5.1). This phenomenon has been observed
empirically for Neural Tangent Kernel (NTK) features (Tsilivis & Kempe, 2022) without theoretical proof.
As a supplementary analysis, we prove it for NTK features (Proposition 5.2).

Illustration of our method (Figure 1). The proposed method abstracts any deep neural network as a
feature extractor ϕ(x) and a linear output layer β⊤ϕ(x) that consists of class prototypes. We compute the
covariance of the features Σtrain obtained from the training examples of the feature extractor. We define a

2

Under review as submission to TMLR

robustness measure for the eigenvectors of Σtrain as sc(uk) and for each class prototype, we retain only the
top most eigenvectors with respect to the robustness measure. This choice of the robustness metric as well as
the principle of sorting the eigenvector are mathematically justified through Corollary 3.4, where we consider
generalized additive models and compute the robustness score of features (Defnition 3.1) showing that the
top eigenvectors of the feature matrix are more robust. For a finite-width network, the above theoretical
argument essentially corresponds to projecting the weights of only the last layer β onto the space spanned by
the most robust features β̃ = ŨŨ⊤β, thereby improving the robustness of the underlying model at test-time.
Our method does not increase the inference time because the selected robust eigenbasis can be used to simply
transform the linear layer weights into the eigenbasis resulting in exactly the same number of parameters in
the network at inference time.

2 Related Works

In recent years, there has been a significant amount of research on generating adversarial examples and
simultaneously improving the robustness of DNNs against such examples. We review the most relevant works
below along with static and adaptive test-time defenses.

Adversarial robustness. Szegedy et al. (2013) first observed that the adversarial examples, which are small
imperceptible perturbations to the original data, can fool the DNN easily and make incorrect predictions.
To generate adversarial examples, Fast Gradient Sign Method (FGSM) is proposed by Goodfellow et al.
(2014). Madry et al. (2018) introduced an effective defense against adversarial examples known as adversarial
training, where the network is trained by minimizing the maximum loss on the adversarially perturbed inputs.
Adversarial training remains a promising defense to significantly improve the robustness of DNNs against
adversarial attacks (Rice et al., 2020; Carmon et al., 2019; Engstrom et al., 2019; Wang et al., 2023; Pang
et al., 2022). However, sophisticated attacks are developed to break the defenses such as Carlini-Wagner
(C&W) attack Carlini & Wagner (2017), a method for generating adversarial examples; ‘obfuscated gradients’
hypothesis (Athalye et al., 2018b) posits that the vulnerability to adversarial examples is due to the presence
of easy to manipulate gradients in the model; ‘feature collision’ hypothesis Ilyas et al. (2019) postulates that
the vulnerability is due to the presence of features in the data that are correlated with the labels, but loses
the correlation when perturbed. As an advanced counter defense, methods to constrain the Lipschitzness of
the model (Wang et al., 2019) are developed.

Static test-time defenses. Static defenses change the model parameters or inputs after training without
the knowledge of the test data and remains fixed during inference. A theoretically guaranteed approach
to update the model parameters is through randomized smoothing (Cohen et al., 2019; Liu et al., 2018).
Another approach is to first detect the adversarial input and correct it using a trained classifier, and input
the corrected sample to the base model for prediction. Guo et al. (2018) suggest model agnostic image
transformation such as total variance minimization and image quilting for the test data as an effective defense
against any adversary. Other works detect the adversarial inputs using a separate trained network and
corrects it either by removing the high frequency component in Fourier domain (Nayak et al., 2022) or by a
trained masked autoencoder (Chao et al., 2023).

Adaptive test-time defenses. Adaptive defenses update model parameters and inputs at inference to
defend against the attack. One strategy of adaptive test-time defenses is input purification, in which the
inputs to a model (usually pre-trained with a robustness objective) is optimized with a test-time objective.
This test-time optimization can be hand crafted Alfarra et al. (2022); Wu et al. (2021) or learned Mao
et al. (2021); Hwang et al. (2023) with the help of an auxiliary network Nie et al. (2022). Another strategy
for building adaptive test-time defenses is model adaptation, where model parameters are augmented with
activations Chen et al. (2021), implicit representations Kang et al. (2021); Qian et al. (2021) and additional
normalization layers Wang et al. (2021). Although several methods are developed for adaptive test-time
defenses, all of them increase the inference cost at least 2× (Kang et al., 2021) and sometimes 500× (Shi
et al., 2021) compared to the underlying model. More importantly, most of the existing adaptive test-time
defenses results in a weaker adversary than the base model, hence overestimated the robustness to adaptive
attacks and are not really competitive with the static defenses as categorically shown in Croce et al. (2022).

3

Under review as submission to TMLR

3 Robust Feature Inference: A Test-time Defense Strategy using Spectral Projections

We consider multi-class classification problem, where we aim to learn a predictor h : X → Y where X ⊆ Rd and
Y ⊂ {0, 1}C is the set of one-hot encodings of C classes. We assume that the data is independent and identically
distributed (i.i.d) according to an unknown joint distribution D over instance-labels (x, y) ∈ X ×Y . The goal
of the paper is to develop a test-time defense that can be integrated with any training procedure. Hence, we
assume that there exists a learned predictor h : X → Y that we aim to make robust against adversarial attacks.
We aim to achieve this by decomposing the predictor into two components, h(x) = hrobust(x) + hnonrobust(x)
such that hrobust : X → Y corresponds to the robust component of the predictor while hnonrobust : X → Y
represents the remaining (non robust) component of h. In this section, we formally characterize this problem
by proposing a notion of robustness of features, inspired by Ilyas et al. (2019), and an algorithm based on
pruning less robust features. We also show that the more robust features are more informative.

3.1 Robust and Non-Robust Features

The additive decomposition of a predictor in the form h = hrobust + hnonrobust is difficult in general for
predictors with non-linearities in the output, for instance, softmax in multi-class classifiers. Hence, we relax
the setup to a multivariate regression problem, that is, Y = RC . We further assume that the trained model
h : X → Y is given by a generalized additive model (GAM) of the form h(x) = β⊤ϕ(x), where ϕ : X → H
is a smooth function that maps the data into a feature space H and β are weights learned in the feature
space. The above form of h may represent the solution of kernel regression (with H being the corresponding
reproducing kernel Hilbert space) or h could be the output layer of a neural network, where H = Rp, ϕ(x)
denotes the representation learned in the last hidden layer and β ∈ Rp×C are learned weights of the output
layer.

Features and their robustness. To identify the robust component of h, we aim to approximate ϕ as sum
of K robust components (ϕi)K

i=1, that is, h(x) ≈
∑K

i=1 β⊤ϕi(x). We refer to each ϕi : X → H as a feature.
More generally, we define the set of all features as F = {f : X → H}. We now define the robustness of a
feature as follows.
Definition 3.1 (ℓ2-Robustness of features). Given a distribution D on X × RC and a trained model

h(x) = β⊤ϕ(x), we define sD,β(f) = E(x,y)∼D

[
inf

||x̃−x||2≤∆
y⊤β⊤f(x̃)

]
as the robustness of a feature f ∈ F

and sD,β,c(f) = E(x,y)∼D

[
inf

||x̃−x||2≤∆
ycβ⊤

c f(x̃)
]

as the robustness of f with respect to the c-th class component

of y ∈ RC , c ∈ {1, . . . , C}, where βc is c-th column of β.

The above definition is based on the notion of robust features introduced by Ilyas et al. (2019) as γ−robustly
useful features, specialized to GAM model. While the γ−robustly useful feature in Ilyas et al. (2019) is
defined on the network output, we define it for the penultimate feature f with a new class-specific definition
sD,β,c(f). Based on Definition 3.1, the goal is to approximate h using the most robust features. Searching
over all f ∈ F is difficult, hence, we focus on features that are linear maps of ϕ, that is, f(x) = M⊤ϕ(x) for
some M : H → H (or M ∈ Rp×p). For such features, we bound the robustness score from below, under an
independent noise model.
Theorem 3.2 (Lower bound on robustness). Given h(x) = β⊤ϕ(x). Assume that the distribution D is such
that y = h(x) + ϵ, where ϵ ∈ RC has independent coordinates, each satisfying E[ϵc] = 0, E[ϵ2

c] ≤ σ2 for all
c ∈ {1, . . . , C}. Further, assume that the map ϕ is L-Lipschitz, that is, ∥ϕ(x)− ϕ(x̃)∥H ≤ L∥x− x̃∥. Then,
for any f = Mϕ and every c ∈ {1, . . . , C},

sD,β,c(f) ≥ β⊤
c ΣMβc − L∆∥M∥op∥βc∥H

√
σ2 + β⊤

c Σβc,

where Σ = Ex
[
ϕ(x)ϕ(x)⊤]

and ∥M∥op is operator norm.
Remark 3.3 (Lower bound is tight up to constants). For linear models ϕ(x) = x and Ex[x] = 0, sD,β,c(f) is
equal to the lower bound with L = 2

π (proved in Appendix A.2).

4

Under review as submission to TMLR

Theorem 3.2 (proved in Appendix A.1) suggests that if we search only over f ∈ F that are linear transforma-
tions f = M⊤ϕ such that ∥M∥op = 1, then the most robust feature is the one that maximizes the first term
β⊤

c ΣMβc. If the search is further restricted to projections onto K dimensional subspace, M = P P ⊤ with
P being the orthonormal basis, then we show that optimizing over such features corresponds to projecting
onto the top K eigenvectors u of Σ sorted according to a specific robustness score.
Corollary 3.4. Fix any K and Σ = Ex

[
ϕ(x)ϕ(x)⊤]

. Consider the problem of maximizing the lower bound
in Theorem 3.2 over all features f ∈ F that correspond to projection of ϕ onto K dimensional subspace.
Then the solution is f = ŨcŨ⊤

c ϕ where Ũc is the matrix of the K top eigenvectors of a class-specific matrix
Bc := 1

2 (βcβT
c Σ + ΣβcβT

c).

The above result, proved in Appendix A.3, leads to the principle idea of our test-time defense algorithm.
The robust output can be defined as h̃(x) = [β⊤

1 Ũ1Ũ⊤
1 ϕ(x), . . . , β⊤

C ŨCŨ⊤
Cϕ(x)] where Ũc is computed

from Bc for every class c ∈ {1, . . . , C}. This results in the most robust projections theoretically, but suffers
computationally since it requires (C + 1) eigendecompositions.

Efficient version. To improve the computation time, we restrict the search space of M = ŨŨT to
the eigenvectors of Σ, then Ũ is the matrix of union of K eigenvectors for which the robustness score
sc(ui) = λi(β⊤

c ui)2 are the largest for every class c. This method retains and leverages only the robust
features of the trained model at test-time efficiently by projecting the output of the trained model to the
eigenspace with higher robustness score. One may naturally ask how much error is incurred by retaining only
the robust features. Later, in Corollary 3.6, we discuss that the most robust features also contain most of the
information, and hence, drop in performance due to the projection is low.

3.2 Our Algorithm: Robust Feature Inference (RFI)

Let Dtrain := {(xi, yi)}n
i=1 ⊂ X × Y be a training dataset with n samples, and h : X → Y a trained model

such that h(x) = β⊤ϕ(x) for all x ∈ X where ϕ : X → Rp is the feature map defined by the hidden layers
of the model h and β ∈ Rp×C is the weight matrix defined by the last fully-connected layer with p as the
dimension of the feature space (refer Figure 1). From the previous analysis, we propose a method operating
on the feature space of ϕ that projects the features in the robust directions, hence improving robustness by
reducing the chance of attacks using the non-robust feature directions. To this end, we first compute the
corresponding covariance matrix Σtrain of the hidden-layer features based on the input data from Dtrain, that
is,

Σtrain = 1
n

ΦΦ⊤ with Φ := [ϕ(x1), . . . , ϕ(xn)] ∈ Rp×n.

Next, as presented in Figure 1, we compute the eigendecomposition of the covariance Σtrain = Udiag(λ)U⊤

where U ∈ Rp×p is the matrix whose columns consist of eigenvectors of Σtrain denoted by ui ∈ Rp, λ ∈ Rp

is a vector of corresponding eigenvalues such that λ1 ≥ λ2 ≥ . . ., and diag(λ) is a diagonal matrix with
eigenvalues as its diagonal entries. The idea of our algorithm is to retain only robustly useful features, i.e.,
top K eigenvectors, when making predictions on unseen data. For each class c ∈ Y , we define the c-th column
of β as βc as class prototype for c ∈ Y . The classwise robustness score of each feature is computed according
to Definition 3.1, that is, sc(ui) := λi(β⊤

c ui)2 where (λi, ui) is the i-th pair of eigenvalue and eigenvector.
We then select the top-K most robust features for each class c ∈ Y based on the robustness score denoted
by Ũc := {uσ(i) | sc(uσ(i)) ≥ sc(uσ(j)), ∀i, j ∈ [1, . . . , K]}. The global robust features for the model Ũ is
obtained as a union of the sets of classwise robust features Ũc. Finally, the prediction on a test data xt is
subsequently obtained as

h̃(xt) = β̃⊤ϕ(xt), β̃ := ŨŨ⊤β, Ũ :=
⋃
c∈Y

Ũc,

where
⋃

denotes union of sets. Therefore, the new prediction is based on the updated parameters β̃ instead
of the original β. It is not difficult to see that this corresponds to applying the original parameters β on
the robustly useful features, i.e., h̃(xt) = β̃⊤ϕ(xt) = β⊤ŨŨ⊤ϕ(xt) = β⊤ϕ̃(xt) where ϕ̃(xt) := ŨŨ⊤ϕ(xt).
Figure 1 and Algorithm 1 summarize the proposed test-time defense.

5

Under review as submission to TMLR

Algorithm 1 Robust Feature Inference (RFI)

Require: The model h trained on Dtrain := {(xi, yi)}n
i=1 such that h(x) = β⊤ϕ(x) where ϕ : X → Rp and

β ∈ Rp×C , and the number of top robust features to select K.
1: Compute the covariance Σtrain ← 1

n ΦΦ⊤ where Φ := [ϕ(x1), . . . , ϕ(xn)] ∈ Rp×n.
2: Compute eigendecomposition of Σtrain = Udiag(λ)U⊤ where columns of U are ui ∈ Rp. {▷ Top K most

robust features Ũ ∈ Rp×K (3→ 7)}
3: Ũ← {}, βc ← c-th column of β
4: for c← 1 to C do
5: For all i, compute robustness score sc(ui)← λi(βT

c ui)2

6: Ũ← Union(Ũ, ui) if sc(ui) is in top K scores sc(.)
7: end for

{▷ Robust Feature Inference on test set Xtest (8→ 9)}
8: β̃ = ŨŨT β
9: ∀xt ∈ Xtest, h̃(xt) = β̃T ϕ(xt)

3.3 Robustness vs information of features

We show that the robust features are also the informative features by defining a notion of informative features,
inspired by usefulness property in Ilyas et al. (2019).
Definition 3.5 (Informative features). Given a distribution D on X×RC and a trained model h(x) = β⊤ϕ(x),
we define the information in a feature f with respect to c-th class component of y ∈ RC as ρD,β,c(f) =
E(x,y)∼D

[
ycβ⊤

c f(x)
]
, where c ∈ {1, . . . , C} and βc is c-th column of β.

While the informative feature is similar to the ρ−useful feature defined in Ilyas et al. (2019), it is important
to note that we define it class-specific for the penultimate feature f . Additionally, our definition also includes
useful, non-robust features defined in Ilyas et al. (2019).
Corollary 3.6. Let (λi, ui)i=1,2,... denote the eigenpairs of Σ = Ex

[
ϕ(x)ϕ(x)⊤]

. For any feature f ∈ F
of the f = ŨŨ⊤ϕ, where Ũ = [u1u2 . . . uK] is a matrix of any K orthonormal eigenvectors of Σ, then
information in feature f with respect to c-th component is given by

ρD,β,c(f) =
K∑

i=1
λi(β⊤

c ui)2 =
K∑

i=1
sc(ui).

Hence, the set of features selected in Algorithm 1 by sorting the robustness score sc(ui) also correspond to
the eigenvectors with the most information. However, note that to maximize ρD,β,c(f), the full eigenspace
has to be chosen, that is K = p. We also provide visualizations of the defined features in B.13 of Appendix.

4 Experimental Results

We present the following experimental analysis of RFI in this section: (1) evaluation of RFI against adaptive
attacks resulting in consistent improvement in the robust performance in Section 4.1; (2) transfer attack
evaluation of RFI showing the strength of RFI as well as establishing that RFI does not result in gradient
obfuscation in Section 4.2; (3) in Section 4.3 we adapt static RFI to a dynamic adaptive test-time defense and
show that static RFI is better than dynamic RFI. Consequently, we compare static RFI to other test-time
defenses in Section 4.4 showing RFI outperforms other dynamic test-time defenses; (4) we discuss the
abalations on RFI in Section 4.5. Additionally, we present the performance of RFI on calibrated models using
temperature scaling (Guo et al., 2017) in the appendix since it has been shown to improve robustness (Qin
et al., 2021; Grabinski et al., 2022; Stutz et al., 2020; Tao et al., 2023).

Datasets & Resources. We evaluate RFI on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), Robust
CIFAR-10 (Ilyas et al., 2019), tiny ImageNet (Le & Yang, 2015) and ImageNet (Russakovsky et al., 2015)
datasets. We use Pytorch Paszke et al. (2019) for all our experiments & a single Nvidia DGX A100 to run all
of our experiments. We provide the code as zip file in the supplementary material.

6

Under review as submission to TMLR

Table 1: Adaptive attack performance of RFI. We consider ℓ∞ and ℓ2 PGD attack on CIFAR-10 with
Resnet-18 and ℓ∞ attack with step size ϵ/4 and 40 iterations. ℓ2 attack with size ϵ/5 and 100 iterations. RFI
improves the performance on an average by 2%.

Training
Clean ℓ∞(ϵ = 8

255) ℓ2(ϵ = 0.5)
Method +RFI % Gain Method +RFI % Gain Method +RFI % Gain

Standard 95.28 ± 0.04 88.53 ± 0.04 -6.75 1.02± 0.12 4.35± 0.08 +3.33 0.39± 0.00 9.73± 0.10 +9.34
Robust CIFAR-10 78.69± 0.01 78.75± 0.02 +0.06 1.30± 0.09 7.01± 0.10 +5.71 9.63± 0.15 11.00± 0.14 +1.37
PGD 83.53± 0.01 83.22± 0.02 -0.31 42.20± 0.00 43.29± 0.00 +1.09 54.61± 0.00 55.03± 0.00 +0.42
IAT 91.86± 0.01 91.26± 0.00 -0.60 44.76± 0.03 46.95± 0.00 +2.19 62.53± 0.01 64.31± 0.01 +1.78
C&W 85.16 ± 0.12 84.91 ± 0.16 -0.25 40.12 ± 0.16 42.33 ± 0.32 +2.21 55.18 ± 0.28 56.68 ± 0.30 +1.50
TRADES 81.22 ± 0.21 80.68 ± 0.38 -0.54 51.93 ± 0.25 53.50 ± 0.27 +1.57 59.87 ± 0.36 61.27 ± 0.44 +1.40

Adversarial Attacks. We evaluate RFI on different white and black-box adversarial attacks namely,
Projected Gradient Descent (PGD) Madry et al. (2018), a white-box attack that perturbs the input within
a small ℓp radius ϵ, so that it maximizes the loss of a model. We perform both ℓ∞ and ℓ2 PGD attack
with standard perturbation ϵ, attack step size and iteration for each dataset. AutoAttack (Croce et al.,
2020), a suite of white-box and black-box attacks including Auto PGD-Cross Entropy (APGD-CE), Auto
PGD-Difference Logit Ratios (APGD-DLR) (Croce & Hein, 2020b), Fast Adaptive Boundary Attack (FAB)
(Croce & Hein, 2020a), and Square Attacks (Andriushchenko et al., 2020). APGD-CE and APGD-DLR
are parameter-free white-box attacks that are extensions of PGD attack with no step size parameter and
stronger than PGD. FAB is a white-box attack that minimizes the norm of the adversarial perturbation.
Square Attack is an efficient black-box attack that is score based and uses random search without gradient
approximations. While adaptive attacks generate the adversarial images using the target model, transfer
attacks generate adversarial images using a surrogate model and attack the target model.

Benchmarking on SoTA defenses. We evaluate RFI on various architectures trained differently: ResNet-
18 and ResNet-50 with standard training and the popular adversarial training methods such as PGD Madry
et al. (2018), Interpolated Adversarial Training (IAT) Lamb et al. (2019), Carlini-Wagner (C&W) loss Carlini
& Wagner (2017) and TRADES (Zhang et al., 2019). We select different state-of-the-art adversarially trained
models from RobustBench upon which at the test time we integrate RFI (Carmon et al., 2019; Engstrom
et al., 2019; Rice et al., 2020; Wang et al., 2023; Pang et al., 2022). These methods either use additional data
(Carmon et al., 2019; Wang et al., 2023), informed adversarial prior (Engstrom et al., 2019) or early stopping
(Rice et al., 2020) to improve the robustness of models. We detail each training method in appendix.

Evaluation measures. We measure the performance of models with and without RFI by the accuracy of
predictions to both clean/original samples and adversarial samples averaged over 5 runs. We use ‘Clean’ to
denote accuracy of models to original samples. Note that there are no standard deviation in our evaluation of
models from RobustBench as we are directly loading the models without training, hence no stochasticity.
Details of the model evaluation are in Appendix B.2. We further remark that our defense strategy does not
circumvent gradient based attacks due to gradient masking (Athalye et al., 2018b) since we simply project the
last layer feature in its covariance eigenspace, hence the network remains differentiable with active gradients.

Comparison to adaptive test-time defenses. We compare RFI with two adaptive test-time defenses:
SODEF (Kang et al., 2021) and Anti-adv (Alfarra et al., 2022). The choice of SODEF and Anti-adv is due to
their relatively faster inference costs 2× and 8×, respectively, and are representative of model adaptation and
input modification strategies for adaptive test-time defenses, respectively.

4.1 RFI improves adversarial robustness consistently

We evaluate RFI for adaptive attacks by generating adversarial samples to specifically target our de-
fense (Tramer et al., 2020). We obtain clean and robust accuracy for standard and adversarially trained
models before and after integrating RFI and setting K to the number of classes.The results for different
training procedures on CIFAR-10 with ResNet-18 are presented in Table 1 (CIFAR-100 with ResNet-18 and
tiny ImageNet with ResNet-50 in Tables 11 and 12, respectively, in Appendix). Robust CIFAR-10 denotes
standard training using Robust CIFAR-10 dataset. We observe that our method consistently improves the
robust performance of adversarially trained models, on an average by 2%. There is a minor drop in the clean

7

Under review as submission to TMLR

Table 2: Transfer attack on ResNet-18 for CIFAR-10. Setting same as Table 1. RFI results in much
stronger adversary than the base method.

Adversarial Examples are generated from base model

Training
ℓ∞(ϵ = 8

255) ℓ2(ϵ = 0.5)
Method +RFI Method +RFI

Standard 1.02 10.36 0.39 12.09
Robust CIFAR-10 1.30 15.41 9.63 17.38
PGD 42.20 46.02 54.61 58.81
IAT 44.76 49.06 62.53 66.67
C&W 40.01 45.48 55.02 58.95
TRADES 51.98 54.33 60.03 65.23

Adversarial Examples are generated from base model+RFI

Training
ℓ∞(ϵ = 8

255) ℓ2(ϵ = 0.5)
Method +RFI Method +RFI

Standard 0.00 4.35 0.01 9.39
Robust CIFAR-10 0.03 7.01 1.05 11.00
PGD 34.80 43.29 49.90 55.03
IAT 35.78 46.95 55.42 64.31
C&W 3.92 42.56 13.50 56.79
TRADES 51.70 53.45 58.09 61.39

performance as we choose only a subset of the informative features that are also robust (K ̸= p), hence a loss
in information to achieve the best possible clean performance as derived in Corollary 3.6. Nevertheless, the
gain in robust performance is with almost no computational overhead. The seemingly small improvement in
performance is mainly due to the fact that we are adapting the trained model without any further learning, as
well as the adaptive attacks on RFI results in a stronger adversary than the base model as we discuss in transfer
attack evaluation subsequently. Additional experiments showing the effectiveness of RFI on Expectation
Over Transformation attack (Athalye et al., 2018b) is presented in Table 9 of Appendix. Furthermore, RFI
improves the robustness of calibrated models by 4%− 8% as shown in Tables 10, 11 and 12 of Appendix.

4.2 Transfer Attack Evaluation: RFI is stronger than base model

Many defences show remarkable robustness to adaptive attacks by obfuscating gradients, thereby circumventing
gradient-based attacks and offering a false sense of security (Athalye et al., 2018a; Huang et al., 2021).
Therefore to validate the true effectiveness of a defense, evaluating transfer attack is crucial. Hence, we
expand our evaluation from Table 1 to transfer attacks, where we assess the performance with and without
RFI against adversarial samples generated from the base and base model+RFI. The results in Table 2 shows
that RFI is more robust to attacks from base model whereas the base model loses considerable robustness
when attacked with the adversary from RFI demonstrating that RFI is a stronger adversary than the base
model. It is interesting to note that the robustness of C&W trained model is completely lost when tested
against adversarial examples from C&W+RFI model. This clearly establishes that the RFI is not resulting
in gradient obfuscation as C&W is not a gradient based attack. Contrastingly, TRADES results in a more
robust model that withstands attack from TRADES+RFI. While the performance of TRADES is almost
the same for adversarial attacks generated from TRADES and TRADES+RFI, RFI results in more robust
models in both cases. We present the results on calibrated models in Tables 15 and 16 in Appendix.

4.3 Static RFI is better than Dynamic/Adaptive RFI

The principle of RFI can be effectively used to adapt the model at test-time to every input by computing the
transformation matrix Ũ using the robust feature score s(u) of eigenvectors of test set feature covariance
Σtest. The results for this adaptive strategy is in Table 3 evaluated for the robust training settings of Table 1.
We consider transfer attack using the base model for fair comparison and observe that static RFI is better
than dynamic RFI. This reinforces the theoretical result that the eigendirections of the training set feature
covariance determines the most robust features (Corollary 3.4). Moreover, adaptive attacks in dynamic RFI
needs further information on when to adapt since the model should be static until the attacker creates an
adversarial sample, and the adaptive transformation using Ũ should be done only in the case of defender.
Details of the challenges in deploying dynamic RFI when the use case is unknown, and the results for adaptive
attacks are in Table 17 in Appendix B.10.

4.4 Static RFI outperforms adaptive test-time defenses

As a result of the static vs dynamic RFI evaluation in Section 4.3, we compare the effectiveness of static
RFI on both white-box and black-box attacks with other adaptive test-time defenses such as SODEF and

8

Under review as submission to TMLR

Table 3: Comparison of static and dynamic/adaptive RFI. Setting same as Table 1. Adversarial
examples are generated from the base model for fair comparison.

Training
Clean ℓ∞(ϵ = 8

255) ℓ2(ϵ = 0.5)
Static Dynamic Static Dynamic Static Dynamic

PGD 83.22 82.86 46.02 46.83 58.81 59.23
IAT 91.26 91.35 49.06 48.53 66.67 66.28
C&W 84.97 83.01 45.48 43.98 58.95 57.82
TRADES 80.76 78.98 54.33 53.58 65.23 65.00

Anti-adv. In Table 4, we present the result for APGD-CE, APGD-DLR, FAB, Square and AutoAttack for
different SOTA methods. We observe that adding static RFI improves the performance across all the methods.
Importantly, RFI despite being non-adaptive improves the robust performance (at least marginally) for all the
SOTA methods, even though each one of them achieves robustness by incorporating very different strategies
like additional data, early stopping or informed prior. While this shows the strength and effectiveness of our
method, it also raises a fundamental question of whether it is necessary to adapt the model to individual test
samples in order to improve the robustness in the adaptive test-time defense strategy. We provide evaluation
of other SOTA models for CIFAR-10, CIFAR-100 and ImageNet showing similar observations in Table 13 in
Appendix.

Table 4: Robust performance evaluation of RFI on state-of-the-art methods. We evaluate APGD-
CE, APGD-DLR, FAB, Square and AutoAttack under ℓ∞(ϵ = 8/255) on CIFAR-10 and CIFAR-100. RFI
consistently improves the performance of the base model, whereas Anti-adv and SODEF results in slight
decrease in the performance to AutoAttack. The inference time of RFI is 1×, whereas Anti-adv (Alfarra
et al., 2022) and SODEF (Kang et al., 2021) are 8× and 2×, respectively. Additional results are in Table 13
in Appendix. There is no standard deviation as the trained models are from RobustBench.

Base Method Defense Clean APGD-CE APGD-DLR FAB Square AutoAttack

C
IF

A
R

-1
0

Carmon et al. (2019)
WideResNet-28-10

None 89.69 61.82 60.85 60.18 66.51 59.53
Anti-adv 89.69 61.81 60.89 60.11 66.58 58.70
SODEF 89.68 60.20 60.72 58.04 65.28 57.23
RFI (K = 10) 89.60 62.38 61.58 60.21 66.59 60.72
RFI (opt. K = 20) 89.60 62.45 61.60 60.38 66.90 61.02

C
IF

A
R

-1
00

Pang et al. (2022)
WideResNet-28-10

None 63.66 35.29 31.71 31.32 35.70 31.08
Anti-adv 63.41 32.50 30.32 31.30 35.76 30.10
SODEF 63.08 30.96 29.54 31.44 32.27 30.56
RFI (K = 100) 63.01 36.03 31.95 31.88 35.79 31.29
RFI (opt. K = 115) 63.10 36.07 31.95 31.96 35.88 31.91

We compare the algorithmic time complexity for different test-time defenses in Tables 4 and 13 and provide
the average time to infer a single sample on a Nvidia DGX-A100 in the Table 5. Note that the average time
closely follows the time complexity. RFI does not add additional computation overhead. However, Anti-adv
and SODEF lead to 8× and 2× computation compared to the base model.

Table 5: Time comparison for RFI, Anti-adv, SODEF. RFI: 1×, Anti-adv: 8×, SODEF: 2×.

Model
Time Comparison in (ms)

Base RFI Anti-adv SODEF
PreActResnet-18 0.2760 0.2777 1.5127 0.5133
ResNet-50 0.3692 0.3703 2.7684 0.6877
WideResnet-28-10 0.3780 0.3763 2.9735 0.7338
WideResnet-34-10 0.8619 0.8654 6.8380 1.6599

9

Under review as submission to TMLR

4.5 Abalation Studies

4.5.1 Effect of adversary strength

We study the effect of adversary strength on our method, RFI, by taking the adversarially trained ResNet-18
on CIFAR-10 using PGD (ϵ = 8/255 for ℓ∞ and ϵ = 0.5 for ℓ2) as the base model. Table 6 shows the
evaluation of RFI with ℓ∞ PGD attack for ϵ = {2/255, 4/255, 12/255, 16/255} and 40 iterations, and ℓ2
attack for ϵ = {0.25, 0.75, 1} and 100 iterations. The results show that the underlying model augmented with
RFI consistently improves over baseline across the perturbations of various strengths, especially by over 1%
for adversary that is stronger than the base model (ϵ = {12/255, 16/255} for ℓ∞ and ϵ = {0.75, 1.00} for ℓ2.

Table 6: RFI consistently improves over baseline across the perturbations of various strengths.
Evaluation of RFI for ℓ∞ and ℓ2 on ResNet-18 adversarially trained with CIFAR-10 and PGD.

Method
ℓ∞ attack ℓ2 attack

ϵ = 2
255 ϵ = 4

255 ϵ = 12
255 ϵ = 16

255 ϵ = 0.25 ϵ = 0.75 ϵ = 1.00
PGD 74.60 64.02 23.34 11.66 71.34 40.91 28.25
PGD+RFI 74.99 64.91 24.32 12.55 71.48 41.95 29.24

Further empirical analysis of the effect of step size in PGD attack is provided in Table 19 in Appendix.

4.5.2 Choice of K

To study the effect of parameter K in detail, we vary K for the adversarial training methods on CIFAR-10
with ResNet-18 under ℓ∞(ϵ = 8/255) threat model, same setting as in Table 1 setting. Figure 2 (left plot)
shows that the adversarial training methods (PGD, IAT, C&W and TRADES) behave similarly in their
accuracy profile as compared to standard training even on Robust CIFAR-10 dataset. Moreover, the best
performance is for K = 10 for all the robust training methods. The corresponding eigenvalue spectrum
exhibits a knee drop after top-10 eigenvalues (right plot), which motivates our choice of K as top-10 features
for each class, equivalent to the number of classes. As a complementary explanation for our choice of K,
neural collapse phenomenon observes that the penultimate feature of each class collapses to its mean after
the training error is almost zero (Papyan et al., 2020). This implies that there is principally only C number
of feature vectors, one for each class, justifying our choice. Further ablation studies on the effect of parameter
K for SoTA models are in Figures 4 and 5 in Appendix. While we set K to be the number of classes, we also
report the best performance of RFI by finding the optimal K using grid search for SoTA models in Table 13
in Appendix. Although K = number of classes is not the optimum for the SoTA models, it is still better
than SODEF and Anti-adv.

5 10 15 20
top-K

0

10

20

30

40

50

Ac
cu

ra
cy

 ` ∞
(ε

=
8
/2

55
)

5 10 15 20
Index of Eigenvalue

103

104

105

106

λ

Standard
PGD
IAT
Robust CIFAR-10
C&W
TRADES

Figure 2: Effect of K in RFI. Robust accuracy and eigenvalue profile in ascending order of all the methods
in Table 10.

10

Under review as submission to TMLR

4.5.3 Comparison of RFI to similar conceptual methods

The conceptual counterparts to RFI include performing the projection of intermediary layers to a low
dimensional space instead of the last layer, or enforcing low dimensional last layer directly. In Table 7, we
evaluate effectiveness of performing RFI on intermediate layers by truncating the last but one hidden layer of
ResNet-18 and evaluate the PGD trained model considered in Table 1. This hidden layer has 512× 4× 4
convolution which we project to 10× 4× 4 using RFI procedure. While it is clear that performing RFI on
the last layer as derived theoretically improves the robust performance, RFI on intermediary layers harm the
robustness. We provide the result for enforcing low dimension last layer in appendix (Table 20) which also
demonstrates the superiority of RFI.

Table 7: RFI on last layer outperforms intermediate layer. Evaluation of PGD trained ResNet-18 on
CIFAR-10.

None RFI on last layer RFI on last but one layer
42.20 43.29 36.06

5 Discussion

The simplicity and effectiveness of RFI at test-time is impressive as the robustness gain is achieved with zero
additional computation overhead for inference. While RFI on smaller models like ResNet demonstrate more
improvement in robustness than larger SoTA models like WideResNet, it is important to note that these
SoTA models are already optimized to their full potential, hence even a small improvement is significant
in these cases. Furthermore, RFI is well-founded theoretically. Consequently, the idea of RFI can also be
used to develop a robust training procedure by incorporating the projection onto the robust feature space
during training. We leave the experimental analysis for future study as the current work focuses on test-time
defenses. However, it is intriguing to theoretically analyze the robustness of features during training to
understand the RFI’s potential as an idea and the cause of vulnerability to adversarial examples. Therefore,
we derive the learning dynamics of full batch gradient descent on population squared error loss of GAM
(stated informally in Proposition 5.1 and proved in Appendix A.5).
Proposition 5.1 (Learning dynamics of GAM). Given h(x) = β⊤ϕ(x) and Σ = Ex

[
ϕ(x)ϕ(x)⊤]

. Let
(λi, ui) be the eigenpair of Σ. Then full batch gradient descent learns features in the direction of ui with large
eigenvalues λi first during the training and those directions are robust only if they align with the original
signal direction β.

This result further strengthens the idea and suggests that truncating the non-robust directions during training,
which is one of the plausible causes for the existence of adversaries, could improve the robustness of the
model.

Connection to Neural Tangent Kernel (NTK) features. One of the related results to Proposition 5.1
is using the NTK features. Tsilivis & Kempe (2022) defined features using NTK gram matrix and empirically
observed that the features corresponding to the top spectrum of NTK are more robust and learned first
during training. Our theoretical framework enables us to establish the equivalence of NTK features to the
robust feature definition and more importantly prove that the robust NTK features indeed correspond to the
top of the spectrum. The NTK gram matrix Θ ∈ Rn×n is between all pairs of datapoints. NTK features of
input x is defined using the eigendecomposition of Θ =

∑n
i=1 λivivi

T as fker
i (x) := g(λi, vi, x) for a specific

function g. We state the result in the following proposition and prove along with empirical verification in
Appendix A.6 (Figure 3).
Proposition 5.2 (NTK feature robustness lies at the top). Let feature fker

i be Lipschitz continuous
in gradient of NTK with respect to x and an adversarial perturbation δ such that ||δ||p ≤ ∆. Then,
||fker

i (x + δ)− fker
i (x)||2 ≤ Θ(1

λi
).

Although we prove that the robust NTK features correspond to the top of the spectrum, we leave the
challenge to establish its connection to the DNN for future analysis. Overall, our work develops a guaranteed

11

Under review as submission to TMLR

algorithm to improve adversarial robustness at test-time along with possibilities to improve the robust training
procedures.

6 Conclusion

In this paper, we present a novel test-time defense that can be seamlessly integrated with any method at
the time of deployment to improve the robustness of the underlying model. While the adaptive test-time
defense as an approach offers promise to improve the robustness of models at the deployment stage, the
general criticism of available methods is that they significantly increase the inference time of the underlying
model. Our method, Robust Feature Inference (RFI), has no effect on the inference time of the underlying
model which makes it a practical alternative for adaptive test-time defense. We also present a comprehensive
theoretical justification for our approach describing the motivation behind retaining features in the top
eigenspectrum of the feature covariance. In addition, we show that these top features are more robust and
informative, and validate our algorithm through extensive experiments. In conclusion, we propose the first
theoretically guided adaptive test-time defense algorithm that has the same inference time as the base model
with significant experimental results. Our findings contribute to the ongoing efforts to develop robust models
that can resist adversarial examples and improve the security and reliability of DNNs.

References
Sravanti Addepalli, Samyak Jain, et al. Efficient and effective augmentation strategy for adversarial training.

Advances in Neural Information Processing Systems, 35:1488–1501, 2022.

Motasem Alfarra, Juan C Pérez, Ali Thabet, Adel Bibi, Philip HS Torr, and Bernard Ghanem. Combating
adversaries with anti-adversaries. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 5992–6000, 2022.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack: a
query-efficient black-box adversarial attack via random search. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII, pp. 484–501. Springer,
2020.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. Advances in neural information processing systems, 32,
2019.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. In International conference on machine learning, pp.
274–283. PMLR, 2018a.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial examples.
In International conference on machine learning, pp. 284–293. PMLR, 2018b.

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In Neural
Networks: Tricks of the Trade: Second Edition, pp. 437–478. Springer, 2012.

Alon Brutzkus and Amir Globerson. Why do larger models generalize better? a theoretical perspective via
the xor problem. In International Conference on Machine Learning, pp. 822–830. PMLR, 2019.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 ieee
symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Unlabeled data
improves adversarial robustness. Advances in neural information processing systems, 32, 2019.

Yun-Yun Tsai1 Ju-Chin Chao, Albert Wen, Zhaoyuan Yang, Chengzhi Mao, Tapan Shah, and Junfeng Yang.
Test-time detection and repair of adversarial samples via masked autoencoder. 2023.

12

Under review as submission to TMLR

Zhuotong Chen, Qianxiao Li, and Zheng Zhang. Towards robust neural networks via close-loop control. arXiv
preprint arXiv:2102.01862, 2021.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized smoothing.
In international conference on machine learning, pp. 1310–1320. PMLR, 2019.

Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive boundary
attack. In International Conference on Machine Learning, pp. 2196–2205. PMLR, 2020a.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International conference on machine learning, pp. 2206–2216. PMLR, 2020b.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammarion,
Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial robustness
benchmark. arXiv preprint arXiv:2010.09670, 2020.

Francesco Croce, Sven Gowal, Thomas Brunner, Evan Shelhamer, Matthias Hein, and Taylan Cemgil.
Evaluating the adversarial robustness of adaptive test-time defenses. In International Conference on
Machine Learning, pp. 4421–4435. PMLR, 2022.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and Aleksander Madry.
Adversarial robustness as a prior for learned representations. arXiv preprint arXiv:1906.00945, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and Timothy Mann.
Improving robustness using generated data. In Advances in Neural Information Processing Systems, 2021.

Julia Grabinski, Paul Gavrikov, Janis Keuper, and Margret Keuper. Robust models are less over-confident.
Advances in Neural Information Processing Systems, 35:39059–39075, 2022.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In
International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering adversarial images
using input transformations. In International Conference on Learning Representations, 2018.

Yifei Huang, Yaodong Yu, Hongyang Zhang, Yi Ma, and Yuan Yao. Adversarial robustness of stabilized
neural ode might be from obfuscated gradients. Proceedings of Machine Learning Research vol, 145:1–19,
2021.

Duhun Hwang, Eunjung Lee, and Wonjong Rhee. Aid-purifier: A light auxiliary network for boosting
adversarial defense. Neurocomputing, pp. 126251, 2023.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry.
Adversarial examples are not bugs, they are features. Advances in neural information processing systems,
32, 2019.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. Advances in neural information processing systems, 31, 2018.

Qiyu Kang, Yang Song, Qinxu Ding, and Wee Peng Tay. Stable neural ode with lyapunov-stable equilibrium
points for defending against adversarial attacks. Advances in Neural Information Processing Systems, 34:
14925–14937, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

13

Under review as submission to TMLR

Alex Lamb, Vikas Verma, Juho Kannala, and Yoshua Bengio. Interpolated adversarial training: Achieving
robust neural networks without sacrificing too much accuracy. In Proceedings of the 12th ACM Workshop
on Artificial Intelligence and Security, pp. 95–103, 2019.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. Towards robust neural networks via random
self-ensemble. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 369–385, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. In International Conference on Learning Representations
(ICLR), 2018.

Chengzhi Mao, Mia Chiquier, Hao Wang, Junfeng Yang, and Carl Vondrick. Adversarial attacks are reversible
with natural supervision. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 661–671, 2021.

Gaurav Kumar Nayak, Ruchit Rawal, and Anirban Chakraborty. Dad: Data-free adversarial defense at
test time. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
3562–3571, 2022.

Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Animashree Anandkumar. Diffusion
models for adversarial purification. In International Conference on Machine Learning, pp. 16805–16827.
PMLR, 2022.

Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, and Shuicheng Yan. Robustness and accuracy could be
reconcilable by (proper) definition. In International Conference on Machine Learning, pp. 17258–17277.
PMLR, 2022.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal phase of
deep learning training. Proceedings of the National Academy of Sciences, 117(40):24652–24663, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

ShengYun Peng, Weilin Xu, Cory Cornelius, Matthew Hull, Kevin Li, Rahul Duggal, Mansi Phute, Jason
Martin, and Duen Horng Chau. Robust principles: Architectural design principles for adversarially robust
cnns. 2023.

Zhuang Qian, Shufei Zhang, Kaizhu Huang, Qiufeng Wang, Rui Zhang, and Xinping Yi. Improving model
robustness with latent distribution locally and globally. arXiv preprint arXiv:2107.04401, 2021.

Yao Qin, Xuezhi Wang, Alex Beutel, and Ed Chi. Improving calibration through the relationship with
adversarial robustness. Advances in Neural Information Processing Systems, 34:14358–14369, 2021.

Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A Calian, Florian Stimberg, Olivia Wiles, and Timothy Mann.
Fixing data augmentation to improve adversarial robustness. arXiv preprint arXiv:2103.01946, 2021.

Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In International
Conference on Machine Learning, pp. 8093–8104. PMLR, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115:211–252, 2015.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversarially robust
imagenet models transfer better? Advances in Neural Information Processing Systems, 33:3533–3545, 2020.

14

Under review as submission to TMLR

Ali Shafahi, W Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein. Are adversarial examples
inevitable? In International Conference on Learning Representations, 2019.

Changhao Shi, Chester Holtz, and Gal Mishne. Online adversarial purification based on self-supervised
learning. In International Conference on Learning Representations, 2021.

David Stutz, Matthias Hein, and Bernt Schiele. Confidence-calibrated adversarial training: Generalizing to
unseen attacks. In International Conference on Machine Learning, pp. 9155–9166. PMLR, 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Linwei Tao, Younan Zhu, Haolan Guo, Minjing Dong, and Chang Xu. A benchmark study on calibration.
arXiv preprint arXiv:2308.11838, 2023.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to adversarial
example defenses. Advances in neural information processing systems, 33:1633–1645, 2020.

Nikolaos Tsilivis and Julia Kempe. What can the neural tangent kernel tell us about adversarial robustness?
arXiv preprint arXiv:2210.05577, 2022.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Robustness
may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Dequan Wang, An Ju, Evan Shelhamer, David Wagner, and Trevor Darrell. Fighting gradients with gradients:
Dynamic defenses against adversarial attacks. arXiv preprint arXiv:2105.08714, 2021.

Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of admm in nonconvex nonsmooth optimization.
Journal of Scientific Computing, 78:29–63, 2019.

Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion models
further improve adversarial training. In International Conference on Machine Learning, 2023.

Boxi Wu, Heng Pan, Li Shen, Jindong Gu, Shuai Zhao, Zhifeng Li, Deng Cai, Xiaofei He, and Wei Liu.
Attacking adversarial attacks as a defense. arXiv preprint arXiv:2106.04938, 2021.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient
independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760, 2019.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. Theoretically
principled trade-off between robustness and accuracy. In International conference on machine learning, pp.
7472–7482. PMLR, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

15

Under review as submission to TMLR

A Proofs of the Main Results

In this section, we prove Theorem 3.2, and related results, Corollaries 3.4–3.6 and Remark 3.3.

A.1 Proof of Theorem 3.2

Proof. Recall that we assume y = h(x) + ϵ = β⊤ϕ(x) + ϵ, where ϵ ∈ RC has independent coordinates, each
satisfying E[ϵc] = 0, E[ϵ2

c] ≤ σ2 for all c ∈ {1, . . . , C}. The features for which we wish to compute robustness
are of the form f = Mϕ where M is a linear map.

We are interested in robustness with respect to the c-th component, which is computed as

sD,β,c(f) = E(x,y)∼D

[
inf

||x̃−x||2≤∆
ycβ⊤

c f(x̃)
]

= E(x,y)∼D
[
ycβ⊤

c f(x)
]

+ E(x,y)∼D

[
inf

||x̃−x||2≤∆
ycβ⊤

c

(
f(x̃)− f(x)

)]
(1)

We compute the first term exactly as

E(x,y)∼D
[
ycβ⊤

c f(x)
]

= Ex,ϵc

[
(β⊤

c ϕ(x) + ϵc)β⊤
c f(x)

]
(since E[ϵc] = 0),

= Ex
[
β⊤

c ϕ(x)ϕ(x)⊤Mβc

]
= β⊤

c ΣMβc, (Σ = Ex
[
ϕ(x)ϕ(x)⊤]

).

For the second term in (1), we aim to derive a lower bound. Observe that

ycβ⊤
c

(
f(x̃)− f(x)

)
= ycβ⊤

c M
(
ϕ(x̃)− ϕ(x)

)
≥ −|yc| · ∥βc∥H · ∥M

(
ϕ(x̃)− ϕ(x)

)
∥H

≥ −|yc| · ∥βc∥H · ∥M∥op · ∥ϕ(x̃)− ϕ(x)∥H.

Using L-Lipschitzness of ϕ, we have ∥ϕ(x̃)− ϕ(x)∥H ≤ L||x̃− x||2 ≤ L∆. Hence, the second term in (1) can
be bounded from below as

E(x,y)∼D

[
inf

||x̃−x||2≤∆
ycβ⊤

c

(
f(x̃)− f(x)

)]
= −∥M∥op · ∥βc∥H · L∆ · Ex,ϵc

[|yc|]

≥ −∥M∥op · ∥βc∥H · L∆ · Ex,ϵc

[
|β⊤

c ϕ(x) + ϵc|
]

Finally, using Jensen’s inequality, we can write

Ex,ϵc

[
|β⊤

c ϕ(x) + ϵc|
]
≤

√
Ex,ϵc

[(β⊤
c ϕ(x) + ϵc)2] ≤

√
σ2 + β⊤

c Σβc.

Combining the above computation leads to

sD,β,c(f) ≥ β⊤
c ΣMβc − L∆∥M∥op∥βc∥H

√
σ2 + β⊤

c Σβc,

which proves Theorem 3.2.

A.2 Proof of Remark 3.3

Proof. The proof requires assumption of a Gaussian model, i.e., x ∼ N (0, Σ) and ϵc ∼ N (0, σ2). Since
the feature map is assumed to be linear, ϕ(x) = x, it follows that yc = β⊤

c x + ϵc is also Gaussian
yc ∼ N (0, σ2 + β⊤

c Σβc) and hence, |yc| is half-normal distributed.

Now recall that the first term in (1) can be computed exactly as β⊤
c ΣMβc. To compute the second term in

(1), note that

inf
||x̃−x||2≤∆

ycβ⊤
c

(
f(x̃)− f(x)

)
= inf

||x̃−x||2≤∆
ycβ⊤

c M(x̃− x)

16

Under review as submission to TMLR

and the infimum is achieved when the difference is aligned with M⊤βc, that is, x̃ = x±∆ M⊤βc

∥M⊤βc∥H
. The

sign depends on the sign of yc, which leads to the second term in (1) compute to

E(x,y)∼D

[
inf

||x̃−x||2≤∆
ycβ⊤

c

(
f(x̃)− f(x)

)]
= −Ex,ϵc

[
|yc|

]
·∆ · ∥M⊤βc∥H.

Since |yc| is half-normal, E[|yc|] =
√

2/π
√

σ2 + β⊤
c Σβc, while ∥M⊤βc∥H ≤ ∥M∥op∥βc∥H, with the inequality

being tight when βc is the eigenvector of M , corresponding to the largest eigenvalue.

A.3 Proofs of Corollary 3.4 and Corollary 3.6

Proof. In what follows, we restrict the linear map M as M = ŨŨ⊤ =
∑K

i=1 uiu⊤
i where Ũ = [u1, . . . , uK]

is an orthonormal matrix of basis for a K-dimensional subspace. Since the operator norm ∥M∥op = 1 for
projection matrix, the problem of finding the most robust subspace corresponds to maximising β⊤

c ΣMβc =∑K
i=1 β⊤

c Σuiu⊤
i βc.

Note that if (λ, u) is an eigenpair of Σ, then β⊤
c Σuu⊤βc = λ(β⊤

c u)2. Hence, if we restrict the choice of
u1, . . . , uK to the eigenvectors of Σ, the optimal projection is obtained by choosing the K eigenvectors for
which the robustness score sc(u) = λ(β⊤

c u)2 are largest. So the claim of Corollary 3.4 holds only if the
projections are restricted to eigenspaces of Σ. The claim of Corollary 3.6 follows along the same line as the
information of the feature f = Mϕ can be computed as ρD,β,c(f) = β⊤

c ΣMβc. For the case of M = ŨŨ⊤

where Ũ is matrix of K eigenvectors of Σ, we have ρD,β,c(f) =
∑K

i=1 λi(β⊤
c ui)2. Hence, if the search is

restricted to eigenspaces of Σ, the most robust features also correspond to the most informative ones.

Robust and informative features over all possible K-dimensional subspaces. If we consider
M = ŨŨ⊤ for any Ũ = [u1, . . . , uK] with orthonormal columns, as assumed in Corollary 3.4, then

β⊤
c ΣMβc =

K∑
i=1

β⊤
c Σuiu⊤

i βc = Trace
(
Ũβcβ⊤

c ΣŨ⊤)
= Trace

(
ŨΣβcβ⊤

c Ũ⊤)
,

where the last equality follows from taking transpose. Hence, the resulting maximisation problem can be
written as

max
Ũ

β⊤
c ΣMβc ≡ max

Ũ
Trace

(
Ũβcβ⊤

c ΣŨ⊤)
≡ max

Ũ
Trace

(
ŨBcŨ⊤)

, (2)

where Bc = 1
2 (βcβ⊤

c Σ + Σβcβ⊤
c). The above trace maximisation problem corresponds to finding the K

dominant eigenvectors of the matrix Bc. This leads to an alternative to Algorithm 1 for finding robust
projections for the test-time defense. The approach comprises of computing the dominant eigenvectors
Ũc of the matrix Bc for every class component c ∈ {1, . . . , C} and defining the robust output as h̃(x) =
[β⊤

1 Ũ1Ũ⊤
1 ϕ(x), . . . , β⊤

C ŨCŨ⊤
Cϕ(x)]. The approach would result in theoretically more robust projections, but

suffers computationally since it requires (C + 1) eigendecompositions instead of only one eigendecomposition
in Algorithm 1. Hence, it has O(C) more one-time computation than Algorithm 1, but with identical inference
time. The conclusion of Corollary 3.6 that the most robust features, obtained from the maximisation in (2),
are also the most informative features still holds in this case.

A.4 Dynamics of robust feature learning under GAM

In this short analysis, we argue that if the trained model is a Generalized Additive Model (GAM), h(x) =
βT ϕ(x), the test-time defense of Algorithm 1 could also be replicated through an early stopping of the
training process. In other words, we argue that the components of βT

c ϕ(x) along the robust features—the
eigen directions for which s(u) = λ(β⊤

c u)2 are higher—are learned earlier.

For simplicity of analysis, we consider only the learning for c-th components, which corresponds to the
following regression problem under GAM: Given training sample Dtrain := {(xi, yi)}n

i=1 ⊆ X × R, minimize
the squared loss

minimize
b∈Rp

1
2n

n∑
i=1
∥yi − b⊤ϕ(xi)∥2

2.

17

Under review as submission to TMLR

A.5 Proof of Proposition 5.1

Proof. The optimal solution for b for the above problem when population squared loss is minimized is given by
βc = (ΦΦ⊤)−1Φy, where Φ = [ϕ(x1), . . . , ϕ(xn)] and y = [y1 . . . yn]⊤. Furthermore, if the above optimisation
is solved using gradient descent with learning rate η > 0 and initialisation b(0) = 0, the parameters b(t) are
learned over the iterations as

b(t) =
(

I − η

n
ΦΦ⊤

)
b(t−1) + η

n
Φy

=
t−1∑
k=0

(
I − η

n
ΦΦ⊤

)k η

n
Φy

=
t−1∑
k=0

(
I − η

n
ΦΦ⊤

)k

· η

n
ΦΦ⊤βc, (3)

with b(t) → βc = (ΦΦ⊤)−1Φy as t → ∞. Suppose the eigen decomposition Σtrain = 1
nΦΦ⊤ is given by

Σtrain = Udiag(λ)U⊤ =
p∑

i=1
λiuiu

⊤
i . Hence, (3) becomes

(3) =
t−1∑
k=0

(
UU⊤ − ηUdiag(λ)U⊤)k · ηUdiag(λ)U⊤βc

=
t−1∑
k=0

ηU(I − ηdiag(λ))kdiag(λ)U⊤βc

b(t) =
p∑

i=1
(1− (1− ηλi)t)uiu

⊤
i βc (4)

From (4), it is clear that ui directions are learnt in the order of λi. That is large λi learned early during the
training since (1− (1− ηλi)t) is decreasing and at fixed t, the eigendirection ui with the largest λi is learned
first. This proves that the direction with maximum variance is learned first. When the top eigendirection ui

aligns with the true signal βc, ui will be the most robust direction as well. Hence, the top directions based
on descending order of λ is more robust if the directions align with the true underlying signal.

A.6 Connection to Neural Tangent Kernel features

We first briefly discuss NTK and the NTK features before proving the Proposition 5.2.

Neural Tangent Kernels (NTKs) and NTK features. Jacot et al. (2018); Arora et al. (2019); Yang
(2019) show the equivalence of training a large width neural network by gradient descent to a deterministic
kernel machine called Neural Tangent Kernel. In the context of adversarial attacks and robustness, Tsilivis &
Kempe (2022) propose a method to generate adversarial examples using NTK and show transferability of the
attack to the finite width neural network counterpart successfully. Additionally, the authors define NTK
features using the eigenspectrum of the NTK gram matrix and observe that the robust features correspond
to the top of the eigenspectrum and learned first during training. In the following, we define the NTK and
NTK features and show its equivalence to our robust feature definition along with the proof that the robust
NTK features correspond to the top of the spectrum. The NTK gram matrix Θ ∈ Rn×n is between all pairs
of datapoints and the NTK between xi and xj for a network that outputs f(w, x) at data point x ∈ Rd

parameterized by w ∈ Rp is defined by the gradient of the network with respect to w as

Θ(xi, xj) = Ew∼N (0,Ip)[∇wf(w, xi)T∇wf(w, xj)]. (5)

For an extremely large width network, gradient descent optimization with least square loss is equivalent to
kernel regression, the kernel being the NTK. Formally, for a data x, the converged network output in the
large width limit is f(w, x) = Θ(x, X)T Θ(X, X)−1Y. Tsilivis & Kempe (2022) define NTK features using
the eigendecomposition of Θ(X, X) =

∑n
i=1 λivivi

T as

18

Under review as submission to TMLR

f(w, x) = Θ(x, X)T Θ(X, X)−1Y =
n∑

i=1
λ−1

i Θ(x, X)T vivi
T Y :=

n∑
i=1

fker
i (x) (6)

where fker
i (x) ∈ RC is the i-th NTK feature of x. Note that fker

i is in accordance to our feature definition.
We prove the empirical observation that the top spectrum-induced NTK features fker are more robust in the
following.

A.7 Proof of Proposition 5.2

Proof. Suppose that the NTK feature fker
i is L-Lipschitz continuous in gradient of NTK with respect to x.

Then, we have

∥∇xΘ(x + δ, X)−∇xΘ(x, X)∥2 ≤ L∥δ∥2 . (7)

Recall that we can write the i-th NTK feature as fker
i (x) := λ−1

i Θ(x, X)⊤vivi
⊤Y. Bounding ∥fker

i (x + δ)−
fker

i (x)∥2 by Taylor’s expansion and applying (7) yield

∥fker
i (x + δ)− fker

i (x)∥2
(a)=

∥∥λ−1
i δ⊤∇xΘ(x, X)vivi

⊤Y + λ−1
i Rvivi

⊤Y
∥∥

2 (Where R : remainder)
(b)
≤

∥∥∥∥λ−1
i δ⊤∇xΘ(x, X)vivi

⊤Y + λ−1
i L

2 ∥δ∥2vivi
⊤Y

∥∥∥∥
2

(from (7))

≤ λ−1
i

∥∥∥∥(
δ⊤∇xΘ(x, X) + L

2 ∥δ∥2

)
vivi

⊤Y
∥∥∥∥

2

= Θ
(

1
λi

)
where (a) follows from the Taylor’s expansion of fker

i (x + δ) where R is the remainder terms and (b) follows
from (7), i.e., R ≤ (L/2)∥δ∥2.

Empirical validation: Top NTK features are indeed robust. To verify Proposition 5.2, we construct
a sanity experiment using a simple 1-layer NN f(x) = 1

dwT x with parameters w ∈ Rd initialized from
N (0, Id). Let the data dimension d be 100, the number of training samples n be 1000 and the data is sampled
from a Gaussian N (0, Σ) where the covariance Σ is a diagonal spiked matrix, that is, Σ11 := 1 +

√
d/n and

Σii := 1∀i ≠ 1. We then construct NTK features from the spectral decomposition of the exact NTK. Plot
3 of Figure 3 shows the norm of difference in the original, and adversarially perturbed NTK features with
respect to the eigenvalues of the NTK spectrum for different perturbation strengths of ∆ = {0.01, 0.05, 0.1}.
This validates our theory that the NTK features corresponding to the large eigenvalues are more robust and
hence remain closer to the original feature even when perturbed.

B Experiments

B.1 Parameters for different algorithms

We set the parameters to the standard values in the literature. Refer to RobustBench for most of the attack
parameters.

1. PGD: We perform PGD with the standard parameters in Table 8 to have an overall high strength
PGD attack.

19

Under review as submission to TMLR

Figure 3: NTK feature robustness for λ and the corresponding eigenvalue profile in ascending order.

Table 8: Parameters for PGD. We use these parameters for both training and attack.

Dataset ℓp ϵ step size iteration

CIFAR-10, CIFAR-100 ℓ∞ 8/255 ϵ/4 40
ℓ2 0.5 ϵ/5 100

tiny ImageNet ℓ∞ 4/255 ϵ/4 40

2. APGD-CE, APGD-DLR: We perform standard ℓ∞ perturbation with the budget ϵ = 8/255.

3. For Adversarial training in Table 10 we use same parameters for PGD, IAT, CW and TRADES as
used in PGD attack from Table 8

B.2 Details of benchmarking baseline methods

We perform benchmarking of our test-time defense on multiple SOTA methods that achieves adversarial
robustness in the model. For our analysis of RFI on CIFAR-10 in table 10 we used PGD Madry et al. (2018),
Interpolated Adversarial Training Lamb et al. (2019), Carlini-Warger Loss Carlini & Wagner (2017) and
TRADES Zhang et al. (2019) to adversarially train the baseline model. In the case of Robust CIFAR-10 Ilyas
et al. (2019), we only replaced the standard CIFAR-10 dataset with the robust dataset. In general for
PGD, IAT and C&W attacks the adversarial training works as generating an adversarial example using the
underlying attack and the objective is to minimize loss on these adversarial examples. PGD attack uses
gradient descent to iteratively maximize the classification loss with respect to the input while projecting the
perturbed example into the norm ball defined for the attack. IAT uses a joint objective that minimizes the
classification loss of perturbed examples generated from PGD or any other attack along with classification
loss on clean data with MixUP Zhang et al. (2017). We use Robust CIFAR-10 proposed in Ilyas et al.
(2019), although is not an adversarial training method but rather the final dataset from a procedure to only
retain robust features in the dataset. Ilyas et al. (2019) disentangle the robust and non-robust features
by creating a one-to-one mapping of an input to its robustified image. From an adversarially pretrained
backbone (ResNet-18 using PGD ℓ2−norm and ϵ = 0.25) linear layer features are extracted for the natural
image and also from a noise input. Then by minimizing the distance between these two representations in
the input space over the noise, an image that only retains robust features of the original input is obtained.

For training using all these baseline adversarial training methods, we set the batch size as 128. We use SGD
with momentum as the optimizer where we set the momentum to 0.1, we also set the weight decay to 0.0002.
We run our training for 200 epochs and set the learning rate schedule as starting with 0.1 for the first 100
epochs and then we reduce the learning rate by 90 percent every 50 epochs. For calibration using temperature
scaling (Guo et al., 2017), we take the trained model and optimize for the temperature parameter. The
standard deviation in all the cases of calibrated models is reported by loading the pretrained models and 5
runs of calibration. Hence, there is no standard deviation for the non-calibrated models, and we also do not
report the standard deviation for the SoTA models directly loaded from RobustBench.

20

Under review as submission to TMLR

B.3 Adaptive attack performance of RFI on Expectation Over Transformation (EOT) attack using
ResNet-18 for CIFAR-10

Expectation Over Transformation (EOT) is a procedure to synthesize examples that are adversarial over a
chosen distribution of transformations (Athalye et al., 2018b). This procedure is shown to generate adversarial
examples that are more robust to noise, distortions and affine transformations, and are consistently adversarial
to the neural networks. EOT as an adversarial attack is observed to be stronger (Tramer et al., 2020) where
a randomized transformation is applied to an input x before being fed into a classifier. RFI can be easily
integrated into the neural network classifier in such settings by computing the transformation matrix Ũ in
RFI by applying random transformations to the training samples to ensure a similar distribution of the train
and test sets.

We evaluate ResNet-18 using all the training settings considered in Table 1 on CIFAR-10 for Expectation
Over Transformation (EOT) as an adaptive attack. The hyperparameters are the same as considered for
adaptive attack evaluation in Section 4.1. We evaluate ℓ∞ and ℓ2 attacks with ϵ = 8/255 budget, ϵ/4 step
size and 40 iterations, and 0.5 budget, ϵ/5 step size and 100 iterations, respectively. For RFI, we set K = 10.
We observe that RFI improves the performance by 1 to 2% consistently for EOT attack as well.

Table 9: Adaptive attack performance of RFI on Expectation over Transformation (EOT) attack.
We consider ℓ∞ (step size ϵ/4, 40 iterations) and ℓ2 (step size ϵ/5, 100 iterations) attack on CIFAR-10 with
ResNet-18. RFI improves robustness by 1 to 2% as shown in % Gain column.

Training
Clean ℓ∞(ϵ = 8

255) ℓ2(ϵ = 0.5)
Method +RFI % Gain Method +RFI % Gain Method +RFI % Gain

PGD 81.08 ± 0.01 80.49 ± 0.08 -0.59 36.01 ± 0.01 37.85 ± 0.02 +1.84 35.52 ± 0.01 36.65 ± 0.01 +1.13
IAT 90.32 ± 0.01 89.89 ± 0.01 -0.43 26.92 ± 0.00 28.30 ± 0.01 +1.38 30.30 ± 0.00 31.47 ± 0.02 +1.17
C&W 77.55 ± 0.03 77.50 ± 0.02 -0.05 22.51 ± 0.02 23.88 ± 0.03 +1.37 25.71 ± 0.01 26.95 ± 0.03 +1.24
TRADES 79.17 ± 0.02 79.02 ± 0.01 -0.15 47.20 ± 0.01 47.98 ± 0.01 +0.78 48.55 ± 0.02 49.61 ± 0.01 +1.06

B.4 Adaptive attack performance of RFI on calibrated ResNet-18 for CIFAR-10

We evaluate ResNet-18 using all the training settings considered in Table 1 on CIFAR-10 for calibrated
models. The hyperparameters are the same as non-calibrated setting. We evaluate ℓ∞ and ℓ2 attacks with
ϵ = 8/255 budget, ϵ/4 step size and 40 iterations, and 0.5 budget, ϵ/5 step size and 100 iterations, respectively.
For RFI, we set K = 10. We observe that RFI improves the performance by 4 to 9% for calibrated models.

Table 10: Adaptive attack performance of RFI on calibrated models using temperature scaling. We
consider ℓ∞ (step size ϵ/4, 40 iterations) and ℓ2 (step size ϵ/5, 100 iterations) attack on CIFAR-10 with
ResNet-18. RFI improves robustness by 4 to 9% as shown in % Gain column.

Training
Clean ℓ∞(ϵ = 8

255) ℓ2(ϵ = 0.5)
Method +RFI % Gain Method +RFI % Gain Method +RFI % Gain

Standard 95.20 ± 0.08 88.20 ± 0.10 -7.00 2.01 ± 0.38 6.83 ± 0.22 +4.82 2.58 ± 0.62 10.21 ± 0.81 +7.63
Robust CIFAR-10 78.70 ± 0.04 78.73 ± 0.06 +0.03 3.81 ± 0.14 8.03 ± 0.21 +4.22 9.10 ± 0.92 11.21 ± 0.68 +2.11
PGD 83.11 ± 0.02 82.32 ± 0.08 -0.79 42.96 ± 0.75 50.08 ± 0.88 +7.12 56.48 ± 0.42 62.13 ± 0.92 +5.65
IAT 91.24 ± 0.10 90.83 ± 0.08 -0.41 46.22 ± 0.10 51.34 ± 0.83 +5.12 63.48 ± 0.96 71.12 ± 0.29 +7.64
C&W 84.36 ± 0.10 83.32 ± 0.05 -1.03 41.62 ± 0.90 50.48 ± 1.07 +8.86 56.63 ± 0.68 63.21 ± 0.72 +6.58
TRADES 81.11 ± 0.01 79.38 ± 0.04 -1.73 53.67 ± 0.43 58.20 ± 0.61 +4.53 62.12 ± 0.28 68.47 ± 0.32 +6.35

B.5 Adaptive attack performance of RFI for CIFAR-100 and tiny ImageNet

We evaluate both calibrated and non-calibrated ResNet-18 using all the adversarial training setting considered
in Table 10 on CIFAR-100 since standard training would not result in robust model. We also consider tiny
ImageNet dataset that has 100, 000 training and 10, 000 validation samples with 200 classes and ResNet-50
pretrained adversarially on ImageNet. We evaluate ℓ∞ attack with ϵ = 8/255 and ϵ = 4/255 for CIFAR-100

21

Under review as submission to TMLR

and tiny ImageNet, respectively. The attack budget is standard, taken from RobustBench. For RFI, we set
K = 100 and 200 (number of classes) for CIFAR-100 (Table 11) and tiny ImageNet (Table 12), respectively.
% Gain in tables is between Calibration+RFI and the base method.

Table 11: Adaptive attack performance of RFI on non-calibrated and calibrated models. Robust
performance evaluation of RFI on CIFAR-100 with ResNet-18 (step size ϵ/4 and 40 iterations). RFI improves
the performace on an average by 4%.

Training
Clean ℓ∞(ϵ = 8

255)
Method +RFI +Calibration +Calibration+RFI % Gain Method +RFI +Calibration +Calibration+RFI % Gain

PGD 55.30 55.27 55.82 55.08 -0.22 20.08 20.91 21.86 25.96 +5.88
IAT 58.94 58.88 58.86 58.09 -0.85 22.56 23.58 23.04 26.72 +4.16
C&W 49.36 49.31 49.30 49.02 -0.34 10.44 11.86 11.28 14.72 +4.28
TRADES 55.17 55.11 55.17 55.10 -0.07 28.25 28.56 28.43 30.91 +2.66

In the case of tiny ImageNet, we subsampled 100 training samples per class instead of using the full training
set for computing the transformation matrix Ũ of the feature covariance due to the computation time, and
evaluated the clean and robust performances on the 10, 000 validation samples. The results are given in
Tables 11 and 12. We observe that RFI consistenly improves the adversarial performance on the datasets
with a very small drop in the clean performance. Thus this shows RFI generalizes to larger datasets as well.
Furthermore, we would like to draw the attention that our method improves the performance even with a
small subsample of the dataset.

Table 12: Adaptive attack performance of RFI on non-calibrated and calibrated models. Robust
performance evaluation of RFI on tiny ImageNet with ResNet-50 (step size ϵ/4 and 40 iterations). RFI
improves robustness even on large datasets.

Training
Clean ℓ∞(ϵ = 4

255)
Method +RFI +Calibration +Calibration+RFI % Gain Method +RFI +Calibration +Calibration+RFI % Gain

PGD 62.42 62.39 62.40 62.32 -0.10 33.38 33.50 33.43 34.27 +0.89

B.6 Adaptive attack performance of RFI on state-of-the-art models from RobustBench

For table 4 we benchmark our test-time defense on multiple recent SoTA methods for CIFAR-10, CIFAR-100
and ImageNet. For all our baseline methods we obtain the model weights from RobustBench Croce & Hein
(2020b). We update the weights of the last linear layer of the models using RFI and benchmark the updated
models. We also report the performance for optimal K in RFI. We note that the Expected Calibration
Error (ECE) for the SoTA models are very small as shown in Table 14 (already well calibrated), hence we
do not explicitly calibrate in Table 13. Moreover, the results in Table 4 show that calibration will only
further improve robustness with RFI. Therefore, we do conservative analysis of RFI on the SoTA models. For
Salman et al. (2020) on ImageNet we compute with and without dynamic RFI and not Anti-Adv and SODEF
since it increase the inference costs of the evaluation such that we could no longer run experiments with our
computational resources. Also we do not report AutoAttack since it requires all 4 attacks i.e. APGD-CE,
APGD-DLR, FAB and Square to be executed sequentially which is outside the scope of max runtime of
our resources. Nevertheless, we observe that RFI improves the robustness reliably ∼ 1.5% on average on
non-calibrated SoTA models. Importantly, SODEF and Anti-adv reduces the robustness performance especially
on AutoAttack which is inline to the findings of Croce & Hein (2020b).

B.7 Transferability Study

We conduct a more detailed transferability of attack analysis on CIFAR-10 using ResNet-18 and on CIFAR-100
using PreActResNet-18. Here, we generated adversarial examples with respect to the base model and all the
defences and evaluated the robustness of different adaptive defences under all the adversary cases (Transfer
attacks). Then we present the results for calibrated ResNet-18 on CIFAR-10 in Table 16 which completes
the analysis together with the results from Table 2. We observe that the robustness of the calibrated model

22

Under review as submission to TMLR

Table 13: Adaptive attack performance evaluation of RFI on state-of-the-art methods. We apply
APGD-CE, APGD-DLR and RobustBench attacks on CIFAR-10 and CIFAR-100. The inference time for
RFI is 1×, whereas Anti-adv and SODEF are 8× and 2×, respectively. There is no standard deviation as the
trained models are directly from RobustBench. While RFI improves the robustness to AutoAttack upto 1.5%
without calibration, SODEF and Anti-adv results in no (< 0.1%) or decrease in robustness consistently.

Base Method Defense Clean APGD-CE APGD-DLR FAB Square AutoAttack

C
IF

A
R

-1
0

Carmon et al. (2019)
WideResNet-28-10

None 89.69 61.82 60.85 60.18 66.51 59.53
Anti-adv 89.69 61.81 60.89 60.11 66.58 58.70
SODEF 89.68 60.20 60.72 58.04 65.28 57.23
RFI (K = 10) 89.60 62.38 61.58 60.21 66.59 60.72
RFI (opt. K = 20) 89.60 62.45 61.60 60.38 66.90 61.02

Engstrom et al. (2019)
ResNet-50

None 87.03 51.75 60.10 49.90 58.00 49.25
Anti-adv 87.00 51.62 59.95 49.84 58.06 49.20
SODEF 86.95 50.01 58.20 48.64 56.68 47.92
RFI (K = 10) 87.01 51.86 61.84 51.28 58.07 50.75
RFI (opt. K = 15) 87.03 51.94 61.90 51.46 58.12 50.98

Rice et al. (2020)
WideResNet-34-10

None 85.34 50.12 56.80 53.87 56.88 53.42
Anti-adv 85.40 50.10 57.50 53.90 57.00 50.98
SODEF 85.10 50.60 56.50 53.72 56.21 50.09
RFI(K = 10) 85.30 51.19 58.55 53.98 57.13 54.64
RFI (opt. K = 35) 85.30 51.62 58.97 54.12 57.13 54.86

Wang et al. (2023)
WideResNet-28-10

None 92.44 70.23 67.82 67.41 73.13 67.31
Anti-adv 92.44 68.90 65.91 67.55 73.20 66.52
SODEF 92.01 67.53 65.08 65.93 73.01 64.20
RFI (K = 10) 92.33 70.32 67.86 67.82 73.52 67.29
RFI (opt. K = 20) 92.34 70.36 67.90 67.82 73.54 67.50

C
IF

A
R

-1
00

Pang et al. (2022)
WideResNet-28-10

None 63.66 35.29 31.71 31.32 35.70 31.08
Anti-adv 63.41 32.50 30.32 31.30 35.76 30.10
SODEF 63.08 30.96 29.54 31.44 32.27 30.56
RFI (K = 100) 63.01 36.03 31.95 31.88 35.79 31.29
RFI (opt. K = 115) 63.10 36.07 31.95 31.96 35.88 31.91

Addepalli et al. (2022)
ResNet-18

None 65.45 33.49 28.55 28.00 33.70 27.67
Anti-adv 65.38 30.92 26.61 27.92 33.61 26.01
SODEF 65.23 29.37 26.90 24.62 29.60 26.53
RFI (K = opt. K = 100) 65.41 34.09 29.18 28.10 33.79 27.80

Rice et al. (2020)
PreActResNet-18

None 53.83 20.83 20.46 23.82 19.29 18.95
Anti-adv 53.83 20.78 20.06 23.49 19.27 18.97
SODEF 53.83 18.50 19.20 19.66 16.05 16.92
RFI (K = 100) 53.70 21.10 20.98 20.93 18.13 19.23
RFI (opt. K = 150) 53.75 21.18 21.10 21.03 19.53 19.46

Wang et al. (2023)
WideResNet-28-10

None 72.58 44.04 39.78 39.19 44.46 38.83
Anti-adv 72.57 42.98 38.10 36.85 44.49 34.01
SODEF 72.34 38.10 36.95 34.82 44.42 32.29
RFI (K = 100) 72.55 44.37 39.91 39.68 44.50 39.10
RFI (opt. K = 115) 72.55 44.51 39.96 39.81 44.53 39.13

Im
ag

eN
et Salman et al. (2020)

ResNet-50
None 64.02 38.32 34.02 34.35 49.52 -
Dynamic RFI 63.91 38.48 34.68 34.68 49.98 -

Salman et al. (2020)
WideResNet-50-2

None 68.46 40.67 37.09 37.81 54.61 -
Dynamic RFI 68.41 40.84 37.56 38.12 54.78 -

with RFI is on par with the base calibrated model. Moreover, when attacked with examples from RFI
integrated model, the base model performs worse. Notably, the decrease in robust performance of the base
method is much more than the decrease of the performance of RFI when evaluated on adversary from the
base method. This shows RFI’s goodness and further confirms the absence of an obfuscated gradient in RFI.
Similar observation using a SoTA model on CIFAR-100 are in Table 15 (Appendix). In contrast, transfer

23

Under review as submission to TMLR

Table 14: Expected Calibration Error (ECE) of the SoTA models are very small, hence already well
calibrated.

CIFAR-10 CIFAR-100
Method ECE ECE after Calibration Method ECE ECE after Calibration

Carmon et al. (2019)
WideResNet-28-10

4.310 0.328 Pang et al. (2022)
WideResNet-28-10

0.364 0.142

Engstrom et al. (2019)
ResNet-50

0.091 0.065 Addepalli et al. (2022)
ResNet-18

0.418 0.347

Rice et al. (2020)
WideResNet-34-10

0.074 0.037 Rice et al. (2020)
PreActResNet-18

0.138 0.074

Wang et al. (2023)
WideResNet-28-10

0.145 0.039 Wang et al. (2023)
WideResNet-28-10

0.366 0.290

attacks from base model on SODEF show a significant drop in robustness (Section 4.6.2 of Kang et al. (2021))
and on Anti-adv render the defense ineffective (Section 3.8 of Croce et al. (2022)). These results further
highlight the soundness of RFI.

B.7.1 RFI results in stronger adversary against transfer from other defenses

In the set of experiments, we evaluate all combinations of transfer attacks on CIFAR-100 and PreActResNet-
18 Rice et al. (2020) in Table 15. We compare the transferability of all adaptive test-time defenses to base
model and within themselves by using adversarial examples generated with one defense attacking another
defense. The general observation and expectation is that the model performance is affected the most when
the adversarial examples are created using the same model, i.e., adaptive attack. This observation holds in
our experiments too. The most interesting and impressive observation is that RFI outperforms all other
methods in almost all the cases, even when adversarial examples are generated from base model + RFI. Notice
that SODEF and Anti-adv suffer the most when adversarial examples are generated from the respective
models, unlike RFI showing the impressive robustness of our method.

Table 15: Transfer attack on non-calibrated PreActResNet-18 for CIFAR-100. RFI outperforms in
all the cases and also generates the strongest adversary for the base model.

Adversarial Examples are generated from Method (Rice et al)
Attack Method +AntiAdv +SODEF +RFI
APGD-CE 20.83 20.06 27.13 27.30
APGD-DLR 20.46 20.52 29.33 29.53
FAB 19.29 19.28 35.38 35.90
Square 23.82 23.58 36.83 36.88
AutoAttack 18.95 18.97 26.09 26.43

Adversarial Examples are generated from Method+SODEF
Attack Method +AntiAdv +SODEF +RFI
APGD-CE 32.99 37.32 18.50 37.30
APGD-DLR 33.65 38.34 19.20 38.30
FAB 39.67 48.11 16.05 48.12
Square 39.59 48.20 19.66 48.22
AutoAttack 32.76 33.16 15.69 37.23

Adversarial Examples are generated from Method+AntiAdv
Attack Method +AntiAdv +SODEF +RFI
APGD-CE 20.59 20.58 27.31 26.65
APGD-DLR 20.39 20.49 28.92 28.53
FAB 19.27 19.27 35.80 38.69
Square 23.60 23.49 37.41 39.04
AutoAttack 18.98 18.96 25.61 26.15

Adversarial Examples are generated from Method+RFI
Attack Method +AntiAdv +SODEF +RFI
APGD-CE 14.70 18.31 18.40 21.18
APGD-DLR 14.12 18.30 19.21 21.10
FAB 12.76 14.12 14.70 18.13
Square 16.29 18.95 19.50 20.93
AutoAttack 12.55 16.50 16.92 19.46

B.8 Transfer attack: RFI with calibration is on par with the base model

Results on transfer attacks, where we assess the performance of RFI against adversarial samples generated
from the base, for calibrated and on CIFAR-10 with Resnet 18 backbone are in Tables 16. Notably, RFI
demonstrates comparable robustness to the base model, ensuring that gradient obfuscation is not at play in
RFI and affirming that it reliably improves the model robustness. Moreover, the transferability of adversary
from RFI leads to a degradation in robustness for the base model, suggesting that RFI acts as an on-par
adversary to the base (refer to +RFI rows of the left subtable in the Table 16). We hypothesize that the
attack from base model and attack from base model + RFI affect different semantics or examples such that

24

Under review as submission to TMLR

on average both are on par post-calibration. As expected the adversarial samples from the base method +
RFI are more powerful and reduce the robustness of the base method to a greater extent than vice versa.

Table 16: Transfer attack performance of RFI on calibrated models. RFI is on par with the base,
ensuring reliable robustness improvement without gradient obfuscation. Setting same as Table 10. The
decrease in robustness of the base model is much more than the robustness of RFI when evaluated on the
adversary from the base.

Adversary generated from base model+RFI

Training
ℓ∞(ϵ = 8

255) ℓ2(ϵ = 0.5)
Method +RFI Method +RFI

PGD 42.85 ± 0.12 50.08 ± 0.88 57.18 ± 0.54 62.13 ± 0.92

IAT 47.92 ± 0.31 51.34 ± 0.83 64.38 ± 0.33 71.12 ± 0.29

C&W 40.73 ± 0.64 50.48 ± 1.07 55.96 ± 0.88 63.21 ± 0.72

TRADES 55.43 ± 0.42 58.20 ± 0.61 64.34 ± 0.40 68.47 ± 0.32

Adversary generated from base method.

Training
ℓ∞(ϵ = 8

255) ℓ2(ϵ = 0.5)
Method +RFI Method +RFI

PGD 42.96 ± 0.75 41.38 ± 0.48 56.48 ± 0.42 54.28 ± 0.62

IAT 46.22 ± 0.10 43.44 ± 0.21 63.48 ± 0.96 62.19 ± 0.09

C&W 41.62 ± 0.90 39.10 ± 0.81 56.63 ± 0.68 55.19 ± 0.91

TRADES 53.67 ± 0.43 52.88 ± 0.33 62.12 ± 0.28 59.85 ± 0.97

B.9 Static vs Dynamic RFI on calibrated model

We extend the study of static vs dynamic RFI to calibrated models in this section using the same setup as
Section 4.3, where we consider pretrained ResNet-18 on CIFAR-10 by applying PGD (ℓ∞, ϵ = 8/255) and
(ℓ2, ϵ = 0.5) in transfer attack setting i.e. generate adversarial examples from the base method. For the
dynamic setting we compute the covariance batch-wise to compute Ũ with the input. Table 17 shows static
is better than dynamic RFI similar to non-calibrated setting.

Table 17: Additional Comparison of static and dynamic/adaptive RFI on calibrated model
showing static RFI is better than dynamic RFI. Setting same as Table 10. Adversarial examples are
generated from the base model for fair comparison.

Training
Clean ℓ∞(ϵ = 8

255) ℓ2(ϵ = 0.5)
Static Dynamic Static Dynamic Static Dynamic

Standard 10.36 11.65 20.08 11.64 20.91 12.43
Robust CIFAR-10 78.78 75.23 15.41 12.89 17.38 16.32
PGD 83.22 82.86 46.02 46.83 58.81 59.23
IAT 91.26 91.35 49.06 48.53 66.67 66.28
C&W 84.97 83.01 45.48 43.98 58.95 57.82
TRADES 80.76 78.98 54.33 53.58 65.23 65.00

B.10 Static RFI is Optimal

In the case of dynamic RFI implementation, one needs to know when to apply the transformation as the
model should be static for the attacker and adapted only for the defender. This poses implementation
difficulty as the situation is mostly unknown in practice. Hence, we explore different variants of RFI in a
dynamic setting where we compute the covariance matrix and eventually the transformation matrix Ũ using
the full validation set or single test input. We observe that the dynamic RFI is only marginally better than
the static RFI when full validation set is used in Table 18 (a). Similarly, we present the result for single test

25

Under review as submission to TMLR

input in Table 18 where the method shows improvement in clean performance since it is only a normalization
of the feature representation. We perform these comparisons to highlight the fact that these hypothetical
variants of dynamic RFI which work with information of validation set are also not significantly better than
static RFI, thereby implying that static RFI is indeed the optimal way of selecting Ũ as indicated
by our theory.

Table 18: Static RFI is the optimal approach. RFI with covariance matrix calculated using different
approaches.

(a) RFI with covariance matrix calculated using complete validation set

Training
Clean ℓ∞(ϵ = 8

255) ℓ2(ϵ = 0.5)
Method +RFI Method +RFI Method +RFI

Standard 95.28 88.53 1.02 9.35 0.39 11.73
Robust CIFAR-10 78.69 78.80 1.30 11.21 9.63 12.56
PGD 83.53 83.29 42.20 43.82 54.61 56.13
IAT 91.86 91.32 44.76 47.65 62.53 64.88
C&W 85.11 85.06 40.01 43.48 55.02 57.83
TRADES 81.13 80.97 51.70 54.29 60.03 61.79

(b) RFI with covariance matrix calculated using single test input

Training
Clean ℓ∞(ϵ = 8

255) ℓ2(ϵ = 0.5)
Method +RFI Method +RFI Method +RFI

Standard 95.28 90.10 1.02 10.81 0.39 12.16
Robust CIFAR-10 78.69 78.70 1.30 11.88 9.63 12.87
PGD 83.53 83.52 42.20 44.08 54.61 56.53
IAT 91.86 91.86 44.76 47.95 62.53 65.01
C&W 85.11 85.11 40.01 43.48 55.02 58.09
TRADES 81.13 81.09 51.70 54.78 60.03 62.17

B.11 Ablation study

B.11.1 Effect of K

Neural Collapse is a phenomenon in which the penultimate feature of each class collapses to its mean after
the training error reaches zero. This implies that there is principally only C = #classes number of feature
vectors, one for each class. Hence, we suggest setting K to number of classes. We also justify it experimentally
in Figure 2. Additional experiments for large-scale models used in Tables 4 and 13 with respect to CIFAR-10
and CIFAR-100 also show drop in eigenvalues at the number of classes across models, justifying our choice
for K. We also extend the ablation study on K to report the best performance in Figure 2 and the optimal
K row in 13. Note that the optimal K for robust performance is not the best for standard performance as we
are choosing only the top-most informative features (Corollary 3.6).

101 102 103

k
59.5

60.0

60.5

61.0

ro
bu

st

Carmon et al.

101 102

k

49.5

50.0

50.5

51.0
Engstrom et al.

101 102 103

k
53.5

54.0

54.5

Rice et al.

101 102 103

k
67.30

67.35

67.40

67.45

67.50
Wang et al.

102 2 × 102 3 × 1024 × 102

k

27.70

27.75

27.80
Addepalli et al.

102 103

k

31.2

31.4

31.6

31.8

Pang et al.

102 2 × 102 3 × 1024 × 102

k
19.0

19.2

19.4

Rice et al.

102 103

k

38.9

39.0

39.1

Wang et al.

101 102 103

k
89.600

89.625

89.650

89.675

cle
an

101 102

k
87.010

87.015

87.020

87.025

87.030

101 102 103

k
85.30

85.31

85.32

85.33

85.34

101 102 103

k
92.25

92.30

92.35

92.40

92.45

102 2 × 102 3 × 1024 × 102

k
65.41

65.42

65.43

65.44

65.45

102 103

k
63.0

63.2

63.4

63.6

102 2 × 102 3 × 1024 × 102

k
53.70

53.75

53.80

53.85

102 103

k
72.55

72.56

72.57

72.58

CIFAR10 CIFAR100

Ac
cu

ra
cy

Figure 4: Ablation of performance with K for all SoTA models for CIFAR-10 and CIFAR-100.

100 101

k

104

106

λ

CIFAR10

Engstrom et al.
Wang et al.
Carmon et al.
Rice et al.

100 101 102

k

103

105

λ

CIFAR100

Addepalli et al.
Pang et al.
Wang et al.
Rice et al.

Figure 5: Eigenspectrum showing sharp drop at K = number of classes for all SoTA models on
CIFAR-10 and CIFAR-100.

26

Under review as submission to TMLR

B.11.2 Effect of step size in PGD

We chose ϵ/4 and ϵ/5 for step sizes in ℓ∞ and ℓ2, respectively, following the benchmarks in several works in
RobustBench. The other common choice for the step size is proportional to the iterations, that is, 2ϵ/40 and
2ϵ/100 for ℓ∞ and ℓ2, respectively. We reevaluated the models in Table 10 with and without RFI for these
step sizes and the results are in Table 19, showing that RFI is better than the base model, in line with the
observations in the previous experiments.

Table 19: RFI is more robust than the base model irrespective of the step size in PGD. 2ϵ/40 for
ℓ∞ and 2ϵ/100 for ℓ2.

Training
ℓ∞(ϵ = 8

255) ℓ2(ϵ = 0.5)
Method +RFI Method +RFI

Standard 0.03 9.73 3.67 14.13
PGD 44.44 45.48 57.77 58.97
IAT 45.91 48.26 66.26 67.73
Robust CIFAR10 7.14 15.57 12.94 17.15
CW Attack 38.89 41.53 51.20 54.45
TRADES 52.90 54.10 61.66 63.35

B.12 Conceptual ideas similar to RFI

Low dimensional last layer. Similar to comparing RFI on last layer vs on intermediate layer in Sec-
tion 4.5.3, here we compare RFI and directly training a network with K neurons in the last layer. We consider
two ResNet-18 models with an additional fully connected hidden layer of size 512 and 10, respectively, and
are trained with PGD. We apply RFI only to the larger model with 512 neurons and reduce the dimension to
10, and compare the performances in terms of clean and robust accuracies in both cases. The results are
presented in Table 20, showing that RFI is more robust compared to imposing a low dimensional last layer.

Table 20: RFI is more robust compared to imposing a low dimensional last layer. ResNet-18 with
last hidden layer size 10 and 512. RFI done on model with 512 hidden layer.

+hidden layer=10 +hidden layer=512 +hidden layer=512 + RFI
Clean 83.71 84.13 84.05
Robust (ℓ∞) 42.43 42.73 43.53

We further argue qualitatively why setting low dimension layers is not equivalent to RFI as follows. Firstly,
overparameterization is shown empirically to be the key for both generalization Brutzkus & Globerson (2019)
and robustness Madry et al. (2018). Especially in the case of CNN, there is an empirical understanding
to build the network with more than one fully connected layer after the convolution layers starting with
larger widths to generalize well Bengio (2012). These findings oppose the idea of having low dimension for
the last hidden layer. Secondly, there are similar insights from the sparsity of neural networks – a smaller
subnetwork with similar performance can be obtained by sparifying the network, called a lottery ticket Frankle
& Carbin (2018). Once known, lottery tickets can be trained from scratch to reach similar performance as
the original network. However, it is not possible to obtain the ticket simply by setting hyperparameters for a
smaller network from the beginning. Finally, we emphasize that with RFI the last hidden-layer dimension is
reduced by a large amount in comparison to the actual model. For example, in CIFAR-10, ResNet-50 with
2048 dimensions is reduced to 10(= K). So, the network with 10 dimension conventionally would not help
generalization, which is conclusively established in the above experiment.

27

Under review as submission to TMLR

B.13 Visualization of robust and non-robust features

We obtain the visualizations of robust and non-robust features for an input x by solving

arg min
x̃
||Φ(x̃)− Φ(x)UUT ||2

where U is top K eigenvectors based on sc(.) for robust features and all eigenvectors except top K for
non-robust features. The objective is solved using gradient descent. Figure 6 shows the visualizations of
features for a few classes in CIFAR-10 using the PGD adversarially trained ResNet-18 model. ‘Robust K = 10’
and ‘Non-robust K = 10’ columns are obtained by setting U to the top K eigenvectors and everything except
the top K eigenvectors based on sc(.), respectively. The columns top and bottom 100 eigenvectors are obtained
by setting U to the top and bottom 100 eigenvectors based on the eigenvalues. The feature visualizations
show that robust and top eigenvectors result in more similar features. The interesting observation is that the
non-robust and bottom eigenvectors are equally noisy and might have some useful information that reflects
the drop in clean performance. Nevertheless, it is not possible to argue based on the visual interpretation of
the features since the difference is primarily coming from the eigenspace of the feature covariance.

ai
rp

la
ne

Original
Robust
 K = 10

Top 100
 Eigenvectors

Non-Robust
 K = 10

Bottom 100
 Eigenvectors

tru
ck

do
g

ho
rs

e

Figure 6: Robust and non-robust features visualization. The features are obtained using the PGD
adversarially trained ResNet-18 model, and the original images are from CIFAR-10. The columns robust
K = 10 are the robust features by fixing U to top K eigenvectors based on the score function sc(.), whereas
top 100 eigenvectors is based on the largest 100 eigenvalues. Likewise, non-robust K = 10 are obtained by
fixing U to all eigenvectors except the ones in robust K = 10 and bottom 100 eigenvectors are obtained using
the smallest 100 eigenvalues, respectively.

28

	Introduction
	Related Works
	Robust Feature Inference: A Test-time Defense Strategy using Spectral Projections
	Robust and Non-Robust Features
	Our Algorithm: Robust Feature Inference (RFI)
	Robustness vs information of features

	Experimental Results
	RFI improves adversarial robustness consistently
	Transfer Attack Evaluation: RFI is stronger than base model
	Static RFI is better than Dynamic/Adaptive RFI
	Static RFI outperforms adaptive test-time defenses
	Abalation Studies
	Effect of adversary strength
	Choice of K
	Comparison of RFI to similar conceptual methods

	Discussion
	Conclusion
	Proofs of the Main Results
	Proof of Theorem 3.2
	Proof of Remark 3.3
	Proofs of Corollary 3.4 and Corollary 3.6
	Dynamics of robust feature learning under GAM
	Proof of Proposition 5.1
	Connection to Neural Tangent Kernel features
	Proof of Proposition 5.2

	Experiments
	Parameters for different algorithms
	Details of benchmarking baseline methods
	Adaptive attack performance of RFI on Expectation Over Transformation (EOT) attack using ResNet-18 for CIFAR-10
	Adaptive attack performance of RFI on calibrated ResNet-18 for CIFAR-10
	Adaptive attack performance of RFI for CIFAR-100 and tiny ImageNet
	Adaptive attack performance of RFI on state-of-the-art models from RobustBench
	Transferability Study
	RFI results in stronger adversary against transfer from other defenses

	Transfer attack: RFI with calibration is on par with the base model
	Static vs Dynamic RFI on calibrated model
	Static RFI is Optimal
	Ablation study
	Effect of K
	Effect of step size in PGD

	Conceptual ideas similar to RFI
	Visualization of robust and non-robust features

