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Abstract

Geometric variations like rotation, scaling, and viewpoint changes pose a
significant challenge to visual understanding. One common solution is to
directly model certain intrinsic structures, e.g., using landmarks. How-
ever, it then becomes non-trivial to build effective deep models, especially
when the underlying non-Euclidean grid is irregular and coarse. Recent
deep models using graph convolutions provide an appropriate framework
to handle such non-Euclidean data, but many of them, particularly those
based on global graph Laplacians, lack expressiveness to capture local fea-
tures required for representation of signals lying on the non-Euclidean grid.
The current paper introduces a new type of graph convolution with learn-
able low-rank local filters, which is provably more expressive than previous
spectral graph convolution methods. The model also provides a unified
framework for both spectral and spatial graph convolutions. To improve
model robustness, regularization by local graph Laplacians is introduced.
The representation stability against input graph data perturbation is theo-
retically proved, making use of the graph filter locality and the local graph
regularization. Experiments on spherical mesh data, real-world facial ex-
pression recognition/skeleton-based action recognition data, and data with
simulated graph noise show the empirical advantage of the proposed model.

1 Introduction

Deep methods have achieved great success in visual cognition, yet they still lack capability
to tackle severe geometric transformations such as rotation, scaling and viewpoint changes.
This problem is often handled by conducting data augmentations with these geometric vari-
ations included, e.g. by randomly rotating images, so as to make the trained model robust
to these variations. However, this would remarkably increase the cost of training time and
model parameters. Another way is to make use of certain underlying structures of objects,
e.g. facial landmarks (Chen et al., 2013) and human skeleton landmarks (Vemulapalli et al.,
2014a), c.f. Fig. 1 (right). Nevertheless, these methods then adopt hand-crafted features
based on landmarks, which greatly constrains their ability to obtain rich features for down-
stream tasks. One of the main obstacles for feature extraction is the non-Euclidean property
of underlying structures, and particularly, it prohibits the direct usage of prevalent convo-
lutional neural network (CNN) architectures (He et al., 2016; Huang et al., 2017). Whereas
there are recent CNN models designed for non-Euclidean grids, e.g., for spherical mesh
(Jiang et al., 2019; Cohen et al., 2018; Coors et al., 2018) and manifold mesh in computer
graphics (Bronstein et al., 2017; Fey et al., 2018), they mainly rely on partial differential
operators which only can be calculated precisely on fine and regular mesh, and may not be
applicable to the landmarks which are irregular and course. Recent works have also applied
Graph Neural Network (GNN) approaches to coarse non-Euclidean data, yet methods using
GCN (Kipf & Welling, 2016) may fall short of model capacity, and other methods adopt-
ing GAT (Veličković et al., 2017) are mostly heuristic and lacking theoretical analysis. A
detailed review is provided in Sec. 1.1.

In this paper, we propose a graph convolution model, called L3Net, originating from low-
rank graph filter decomposition, c.f. Fig. 1 (left). The model provides a unified framework
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Figure 1: (a) K-rank graph local filters. Notation as in Sec. 2.1, and specifically, u is node index, c is channel index,
k is basis index, and K is number of basis. M is the tensor in the GNN linear mapping (1) (2), decomposed into
learnable local basis Bk combined by learnable coefficients ak. (b) The first two figures shows the good property
of landmarks for being invariant to pose and camera viewpoint changes. The third figure illustrates the graph we
built on facial landmarks.

for graph convolutions, including ChebNet (Defferrard et al., 2016), GAT, EdgeNet (Isufi
et al., 2020) and CNN/geometrical CNN with low-rank filter as special cases. In addition,
we theoretically prove that L3Net is strictly more expressive to represent graph signals than
spectral graph convolutions based on global adjacency/graph Laplacian matrices, which is
then empirically validated, c.f. Sec. 3.1. We also prove a Lipschitz-type representation
stability of the new graph convolution layer using perturbation analysis.

Because our model allows neighborhood specialized local graph filters, regularization may
be needed to prevent over-fitting, so as to handle changing underlying graph topology and
other graph noise, e.g., inaccurately detected landmarks or missing landmark points due
to occlusions. Therefore, we also introduce a regularization scheme based on local graph
Laplacians, motivated by the eigen property of the latter. This further improves the repre-
sentation stability aforementioned. The improved performance of L3Net compared to other
GNN benchmarks is demonstrated in a series of experiments, and with the the proposed
graph regularization, our model shows robustness to a variety of graph data noise.

In summary, the contributions of the work are the following:

• We propose a new graph convolution model by a low-rank decomposition of graph
filters over trainable local basis, which unifies several previous models of both spec-
tral and spatial graph convolutions.

• Regularization by local graph Laplacians is introduced to improve the robustness
against graph noise.

• We provide theoretical proof of the enlarged expressiveness for representing graph
signals and the Lipschitz-type input-perturbation stability of the new graph convo-
lution model.

• We demonstrate with applications to object recognition of spherical data and facial
expression/skeleton-based action recognition using landmarks. Model robustness
against graph data noise is validated on both real-world and simulated datasets.

1.1 Related Works

Modeling on face/body landmark data. Many applications in computer vision, such as
facial expression recognition (FER) and skeleton-based action recognition, need to extract
high-level features from landmarked data which are sampled at irregular grid points on
human face or at body joints. While CNN methods (Guo et al., 2016; Ding et al., 2017; Meng
et al., 2017) prevail in FER task, landmark methods have the potential advantage in lighter
model size as well as more robustness to previously mentioned geometric transformations
like pose variation. Earlier methods based on facial landmarks used hand-crafted features
(Jeong & Ko, 2018; Morales-Vargas et al., 2019) rather than deep networks. Skeleton-based
methods in action recognition have been developed intensively recently (Ren et al., 2020),
including non-deep methods (Vemulapalli et al., 2014b; Wang et al., 2012) and deep methods
(Ke et al., 2017; Kim & Reiter, 2017; Liu et al., 2016; Yan et al., 2018). Facial and skeleton
landmarks only give a coarse and irregular grid, and then mesh-based geometrical CNN’s are
hardly applicable, while previous GNN models on such tasks may lack sufficient expressive
power.

Graph convolutional network. A systematic review can be found in several places, e.g.
Wu et al. (2020). Spectral graph convolution was proposed using full eigen decomposition of
the graph Laplacian in Bruna et al. (2013), Chebyshev polynomial in ChebNet (Defferrard
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et al., 2016), by Cayley polynomials in Levie et al. (2018). GCN (Kipf & Welling, 2016),
the mostly-used GNN, is a variant of ChebNet using degree-1 polynomial. Liao et al.
(2019) accelerated the spectral computation by Lanczos algorithm. Graph scattering
transform has been developed using graph wavelets (Zou & Lerman, 2020; Gama et al.,
2019b), which can be constructed in the spectral domain (Hammond et al., 2011) and by
diffusion wavelets (Coifman & Maggioni, 2006). The scattering transform enjoys theoretical
properties of the representation but lacks adaptivity compared to trainable neural networks.
Spatial graph convolution has been performed by summing up neighbor nodes’ transformed
features in NN4G (Scarselli et al., 2008), by graph diffusion process in DCNN (Atwood
& Towsley, 2016), where the graph propagation across nodes is by the adjacency matrix.
Graph convolution with trainable filter has also been proposed in several settings: MPNN
(Gilmer et al., 2017) enhanced model expressiveness by message passing and sub-network;
GraphSage (Hamilton et al., 2017) used trainable differential local aggregator functions in
the form of LSTM or mean/max-pooling; GAT (Veličković et al., 2017) and variants (Li
et al., 2018; Zhang et al., 2018; Liu et al., 2019) introduced attention mechanism to achieve
adaptive graph affinity, which remains non-negative valued; EdgeNet (Isufi et al., 2020)
developed adaptive filters by taking products of trainable local filters. Our model learns
local filters which can take negative values and contains GAT and EdgeNet as special cases.
Theoretically, expressive power of GNN has been studied in Morris et al. (2019); Xu et al.
(2019); Maron et al. (2019a;b); Keriven & Peyré (2019), mainly focusing on distinguishing
graph topologies, while our primary concern is to distinguish signals lying on a graph.

CNN and geometrical CNN. Standard CNN applies local filters translated and shared
across locations on an Euclidean domain. To extend CNN to non-Euclidean domains, convo-
lution on a regular spherical mesh using geometrical information has been studied in S2CNN
(Cohen et al., 2018), SphereNet (Coors et al., 2018), SphericalCNN (Esteves et al., 2018),
and UGSCNN (Jiang et al., 2019), and applied to 3D object recognition, for which other
deep methods include 3D convolutional (Qi et al., 2016) and non-convolutional architec-
tures (Qi et al., 2017a;b). CNN’s on manifolds construct weight-sharing across local atlas
making use of a mesh, e.g., by patch operator in Masci et al. (2015), anisotropic convolution
in ACNN (Boscaini et al., 2016), mixture model parametrization in MoNet (Monti et al.,
2017), spline functions in SplineCNN (Fey et al., 2018), and manifold parallel transport in
Schonsheck et al. (2018). These geometric CNN models use information of non-Euclidean
meshes which usually need sufficiently fine resolution.

2 Method

2.1 Decomposed local filters

Consider an undirected graph G = (V,E), |V | = n. A graph convolution layer maps from
input node features X(u′, c′) to output Y (u, c), where u, u′ ∈ V , c′ ∈ [C ′] (c ∈ [C]) is the
input (output) channel index, the notation [m] means {1, · · · ,m}, and

Y (u, c) = σ(
∑

u′∈V,c′∈[C′]

M(u′, u; c′, c)X(u′, c′) + bias(c)), u ∈ V, c ∈ [C]. (1)

The spatial and spectral graph convolutions correspond to different ways of specifying M ,
c.f. Sec. 2.3. The proposed graph convolution is defined as

M(u′, u; c′, c) =

K∑
k=1

ak(c′, c)Bk(u′, u), ak(c′, c) ∈ R, (2)

where Bk(u′, u) is non-zero only when u′ ∈ N (dk)
u , N

(d)
u denoting the d-th order neighborhood

of u (i.e., the set of d-neighbors of u), and K is a fixed number. In other words, Bk’s are
K basis of local filters around each u, and the order dk can differ with 1 ≤ k ≤ K. Both

ak and Bk are trainable, so the number of parameters are K ·CC ′ +
∑K
k=1

∑
u∈V |N

(dk)
u | ∼

K ·CC ′ +Knp, where p stands for the average local patch size. In our experiments we use
K up to 5, and dk up to 3. We provide the matrix notation of (2) in Appendix A.1.

The construction (2) can be used as a layer type in larger GNN architectures. Pooling of
graphs can be added between layers, and see Appendix C.5 for further discussion on multi-
scale model. The choice of K and neighborhood orders (d1, · · · , dK) can also be adjusted
accordingly. The model may be extended in several ways to be discussed in the last section.
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Model #params
ChebNet / GCN LCC′ / CC′

GAT R(CC′ + 2C)

EdgeNet L(CC′ + np(1))
Low-rank CNN K(CC′ + p)

Locally-connected CC′ · np
L3Net K(CC′ + np)

Figure 2: Plots: (a) Local graph Laplacian Lu := D−A on a neighborhood around node u. (b) Plots of the Dirichlet
eigenvectors on the local graph. The first Dirichlet eigenvector does not change sign on Nu and is envelope-like.
(Table) Model complexity measured by number of parameters, C and C′ being the number of input and output

channels, p (p(1)) the average patch size of local neighborhoods (local 1-neighborhoods), see more in Sec. 2.3.

2.2 Regularization by local graph Laplacian

The proposed L3Net layer enlarges the model capacity by allowing K basis filters at each
location, and a natural way to regularize the trainable filters is by the graph geometry,
where, by construction, only the local graph patch is concerned. We introduce the following
regularization penalty of the basis filters Bk’s as

R({Bk}k) =

K∑
k=1

∑
u∈V

(b(k)
u )TL(k)

u b(k)
u , b(k)

u (v) := Bk(v, u), b(k)
u : N (dk)

u → R, (3)

where L
(k)
u , equaling (D − A) restricted to the subgraph on N

(dk)
u , is the Dirichlet local

graph Laplacian on N
(dk)
u (Chung & Graham, 1997) (Fig. 2). The training objective is

L({ak, Bk}k) + λR({Bk}k), λ ≥ 0, (4)

where L is the classification loss. As L encourages the diversity of Bk’s, the K-rankness
usually remains a tight constraint in training, unless λ is very large, see also Proposition 3.

2.3 A unified framework for graph convolutions

Graph convolutions basically fall into two categories, the spatial and spectral constructions
(Wu et al., 2020). The proposed L3Net belongs to spatial construction, and here we show
that the model (2) is a unified framework for various graph convolutions, both spatial and
spectral. Details and proofs are given in Appendix A.

• ChebNet (Defferrard et al., 2016), GAT (Veličković et al., 2017), EdgeNet (Isufi et al.,
2020): In ChebNet, M per (c′, c) equals a degree-(L-1) polynomial of the graph Laplacian
matrix, where the polynomial coefficients are trainable. GCN (Kipf & Welling, 2016) can be
viewed as ChebNet with polynomial degree-1 and tied coefficients. The attention mechanism
in GAT enhances the model expressiveness by incorporating adaptive kernel-based non-
negative affinities. In EdgeNet, the graph convolution operator is the product of trainable
local filters supported on order-1 neighborhoods. We have the following proposition:

Proposition 1. L3Net (2) includes the following models as special cases:

(1) ChebNet (GCN) when K ≥ L (K ≥ 2), L being the polynomial degree.

(2) GAT when K ≥ R, R being the number of attention branches.

(3) EdgeNet when K ≥ L, L being the order of graph convolutions.

• CNN: When nodes lie on a geometrical domain that allows translation (u′−u), in (2) setting
Bk(u′, u) = bk(u′−u) for some bk(·) enforces spatial convolutional. The convolutional kernel
can be decomposed as

∑
k ak(c′, c)bk(·) (Qiu et al., 2018). Extension to CNN on manifold

mesh is also possible as in Masci et al. (2015); Fey et al. (2018). We have the following:

Proposition 2. Mesh-based geometrical CNN’s defined by linear patch operators, including
standard CNN on Rd, and with low-rank decomposed filters are special cases of L3Net (2).

We also note that L3Net reduces from locally connected GNN (Coates & Ng, 2011; Bruna
et al., 2013), the largest class of spatial GNN, only by the low-rankness imposed by a small
number of K in (2). Locally connected GNN can be viewed as (1) with the requirement
that for each (c, c′), M(u′, u; c′, c) is nonzero only when u′ is locally connected in u. The
complexities of the various models are summarized in Fig. 2 (Table), where L3Net reduces
from the np ·CC ′ complexity of locally-connected net to be the additive (np+CC ′) times K.
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When the number of channels C, C ′ are large, e.g. in deep layers they ∼ 102, and the graph
size is not large, e.g., in landmark data applications np� CC ′, the complexity is dominated
by KCC ′ which is comparable with ChebNet (GAT) if K ≈ L (R). The computational cost
is also comparable, as shown in experiments in Sec. 4. Furthermore, we have:

Proposition 3. Suppose the subgraphs on N
(dk)
u are all connected, given αu,k > 0 for all

u, k, the minimum of (3) with constraint ‖b(k)
u ‖2 ≥ αu,k is achieved when b

(k)
u equals the

first Dirichlet eigenvector on N
(dk)
u , which does not change sign on N

(dk)
u .

The proposition shows that in the strong regularization limit of λ→∞ in (4), L3Net reduces
to be ChebNet-like. The constraint with constants αu,k is included because otherwise the
minimizer will be Bk all zero. The first Dirichlet eigenvector is envelope-like (Fig. 2),
and then Bk(·, u) will be averaging operators on the local patch. Thus the regularization
parameter λ can be viewed as trading-off between the more expressiveness in the learnable
Bk, and the more stability of the averaging local filters, similar to ChebNet and GCN.

3 Analysis

We analyze the representation expressiveness and stability (defined in below) of the proposed
L3Net model. All proofs in Appendix A, and experimental details in Appendix B.

3.1 Representation expressiveness of graph signals

The theoretical question of graph signal representation expressiveness concerns the ability
for GNN deep features to distinguish graph signals. While related, the problem differs
from the graph isomorphism test problem which has been intensively studied in the GNN
expressiveness literature. Here we prove that L3Net is strictly more expressive than certain
spectral GNNs, and support the theoretical prediction by experiments.

We have shown that the L3Net model contains ChebNet (Proposition 1), and the following
proposition proves the strictly more expressiveness for graph signal classification. We call
B a graph local filter if B(u, v) is non-zero only when v is in the neighborhood of u. In a
spectral GNN, the graph convolution takes the form as x 7→ f(A)x where f is a function on
R, and A is the (possibly normalized) adjacency matrix.

Proposition 4. There is a graph and 1) A local filter B on it such that B cannot be
expressed by any spectral graph convolution, but can be expressed by L3Net with K = 1.
2) Two data distributions on the graph (two classes) such that, with a permutation group
invariant operator in the last layer, the deep feature of any spectral GNN cannot distinguish
the two classes, but that of L3Net with 1 layer and K = 1 can.

The fundamental argument is that spectral GNN is permutation equivariant (see e.g. Gama
et al. (2019a), reproduced as Lemma A.1), and the local filters in L3Net break such symmetry
to obtain more discriminative power. The constructive example used in the proof is on a
ring graph (Fig. A.1, A and the basis B), and the two data distributions shown in Fig. 3.
Proposition 4 gives that, on the ring graph and using GNN with a global pooling in the
last layer, an L3Net layer with K = 1 can have classification power while a ChebNet with
any order cannot. On a chain graph (removing the connection between two end points in
a ring graph), which not exactly follows the theory assumption, since the two graphs only
differ at one edge, we expect that it will remain a difficult case for the ChebNet but not for
L3Net. To verify the theory, we conduct experiments using a two-layer GNN and the results
are in Fig. 3 (table). In the last row, we further impose shared basis across nodes which

Model order #params ring graph Acc chain graph Acc

ChebNet

L=3 6.5k 51.71± 0.24 51.05± 0.33
L=5 10.7k 51.62± 0.24 51.07± 0.37
L=30 62.7k 51.32± 0.38 51.01± 0.41

GAT (R=1) 1 1.3k 51.62± 0.14 51.46± 0.94
GAT (R=8) 1 10.4k 57.82± 8.06 58.04± 9.13

WLN 1 4.5k 50.99± 0.36 50.8± 0.08
MPNN 1 9.4k 51.06± 0.32 50.94± 0.09

L3Net
1 2.7k 99.82± 0.05 99.69± 0.09

0;1;2 7.4k 99.93± 0.03 99.85± 0.04
1∗ 2.3k 99.96± 0.01 99.94± 0.01

Figure 3: Up/down-wind classification. Plots: (a) Example data from two classes. (b) Learned shared basis on
the graph neighborhood of 3, corresponding to the last row in the table. (Table) Test accuracy by MPNN (Gilmer
et al., 2017), WLN (Morris et al., 2019), ChebNet up to L=30 and L3Net K=1 and 3, as well as GAT with different
heads. Last row order 1 with star: L3Net with shared basis B(·, u) across all locations u.
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reduces L3Net to a 1D convolutional layer, and the learned basis shows a “difference” shape
(right plot) which explains its classification power. Results are similar using a 1-layer GNN
(Tab. A.1). The argument in Proposition 4 extends to other graphs and network types.
Generally, when a GNN based on global graph adjacency or Laplacian matrix applies linear
combinations of local averaging filters, then certain graph filters may be difficult to express.
We experimentally examine GAT, WLN and MPNN, which underperform on the binary
classification task, as shown in Fig. 3 (table).

3.2 Representation stability

We derive perturbation bounds of GNN feature representation, which is important for ro-
bustness against data noise. The analysis implies a trade-off between de-noising and keeping
high-frequency information, which is consistent with experimental observation in Sec. 4.

Consider the change in the GNN layer output Y defined in (1)(2) when the input X changes.
For simplicity, let C = C ′ = 1, and the argument extends. For any graph signal x : V → R
and V ′ ⊂ V , define ‖x‖2,V ′ := (

∑
u∈V ′ x(u)2)1/2 and 〈x, y〉V ′ =

∑
u∈V ′ x(u)y(u). The

following perturbation bound holds for the L3Net layer with/without regularization.

Theorem 1. Suppose that X = {X(u)}u∈V is perturbed to be X̃ = X+ ∆X, the activation

function σ : R → R is non-expansive, and supu∈V
∑K
k=1 |N

(dk)
u | ≤ Kp, then the change in

the output {Y (u)}u∈V in 2-norm is bounded by

‖∆Y ‖2,V ≤ β(1) · ‖a‖2
√
Kp‖∆X‖2,V , β(1) := sup

k,u
‖Bk(·, u)‖

2,N
(dk)
u

.

Note that p indicates the averaged size of the dk-order local neighborhoods. The proposition
implies that when K is O(1), and the local basis Bk’s have O(1) 2-norms on all local parches
uniformly bounded by β(1), then the Lipschitz constant of the GNN layer mapping is O(1),
i.e., the product of ‖a‖2, β(1) and

√
Kp, which does not scale with n. This resembles

the generalizes the 2-norm of a convolutional operator which only involves the norm of
the convolutional kernel, which is possible due to the local receptive fields in the spatial
construction of L3Net.

The local graph regularization introduced in Sec. 2.2 improves the stability of Y w.r.t.
∆X by suppressing the response to local high-frequency perturbations in ∆X. Specifically,

the local graph Laplacian L
(k)
u on the subgraph on N

(dk)
u is positive definite whenever the

subgraph is connected and not isolated from the whole graph. We then define the weighted

2-norm on local patch ‖x‖
L

(k)
u

:= 〈x, L(k)
u x〉

N
(dk)
u

, and similarly ‖x‖
(L

(k)
u )−1 .

Theorem 2. Notation and setting as in Theorem 1, if furtherly, all the subgraphs on N
(dk)
u

are connected within itself and to the rest of the graph, and there is ρ ≥ 0 s.t. ∀u, k,
‖∆X‖

(L
(k)
u )−1 ≤ ρ‖∆X‖2,N(dk)

u
, then

‖∆Y ‖2,V ≤ ρβ(2) · ‖a‖2
√
Kp‖∆X‖2,V , β(2) := sup

k,u
‖Bk(·, u)‖

L
(k)
u
.

The bound improves from Theorem 1 when ρβ(2) < β(1), and regularizing by R =∑
u,k ‖Bk(·, u)‖2

L
(k)
u

leads to smaller β(2). Meanwhile, on each N
(dk)
u the Dirichlet eigenval-

ues increases 0 < λ1 ≤ λ2 · · · ≤ λpu,k
, pu,k := |N (dk)

u |, thus weighting by λ−1
l in ‖ · ‖

(L
(k)
u )−1

decreases the contribution from high-frequency eigenvectors. As a result, ρ will be small
if ∆X contains a significant high-frequency component on the local patch, e.g., additive

Gaussian noise or missing values. Note that in the weighted 2-norm of ∆X by (L
(k)
u )−1,

only the relative amount of high-frequency component in ∆X matters (because any con-

stant normalization of L
(k)
u cancels in the product of ρ and β(2)). The benefits of local graph

regularization in presence of noise in graph data will be shown in experiments.

4 Experiment

We test the proposed L3Net model on several datasets 1.
1Codes available at https://github.com/ZichenMiao/L3Net.
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level 2 level 1

Model
4;3;2
Acc

3;2;1
Acc

3;2;0
Acc

3;1;0
Acc

2;2;1
Acc

2;1;0
Acc

3;0;0
Acc

2;0;0
Acc

UGSCNN 99.2 98.81 97.52 97.96 98.22 97.77 75.75 86.61
GCN 95.8 90.46 75.62 84.31 94.01 83.24 27.92 37.07

ChebNet 99.3 98.50 98.07 97.07 97.12 95.51 73.1 90.73
L3Net (1;1;2;3) 99.1 98.81 98.89 98.60 97.76 97.97 93.14 97.26

Figure 4: (Plot) Icosahedral spherical meshes at level 2 and 1. (Table) Testing accuracies of sphere MNIST
under different mesh settings, (l1; l2; l3) stands for the mesh level used in each GNN layer. L3Net uses K=4, and
neighborhood order (1;1;2;3). S2CNN (Cohen et al., 2018) on mesh (4;3;2) has accuracy 96.0.

4.1 Object recognition of data on spherical mesh

We first classify data on a spherical mesh: sphere MNIST and sphere ModelNet-40, following
the settings in literature. Though regular mesh on sphere is not the primary application
scenario that motivates our model, we include the experiments to compare with benchmarks
and test the efficiency of L3Net on such regular meshes. Following UGSCNN (Jiang et al.,
2019), we implement different mesh resolution on a sphere, indicated by “mesh level” (Fig.
4), where number of nodes in different levels can vary from 2562 (level 4) to 12 (level 0). All
the networks consist of three convolutional layers, see more details in Appendix C.1. Using
the original mesh level (4;3;2), the finest resolution as in UGSCNN, L3Net gives among the
best accuracies for sphere MNIST. On Modelnet-40, L3Net achieves a testing accuracy of
90.24, outperforming ChebNet and GCN and and is comparable to UGSCNN which uses
spherical mesh information (Tab. A.2). When the mesh becomes coarser, as shown in Fig. 4
(Table), L3Net improves over GCN and ChebNet (L=4) and is comparable with UGSCNN
under nearly all mesh settings. We observe that in some settings ChebNet can benefit from
larger L, but the overall accuracy is still inferior to L3Net. The most right two columns
give two cases of coarse meshes where L3Net shows the most significant advantage.

4.2 Facial expression recognition (FER)

We test on two FER datasets, Extended CohnKanade (CK+) (Lucey et al., 2010) and
FER13 (Goodfellow et al., 2013). We use 15 facial landmarks, see Fig. 1, and pixel values
on a patch around each landmark point as node features. Details about dataset and model
setup are in Appendix C.2. Unlike spherical mesh, facial and body landmarks are coarse
irregular grids where no clear pre-defined mesh operation is applicable. We benchmark
L3Net with other GNN approaches, as shown in Table 1. The local graph regularization
strategy is applied on FER13, due to the severe outlier data of landmark detection caused
by occlusion. On CK+, L3Net leads all non-CNN models by a large margin, and the best
model (1,1,2,3) uses comparable number of parameters with the best ChebNet (L=4). On
FER13, L3Net has lower performance than ChebNet and EdgeNet (Isufi et al., 2020), but
outperforms after adding regularization. The running times of best ChebNet and L3Net
models are comparable, and are much less than GAT’s.

Table 1: Results on CK+ and FER13, with comparison to CNN†(Ding et al., 2017), CNN‡ (Guo et al., 2016),
landmark method using handcrafted features (Morales-Vargas et al., 2019), and various GNN methods. Specifically,
we compare to GAT (Veličković et al., 2017) with different #heads (h) and #features (f). The mean testing time
on CK+: ChebNet (L=4) 12.56ms, L3Net (order 1,1,2,3) 13.02ms. GAT (h=f=8) 39.67ms, (h=f=16) 41.02ms.

CK+ FER13

Model
Bases
Order

#params
(w/o FC)

Acc
#params
(w/o FC)

Acc

CNN† - 7M 98.60 - -

CNN‡. - - - 2.6M 71.33
Landmarks-handcraft - - 91.00± 0.03 - -

GAT (h=8, f=8) 1 34.6k 91.62± 1.16 46.9k 49.50
GAT (h=16, f=16) 1 142.3k 90.87± 0.78 151.1k 48.93

GCN 1 34.5k 91.78± 0.38 42.6k 55.54
GraphConv 1 169.6k 81.62± 0.48 215.4k 55.63

ChebNet
L=3 102.3k 92.93± 0.59 136.4k 59.68
L=4 136.3k 93.22± 0.37 181.6k 60.26
L=5 170.2k 93.03± 0.62 227.3k 60.29

EdgeNet
L=3 103.4k 92.41± 0.81 137.2k 58.73
L=4 137.1k 92.57± 0.84 182.5k 60.05

L3Net

2;2;2 102.8k 95.32± 0.31 139.7k 60.46
0;1;2;3 136.8k 95.03± 0.30 182.8k 60.65
1;1;2

102.7k
94.68± 0.56

139.4k
59.68

+reg0.005 94.52± 0.61 61.13
1;1;2;3

136.9k
95.37± 0.60

183.0k
60.71

+reg0.5 95.11± 0.44 61.64
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Table 2: Results on NTU-RGB+D and Kinetics-Motion

NTU-RGB+D Kinetics-Motion

Model
Bases
order

#params
(w/o FC)

x-view Acc x-sub Acc
#params
(w/o FC)

Acc

ST-GCN (Yan et al., 2018) 1 - 88.30 81.50 - 72.4
ST-GCN 1 2.6M 82.59 74.33 1.4M 72.85

ST-ChebNet
L=3 3.1M 86.40 78.24 1.8M 77.91
L=4 3.3M 86.45 80.20 2.1M 78.24
L=5 3.5M 76.70 71.42 2.3M 77.57

ST-L3Net

1;1;2
3.1M

90.78 83.64
1.8M

75.20
+reg0.01 88.38 81.54 78.49
1;1;2;3

3.3M
91.52 82.46

2.1M
75.07

+reg0.01 89.87 80.97 76.68

4.3 Action recognition

We test on two skeleton-based action recognition datasets, NTU-RGB+D (Shahroudy et al.,
2016) and Kinetics-Motion (Kay et al., 2017). The irregular mesh is the 18/25-point body
landmarks, with graph edges defined by body joints, shown in Fig. 1 and Fig. A.2. We
adopt ST-GCN (Yan et al., 2018) as the base architecture, and substitute the GCN layer
with new L3Net layer, called ST-L3Net. On Kinetics-Motion, we adopt the regularization
mechanism to overcome the severe data missing caused by camera out-of-view. See more
experimental details in Appendix C.3. We benchmark performance with ST-GCN (Yan
et al., 2018), ST-GCN (our implementation without using geometric information) and ST-
ChebNet (replacing GCN with ChebNet layer), shown in Table 2. L3Net shows significant
advantages on two NTU tasks, cross-view and cross-subject settings. On Kinetics-Motion,
L3Net regains superiority over other models after applying regularization. The results in
both Table 1 and 2 indicate that stronger regularization sacrifices expressiveness for clean
data and gains stability for noisy data, which is consistent with the theory in Sec. 3.2.

4.4 Robustness to graph noise

To examine the robustness to graph noise, we experiment on down-sampled MNIST data
on 2D regular grid with 4-nearest-neighbor graph. With no noise, on 28×28 data (Tab.
A.3), 14×14 data (Tab. A.4), and 7×7 data (Tab. 3 “original” column), the performance of
L3Net is comparable to ChebNet (Defferrard et al., 2016) and EdgeNet (Isufi et al., 2020)
and better than other GNN methods. We consider three types of noise, Gaussian noise
added to the pixel value, missing nodes or equivalently missing value in image input, and
permutation of the node indices, details in Appendix C.4. The results of adding different
levels of gaussian noise and permutation noise are shown in Tab. 3, while results of adding
missing value noise is provided in Appendix C.4. The results show that our regularization
scheme improves the robustness to all three types of graph noise, supporting the theory in
Sec. 3.2. Specifically, L3Net without regularization may underperform than ChebNet, but
catches up after adding regularization, which is consistent with Proposition 3.

Table 3: Results on MNIST with grid size 7× 7 with different levels of Gaussian noise and Permutation noise.

Model
bases
order

#params
(w/o FC)

Acc(original)
Acc (gaussian)

(psnr 24.9)
Acc (gaussian)

(psnr 19.1)
Acc (gaussian)

(psnr 15.7)
Acc

(permutation)

GCN 1 2.4k 90.02± 0.24 89.27± 0.09 85.70± 0.13 81.32± 0.18 83.00± 0.18

ChebNet
L=3 6.5k 92.85± 0.09 91.13± 0.15 87.64± 0.23 82.70± 0.33 86.94± 0.06
L=5 10.7k 93.2± 0.07 91.92± 0.11 88.22± 0.10 83.04± 0.12 87.27± 0.23
L=7 14.8k 93.45± 0.06 91.80± 0.10 87.84± 0.15 83.75± 0.14 87.53± 0.19

GAT (h=8,f=16) 1 17.5k 79.50± 1.24 68.68± 0.45 64.8± 1.69 65.38± 1.03 62.21± 0.56
MPNN 1 18.8k 86.94± 0.37 85.36± 0.51 82.23± 0.35 77.59± 0.34 77.55± 0.26
WLN 1 17.1k 87.61± 0.04 86.01± 0.20 83.60± 0.09 79.47± 0.11 80.51± 0.05

EdgeNet
L=3 7.5k 93.26± 0.16 91.81± 0.14 88.42± 0.36 84.56± 0.40 87.15± 0.30
L=4 10.1k 93.44± 0.17 92.27± 0.16 88.60± 0.17 84.15± 0.59 87.44± 0.28

L3Net

0;1;2 8.1k 93.45± 0.10 - - - -
1;1;2

8.4k
93.56± 0.08 92.10± 0.08 88.20± 0.13 83.00± 0.33 87.58± 0.19

+reg0.5 93.85± 0.13 92.31± 0.07 89.23± 0.10 84.59± 0.23 88.08± 0.18
1;1;2;3

12.2k
93.67± 0.15 92.25± 0.15 88.28± 0.16 82.80± 0.37 87.66± 0.12

+reg0.5 93.85± 0.15 92.56± 0.12 89.15± 0.24 84.61± 0.25 88.21± 0.15

5 Conclusion and Discussion

The paper proposes a new graph convolution model using learnable local filters decomposed
over a small number of basis. Strengths: Provable enhancement of model expressiveness
with significantly reduced model complexity from locally connected GNN. Improved sta-
bility and robustness via local graph regularization, supported by theory. Plug-and-play
layer type, suitable for GNN graph signal classification problems on relatively unchang-
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ing small underlying graphs, like face/body landmark data in FER and action recognition
applications.

Limitations and extensions: (1) Scalability to larger graph. When |V | = n is large, the
complexity increase in the npK term would be significant. The issue in practice can be
remedied by mixing use of layer types, e.g., only adopting L3Net layers in upper levels of
mesh which are of reduced size. (2) Dynamically changing underlying graph across samples.
For more severe changes of the underlying graph, we can benefit from solutions such as
node registration or other preprocessing techniques, possibly by another neural network.
Related is the question of reducing model dependence on graph topology, possibly under a
statistical model of the underlying graphs. This includes transferability to larger networks.
(3) Incorporation of edge features. Edge features can be transformed into extra channels

of node features by an additional layer in the bottom, and the low-rank graph operation
can be similarly employed there. (4) Theoretically, the representation robustness analysis
is to be extended to more general types of graph perturbation. Generally, one can work to
extend to other types of graph data and tasks.
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shape correspondence with anisotropic convolutional neural networks. In Advances in
neural information processing systems, pp. 3189–3197, 2016.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving the 2d & 3d face
alignment problem? (and a dataset of 230,000 3d facial landmarks). In International
Conference on Computer Vision, 2017.

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose
estimation using part affinity fields. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7291–7299, 2017.

Dong Chen, Xudong Cao, Fang Wen, and Jian Sun. Blessing of dimensionality: High-
dimensional feature and its efficient compression for face verification. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 3025–3032, 2013.

Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American
Mathematical Soc., 1997.

Adam Coates and Andrew Y Ng. Selecting receptive fields in deep networks. In Advances
in neural information processing systems, pp. 2528–2536, 2011.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Raviteja Vemulapalli, Felipe Arrate, and Rama Chellappa. Human action recognition by
representing 3d skeletons as points in a lie group. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 588–595, 2014a.

Raviteja Vemulapalli, Felipe Arrate, and Rama Chellappa. Human action recognition by
representing 3d skeletons as points in a lie group. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 588–595, 2014b.

Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan. Mining actionlet ensemble for
action recognition with depth cameras. In 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1290–1297. IEEE, 2012.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip.
A comprehensive survey on graph neural networks. IEEE Transactions on Neural Net-
works and Learning Systems, 2020.

12



Published as a conference paper at ICLR 2021

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? ICLR, 2019.

Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks
for skeleton-based action recognition. In Thirty-second AAAI conference on artificial
intelligence, 2018.

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan:
Gated attention networks for learning on large and spatiotemporal graphs. arXiv preprint
arXiv:1803.07294, 2018.

Dongmian Zou and Gilad Lerman. Graph convolutional neural networks via scattering.
Applied and Computational Harmonic Analysis, 49(3):1046–1074, 2020.

Appendix

A Proofs

A.1 Details and proofs in Sec. 2.3

To facilitate comparison with literature, we provide a summary of various graph convolution
models in matrix notation, the precise definition of which will be detailed in below. For
simplicity, only the linear transform part is shown, and the addition of bias and point-wise
non-linearity are omitted.

Notation as in Section 2.1, suppose X ∈ Rn×C′ is the input node feature, and Y ∈ Rn×C
the output feature,

• L3Net (ours): Y =
∑K
k=1BkXAk, where Bk ∈ Rn×n is the local basis filter, and

Ak ∈ RC′×C are the coefficients, both Bk and Ak are learnable.

• ChebNet/GCN: Y =
∑L−1
l=0 Tl(L̃)XΘl, where Tl(·)’s are Chebshev polynomials, L̃

is the rescaled and re-centered graph Laplacian, Tl(L̃) ∈ Rn×n, and Θl ∈ RC′×C
are trainable.

• GAT: Y =
∑R
r=1A(r)XΘr, where A(r) ∈ Rn×n is the graph attention affinity

computed adaptively from input features, and Θr ∈ RC′×C are trainable and weight-
shared with the parameters in A(r), see more in below.

• EdgeNet: Y =
∑L−1
r=0 PrXΘr, where Pr =

∏r
k=0 Φk for a sequence of trainable local

filters Φk, and Θr ∈ RC′×C are trainable.

From the matrix formulation, it can be seen that when Bk are the classical graph filtering
operators, e.g. polynomials of L̃, and Ak the trainable Θk, L3Net recovers the above graph
convolution models in literature (c.f. Proposition 1). In below we give more details, as well
as the reduction to filter-decomposed CNN (c.f. Proposition 2).

A.1.1 Locally connected GNN

Specifically, the construction in Coates & Ng (2011); Bruna et al. (2013) assumes that
u and u′ belongs to the graph of different scales, u′ is on the fine graph, and u is on a
coarse-grained layer produced by clustering of indices of the graph of the input layer. If
one generalize the construction to allow over-lapping of the receptive fields, and assume no
pooling or coarse-graining of the graph, then the non-zero parameters are of the number∑

u∈V
|Nu| · CC ′ = np · CC ′,

where n = |V |, p is the average patch size |Nu|, and C and C ′ are the number of input and
output feature channels.

13



Published as a conference paper at ICLR 2021

A.1.2 ChebNet/GCN, GAT and EdgeNet

• ChebNet/GCN

In view of (1), ChebNet (Defferrard et al., 2016) makes use of the graph adjacency matrix
to construct M . Specifically, Asym := D−1/2AD−1/2 is the symmetrized graph adjacency
matrix (possibly including self-edge, then A equals original A plus I), and Lsym := I −
Asym has spectral decomposition Lsym = ΨΛΨT . Let L̃ = α1I + α2Lsym be the rescaled
and re-centered graph Laplacian such that the eigenvalues are between [−1, 1], α1, α2 fixed
constants. Then, written in n-by-n matrix form,

Mc′,c =

L−1∑
l=0

θl(c
′, c)Tl(L̃), θl(c

′, c) ∈ R, (5)

where Tl(·) is Chebshev polynomial of degree l. As Asym and then L̃ are given by the graph,
only θl’s are trainable, thus the number of parameters are

L · CC ′.

GCN (Kipf & Welling, 2016) is a special case of ChebNet. Take L = 2 in (5), and tie the
choice of θ0 and θ1,

Mc′,c = θ(c′, c)(α′1I + α′2Asym) =: θ(c′, c)Ã, α′1, α
′
2 fixed constants,

where θ(c′, c) is trainable. This factorized form leads to the linear part of the layer-wise

mapping as Y = ÃXΘ written in matrix form, where Ã is n-by-n matrix defined as above,
X (Y ) is n-by-C ′ (-C) array, Θ is C ′-by-C matrix. The model complexity is CC ′ which are
the parameters in Θ.

• GAT

In GAT (Veličković et al., 2017), R being the number of attention heads, the graph convo-
lution operator in one GNN layer can be written as (omitting bias and non-linear mapping)

Y =

R∑
r=1

A(r)XΘr, A(r)
u,v =

ec
(r)
uv∑

v′∈N(1)
u
ec

(r)

uv′
, c(r)uv = σ((a(r))T [W (r)Xu,W

(r)Xv]), (6)

where {W (r), a(r)} are the trainable parametrization of attention graph affinity mechanism
A(r), which constructs non-negative affinities between graph nodes u and v adaptively from
the input graph node feature X. In particular, A(r) shares sparsity pattern as the graph

topology, that is, A(r)(u, u′) 6= 0 only when u′ ∈ N (1)
u .

In the original GAT, Θr = W (r)C(r), where C(r)’s are fixed matrices such that the output
from r-th head is concatenated into the output Y across r = 1, · · · , R. Variants of GAT
adopt channel mixing across heads, e.g. a generalization of GAT in Isufi et al. (2020) uses
extra trainable Θr in (6) independent from W (k). Isufi et al. (2020) also proposed higher-
order GAT by considering powers of the affinity matrix A(r) as well as the edge-varying
version (c.f. Eqn. (36)(39) in Isufi et al. (2020)). As this higher-order GAT and the
edge-varying counterpart are special cases of the edgy-varying GNN, we cover this case in
Proposition 1 3).

The model complexity of GAT: In the original GAT where Θr is tied with W (r), the number
of parameters in one layer is R(C0C

′ + 2C0), where R is the number of attention heads,

C = C0R, and W (r) : RC′ → RC0 . When Θr are free from {W (r), a(r)} in (6), the number
of parameters is R(CC ′ + C0C

′ + 2C0) ≤ R(2CC ′ + 2C), where W (r) maps to dimension
C0 and Θr maps to dimension C.

• EdgeNet (Edge-varying GCN)

Per Eqn. (1)(8) in Isufi et al. (2020), the edge-varying GNN layer mapping can be written
as

Y =

L−1∑
r=0

(
r∏

k=0

Φk

)
XΘr, (7)
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where Φ0 is an n-by-n diagonal matrix, and Φk, k = 1, · · · , r, are supported on N
(1)
u of

each node u. The trainable parameters are {Φk}Rk=0 and {Θr}Rr=0, Θr : RC′ → RC . Edge-
varying GAT implements polynomials of averaging filters, and general edge-varying GNN
takes product of arbitrary 1-order filters. The proof shows that EdgeNet layer is a special
case of L3Net layer, while restricting Bk to be of the product form (9) rather than freely

supported on N
(dk)
u for user-specified order (d1, · · · , dK) is a non-trivial restriction.

The trainable parameters: Θr has LCC ′ many, Φ0 has n, and Φk, k = 1, · · · , L−1 each has
np(1) many, p(1) being the average size o 1-neighborhood of nodes. Thus the total number
of parameters is

LCC ′ + n+ (L− 1)np(1) ∼ L(CC ′ + np(1)).

Proof of Proposition 1. Part (1): Since GCN is a special case of ChebNet, it suffices to

prove that (5) can be expressed in the form of L3Net (2) for some K. By definition of L̃,
mathematically equivalently,

Mc′,c =

L−1∑
l=0

θl(c
′, c)Tl(α1I+α2L) =

L−1∑
l=0

θl(c
′, c)Tl(α1I+α2(I−Asym)) =

L−1∑
l=0

βl(c
′, c)Alsym,

(8)
where the coefficients βl’s are determined by θl’s, per (c′, c). Since Alsym propagates to the

l-th order neighborhood of any node, setting Bk(u′, u) = Ak−1
sym(u′, u), Bk(u′, u) is non-zero

when u′ ∈ N (k−1)
u , 1 ≤ k ≤ K := L, and then setting ak(c′, c) = βk−1(c′, c) gives (5) in the

form of (2).

Part (2): We consider (6) as the GAT model. Recall that Θr : RC′ → RC , then (6) can be
re-written in the form of (1) by letting

M(u′, u; c′, c) =

R∑
r=1

A(r)(u′, u)Θr(c
′, c),

which is a special case of (2) where R = K, A(k) = Bk and Θk = ak. Since A(r)(u, u′)

as a function of u′ is supported on u′ ∈ N (1)
u , (6) belongs to the L3Net model (2) where

d1 = · · · = dK = 1, in addition to that Bk must be of the attention affinity form, i.e. built

from the attention coefficients c
(r)
uv computed from input X via parameters {W (r), a(r)}.

Part (3): Comparing with (1)(2), we have that (7) is a special case of L3Net (2) by letting
K = L,

Bk =

k−1∏
k′=0

Φk′ , (9)

ak = Θk−1, and dk = k − 1 for k = 1, · · · ,K.

A.1.3 Standard and geometrical CNN’s

Standard CNN on Rd, e.g. d = 1 for audio signal and d = 2 for image data, applies a
discretized convolution to the input data in each convolutional layer, which can be written
as (omitting bias which is added per c, and the non-linear activation)

y(u, c) =
∑

c′∈[C′]

∑
u′∈U

wc′,c(u
′ − u)x(u′, c′), (10)

where U is a grid on Rd. We write in the way of “anti-convolution”, which has “u′ − u”
rather than “u − u′”, but the definition is equivalent. For audio and image data, U is
usually a regular mesh with evenly sampled grid points, and proper boundary conditions
are applied when computing y(u, c) at a boundary grid point u. E.g., boundary can be
handled by standard padding as in CNN. As the convolutional filters wc′,c are compactly
supported, the summation of u′ is on a neighborhood of u.
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More generally, CNN’s on non-Euclidean domains are constructed when spatial points are
sampled on an irregular mesh in Rd, e.g., a 2D surface in R3. The generalization of (10)
is by defining the “patch operator” (Masci et al., 2015) which pushes a template filter w
on a regular mesh on Rd, d being the intrinsic dimensionality of the sampling domain, to
the irregular mesh in the ambient space that have coordinates on local charts. Specifically,
for a mesh of 2D surface in 3D, d = 2, and w is a template convolutional filter on R2. For
any local cluster of 3D mesh points Nu around a point u, the patch operator Pu provides
(Puw)(u′) for u′ ∈ Nu by certain interpolation scheme on the local chart. The operator Pu
is linear in w, and possibly trainable. As a result, in mesh-based geometrical CNN,

y(u, c) =
∑

c′∈[C′]

∑
u′

(Puwc′,c)(u′)x(u′, c′), (11)

and one can see that in Euclidean space taking (Puw)(u′) = w(u′ − u) reduces (11) to the
standard CNN as in (10).

In both (10) and (11), spatial low-rank decomposition of the filters wc′,c can be imposed (Qiu
et al., 2018). This introduces a set of bases {bk}k over space that linearly span the filters
wc′,c. For standard CNN in Rd, bk are basis filters on Rd, and for geometrical CNN, they
are defined on the reference domain in Rd same as wc′,c, where d is the intrinsic dimension.

Suppose wc′,c =
∑K
k=1 βk,(c′,c)bk for coefficients βk,(c′,c), by linearity, (11) becomes

y(u, c) =
∑

c′∈[C′]

∑
u′

K∑
k=1

βk,(c′,c)(Pubk)(u′)x(u′, c′), (12)

and similarly for (10). The trainable parameters in (12) are βk,(c′,c) and the basis filters
bk’s, the former has KCC ′ parameters, and the latter has

∑
k pk, where pk is the size of the

support of bk in Rd. Suppose the average size is p, then the number of parameters is Kp.
This gives the total number of parameters as

KCC ′ +Kp.

Proof of Proposition 2. Since standard CNN is a special case of geometrical CNN 11, we
only consider the latter. Assuming low-rank filter decomposition, the convolutional mapping
is (12). Comparing to the GNN layer mapping defined in (1), one sees that

M(u′, u; c′, c) =

K∑
k=1

βk,(c′,c)(Pubk)(u′),

which equals (2) if setting Bk(u′, u) = (Pubk)(u′) and ak(c′, c) = βk,(c′,c).

A.1.4 Strong regularization limit

Proof of Proposition 3. The constrained minimization of R defined in (3) separates for each

u, k, and the minimization of b
(k)
u is given by

min
w:N

(dk)
u →R

wTL(k)
u w, s.t. ‖w‖2 ≥ αu,k > 0. (13)

For each u, k, the local Dirichlet graph Laplacian L
(k)
u has eigen-decomposition L

(k)
u =

Ψ
(k)
u Λ

(k)
u (Ψ

(k)
u )T , where (Ψ

(k)
u )TΨ

(k)
u = I, and the diagonal entries of Λ

(k)
u are eigenvalues

of L
(k)
u , which are all ≥ 0 and sorted in increasing order. By the variational property of

eigenvalues, the minimizer of w in (13) is achieved when w = Ψ
(k)
u (·, 1), i.e., the eigenvector

associated with the smallest eigenvalue of L
(k)
u . By that the local subgraph is connected,

this smallest eigenvalue has single multiplicity, and the eigenvector is the Perron-Frobenius
vector which does not change sign. The claim holds for arbitrary αu,k > 0 since eigenvector
is defined up to a constant multiplication.
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Figure A.1: A ring graph with 8 nodes. Polynomials of graph adjacency matrix A (or Laplacian matrix) preserve
symmetry of mirroring around any node, e.g., node 3, and can cannot express a local filter B

A.2 Proofs in Sec. 3.1

Proof of Proposition 4. Part 1): Let the graph be the ring graph with n nodes, and each
node has 2 neighbors, n=8 as shown in Fig. 1 (right). We index the nodes as u = 0, . . . , n−1
and allows addition/subtraction of u−v (mod n). Let B be the “difference” filter B(u′, u) =
1 when u′ = u and −1 when u′ = u+ 1. We show that B 6= f(A) for any f , and in contrast,
setting this B as the basis in (2) expresses the filter with K = 1.

To prove that B 6= f(A) for any f , let πu be the permutation of the n nodes such that
πu(u+ v) = (u− v) for all v, i.e., mirror flip the ring around the node u. By construction,
the graph topology of the ring graph is preserved under πu, that is, Aπu := πuAπ

T
u = A,

whether A is the 0/1 value adjacency matrix or the symmetrically normalized one Asym =

D−1/2AD−1/2 (D is constant on diagonal) or other normalized version as long as the relation
Aπu

= A holds. By Lemma A.1 1), for any f : R→ R,

f(A)πu = f(Aπu
)πu = πuf(A),

this means that if B = f(A) for some f , then Bπu = πuB, which contradicts with the
construction of B.

Part 2): Consider the two distributions of graph signals on the ring graph in 1), which we
call “upwind/downwind” signals: Xup consists of finite superpositions of functions on the
ring graph which are periodic, smoothly increasing from 0 to 1 and then dropping to zero.
Signals in Xup are under certain distribution, and Xdown consists of the signals that can be
produced by mirror-flipping the upwind signals. That is, denoting xup (xdown) an upwind
(downwind) signal, πu the permutation as in 1) around any node u, then

πuxup
dist.
= xdown,

where
dist.
= means equaling in distribution. Example signals of the two classes as illustrated

in Fig. 3.

Same as in 1), by construction Aπu
= A. Let F (L) be the mapping to the L-th layer spectral

GNN feature, for xup an upwind signal, Lemma A.1 2) gives that

F (L)[A]πuxup = F (L)[Aπu
]πuxup = πuF

(L)[A]xup.

The last layer applies group invariant operator U , then

UF (L)[A]πuxup = UπuF
(L)[A]xup = UF (L)[A]xup,

this gives that

UF (L)[A]xdown
dist.
= UF (L)[A]πuxup = UF (L)[A]xup,

which means that the final output deep feature via UF (L)[A] are statistically the same for
the input signals from the two classes.

Meanwhile, the difference local filter B in the proof of 1) can extract feature to differentiate
the two classes: with Relu activation function, the output feature after one convolutional
layer and a global pooling, which is permutation invariant, can be made strictly positive for
one class, and zero for the other class. Thus, L3Net with 1 layer and 1 basis suffices to
distinguish the Xup and Xdown signals.
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Lemma A.1 (Permutation equivariance, Proposition 1 in Gama et al. (2019a)). Let A be
the (possibly normalized) graph adjacency matrix, for any input signal x : V → R, and
π ∈ Sn a permutation of graph nodes,

1) The spectral graph convolution mapping f(A) satisfies that

f(Aπ)π = πf(A), Aπ := πAπT .

2) Let F (l)[A] be the mapping to the l-th layer spectral GNN feature with graph adjacency
A, then

F (l)[Aπ]πx = πF (l)[A]x.

Proof of Lemma A.1. Proved in Gama et al. (2019a) and we reproduce with our notation
for completeness.

Part 1): Denote the n-by-n permutation matrix also by π, then by definition, f(A) =
Uf(Λ)UT where A = UΛUT is the diagonalization and U is orthogonal matrix, thus

f(Aπ) = f(πUΛUTπT ) = πUf(Λ)UTπT = πf(A)πT ,

and this proves 1).

Part 2): Each spectral GNN layer mapping adds the bias and the node-wise non-linear acti-
vation mapping to the graph convolution linear operator, which preserves the permutation
equivariance. Recursively applying to L layers proves 2).

A.3 Proofs in Sec. 3.2

Proof of Theorem 1. By definition,

Y (u) = σ(

K∑
k=1

ak〈Bk(·, u), X(·)〉
N

(dk)
u

+ bias),

then since σ is non-expansive, ∀u ∈ V ,

|∆Y (u)| ≤ |
K∑
k=1

ak〈Bk(·, u),∆X(·)〉
N

(dk)
u
| ≤ ‖a‖2

(
K∑
k=1

|〈Bk(·, u),∆X(·)〉
N

(dk)
u
|2
)1/2

. (14)

By that
|〈Bk(·, u),∆X(·)〉

N
(dk)
u
| ≤ ‖Bk(·, u)‖

2,N
(dk)
u
· ‖∆X(·)‖

2,N
(dk)
u

, (15)

we have that ∑
u∈V
|∆Y (u)|2 ≤ ‖a‖22

∑
u

K∑
k=1

|〈Bk(·, u),∆X(·)〉
N

(dk)
u
|2

≤ ‖a‖22
∑
u

K∑
k=1

‖Bk(·, u)‖2
2,N

(dk)
u

· ‖∆X(·)‖2
2,N

(dk)
u

≤ (‖a‖2β(1))2
∑
u,k

‖∆X(·)‖2
2,N

(dk)
u

, (16)

and observe that∑
u,k

‖∆X(·)‖2
2,N

(dk)
u

=

K∑
k=1

∑
u∈V

∑
v∈N(dk)

u

|∆X(v)|2 =

K∑
k=1

∑
u,v∈V

1{v∈N(dk)
u }|∆X(v)|2

=

K∑
k=1

∑
u,v∈V

1{u∈N(dk)
v }|∆X(v)|2 =

K∑
k=1

∑
v∈V
|N (dk)

v | · |∆X(v)|2 ≤ Kp
∑
v∈V
|∆X(v)|2,

where we used the assumption on Kp to obtain the last ≤. Then (16) continues as

≤ (‖a‖2β(1))2Kp‖∆X‖22,V ,

which proves that ‖∆Y ‖2,V ≤ (‖a‖2β(1))
√
Kp‖∆X‖2,V as claimed.
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Proof of Theorem 2. Same as in the proof of Theorem 1, we have (14). The eigen-

decomposition L
(k)
u = Ψ

(k)
u Λ

(k)
u (Ψ

(k)
u )T has that (Ψ

(k)
u )TΨ

(k)
u = I, and, under the connectiv-

ity condition of the subgraph, the diagonal entries of Λ
(k)
u all > 0. Thus

〈u, v〉
N

(dk)
u

= 〈(Λ(k)
u )1/2Ψ(k)

u u, (Λ(k)
u )−1/2Ψ(k)

u v〉
N

(dk)
u

,

which gives the Cauchy-Schwarz with weighted 2-norm as

|〈Bk(·, u),∆X(·)〉
N

(dk)
u
| ≤ ‖Bk(·, u)‖

L
(k)
u
· ‖∆X(·)‖

(L
(k)
u )−1 . (17)

Then similarly as in (16), using the definition of β(2) and the the condition with ρ, we obtain
that ∑

u∈V
|∆Y (u)|2 ≤ (‖a‖2β(2))2

∑
u,k

ρ2‖∆X(·)‖2
2,N

(dk)
u

, (18)

and the rest of the proof is the same, which gives that∑
u∈V
|∆Y (u)|2 ≤ (‖a‖2β(2))2ρ2Kp‖∆X‖22,V ,

which proves the claim.

B Up/down-wind Classification Experiment

B.1 Dataset Setup

We generate the Up/Down wind dataset on both ring graph and chain graph with 64 nodes.
Every node is assigned to a probability drawn from (0, 1) uniform distribution. Node with
probability less than threshold = 0.1 will be assigned with a gaussian distribution with
std = 1.5. Each gaussian distribution added is masked half side. Distribution masked left
half is the ‘Down Wind’ class, distribution masked right half is the ‘Up Wind’ class, as
shown in left plot in Fig. 3. We then sum up all half distributions from different locations
in each sample. We generate 5000 training samples and 5000 testing samples.

B.2 Model architecture and training details

Network architectures.

• 2-gcn-layer model:

GraphConv(1,32)-ReLU-MaxPool1d(2)-GraphConv(32,64)-ReLU-AvgPool(32)-FC(2),

• 1-gcn-layer model:

GraphConv(1,32)-ReLU-AvgPool(64)-FC(2),

where GraphConv can be ChebNet or L3Net.

Training details.

We choose the Adam Optimizer, batch size of 100, set initial learning rate of 1×10−3, make
it decay by 0.1 at 80 epoch and train for 100 epochs.

B.3 Additional results

We report additional results using 1-gcn layer architecture in Tab. A.1. Our L3Net again
shows stronger classification performance than ChebNet.

C Experimental Details

C.1 Classification of sphere mesh data

Spherical mesh We conduct this experiment on icosahedral spherical mesh (Baumgardner
& Frederickson, 1985). Like S2CNN (Cohen et al., 2018), we project digit image onto surface
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Table A.1: results of 1-gcn layer models

Gnn model order #params ring graph Acc chain graph Acc

ChebNet

L=3 0.2k 50.80± 0.24 50.66± 0.21
L=5 0.3k 51.14± 0.21 51.07± 0.35
L=9 0.4k 51.68± 0.38 50.96± 0.29
L=30 1.1k 51.37± 0.14 50.70± 0.16

L3Net
1 0.3k 99.96± 0.08 99.67± 0.12

0;1;2 0.8k 99.96± 0.01 99.92± 0.01

of unit sphere, and follow Jiang et al. (2019) by moving projected digit to equator, avoiding
coordinate singularity at poles.

Here, we details the subdivision scheme of the icosahedral spherical mesh we used. Start
with an unit icosahedron, this sphere discretization progressively subdivide each face into
four equal triangles, which makes this discretization uniform and accurate. Plus, this scheme
provides a natural downsampling strategy for networks, as it denotes the path for aggregat-
ing information from higher-level neighbor nodes to lower-level center node. We adopt the
following naming convention for different mesh resolution: start with level-0(L0) mesh(i.e.,
unit icosahedron), each level above is associated with a subdivision. For level-i(Li), prop-
erties of spherical mesh are:

Ne = 30 · 4 ∗ i,Nf = 20 · 4 ∗ i,Nv = Ne −Nf + 2 (19)

in which Nf , Ne, Nv denote number of edges, faces, and vertices.

To give a direct illustration of how many nodes each level of mesh has, we list them below,

• L0 12 nodes

• L1 42 nodes

• L2 162 nodes

• L3 642 nodes

• L4 2562 nodes

• L5 10242 nodes

Network architectures We use a three-stage GNN model for this sphereMNIST, with
each stage conduct convolution on spherical mesh of a specific level. Detailed architecture
(suppose mesh levels used are Li, Lj, Lk):

Conv(1,16)Li-BN-ReLU-DownSamp-ResBlock(16,16,64)Lj-DownSamp-
ResBlock(64,64,256)Lk-AvgPool-FC(10),

We use the 4-stage model architecture for SphereModelNet-40, where 4 mesh levels are:
L5, L4, L3, L2. Detailed architecture are:

Conv(6,32)L5-BN-ReLU-DownSamp-ResBlock(32,32,128)L4-DownSamp
-ResBlock(128,128,512)L3-DownSamp-ResBlock(512,512,2048)L2-DownSamp-AvgPool-
FC(40),

where the GraphConv(feat in, feat out) in above model architectures can be either Mesh
Convolution layer or Graph Convolution layer, and “ResBlock” is a bottleneck module with
two 1× 1 convolution layers and one GraphConv layer.

Training Details For SphereMNIST experiments, we use batch size of 64, Adam optimizer,
initial learning rate of 0.01 which decays by 0.5 every 10 epochs. We totally train model for
100 epochs.

For SphereModelNet-40 experiment, we batch size of 16, Adam optimizer, initial learning
rate of 0.005 which decay by 0.7 every 25 epochs. We totally train 300 epochs.

Results on fine mesh

Tab. A.2 show the results of SphereMNIST and Sphere-ModelNet40 on fine meshes on the
sphere. Specifically, the mesh used for SphereMNIST here is of levels L4, L3, L2, and the
SphereModelNet-40 mesh of levels L5, L4, L3, L2, same as in Jiang et al. (2019).
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Table A.2: Results on SphereMNIST and SphereModelNet-40 following setup in Jiang et al. (2019)

Model
SphereMNIST

Acc
SphereModelNet-40

Acc
S2CNN (Cohen et al., 2018) 96.0 85.0

UGSCNN (Jiang et al., 2019) 99.2 90.50
GCN 95.8 87.07

ChebNet(L=4) 99.3 88.05
ChebNet(L=5) - 88.90
ChebNet(L=6) - 88.70
ChebNet(L=7) - 88.78
L3Net (1123) 99.10 90.24
L3Net (112) 98.90 89.67

C.2 Facial Expression Recognition

Landmarks setting 15 landmarks are selected from the standard 68 facial landmarks
defined in AAM (Cootes et al., 2001), and edges are connected according to prior information
of human face, e.g., nearby landmarks on the eye are connected, see Fig. 1 (left).

Dataset setup

• CK+:

The CK+ dataset (Lucey et al., 2010) is the mostly used laboratory-controlled FER dataset
(downloaded from: http://www.jeffcohn.net/resources/ ). It contains 327 video sequences
from 118 subjects with seven basic expression labels(anger, contempt, disgust, fear, happi-
ness, sadness, and surprise). Every sequence shows a shift from neutral face to the peak
expression. Following the commonly used ‘(static) image-based’ methods (Li & Deng, 2020),
we extract the one to three frames in each expression sequence that have peak expression
information in the CK+ dataset, and form a dataset with 981 image samples. Every facial
image is aligned and resized to (120, 120) with face alignment model (Bulat & Tzimiropou-
los, 2017), and then we use this model again to get facial landmarks. As we describe in Sec.
4.2, we select 15 from 68 facial landmarks and build graph on them. The input feature for
each node is an image patch centered at the landmark with size (20, 20), concatenated with
the landmark’s coordinates, so the total input feature dimension is 402.

• FER13:

FER13 dataset (Goodfellow et al., 2013) is a large-scaled, unconstrained
database collected automatically by Goole Image API (downloaded from:
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-
recognition-challenge/data). It contains 28,709 training images, 3589 validation images and
3589 test images of size (48, 48) with seven common expression labels as CK+. We align
facial images, get facial landmarks, and select nodes & build graph the same way as we do
in CK+. Input features are local image patch centered at each landmark with size (8, 8)
and landmark’s coordinates, so the total input feature dimension is 66.

Network architectures.

• CK+:

GraphConv(402,64)-BN-ReLU-GraphConv(64,128)-BN-ReLU-FC(7),

• FER13:

GraphConv(66,64)-BN-ReLU-GraphConv(64,128)-BN-ReLU-GraphConv(128,256)-BN-
ReLU-FC(7),

where GraphConv(feat in, feat out) here can be any type of graph convolution layer, in-
cluding our L3Net.

Training details.

• CK+:

We use 10-fold cross validation as Ding et al. (2017). Batch size is set as 16, learning rate
is 0.001 which decay by 0.1 if validation loss remains same for last 15 epochs. We choose
Adam optimizer and train 100 epochs for each fold validation.
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Figure A.2: Illustration of 25-point body joints and graph.

• FER13:

We report results on test set. Batch size is set as 32, learning rate is 0.0001 which decay
0.1 if validation loss remains same for last 20 epochs. We choose Adam optimizer and train
models for 150 epochs.

Runtime analysis details. In section 4.2, we report the running time of our L3Net(order
1,1,2,3), 13.02ms, and best ChebNet, 12.56ms, on CK+ dataset, which are comparable.
Here, we provide more details about this. The time we use to compare is the time of model
finishing inference on validation set with batch size of 16. For each model, we record all
validation time usages in all folds and report the average of them. The Runtime analysis is
performed on a single NVIDIA TITAN V GPU.

C.3 Skeleton-based Action Recognition

Dataset setup.

• NTU-RGB+D:

NTU-RGB+D (Shahroudy et al., 2016) is a large skeleton-based action recognition
dataset with three-dimensional coordinates given to every body joint (downloaded from:
http://rose1.ntu.edu.sg/datasets/requesterAdd.asp?DS=3 ). It comprises 60 action classes
and total 56,000 action clips. Every clip is captured by three fixed Kineticsv2 sensors in lab
environment performed by one of 40 different subjects. Three sensors are set at same height
but in different horizontal views, −45◦, 0◦, 45◦. There are 25 joints tracked, as shown in Fig.
A.2. Two experiment setting are proposed by Shahroudy et al. (2016), cross-view (X-view)
and cross-subject (X-sub). X-view consists of 37,920 clips for training and 18960 for testing,
where training clips are from sensor on 0◦, 45◦, testing clips from sensor on −45◦. X-sub
has 40,320 clips for training and 16,560 clips for testing, where training clips are from 20
subjects, testing clips are from the other 20 subjects. We test our model on both settings.

• Kinetics:

Kinetics (Kay et al., 2017) is a large and most commonly-used action recog-
nition dataset with nearly 300,000 clips for 400 classes (downloaded from:
https://deepmind.com/research/open-source/kinetics). We follow Yan et al. (2018) to
get 18-point body joints from each frame using OpenPose (Cao et al., 2017) toolkit. Input
features for each joint to the Network is (x, y, p), in which x, y are 2D coordinates of the
joint, and p is the confidence for localizing the joint. To eliminate the effect of skeleton-
based model’s inability to recognize objects in clips, we mainly focus on action classes that
requires only body movements. Thus, we conduct our experiments on Kinetics-Motion,
proposed by Yan et al. (2018). This is a small dataset that contains 30 action classes
strongly related to body motion. Note that there are severe data missing problem in
landmark coordinates in Kinetics data, so we also use our regularization scheme in this
experiment.

Network Architectures.
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• NTU-RGB+D:

We follow the architecture in Yan et al. (2018):

STGraphConv(3,64,9,s1)-STGraphConv(64,64,9,s1)-STGraphConv(64,64,9,s1)-
STGraphConv(64,64,9,s1)-STGraphConv(64,128,9,s2)-STGraphConv(128,128,9,s1)-
STGraphConv(128,128,9,s1)-STGraphConv(128,256,9,s2)-STGraphConv(256,256,9,s1)-
STGraphConv(256,256,9,s1)-STAvgPool-fc(60).

• Kinetics:

We also design a computation-efficient architecture for Kinetics-Motion with larger temporal
downsampling rate, which results in less forward time:

STGraphConv(3,32,9,s2)-STGraphConv(32,64,9,s2)-STGraphConv(64,64,9,s1)-
STGraphConv(64,64,9,s1)-STGraphConv(64,128,9,s2)-STGraphConv(128,128,5,s1)-
STGraphConv(128,128,5,s1)-STGraphConv(128,256,5,s2)-STGraphConv(256,256,3,s1)-
STGraphConv(256,256,3,s1)-STAvgPool-fc(60),

where the structure of STGraphConv(feat in, feat out, temporal kernel size, tempo-
ral stride) is:

GraphConv(feat in, feat out)-BN-ReLU-1DTemporalConv(feat out, feat out, tempo-
ral kernel size, temporal stride)-BN-ReLU.

Training Details

• NTU-RGB+D:

We use batch size of 32, initial learning rate of 0.001 which decay by 0.1 at (30, 80) epoch,
and total train 120 epochs. SGD optimizer is selected. We padding every sample temporally
with 0 to 300 frames.

• Kinetics:

We use batch size of 32, initial learning rate of 0.01 which decay by 0.1 at (40, 80) epoch, and
total train 100 epochs. SGD optimizer is selected. We padding every sample temporally
with 0 to 300 frames, and during training, we perform data augmentation by randomly
choosing 150 contiguous frames.

C.4 Details of experiment on MNIST

C.4.1 Simulated graph noise on 7× 7 MNIST.

Here we describe three types of noise in our experiments:

Gaussian noise. Given a 7× 7 image from MNIST, we sample 49 values from N (0, std2).
The std controls the strength of noise added. We conduct experiments under std =
0.1, 0.2, 0.3 as shown in Tab. 3. The amount of noise is also measured by PNSR which
is standard for image data.

Missing value noise. Given a image, we randomly sample 49 values from U(0, 1), and
select nodes with probabilities less than a threshold. This threshold is called noise level,
which controls the percentage of nodes affected. Then, we remove the pixel value at those
selected nodes. Experiments with noise level = 0.1, 0.2, 0.3 are conducted.

Graph node permutation noise. For each sample, we randomly select a permutation
center node which has exact 4 neighbors. Then, we rotate its neighbors clockwise by 90 de-
gree, e.g., top neighbor becomes right neighbor, and then we update the indices of permuted
nodes.
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Table A.3: Results on MNIST with grid size 28×28,
L3Net-pooling uses graph pooling between convolu-
tional layers.

Model bases order
#params
(w/o FC)

Acc

GCN 1 2.4k 93.30 ± 0.12

ChebNet

L=3 6.5k 93.93 ± 0.18
L=4 8.6k 94.97 ± 0.06
L=5 10.7k 95.87 ± 0.09
L=6 12.8k 96.64 ± 0.12
L=7 14.8k 96.98 ± 0.19
L=9 19.0k 97.43 ± 0.14
L=15 31.5k 97.91 ± 0.08
L=20 41.9k 97.90 ± 0.04

L3Net
1;1;2 41.0k 96.78 ± 0.08
1;1;2;3 79.2k 97.32 ± 0.10

L3Net-pooling
1;1;2 27.9k 97.11 ± 0.09
1;1;2;3 52.2k 97.54 ± 0.07

Table A.4: Results on MNIST with grid size 14×14

Model
bases
order

#params
(w/o FC)

Acc

GCN 1 2.4k 93.70 ± 0.09

ChebNet

L=3 6.5k 96.06 ± 0.16
L=4 8.6k 96.85 ± 0.11
L=5 10.7k 97.24 ± 0.28
L=6 12.8k 97.58 ± 0.10
L=7 14.9k 97.74 ± 0.07

L3Net

0;1;2 13.3k 97.17 ± 0.09
1;1;2 14.8k 97.24 ± 0.12

1;1;2 reg0.001 14.8k 97.43 ± 0.07
1;1;2;3 25.1k 97.51 ± 0.07

Table A.5: Results on MNIST with grid size 7× 7 with different levels of missing value

Model
bases
order

reg
#params
(w/o FC)

Acc(original) Acc(psnr 18.70) Acc(psnr 15.33) Acc(psnr 13.15)

GCN 1 - 2.4k 90.02± 0.24 83.44± 0.15 77.23± 0.13 71.67± 0.06

ChebNet

L=3 - 6.5k 92.85± 0.09 87.09± 0.18 82.11± 0.18 76.15± 0.26
L=4 - 8.6k 93.12± 0.1 87.09± 0.16 82.22± 0.28 75.95± 0.22
L=5 - 10.7k 93.2± 0.07 87.01± 0.14 82.04± 0.14 76.21± 0.38
L=6 - 12.7k 93.42± 0.09 87.20± 0.3 81.19± 0.29 75.24± 0.32
L=7 - 14.8k 93.45± 0.06 87.08± 0.11 81.00± 0.17 75.31± 0.34

L3Net

1;1;2 - 8.4k 93.56± 0.08 86.64± 0.16 81.14± 0.30 75.07± 0.08
1;1;2 0.5 8.4k 93.85± 0.13 87.22± 0.23 82.84± 0.11 76.48± 0.23

1;1;2;3 - 12.2k 93.67± 0.15 86.51± 0.38 80.68± 0.11 74.24± 0.36
1;1;2;3 0.5 12.2k 93.85± 0.15 87.22± 0.08 82.64± 0.31 76.08± 0.38

C.4.2 Network architecture and training details

We use the same architecture for different experiment settings:

GraphConv(1,32)-BN-ReLU-GraphConv(32,64)-BN-ReLU-FC(10),

where GraphConv can be different types of graph convolution layers. We set batch size to
100, use Adam optimizer, and set initial learning rate to 1e-3. Learning rate will drop by
10 if the least validation loss remains the same for the last 15 epochs. We set total training
epochs as 200. We use 10,000 images for training.

We also adopt graph pooling layers in the above architecture:

GraphConv(1,32)-BN-ReLU-Graph Pooling-GraphConv(32, 64)-BN-ReLU-
Graph Pooling-FC(10).

More discussion about graph pooling layer and multi-scale graph convolution is detailed in
Appendix C.5.

C.4.3 Additional results

Here, we show experiments results on 28×28, 14×14 grid, as well as 7×7 grid with missing
values. Tab. A.3 shows results on 28× 28 image grid. Our model have better performance
than other methods.

Tab. A.4 shows results on 14 × 14 image grid, where our L3Net have comparable results
with the best ChebNet (Defferrard et al., 2016) method.

We shows our results on 7 × 7 image grid with missing values in Tab. A.5. With regu-
larization, L3Net achieves the best performance in every experiment with different noise
levels.

C.5 Multi-scale graph convolution

The proposed L3Net graph convolution model (2) is compatible with graph down/up-
sampling schemes to achieve multi-scale feature extraction.

The graph down/up-sampling is usually implemented as a separate layer between graph
convolution layers. As an example, Fig. A.3 illustrates three levels of graphs produced from
an originally 14×14 image grid, denoted as G1, G2, G3, and they have 176, 45 and 9 nodes
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Figure A.3: Three levels of graphs on a 14×14 image grid. From left to right: the top level G3 (the coarsest)
to the bottom level G1 (the finest). The red square (pink circle) indicates the node x on G3 (G2) and its local
neighborhood on G2 (G1), on which the graph pooling is applied.

respectively. On G1, 10% of pixels which contain the lowest amount of pixel intensities
over the dataset are removed, and those nodes are located near the boundary of the canvas.
For each node x′i in the coarse-grained graph G2, a neighborhood consisting of nodes in
G1 is constructed, called N(x′i;G1). A pooling operator computes the feature on x′i from
those on N(x′i;G1), and the pooled feature is used as the input to the graph convolution
on G2. A similar graph pooling layer is used from G2 to G3. The graph topology and local
neighborhoods are determined by grid point locations. Using a two-layer convolution with
graph poolings in between from G1 to G3, and the other setting same as in Table A.4, L3Net
obtains 97.33± 0.15 test accuracy (basis order 1; 1; 2, with regularization 0.001).

We have also applied graph pooling layers on regular image grid on the 28×28 MNIST
dataset. The results, reported in Table A.3, show that multi-scale convolution in L3Net not
only improves the classification accuracy but also reduces the number of parameters.

Graph up-sampling layer can be used similarly. These multi-scale approaches generally apply
to graph convolution models, see, e.g., the hierarchical construction originally proposed for
locally-connected GNN (Coates & Ng, 2011; Bruna et al., 2013). There is also flexibility in
defining the graph down/up-sampling schemes, and the choice depends on application. An
example of graph sampling operator on face mesh data is given in (Ranjan et al., 2018). At
last, apart from using separate down/up-sampling layers, it is also possible to extend the
L3Net model (2) to directly implement graph down/up-sampling, which would be similar to
the convolution-with-stride (conv-t) operator in standard CNN. Specifically, between Gl and
Gl+1, the local basis filter Bk(u, u′) is defined for u′ ∈ Gl and u ∈ Gl+1, and Bk(u, u′) 6= 0
only when u′ is in a local neighborhood of u. In matrix notation, Bk is of size |Gl+1|-by-|Gl|,
and is sparse according to the graph local neighborhood relation between Gl and Gl+1.
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