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Abstract

AI model alignment is crucial due to inadvertent biases in training data and the
underspecified machine learning pipeline, where models with excellent test metrics
may not meet end-user requirements. While post-training alignment via human
feedback shows promise, these methods are often limited to generative AI settings
where humans can interpret and provide feedback on model outputs. In traditional
non-generative settings with numerical or categorical outputs, detecting misalign-
ment through single-sample outputs remains challenging, and enforcing alignment
during training requires repeating costly training processes. In this paper we con-
sider an alternative strategy. We propose interpreting model alignment through
property testing, defining an aligned model f as one belonging to a subset P of
functions that exhibit specific desired behaviors. We focus on post-processing a
pre-trained model f to better align with P using conformal risk control. Specif-
ically, we develop a general procedure for converting queries for testing a given
property P to a collection of loss functions suitable for use in a conformal risk
control algorithm. We prove a probabilistic guarantee that the resulting conformal
interval around f contains a function approximately satisfying P . We exhibit
applications of our methodology on a collection of supervised learning datasets for
(shape-constrained) properties such as monotonicity and concavity. The general
procedure is flexible and can be applied to a wide range of desired properties.
Finally, we prove that pre-trained models will always require alignment techniques
even as model sizes or training data increase, as long as the training data contains
even small biases.

1 Introduction

The emergence of large foundation models has increased the attention to the problem of alignment.
Aligned models are artificial intelligences designed to pursue goals that align with human values,
principles, and intentions (Leike et al., 2018; Ouyang et al., 2022; Hendrycks et al., 2023; Ngo
et al., 2024). Although the alignment problem is predominantly examined in the context of potential
artificial general intelligence (AGI), large language models (LLMs), and reinforcement learning (RL)
agents, it also has roots in the modern machine learning pipeline (D’Amour et al., 2022). Motivated by
this, we introduce a broader notion of alignment in this paper, extending beyond the aforementioned
generative models to include even tabular regression models.

As an example, consider a regression task where property P represents models that are monotonically
decreasing in a given feature (covariate). For example, predicting cancer patient survival should be
monotonically decreasing in cancer stage (Vallon et al., 2022, 2024). Constraining a prediction model
during training to maintain monotonicity in this feature can be viewed as a form of alignment. For a
pre-trained model f that was trained without such constraints, ensuring monotonically decreasing
predictions in this feature can be more complex. This complexity arises particularly in non-generative

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



settings where the user cannot update f or obtain any outputs other than point predictions f(X) for a
given input X .

In this work, we propose an approach to aligning a pre-trained model f that is motivated by property
testing (Ron, 2008; Goldreich, 2017) and conformal risk control (Angelopoulos et al., 2024). Property
testing aims to design efficient algorithms for determining membership to the set P of functions with
a given property, that require fewer resources than learning algorithms for P (Ron, 2008). This is
particularly relevant for modern deep learning, where a user may need to determine if a pre-trained
model f belongs to P without the resources to train a model of comparable size.

Property testing algorithms use local queries to determine, with high probability, whether a function
has a given global property or is far from having it. We map such queries for a property P to a set of
loss functions, which we then use in a conformal risk control procedure (Angelopoulos et al., 2024)
to establish a notion of alignment for P . We prove that this procedure yields a conformal interval
around f containing a function close to P .

We demonstrate our methodology on real-world datasets for the properties of monotonicity and
concavity. Motivated by the potential for systematic under- or over-estimation bias in f , we provide a
straightforward extension of Angelopoulos et al. (2024) to obtain asymmetric conformal intervals
with multi-dimensional parameters. While we examine both monotonicity and concavity constraints,
the majority of our focus is on monotonicity, as these constraints have been shown to promote crucial
aspects of alignment to human values, such as fairness and adherence to social norms (Wang and
Gupta, 2020).

While our methodology provides a way to align pre-trained models, one may question whether such
techniques will remain necessary as AI capabilities advance. Given the outstanding capabilities of
modern AI models with substantially large numbers of parameters and training data, one may argue
that the alignment problem may naturally disappear as such advances continue (Kaplan et al., 2020).
However, another contribution of this paper is to refute this argument in a stylized setting, building on
recent advances in the theory of linearized neural networks (Mei and Montanari; Misiakiewicz and
Montanari, 2023). Specifically, we show that increasing the size of the training data or the number of
parameters in a random feature model (a theoretically tractable neural network proxy where hidden
layer weights are randomly initialized and fixed (Rahimi and Recht, 2007)) cannot help it satisfy a
property P , if the pre-training data has biased labels. Our simulations show that the result holds even
if only a small fraction of the training labels are impacted by the bias.

Summarizing our main contributions, we: (1) introduce an alignment perspective based on property
testing, (2) use conformal risk control to post-process predictions of pre-trained models for better
alignment, and (3) demonstrate that increasing training data and parameters in a random feature
model does not eliminate the need for alignment. We discuss related work in Section 6, particularly
our connections to Yadkori et al. (2024), who use conformal risk control to address large language
model hallucinations (Ji et al., 2023).

2 Preliminaries

In this section we provide key definitions drawn from property testing as well as a condensed overview
to conformal prediction and conformal risk control. We provide a short introduction to propery testing
in Appendix A and an extensive introduction to the field can be found in Goldreich (2017).

2.1 Properties and Property Testing for Set-Valued Functions

Our perspective on alignment in this work is motivated by the field of property testing (Goldreich,
2017; Ron, 2008). Property testing studies algorithms that, by making a small number of local queries
to a large object (such as a function or a graph), can determine whether the object has a certain
property or is significantly far from having it.

Classic examples include linearity testing of Boolean functions (Blum et al., 1993), testing whether a
function is a low-degree polynomial (Kaufman and Ron, 2006; Bhattacharyya et al., 2009), and testing
k-juntas (Blais, 2009). These algorithms generally operate by randomly sampling and querying the
object, leveraging local information to infer global properties.
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In this work, we focus on set-valued functions, which are functions that map elements of a domain
X to subsets of a codomain Y , i.e., F : X → 2Y . While the standard definitions of property testing
are technically sufficient for our purposes—since we can consider set-valued functions as functions
with range 2Y—we introduce specialized definitions to maintain clarity and to facilitate the transition
between discussing Y and 2Y .
Definition 1 (Satisfying and Accommodating a Property). Let property P denote a specific subset of
all functions that map X to Y . A function f : X → Y satisfies the property P if f ∈ P .

A set-valued function F : X → 2Y accommodates a property P if there exists a function g ∈ P such
that g(x) ∈ F (x) for all x ∈ X .

Intuitively, F accommodates P if it contains at least one function g satisfying P within its possible
outputs.

We extend the notion of ε-farness from a property (as defined in Appendix A) to set-valued functions.
For set-valued functions, we measure the distance based on how often the outputs of any function
g ∈ P fall within the sets provided by F .
Definition 2 (ε-Faraway). For a set-valued function F : X → 2Y , a distribution D over X , ε > 0,
and a property P , we say F is ε-Faraway from P with respect to D if δP,D(F ) > ε, where

δP,D(F )
def
= inf

g∈P
δD(F, g) and δD(F, g)

def
= Pr

X∼D
[g(X) ̸∈ F (X)].

Note. Throughout this work, we assume that D is the empirical distribution of a fixed and finite
calibration dataset, and thus has finite support. While this assumption is not strictly necessary, most
property testing results are over finite domains. Property testing over functions with Euclidean
domains is a in general a difficult problem, though there have been notable recent successes (Fleming
and Yoshida, 2020; Arora et al., 2023)..

With these definitions in place, we can define testers for set-valued functions. We focus on one-sided
error testers, which are algorithms that take in a set-valued function F , a distribution D, and a
distance parameter ε and output either Accept or Reject. These algorithms never reject a function
that accommodates the property. The standard definition of one-sided error testers (provided in
Appendix A) extends naturally to set-valued functions by replacing the notion of satisfying a property
with accommodating it.
Definition 3 (One-Sided Error Tester for Set-Valued Functions). A one-sided error tester for a
property P in the context of set-valued functions is a probabilistic oracle machine M that, given a
distance parameter ε > 0, oracle access to a set-valued function F : X → 2Y , and oracle access to
samples from a fixed but unknown distribution D over X , satisfies:

1. If F accommodates P , then Pr[MF,D(ε) = Accept] = 1.

2. If F is ε-Faraway from P with respect to D, then Pr[MF,D(ε) = Accept] ≤ 1
3 .

Here, MF,D(ε) denotes the execution of the tester M when given oracle access to the function F ,
the distribution D, and the parameter ε.

Note that M itself is an abstract algorithm; MF,D is the instantiation of this algorithm with specific
oracle access to F and D.

In many property testing algorithms, the parameter ε is used only to determine the number of iterations
or samples required, not the core logic of the tester. This leads to the concept of proximity-oblivious
testers (POTs), where the basic testing procedure is independent of ε. The general definition of POTs
(given in Appendix A) also extends naturally to set-valued functions.
Definition 4 (Proximity-Oblivious Tester for Set-Valued Functions). A proximity-oblivious tester for
a property P in the context of set-valued functions is a probabilistic oracle machine T that satisfies:

1. If F accommodates P , then Pr[T F,D = Accept] = 1

2. There exists a non-decreasing function ρ : (0, 1] → (0, 1] (called the detection probability)
such that if F is ε-Faraway from P ,

Pr[T F,D = Reject] ≥ ρ(ε).
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Here, T F,D denotes the execution of the tester T when given oracle access to the function F and the
distribution D.

To obtain a one-sided error tester with parameter ε, we can make Θ
(

1
ρ(ε)

)
independent calls to

the POT T and accept if and only if all the calls accept (Goldreich and Ron, 2008). We denote by
T F,D(X) the output when applied to a specific sample X ∼ D, and note that with abuse of notation
we will late consider D to be the empirical distribution of calibration dataset {(Xi, Yi)}ni=1 in which
case we write T F,D(Xi, Yi) for the output on this specific sample from D.

Example. Consider functions f : Rd → R, and let P denote the property that f is constant in the
k-th dimension. This property has has connections to fairness among other applications Caton and
Haas (2024). Assume D is the empirical distribution of the inputs X ∈ R for some fixed dataset.

Restrict to set-valued functions F that output compact and connected intervals of the form [a, b] ⊆ R
for a, b ∈ R. The candidate POT T F,D for whether such a set-valued function F accommodates P is
then as follows: sample X,X ′ ∼ D, If F (X) ∩ F (X ′) ̸= ∅, then Accept; otherwise, Reject. We
prove that this satisfies Definition 4 in Appendix B.1.

2.2 Conformal prediction and conformal risk control

Our main tool for achieving alignment from this property perspective is built on conformal prediction
and conformal risk control (Vovk et al., 2005; Bates et al., 2021; Angelopoulos et al., 2024). Con-
formal prediction post-processes the outputs of any model f to create prediction intervals C(·) that
ensure certain statistical coverage guarantees. Using a calibration dataset {(Xi, Yi)}ni=1 consisting of
ground truth input-output pairs, conformal prediction constructs intervals around the predictions of f
such that Pr[Yn+1 /∈ C(Xn+1)] ≤ α for a user-specified error rate α on a test point (Xn+1, Yn+1).

This guarantee is notably distribution-free and holds for any function f . The probability is over the
randomness in all n+ 1 points; both the calibration set and the test point. The construction of C(·)
depends on both the model f and the draw of the calibration data.

The conformal risk control framework extends conformal prediction to notions of error beyond
miscoverage (Angelopoulos et al., 2024). Consider a paramater set Λ ⊂ R≥0 that is a bounded subset
of the nonnegative reals. Given an exchangeable collection of non-increasing, random loss functions
Li : Λ → (−∞, B], i = 1, . . . , n + 1, conformal risk control uses the first n loss functions and
calibration data {(Xi, Yi)}ni=1 to determine λ̂ such that

E[Ln+1(λ̂)] ≤ α.

Consider loss functions of the form Li(λ) = ℓ(Cλ(Xi), Yi), where Cλ(Xi) is a set of outputs
constructed by f and the calibration data. Larger values of λ generate more conservative prediction
sets Cλ(·). Let the risk on the calibration data for a given λ be R̂n(λ) = 1

n

∑n
i=1 Li(λ). For a

user-specified risk rate α, we let

λ̂ = inf

{
λ :

n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α

}
.

This choice of λ̂ guarantees the desired risk control E[Ln+1(λ̂)] ≤ α (Angelopoulos et al., 2024).

3 Conformal property alignment

Our main methodology is to use conformal risk control to create prediction intervals that align with
specific properties P . Our approach allows us to post-process the outputs of a pre-trained model f to
ensure that within the resulting conformal band, with a given probability, there exists predictions that
adhere to desired properties such as monotonicity.

3.1 Multi-lambda conformal risk control

We make particular use of the conformal risk control algorithm to allow for a k-dimensional vector
of tuning parameters λ = (λ1, λ2, . . . , λk), where larger values of λ ∈ Λ ⊂ Rk yield more
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conservative outputs, where Λ ⊂ Rk
≥0 is a bounded subset of Rk

≥0. This works by mapping λ to a
scalar and then applying standard conformal risk control. We emphasize that this result is not new
and follows essentially directly from Angelopoulos et al. (2024). The construction of the output set
Fλ(X) ⊆ Y depends on the specific application and provides flexibility in how the function f(X)
and the parameters λ are utilized.
Definition 5 (Construction of Fλ(X)). Let f : X → Y be a given function. For each λ ∈ Rk, define
the set-valued function Fλ : X → 2Y such that, for each X ∈ X , Fλ(X) is a set of predictions
for X constructed from f and λ. The specific construction of Fλ(X) should satisfy the following
properties:

1. When λ = 0, we have F0(X) = {f(X)}.

2. For any λ,λ′ ∈ Rk, if λ ≤ λ′ (i.e., λi ≤ λ′
i ∀i = 1, 2, . . . , k), then Fλ(X) ⊆ Fλ′(X).

This definition ensures that increasing the parameters λ leads to larger (more conservative) prediction
sets, and that when all parameters are zero, the prediction set reduces to the point prediction given by
f(X).

Following the original scalar λ setting, we assess Fλ using non-increasing random loss functions
Li = ℓ(Fλ(Xi), Yi) ∈ (−∞, B] for B < ∞. In particular, we consider an exchangeable collection
of non-increasing random functions Li : Λ → (−∞, B], i = 1, ..., n + 1, where Λ ⊂ Rk

≥0 is a
bounded subset of Rk

≥0, with bound λmax
j in each dimension j ∈ [k].

As in Angelopoulos et al. (2024), we use the first n functions to determine λ̂ so that the risk on the
(n+ 1)-th function is controlled, specifically so that E[Ln+1(λ̂)] ≤ α.

We apply a similar algorithm. Given α ∈ (∞, B) and letting R̂n(λ) =
L1(λ)+···+Ln(λ)

n , define

Λmin = min
{
λ :

n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α

}
to be the set of minimal elements (Boyd and Vandenberghe, 2004) of Λ that satisfy the condition
n

n+1 R̂n(λ) +
B

n+1 ≤ α. Let g : Λ → R be a strictly increasing function such that Li(λ) is non-
increasing with respect to the level sets defined by g(λ). Then select λ̂ ∈ Λmin to be a minimizer of
g over Λmin.

We then deploy the resulting set-valued function Fλ̂ on the test point Xn+1. For this choice of λ̂, we
have a risk control guarantee that mimics the result of Angelopoulos et al. (2024), specifically:
Proposition 1. Assume that Li(λ) is non-increasing with respect to the partial ordering of Λ
inherited from Rk. Additionally, assume that Li(λ) is non-increasing with respect to g(λ) for some
strictly increasing function g : Λ → R. Also assume Li is right-continuous in each dimension,
Li(λ

max) ≤ α, and supλ Li(λ) ≤ B < ∞ almost surely. Then

E[Ln+1(λ̂)] ≤ α.

The proof is similar to the proof of the guarantee for the conformal risk control algorithm in
Angelopoulos et al. (2024) and is deferred to Appendix C.

To provide intuition on g(λ), we note that for our primary use case we will take g(λ) =
∑k

i=1 λi.
Clearly this function is strictly increasing in λ and intuitively it is reasonable to consider loss functions
Li that are non-increasing as the sum of the components of λ increases.

3.2 Conformal property alignment from proximity oblivious testers

We now demonstrate how to construct a conformal risk control problem using proximity-oblivious
testers (POTs) for a given property P . Suppose we are given a pre-trained model f : X → Y . We
aim to extend the point predictions of f to prediction sets, where the size or conservativeness of the
set is parameterized by a parameter λ. Let Fλ : X → 2Y denote the set-valued function that outputs,
for each X ∈ X , the set Fλ(X) ⊆ Y determined by f , X , and λ.
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Let T F,D be a proximity-oblivious tester for whether a set-valued function F accommodates the
property P as given y Definition 4. We denote the random output of T F,D evaluated at (X,Y ) ∼ D
by T F,D(X,Y ).

We now define a loss function, generated from T F,D, which will be crucial in formulating our
conformal risk control problem.
Definition 6 (Loss Function Generated from a POT). Let T F,D be a proximity-oblivious tester for a
property P . We define the loss function Li as:

Li =

{
0, if T F,D(Xi, Yi) = Accept,
1, otherwise,

where (Xi, Yi) are samples from the distribution D.

Example. Consider the POT for the property P of a function f : R → R being constant, as
mentioned in Section 2.1. Assume we have access to a calibration set {(Xi, Yi)}ni=1 of size n. We
use a two-dimensional parameter λ = (λ−, λ+), and define the set-valued function:

Fλ(X) = [f(X)− λ−, f(X) + λ+],

for each X ∈ R. This creates prediction intervals around the point prediction f(X), with widths
controlled by λ− and λ+.

We then apply the loss function generated by T Fλ,D as given in Definition 6, and use conformal risk
control to tune λ such that the expected loss on the (n+ 1)th point falls below a given target level α.

Note that in this case the tester and loss function does not depend on the Yi. This is because the
property of f being constant does not depend on the Yi from the calibration set and here D is only
used to obtain samples of the Xi. This is not the case in general, however, and properties can be
defined with respect to the whole sample (Xi, Yi) ∼ D. For example, we could consider the property
P that f does not over-predict, that is, for (X,Y ) ∼ D we have f(X) ≤ Y . Now we state our main
theorem.
Theorem 1. Let T be a proximity-oblivious tester for a property P with detection probability function
ρ(·). Assume access to a calibration dataset {(Xi, Yi)}ni=1 sampled independently from a distribution
D. Suppose we run conformal risk control on this calibration dataset using risk parameter α and
loss functions Li for property P generated from T (as in Definition 6). Then, for any ε such that
ρ(ε) > α, the probability that Fλ̂ is ε-Faraway from P satisfies:

Pr
(X1,Y1),...,(Xn,Yn)

(
Fλ̂ is ε-Faraway from P

)
≤ α

ρ(ε)
.

Proof. Let E denote the event that Fλ̂ is ε-Faraway from the property P . Our goal is to bound the
probability Pr(X1,Y1),...,(Xn,Yn)[E ].

The conformal risk control procedure ensures that the expected loss on a new sample (Xn+1, Yn+1)
satisfies:

E(X1,Y1),...,(Xn,Yn),(Xn+1,Yn+1)[Ln+1] ≤ α.

Now, we can write

E[Ln+1] = Pr(E) · E[Ln+1 | E ] + Pr(Ec) · E[Ln+1 | Ec].

When E occurs, Fλ̂ is ε-Faraway from P . By the properties of the proximity-oblivious tester T , we
have:

Pr
(X,Y )∼D

[
T Fλ̂,D(X,Y ) = Reject | E

]
≥ ρ(ε).

Thus, the conditional expected loss satisfies:

E[Ln+1 | E ] = Pr
[
T Fλ̂,D(Xn+1, Yn+1) = Reject | E

]
≥ ρ(ε).

And when since Pr(Ec) · E[Ln+1 | Ec] is non-negative because Ln+1 is non-negative, we obtain

E[Ln+1] ≥ Pr(E) · ρ(ε).
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Combining this result with our guarantee from the conformal risk control procedure,
α ≥ E[Ln+1] ≥ Pr(E) · ρ(ε).

This implies:
Pr(E) ≤ α

ρ(ε)
.

Therefore, the probability that Fλ̂ is ε-Faraway from P satisfies:

Pr
(X1,Y1),...,(Xn,Yn)

(
Fλ̂ is ε-Faraway from P

)
≤ α

ρ(ε)
.

Amplifying Detection Probability via Independent Calls. When the detection probability ρ(ε)
of the proximity-oblivious tester T is less than or close to the risk parameter α, the bound provided
by Theorem 1 may not be tight or meaningful (since α/ρ(ε) could be greater than or equal to 1).
To address this issue, we can amplify the detection probability by performing multiple independent
executions of T and combining their results appropriately.

To increase the detection probability beyond α, we execute the proximity-oblivious tester T inde-
pendently k times on independent samples and define a new tester T ′ that rejects if any of the k
executions reject (i.e., by applying a logical OR to the outcomes). This amplification technique yields
an adjusted detection probability

ρ′(ε) = 1− (1− ρ(ε))k,

representing the probability that at least one of the k independent executions rejects when the function
is ε-Faraway from P .

In this approach, the calibration dataset needs to be partitioned into n′ =
⌊
n
k

⌋
disjoint batches, each

containing k samples. Each batch provides the independent samples required for the k executions of
T per calibration point. As a result, the effective sample size available for calibrartion becomes n′

due to this batching of samples.

4 Examples

4.1 Monotonicity

Monotonic behavior is important in various applications. We focus on monotonicity in a single
feature, where we expect that f(X) should have monotonically increasing or decreasing behavior
with respect to a certain feature xk when other features x−k are held fixed. While there is a long-
standing literature on using monotonic constraints for regularization (Brunk et al., 1973; Sill and
Abu-Mostafa, 1996; You et al., 2017; Bonakdarpour et al., 2018) and on integrating such monotonic
shape constraints into prediction models (Groeneboom and Jongbloed, 2014; Cano et al., 2018; Runje
and Shankaranarayana, 2023), our aim is not to view monotonicity as a possible means to improve
test accuracy, but rather as a user-desired property for safe or fair deployment of a given model. For
example, Wang and Gupta (2020) highlight the importance of monotonicity in models for criminal
sentencing, wages, and medical triage.

Consider a user given a pre-trained model f that was not trained with monotonic constraints. The
user, however, wishes for the sake of safe or fair deployment to make predictions in a way that is
as monotonic as possible. In particular, let P be the property that f is monotonically decreasing in
dimension k. To apply our methodology we consider the proximity oblivious tester T for P as given
in Algorithm 1.

We prove in Appendix B.2 that Algorithm 1 is indeed a POT for the property P of being monotonically
decreasing in a given dimension. Then let M be the one-sided error tester for P resulting from
Θ(1/ρ(ε)) calls to T . Now assume we have access to a calibration dataset {(Xi, Yi)}ni=1 sampled
from D of size n ∈ Ω(1/ρ(ε)). We will use this calibration dataset to determine the setting of
λ = (λ+, λ−) via conformal risk control where the loss function is generated as in Definition 6.
Here the set-valued function will be constructed as Fλ(X) = [f(X)− λ−, f(X) + λ+]. Then by
Theorem 1 if the tester has sufficient detection probability ρ(ε) > α we expect to obtain a set-valued
function Fλ̂ at most ε from P . We now investigate this empirically.
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Algorithm 1 POT T for property P of monotonically decreasing in dimension k

1: Sample X1 ∼ D. Let X1 = (x1, x
−k)

2: Sample x2 from the marginal distribution of D in dimension k. Set X2 = (x2, x
−k)

3: if x1 < x2 and maxF (X1) < minF (X2) then
4: return Reject
5: else if x2 < x1 and maxF (X2) < minF (X1) then
6: return Reject
7: end if
8: return Accept

Setup. We align for monotonicity on various UCI ML repository datasets (Dua and Graff, 2023)
with a 70-15-15 train-calibrate-test split, averaged over 30 random splits. We use XGBoost regression
models (Chen and Guestrin, 2016). For each dataset, we select a feature for which we desire the
model to be monotonic, not with the intention of improving test-set accuracy, but from the perspective
of a user who desires this property.

We train two models per dataset: one unconstrained, trained on the training set, and another con-
strained to be monotonic, trained on both the training and calibration sets. The conformal risk control
procedure is applied to the unconstrained model using the calibration data. The constrained model
can be considered best possible from the user’s perspective, using all available pre-test data and
satisfying the monotonicity property P during training.

To compare performance with respect to the training metric of accuracy, we convert conformal
intervals into point predictions by taking k-quantiles of the constrained feature, linearly interpolating
between adding λ+ at the lowest quantile to subtracting λ− at the highest quantile for monotonically
decreasing, or vice versa for monotonically increasing.

Results. Table 4.1 presents results on the test set for the Combined Cycle Power Plant dataset
(Tfekci and Kaya, 2014). In practice, Exhaust-vacuum is known to negatively influence turbine
efficiency (Tfekci and Kaya, 2014). The conformal procedure outperforms the constrained model
in terms of MSE for all α, which is a fortuitous but unexpected outcome. The constrained model
should be seen as an oracle benchmark in the sense that the model was given to the user already
trained to satisfy the desired property. The results on this dataset and The risk metric closely matches
the theoretical guarantee from conformal risk control and achieves optimal performance of 0 for the
constrained model. Additional datasets and results are detailed in the appendix.

Table 1: Power Plant, n = 9568. Monotonically decreasing on Exhaust Vacuum. λmax = (10, 10).

α λ Metric Unconstrained Adjusted Constrained

λ+ = 0.51(±0.24) MSE 10.19(±0.46) 10.47(±0.46) 16.21(±0.45)

0.1 λ− = 0.76(±0.24) Risk 0.75(±0.09) 0.10(±0.001) 0.00(±0.00)

λ+ = 1.09(±0.51) MSE 10.19(±0.46) 11.42(±0.44) 16.21(±0.45)

0.05 λ− = 1.61(±0.50) Risk 0.75(±0.09) 0.05(±0.001) 0.00(±0.00)

λ+ = 2.39(±0.82) MSE 10.19(±0.46) 14.46(±0.48) 16.21(±0.45)

0.01 λ− = 3.33(±0.79) Risk 0.75(±0.09) 0.01(±0.001) 0.00(±0.00)

4.2 Concavity

Concavity and convexity are crucial behaviors in many applications. In this context, we focus on
concavity in a single feature. A common example where users might expect concave behavior is in
recommendation or preference prediction models. According to economic theory, the utility function
with respect to the quantity of an item is often quasi-concave, reflecting the principle of diminishing
marginal utility (Mas-Colell et al., 1995). Jenkins et al. (2021) propose a novel loss function to
account for this expected concavity, which aligns the model with the concavity property P during
training. Here we again consider aligning a pre-trained model, not trained to satisfy P , using a
proximity oblivious tester T for P as described in Algorithm 2.
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Figure 1: Univariate partial dependence plot of unconstrained model. Risk control band for α = 0.05.
Dashed line exemplifying Theorem 1 demonstrating existence of monotonically decreasing function
falling within the conformal band on 0.975 > 1− α fraction of the domain.

Algorithm 2 POT T for property P of concavity in dimension k

1: Sample Xmid ∼ D
2: Sample δleft, δright from empirical differences in feature k
3: Set Xleft by decreasing feature k of Xmid by δleft
4: Set Xright by increasing feature k of Xmid by δright
5: Query F (Xmid), F (Xleft), and F (Xright)

6: Compute α =
Xright[k]−Xmid[k]

Xright[k]−Xleft[k]
7: if minF (Xmid) > αmaxF (Xleft) + (1− α)maxF (Xright) then
8: return Reject
9: end if

10: return Accept

Again we can use a calibration dataset to determine the setting of λ = (λ+, λ−) via conformal risk
control where the loss function is generated as in Definition 6. Here again the set-valued function
will be constructed as Fλ(X) = [f(X)− λ−, f(X) + λ+]. We demonstrate running conformal risk
control with this loss function on a real-world dataset in Appendix D.2.

5 A stylized examination of alignment persistence in AI models

Consider data generated as:
y = g(X) + h(X) + ε ,

where ε is mean-zero noise with variance τ2 independent of X . Here, h(X) is biased noise we
want to ignore, aiming to learn only g(X). Consider the case in which experts expect data to follow
g(X) + unbiased noise, but biased noise h(X) can obscure this.

One potential reason for the presence of biased noise in data could be due to a measurement error of
the outcome that is correlated with select features, leading to an incorrectly calculated outcome. A
biased measurement error could occur if there is incomplete data and the presence of the incomplete
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data is correlated with select features in an unexpected, systematic way. Our goal is to understand
how this bias affects model behavior when trying to learn g(X) alone.

Given n i.i.d. samples {(Xi, Yi)}ni=1 from the above model, we denote this dataset by Dn. We use a
random feature model:

fRF(X;a, {wj}j∈[N ]) =
1√
N

∑
j∈[N ]

ajσ(⟨X,wj⟩) ,

where a ∈ RN are learned weights, and {wj}j∈[N ] are fixed random weights. The squared loss is
minimized by ridge regression:

âλ = arg min
a∈RN

∑
i∈[n]

(Yi − fRF(Xi))
2
+ λ∥a∥22 .

Users expect a model to exhibit a property P , satisfied by g(X) but not necessarily by g(X) + h(X).
We can constrain training to ensure P . Let CP = {a | a ∈ RN and fRF(X;a) satisfies P} , yielding
a constrained model: âλ,P = argmina∈CP

∑
i∈[n] (Yi − fRF(Xi))

2
+ λ∥a∥22.

Assuming g and h are polynomials with degg < degh, and given specific conditions on data size
and model parameters, we consider two settings: (i) Classic: ddegg +δ < N < ddegh −δ, and (ii)
Underspecified: N > ddegh +δ for a small δ > 0.

In Appendix E, we utilize results from Misiakiewicz and Montanari (2023) to derive insights into
the impact of model complexity and data size on adherence to P . In particular, we show that
under certain assumptions, including small noise bias and robustness of property P , the constrained
and unconstrained models have zero distance in the classic setting: âλ,P = âλ. However, in the
underspecified setting, the constrained and unconstrained models will differ, resulting in a non-zero
distance: âλ,P ̸= âλ. This result implies that in the presence of noise bias, the overparameterized
models (i.e., underspecified setting) fail to satisfy the property P , and this cannot be remedied as the
data size increases.

6 Related work

Our paper draws from a broad range of areas, hence we refer the reader to textbooks and surveys in
alignment (Everitt et al., 2018; Hendrycks et al., 2022; Ji et al., 2024; Hendrycks, 2024), conformal
prediction (Angelopoulos and Bates, 2022), property testing (Ron, 2008; Goldreich, 2017), and
linearized neural networks (Misiakiewicz and Montanari, 2023).

RLHF (Christiano et al., 2017) has been notably effective in aligning LLMs with human values and
intentions, as demonstrated by (Ouyang et al., 2022). Our work considers attempts at alignment that
generalzies to models without human-interpretable outputs, which has connections to the scalable
oversight problem (Irving et al., 2018; Christiano et al., 2018; Wu et al., 2021). Goal misgeneralization
(Langosco et al., 2022; Shah et al., 2022) has potential connections to the underspecified pipeline
(D’Amour et al., 2022) considered in this paper in the sense that models with equivalent performance
according to the training metric may differ in some other user-desired property during deployment.
One of the main methods of assurance (Batarseh et al., 2021), which is concerned with assessing the
alignment of pre-trained AI systems, is safety evaluations (Perez et al., 2022; Shevlane et al., 2023)
meant to assess risk during deployment, which also has connections to our approach.

The work of Yadkori et al. (2024) closely aligns with ours in both methodology and theme, utilizing
conformal risk control to reduce LLM hallucinations (Ji et al., 2023). We discuss connections to this
work in Appendix F.

7 Discussion

We introduce a method to align pre-trained models with desired user properties using conformal risk
control. By post-processing outputs using property dependent loss functions, we provide probabilistic
guarantees that conformal intervals contain functions close to the desired set. This allows for
alignment without retraining, effective in both generative and non-generative contexts. Future work
should extend these techniques to more properties, explore sample complexity and adaptive querying,
and potentially apply them to policy functions in MDP settings for RL agent safety guarantees.
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A Property Testing

In this section, we provide a brief introduction to property testing, drawing upon standard definitions
and concepts from the field. Property testing is a framework for designing algorithms that quickly
decide whether a large, complex object (such as a function or a graph) possesses a certain property or
is far from having that property. The goal is to make this decision by inspecting only a small, random
portion of the object, thereby significantly reducing the computational effort required compared to
examining the entire object.

Our definitions and explanations are based on Goldreich (2017), which offers a comprehensive
introduction to property testing. We focus on the basic notions essential for understanding property
testing as used in this paper, including the concepts of distance between objects, testers, and proximity-
oblivious testers.

A.1 Distance and ε-Farness

A central concept in property testing is the notion of distance between objects, which allows us to
formalize what it means for an object to be far from satisfying a property. For functions, this distance
is typically measured with respect to a distribution over the input domain.
Definition 7 (ε-far). Let f : X → Y be a function, D a distribution over X , ε > 0, and P a property
(a set of functions). We say that f is ε-far from P with respect to D if the distance δP,D(f) > ε,
where

δP,D(f) = inf
g∈P

δD(f, g), and δD(f, g) = Pr
X∼D

[f(X) ̸= g(X)].

In other words, a function f is ε-far from P if any function g ∈ P agrees with f on at most a 1− ε
fraction of inputs sampled from D. This notion of distance allows us to quantify how much f differs
from satisfying the property P .

While many property testing algorithms assume D to be the uniform distribution over X , in some
settings, particularly when dealing with arbitrary data distributions, it is natural to consider general
distributions. This leads to the distribution-free property testing model Goldreich (2017); Halevy and
Kushilevitz (2007), where algorithms are designed to work with any underlying distribution D.

A.2 Testers and Error Types

Property testing algorithms, or testers, aim to distinguish between objects that have a certain property
and those that are ε-far from it, by querying the object at a small number of locations. Testers can be
categorized based on their error probabilities:

• One-sided error testers: These testers always accept objects that have the property (zero
false negatives), but only reject objects that do not satisfy the property with some probability
that may be below 1.

• Two-sided error testers: These testers may err in both directions, accepting objects that are
ε-far from the property or rejecting objects that have the property, but with bounded error
probabilities.

Technically such testers are referred to as oracle machines. An oracle machine is a theoretical
computational model, specifically a Turing machine that has access to an oracle. The oracle is a
black box that can compute certain functions or provide certain information that the machine cannot
compute on its own. In our context, the oracle machine M can query the function F at any point
x ∈ X to receive F (x) and can obtain samples from the distribution D. It does not have explicit
knowledge of the internal structure of F or D but can interact with them through these oracle queries.

For our purposes in this work we will only need to discuss one-sided error testers, which we can
formally define as follows:
Definition 8 (One-Sided Error Tester). A one-sided error tester for a property P is a probabilistic
oracle machine M that, given a distance parameter ε > 0, oracle access to a function f : X → Y ,
and oracle access to samples from a distribution D over X , satisfies:

1. If f ∈ P , then Pr[Mf,D(ε) = Accept] = 1.
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2. If f is ε-far from P with respect to D, then Pr[Mf,D(ε) = Accept] ≤ 1
3 .

The choice of error probability 1
3 is arbitrary and can be reduced to any δ ∈ (0, 1

2 ) by repeating the
tester multiple times and taking the majority outcome.

A.3 Proximity-Oblivious Testers

In many property testing algorithms, the proximity parameter ε is used only to determine the number
of iterations or samples needed, rather than affecting the core logic of the tester. This observation
leads to the concept of proximity-oblivious testers (POTs), where the basic testing procedure is
independent of ε.

Definition 9 (Proximity-Oblivious Tester). A proximity-oblivious tester for a property P is a
probabilistic oracle machine T that operates without knowledge of the proximity parameter ε and
satisfies:

1. If f ∈ P , then Pr[T f,D = Accept] = 1

2. If f /∈ P , then Pr[T f,D = Reject] ≥ ρ(δP,D(f)), where ρ : (0, 1] → (0, 1] is a non-
decreasing function called the detection probability.

Note that the probability of rejecting a function increases with its distance from P , as quantified by
the detection probability function ρ.

To convert a POT into a standard tester with error probability 1
3 , we can repeat the basic testing

procedure a sufficient number of times, determined by ρ(ε), and accept or reject based on the
aggregate outcomes. Making O

(
1

ρ(ε)

)
independent calls to T and accepting if all calls accept yields

a tester that satisfies the standard definition with the desired error probability Goldreich and Ron
(2008).

A.4 Adaptivity and Non-Adaptivity

Testers can also be classified based on whether they are adaptive or non-adaptive in their querying
strategy:

• Non-adaptive testers: The queries made by the tester are determined in advance, based
solely on the random coins and explicit inputs, and do not depend on the answers to previous
queries.

• Adaptive testers: The tester’s queries may depend on the answers to previous queries,
allowing for potentially more powerful testing strategies.

Non-adaptive testers are often simpler and easier to analyze, and many property testing algorithms
are designed to be non-adaptive. In the context of POTs, non-adaptivity is particularly advantageous
because the tester’s behavior remains consistent regardless of the function being tested. In this work
we focus only on non-adaptive testers, but exploring the use of adaptive testers is an exciting future
direction.

B Proofs for Proximity Oblivious Testers

We provide proofs that each of the testing algorithms we use are indeed Proximity Oblivious Testers
according to Definition 4. However we note that these properties are well studied in the f : X → Y
case and thus we provide these proofs in the set-valued f : X → 2Y case mainly for completeness.

B.1 Proximity Oblivious Tester for constant property

For the sake of convenience we repeat the setting from the Example in Section 2.1.

Consider functions f : Rd → R, and let P denote the property that f is constant in the k-th dimension.
Assume D is the empirical distribution of the inputs X ∈ Rd for some fixed dataset.
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Restrict to set-valued functions F that output compact and connected intervals of the form [a, b] ⊆ R
for a, b ∈ R. The candidate POT T F,D for whether such a set-valued function F accommodates P is
then as follows: sample X,X ′ ∼ D, If F (X) ∩ F (X ′) ̸= ∅, then Accept; otherwise, Reject. We
claim that this is indeed a POT.

Proof. Assume that F accommodates P . This means there exists a function g ∈ P such that for
all X ∈ X , g(X) ∈ F (X). Since g is constant in the k-th dimension, there exists a function
h : Rd−1 → R such that for all xk ∈ R and x−k ∈ Rd−1, g(xk, x

−k) = h(x−k). And in the
algorithm we sample X = (xk, x

−k) from D and we independently sample x′
k from the marginal

distribution of xk and set X ′ = (x′
k, x

−k). Then since x−k is the same for both X and X ′, and g is
constant in xk, we have:

g(X) = h(x−k) = g(X ′).

Because g(X) ∈ F (X) and g(X ′) ∈ F (X ′), it follows that:

h(x−k) ∈ F (X) ∩ F (X ′).

Therefore, F (X) ∩ F (X ′) ̸= ∅, and the algorithm returns Accept.

Now suppose that F is ε-far from P . This means that for any function g ∈ P ,

δD(F, g) = Pr
X∼D

[g(X) /∈ F (X)] > ε.

For each g ∈ P , define the set of points where g does not belong to F (X):

Sg = {X ∈ X : g(X) /∈ F (X)}.

Although the sets Sg may vary with g, for each g ∈ P , we have D(Sg) > ε. Fix an arbitrary function
g ∈ P . For a fixed x−k ∈ Rd−1, define:

pg(x
−k) = Pr

xk∼D
xk|x−k

[g(xk, x
−k) /∈ F (xk, x

−k)],

where Dxk|x−k is the conditional distribution of xk given x−k.

Since δD(F, g) = Ex−k [pg(x
−k)] > ε, it follows that the average error probability over x−k is

greater than ε.

When we sample X = (xk, x
−k) and X ′ = (x′

k, x
−k) with the same x−k and independent xk and

x′
k, the probability that both g(X) /∈ F (X) and g(X ′) /∈ F (X ′) is:

Pr[g(X) /∈ F (X) and g(X ′) /∈ F (X ′) | x−k] = pg(x
−k)2.

Taking expectation over x−k, we get:

Pr[g(X) /∈ F (X) and g(X ′) /∈ F (X ′)] = Ex−k [pg(x
−k)2] ≥

(
Ex−k [pg(x

−k)]
)2

> ε2.

Under the event where both g(X) /∈ F (X) and g(X ′) /∈ F (X ′), we have g(X) = h(x−k) /∈ F (X)
and g(X ′) = h(x−k) /∈ F (X ′). Therefore, h(x−k) /∈ F (X) ∩ F (X ′).

Since g is constant in xk, it assigns the same value h(x−k) to both X and X ′. No other function
g′ ∈ P can assign a different value at x−k, because all functions in P must be constant in the
k-th dimension. Thus, there is no value y such that y ∈ F (X) ∩ F (X ′) that could correspond to
g′(X) = y and g′ ∈ P . Hence, F (X) ∩ F (X ′) = ∅, and the algorithm returns Reject.

Thus the algorithm Rejects with probability at least ε2 and therefore the algorithm has detection
probability ρ(ε) = ε2 and satisfies Definition 4 for being a Proximity Oblivious Tester.

B.2 Proximity Oblivious Tester for monotonic property

We prove that Algorithm 1 is indeed a POT for the property P of a function being monotonically
decreasing in a given dimension k.
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Proof. Assume that F accommodates P . Then there exists a function g ∈ P such that for all X ∈ X ,

g(X) ∈ F (X).

Since g is monotonically decreasing in xk, for any fixed x−k ∈ Rd−1 and any xk, x
′
k ∈ R with

xk ≤ x′
k,

g(xk, x
−k) ≥ g(x′

k, x
−k).

In the algorithm, we sample X1 = (xk
1 , x

−k) and X2 = (xk
2 , x

−k), where x−k is fixed and xk
1 , x

k
2

are independent samples from the marginal distribution of xk. First consider the case that xk
1 < xk

2 .
Since g is monotonically decreasing, we have g(X1) ≥ g(X2). Because g(Xi) ∈ F (Xi), it follows
that

maxF (X1) ≥ g(X1) ≥ g(X2) ≥ minF (X2).

Therefore, maxF (X1) ≥ minF (X2), and the condition maxF (X1) < minF (X2) in step 3 is not
satisfied. Now in the second case we have xk

2 < xk
1 . Similarly, g(X2) ≥ g(X1). Thus,

maxF (X2) ≥ g(X2) ≥ g(X1) ≥ minF (X1),

implying maxF (X2) ≥ minF (X1), so the condition in step 4 is not satisfied.

In both cases, the algorithm does not Reject and therefore Accepts. Thus, if F accommodates P , the
algorithm always Accepts.

Now suppose F is ε-far from P . This means that for any g ∈ P ,

δD(F, g) = Pr
X∼D

[g(X) /∈ F (X)] > ε.

For each g ∈ P , define the set

Sg = {X ∈ X : g(X) /∈ F (X)}.
While Sg may vary with g, we have D(Sg) > ε for each g ∈ P .

For a fixed x−k ∈ Rd−1, define

pg(x
−k) = Pr

xk∼D
xk|x−k

[g(xk, x
−k) /∈ F (xk, x

−k)],

where Dxk|x−k is the conditional distribution of xk given x−k. Then,

Ex−k [pg(x
−k)] = Pr

X∼D
[g(X) /∈ F (X)] > ε.

When we sample X1 and X2 with the same x−k and independent xk values, the probability that both
g(X1) /∈ F (X1) and g(X2) /∈ F (X2) is

Pr[g(X1) /∈ F (X1) and g(X2) /∈ F (X2) | x−k] = pg(x
−k)2.

Taking expectation over x−k, we get

Pr[g(Xi) /∈ F (Xi) for i = 1, 2] = Ex−k [pg(x
−k)2] ≥

(
Ex−k [pg(x

−k)]
)2

> ε2,

Under the event where both g(X1) /∈ F (X1) and g(X2) /∈ F (X2), consider the following cases. In
the first case, xk

1 < xk
2 .Since g is monotonically decreasing, g(X1) ≥ g(X2). However, g(X1) /∈

F (X1) and g(X2) /∈ F (X2). To prevent any g′ ∈ P from satisfying g′(Xi) ∈ F (Xi), it must
be that maxF (X1) < minF (X2). If maxF (X1) ≥ minF (X2), a function g′ could exist with
g′(Xi) ∈ F (Xi) and satisfying monotonicity. In the second case, xk

2 < xk
1 , similar reasoning leads

to maxF (X2) < minF (X1). Therefore, when both g(Xi) /∈ F (Xi) and the appropriate ordering
of xk holds, the algorithm Rejects.

Since the probability of both g(Xi) /∈ F (Xi) occurring is at least ε2, and the conditions for rejection
are met under these events, the algorithm Rejects with probability at least ε2.

Thus, Algorithm 1 satisfies the conditions of a Proximity-Oblivious Tester for the property P of
monotonically decreasing in a given dimension k.
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B.3 Proximity Oblivious Tester for concave property

Proof: Assume that F accommodates P ; that is, there exists a function g ∈ P such that for all X ∈ X ,
g(X) ∈ F (X). Since g is concave in the k-th dimension, for any Xleft, Xmid, Xright constructed as in
the algorithm, the following inequality holds:

g(Xmid) ≤ αg(Xleft) + (1− α)g(Xright),

where

α =
Xright[k]−Xmid[k]

Xright[k]−Xleft[k]
.

Because g(Xi) ∈ F (Xi) for i ∈ {left,mid, right}, we have:
minF (Xmid) ≤ g(Xmid),

g(Xleft) ≤ maxF (Xleft),

g(Xright) ≤ maxF (Xright).

Substituting these into the concavity inequality, we obtain:
minF (Xmid) ≤ αmaxF (Xleft) + (1− α)maxF (Xright).

Therefore, the condition in line 7 of the algorithm is not satisfied (i.e., the inequality for rejection
does not hold), and the algorithm returns Accept.

Now suppose that F is ε-far from P . This means that for any g ∈ P ,
δD(F, g) = Pr

X∼D
[g(X) /∈ F (X)] > ε.

For each g ∈ P , define the set:
Sg = {X ∈ X : g(X) /∈ F (X)}.

While Sg may vary with g, we have D(Sg) > ε for each g ∈ P . The probability that g(Xmid) /∈
F (Xmid) is greater than ε, and similarly, the probabilities that g(Xleft) /∈ F (Xleft) and g(Xright) /∈
F (Xright) are each greater than ε. Thus, by independence of the samples, the joint probability that all
three events occur is at least ε3:

Pr
[
g(Xi) /∈ F (Xi) for all i ∈ {left,mid, right}

]
≥ ε3.

Under the event where g(Xi) /∈ F (Xi) for all i ∈ {left,mid, right}, we will show that no concave
function g′ ∈ P can satisfy g′(Xi) ∈ F (Xi) for all i.

Assume for contradiction that there exists a concave function g′ ∈ P such that
g′(Xi) ∈ F (Xi) for all i ∈ {left,mid, right}.

Since g′ is concave in the k-th dimension, it must satisfy:
g′(Xmid) ≤ αg′(Xleft) + (1− α)g′(Xright).

Using the bounds from F (Xi):
g′(Xmid) ≥ minF (Xmid),

g′(Xleft) ≤ maxF (Xleft),

g′(Xright) ≤ maxF (Xright).

Substituting these into the concavity inequality:
minF (Xmid) ≤ αmaxF (Xleft) + (1− α)maxF (Xright).

However, the algorithm’s condition in line 7 specifies that:
minF (Xmid) > αmaxF (Xleft) + (1− α)maxF (Xright).

This is a contradiction. Therefore, our assumption is false; no concave function g′ ∈ P exists that
satisfies g′(Xi) ∈ F (Xi) for all i. Since under this event (which occurs with probability at least
ε3) no concave function g′ ∈ P can fit within F (Xi) at the points Xleft, Xmid, Xright, the algorithm
correctly Rejects.

Therefore, the algorithm Rejects with probability at least ε3, so the algorithm satisfies the conditions
of a Proximity-Oblivious Tester for the property P of concavity in the k-th dimension.
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C Proof of multi-lambda conformal risk control

We emphasize that this claim follows directly from the original proof and result of conformal risk
control (Angelopoulos et al., 2024) and we present it here mainly for completeness given our use of it
in this multi-dimensional case.

Proof of Proposition 1. Our proof closely mimics the original proof of boudned risk found in
Angelopoulos et al. (2024).

Proof. Let

R̂n+1(λ) =
(L1(λ) + . . .+ Ln+1(λ))

(n+ 1)
and

Λmin = Min
{
λ ∈ Λ : R̂n+1(λ) ≤ α

}
λ̂
′
∈ argmin

λ∈Λmin

g(λ)

The fact that infλ Li(λ) = Li(λ
max) ≤ α and the fact that g is striclty increasing implies λ̂

′
is

well-defined almost surely. Since Ln+1(λ) ≤ B, we have

R̂n+1(λ) =
n

n+ 1
R̂n(λ) +

Ln+1(λ)

n+ 1
≤ n

n+ 1
R̂n(λ) +

B

n+ 1
.

So if λ is such that
n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α,

Then we know R̂n+1(λ) ≤ α. So when there exists λ ∈ Λ such that the the above inequality holds,
this implies that either λ̂

′
≤ λ̂ or λ̂ ∈ Λmin, which in either case implies g(λ̂

′
) ≤ g(λ̂). And if

n
n+1 R̂n(λ)+

B
n+1 > α for all λ ∈ Λ, then we must have λ̂ = λmax ≥ λ̂

′
. So we have g(λ̂

′
) ≤ g(λ̂)

almost surely. And since Li(λ) is non-increasing with respect to g(λ) we have

E
[
Ln+1(λ̂)

]
≤ E

[
Ln+1(λ̂

′
)
]
.

Let E = {L1, . . . , Ln+1}, where Ln+1(λ) | E ∼ Uniform(E) by exchangeability, and λ̂
′

is
constant conditional on E. Then with the right-continuity of Li in each dimension we have

E
[
Ln+1(λ̂

′
) | E

]
=

1

n+ 1

n+1∑
i=1

Li(λ̂
′
i) ≤ α.

Then applying the law of total expectation and our inequality from above we have

E
[
Ln+1(λ̂)

]
≤ α,

completing the proof.

D Additional Examples

D.1 Additional monotonicity examples

We present more examples of the conformal alignment procedure for monotonicity from Section 4.1.
We keep everything the same in terms of 70-15-15 train-calibrate-test split, averaging over 10 runs,
and using XGBoost regression models. All experiments were run on an Apple M1 MacBook Pro.
We train one constrained model on the train and calibration sets and one unconstrained model on
the training set. We use default parameters without hyperparameter tuning. We use the same POT T
to obtain loss functions for applying conformal risk control on the unconstrained model using the
calibration set.

20



Table 2: Abalone, n = 4177. Monotonically increasing on Shell_weight. λmax = (5, 5).

α λ Metric Unconstrained Adjusted Constrained

λ+ = 0.17(±0.10) MSE 5.41(±0.18) 5.46(±0.19) 5.45(±0.17)

0.1 λ− = 0.20(±0.10) Risk 0.58(±0.08) 0.09(±0.002) 0.00(±0.00)

λ+ = 0.43(±0.24) MSE 5.41(±0.18) 5.63(±0.22) 5.45(±0.17)

0.05 λ− = 0.54(±0.21) Risk 0.58(±0.08) 0.04(±0.001) 0.00(±0.00)

λ+ = 1.03(±0.52) MSE 5.41(±0.18) 6.67(±0.37) 5.45(±0.17)

0.01 λ− = 1.51(±0.53) Risk 0.58(±0.08) 0.01(±0.001) 0.00(±0.00)

Table 3: Concrete, n = 1030. Monotonically increasing on Cement. λmax = (2, 2).

α λ Metric Unconstrained Adjusted Constrained

λ+ = 0.02(±0.02) MSE 24.15(±2.11) 24.18(±2.11) 22.44(±2.13)

0.1 λ− = 0.05(±0.04) Risk 0.47(±0.07) 0.07(±0.01) 0.00(±0.00)

λ+ = 0.16(±0.11) MSE 24.15(±2.11) 24.37(±2.13) 22.44(±2.13)

0.05 λ− = 0.40(±0.17) Risk 0.47(±0.07) 0.04(±0.001) 0.00(±0.00)

λ+ = 1.48(±0.28) MSE 24.15(±2.11) 25.45(±2.11) 22.44(±2.13)

0.01 λ− = 1.60(±0.25) Risk 0.47(±0.07) 0.004(±0.002) 0.00(±0.00)

D.2 Concavity results

We report the results of applying the conformal alignment procedure for the property of concacity
using Algorithm 2 as our POT. Implementation details are the same as for the monotonicity examples
in Section 4.1 besides this change of POT and our procedure for choosing a specific point in order to
measure performance on the accuracy metric, which here we take to be MAE. In this case our choice
of the point prediction uses a scaling adjustment factor based on the position relative to the feature
value at the maximum prediction, scaling from adding 0 to the predictions at the minimum feature
value to adding λ to the prediction at the feature value of the maximum prediction, then adding 0
again at the maximum feature value. We re-emphasize, though, that the actual point prediction is not
our main concern but rather the risk, which we can see matches the anticipated values well.

Table 4: Seoul Bike Sharing, n = 8760. Concave on temperature. λmax = (100, 100)

α λ Metric Unconstrained Conformal

λ+ = 15.93(±19.63) MAE 94.09(±2.85) 99.58(±4.03)

0.1 λ− = 24.67(±20.78) Risk 0.54(±0.02) 0.11(±0.03)

λ+ = 25.40(±31.38) MAE 94.09(±2.85) 106.44(±7.67)

0.05 λ− = 38.67(±32.64) Risk 0.54(±0.02) 0.06(±0.02)

λ+ = 56.93(±38.30) MAE 94.09(±2.85) 122.41(±11.41)

0.01 λ− = 71.00(±36.94) Risk 0.54(±0.02) 0.02(±0.02)
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E Details for a stylized examination of alignment persistence in AI models

We begin by describing the stylized model setting that can help us better understand the impact of
overparameterization and data quality on a model’s ability to satisfy a property.

Notation. We consider feature vectors X to be samples from the uniform distribution on the sphere
of radius

√
d in Rd, that is denoted by Sd−1(

√
d). For a function f , defined on a domain of the

random variable X , we define its L2 norm by ∥f∥2L2 = EX [f(X)2] where the expectation is with
respect to the randomness in X . The notation on,P(1) for a positive integer means a quantity that
goes to zero as n goes to infinity.

E.1 Noisy data setting

Data model. Consider a model where the data is generated according to the following equation,

y = g(X) + h(X) + ε ,

where ε has mean 0 and variance τ2 and is independent of X . Assume that h(X) represents ‘bad’
data that is undesired and we do not want to learn. That is, we only want to learn g(X), but there is a
presence of biased noise, h(X), in the data generating model.

Relating this to an alignment setting, domain experts expect the data to be generated according
to g(X) + unbiased noise, such that g(X) exhibits some desired property P/ However, the data
is generated according to g(X) + biased noise, potentially obscuring the desired behavior. One
potential reason for the presence of biased noise in data could be due to a measurement error of the
outcome that is correlated with select features, leading to an incorrectly calculated outcome. A biased
measurement error could occur if there is incomplete data and the presence of the incomplete data
is correlated with select features in an unexpected, systematic way (e.g., it could hypothetically be
correlated to the type of hospital or location at which a patient is treated).

The goal of these analyses is then to examine the impact of the noise bias term on a model’s ability
to describe a behavior that is upheld by g(X), but not necessarily g(X) + h(X), across model
complexity. For example, g(X) might be monotonically increasing in the first coordinate of x, but
the summation of g(X) + h(X) is not always. We will then try to draw conclusions about the
distance between two kinds of models: one that is trained regularly without additional constraints,
and another where we add a constraint to the training that forces the model to replicate the behavior of
g(X), despite h(X). In the stylized model, when referring to the ‘distance’ between two models, we
consider it to be zero if their learned parameters are the same, and non-zero if their learned parameters
are different, when trained on the same data.

Learning method. We will assume we have access to a data set of n iid samples {(Xi, Yi)}ni=1
obtained from the above data generating model, i.e., Yi = g(Xi) + h(Xi) + εi. We denote this data
set by Dn.

The function class we use to fit the data is the random feature model, which can be thought of as
a two-layer neural network, with N hidden nodes, with the weights of the first layer set randomly,
while the second layer weights are learned. This means the function class can be written as:

fRF(X;a, {wj}j∈[N ]) =
1√
N

∑
j∈[N ]

ajσ(⟨X,wj⟩) , (1)

where a ∈ RN denotes the second layer weights and σ(·) : R → R is a non-linear activation function.
The random weights {wj}j∈[N ] are such that each wj is an iid sample from a fixed distribution. For
brevity, we drop the reference to a and wj’s and use fRF(X) or fRF(X;a).

For the stylized model analysis, we consider a random feature model, because this function class has
been studied in recent theory of deep learning models, and has shown some of the specific properties
of modern overparameterized deep learning models such as concepts of benign overfitting and double
descent Mei and Montanari; Misiakiewicz and Montanari (2023). We can thereby use this recent
literature as a theoretical foundation to explain the potential impact of model complexity on model’s
ability to satisfy a property in large train set sizes.
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Interestingly, the squared loss function for this problem is convex and we can minimize it by ridge
regression. Mathematically, this means for any regularization parameter, λ, we will search for a
vector of real numbers âλ ∈ RN such that,

âλ = arg min
a∈RN

∑
i∈[n]

(Yi − fRF(Xi))
2
+ λ∥a∥22 . (2)

E.2 RF theory

Assume a certain property, denoted by P such that the function g(X) satisfies P . However, assume
that h(X) is such that g(X) + h(X) does not satisfy P .

Assume there is a way of constraining the training of fRF(X) to satisfy the P . More formally, assume
CP ⊂ RN is the set of all coefficients a such that fRF(X;a) satisfies P , i.e.,

CP = {a | a ∈ RN and fRF(X;a) satisfies P} .

Then we can consider the following constrained version of the model:

âλ,P = arg min
a∈CP

∑
i∈[n]

(Yi − fRF(Xi))
2
+ λ∥a∥22 . (3)

Now assume that the functions g and h are polynomials such that degg < degh. Further assume
that n > ddegh +δ, where δ is some small positive constant (e.g., δ = 0.1) and that d is sufficiently
large. Also assume that the activation function σ upholds the following genericity conditions
(as stated and assumed in Theorem 3 in Section 4.2 of Misiakiewicz and Montanari (2023)): 1)
|σ(x)| ≤ c0 exp(c1|x|) for constants c0, c1 > 0; 2) for any k ≥ 0, σ has a non-zero Hermite
coefficient µk(σ) := EG{σ(G)Hek(G)} ≠ 0 (where G ∼ N (0, 1) and Hek is the k-th Hermite
polynomial, with the standard normalization ⟨Hej ,Hek⟩L2(N (0,1)) = k!1{j=k}).

To analyze the impact of model complexity on a model’s adherence to P , we consider two settings
for the stylized model:

• Classic: ddegg +δ < N < ddegh −δ .

• Underspecified: N > ddegh +δ .

To formalize our results, we will in part rely on Theorem 3 in Section 4.2 of Misiakiewicz and
Montanari (2023). This theorem illustrates the roles that the number of hidden nodes, N , and the
number of data points, n, play in determining the test error that can be achieved by a random feature
model when approximating a function. Given the assumptions made in their work, in the setting
where N ≪ n, the number of hidden nodes, N , will limit the test error, while if n ≪ N , the number
of data points, n, will limit the test error Misiakiewicz and Montanari (2023). Building on this
intuition, we first state an informal implication of this theorem Misiakiewicz and Montanari (2023)
applied to our stylized model: under the same assumptions made in their work, for a sufficiently large
d, in the classic setting, there exists a range of regularization parameters [0, λ∗] such that for all λ
in that range, fRF(X; âλ) will learn a polynomial of at least degg, but strictly less than degh. But
in the underspecified setting, fRF(X; âλ) learns both parts g(X) and h(X), for all λ in a different
range of regularization parameters [0, λ∗], meaning it learns the noise bias. This means, in a large
data domain, the behavior of the classic and underspecified setting is different.

In order to formalize this intuition for the underspecified setting, we need to state an assumption on
the degree of violation of property B around the function g + h.

Assumption 1 (Property Unsatisfied in a Neighborhood). There exists a positive constant R such that,
for all a′ with ∥(g+ h)− fRF(·;a′)∥L2 ≤ R, the function fRF(X,a′) does not satisfy the property P .

Theorem 2 (Non-vanishing Distance in Underspecified Setting). Assume N > ddegh +δ, n >
ddegh +δ , max(N/n, n/N) ≥ dδ for a constant δ > 0, Assumption 1 holds, σ upholds the genericity
conditions stated above, and d is sufficiently large. Then, in the underspecified setting, there exists a
constant λ∗, such that for any λ ∈ [0, λ∗] the following holds:

âλ,P ̸= âλ . (4)
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Proof. Using Theorem 3 of Misiakiewicz and Montanari (2023), we have that

∥(g + h)− fRF(·; âλ)∥2L2 = od,P(1) · (∥g + h∥2L2+η + τ2).

for all η > 0. With d sufficiently large, the square root of the quantity on the right hand side will be
less than R, which combined with Assumption 1, means fRF(·; âλ) does not satisfy P , and therefore,
âλ /∈ CP .

Under two additional assumptions, we can further state a result showing that in the classic setting, for
a given range of regularization parameters, we will be able to learn the property P . At a high level,
these assumptions are that 1) the overall impact of h is small, for example, when it only impacts a
small portion of the data; and 2) the property P is preserved in a small neighborhood of g among the
function class learned in the classic setting. Formalizing the assumptions and stating the result:
Assumption 2 (Small Noise Bias). Assume there is a small constant ϵh such that

∥h∥L2 ≤ ϵh .

Assumption 3 (Property Robustness in Function Class). For any fixed N , there exists a positive
constant RN such that, for all a′ with ∥g − fRF(·;a′)∥L2 ≤ RN , the function fRF(X,a′) satisfies
the property P .

Theorem 3 (Zero Distance in Classic Setting). Assume ddegg +δ < N < ddegh −δ, n > ddegh +δ,
n/N ≥ dδ for a constant δ > 0, Assumptions 2-3 hold, σ upholds the genericity conditions, d is
sufficiently large, and RN > 2ϵh. Then, in the classic setting, there exists a constant λ∗, such that
for any λ ∈ [0, λ∗], the following holds:

âλ,P = âλ . (5)

Proof. Using the triangle inequality and Theorem 3 of Misiakiewicz and Montanari (2023) again, we
have that

∥fRF(·; âλ)− g∥2L2 ≤ 2(∥fRF(·; âλ)− g − h∥2L2 + ∥h∥2L2)

≤ 4∥h∥2L2

≤ 4ϵ2h .

Taking the square root, the right hand side of the last term is less than RN which combined with
Assumption 3 means fRF(·; âλ) satisfies property P .

Remark 1. Note that the constant RN will converge to zero as N grows, meaning the assumption
RN > 2ϵh will break down when N is large. For example, in the underspecified setting, this
assumption breaks down and hence the distance does not vanish.

E.3 Synthetic validation under a relaxed assumption on the noise bias, and conformal
correction

In this secton, we first numerically validate the above theoretical results, in a setting that noise bias
only impacts a small fraction of the pre-training data. Next, we apply our proposed procedure of
alignment through conformal risk control. We take the desired property P to be monotonicity and
use the same procedure as on the real-world datasets in Section 4.1.

We consider g(X) = ⟨X,β⟩ with β a constant in Rd with β1 > 0 and ∥β∥2 = 1. Then let
h(X) = min(M,αZpx

4
1) where Zp is a Bernoulli random variable with a success probability p, that

is sampled independently for each data point, and α and M are positive constants. This function is
aimed to model a biased noise that is capped by magnitude M and only applies to a fraction p of the
population. This is to mimic characteristics of a real dataset where only a portion of the data might
have the bias (i.e., ‘bad’ data). This is therefore capturing a more realistic case of the stylized model
setting, where the measurement error may only occur for a small subset of the data.

Using a large train set size, we fit the data generated according to the outcome model above using the
random feature model with λ tuned via cross-validation, assuming the ReLU activation function, i.e.,
σ(x) = max(0, x), and wj is iid N (0, 1). We then assess how model complexity affects whether
the predicted function is monotone in x1 by looking at the univariate partial dependence plot of the
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predicted function versus the (counterfactual) unbiased outcome, g(X), for the first coordinate x1.
We vary model complexity by N , the number of hidden nodes in the model.

Applying this synthetic simulation for specific parameters, Figure 2 shows that when training a
relatively simple model (N = 5) on the generated data, the model describes a monotonically
increasing relationship. From this we conclude that if we had constrained the model to uphold
monotonicity in x1, it would not have changed the final model’s parameters. Hence, the distance
between the constrained and unconstrained model would be zero and we require no conformal
correction. In contrast, as seen in Figure 3, a more complex model (N = 5000) predicts a non-
monotone relationship, and therefore, if we had constrained the model to uphold monotonicity in x1,
it would have changed the final model’s parameters, such that the distance between the constrained
and unconstrained model would be non-zero and we do require a conformal correction to post-process
and align this model.

The synthetic simulation seems to validate that with a seemingly large training dataset, increasing
model complexity, on the one hand, can enable high performance, but can also make ML models more
sensitive to small noise bias in the data, which can subsequently lead to model behavior inconsistent
with requirements by the end-user.

Figure 2: Random Feature model (N=5).

F Connection to Mitigating LLM Hallucinations

Although it is not the main focus of this paper, we show in this section how our general methodology
connects to the work of Yadkori et al. (2024). They examine a potentially random LLM f : X → Y
and assume access to a confidence score function g : X → R. They use an abstention function
a : Λ×X → {0, 1} that decides whether the model should abstain from answering where aλ(X) = 1
if g(X) < λ and aλ(X) = 0 if g(X) ≥ λ . The match function m : X ×Y ×Y → {0, 1} is used to
determine if a response Y ′ is semantically equivalent to Y , indicating hallucination if not.

Yadkori et al. (2024) use conformal risk control to find an optimal λ̂ such that the pair (aλ̂, f)
hallucinates at a rate less than α. The loss function they use is ℓ : X × Y × Λ → R such that ℓ
punishes failure to abstain when the response does not match the label, that is
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Figure 3: Random Feature model (N=5000).

ℓ(X,Y ;λ) = (1− aλ(X))(1−m(X; f(X), Y )). (6)

In this case we do not change the outputs of the function f itself, instead we use conformal risk
control to change the outputs of a. Consider the property P to be that (a, f) does not hallucinate. A
tester for P is then simply to query (a, f) on some input X and Reject if f hallucinates or Accept
otherwise. Now when g(X) < λ, we have Cλ(X) = {f(X),Abstain} meaning that (a, f) can avoid
hallucinating, so the tester will Accept.

Yadkori et al. (2024) use a separate conformal procedures for setting λ and a parameter β with which
they define m(X;Y ′, Y ) = I(s(X;Y ′, Y ) ≥ β), where the similarity function s : X × Y × Y → R
is assumed to be given. We can use our multi-lambda conformal risk control with λ = (λa, λm)
to set these parameters simultaneously using a single calibration set {(Xi, Yi)}ni=1 of ground truth
query-response pairs sampled from the true data distribution D. Let

ℓ(X,Y ;λ) = (1− aλa(X))(1− I(s(X; f(X), Y ) ≥ 1− λm))

Then we can take g(λ) = c1λa + c2λm for c1, c2 ≥ 0 and choose λ by our multi-lambda conformal
risk control preocedure. As required, this loss function is non-increasing with respect to Λ and g(λ).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the contributions of proposing a
model alignment approach via conformal risk control and property testing, with applications
demonstrated on real-world datasets. The claims are supported by theoretical results and
experimental validation. See Section 3 and 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper mentions the assumptions made for the theoretical results, such as
the nature of the data distribution and the properties of the models. The discussion section
also reflects on the limitations regarding the types of properties and models to which the
methodology can be applied. See Section 3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The theoretical results are supported by complete proofs provided in both
the main text and the appendix. Assumptions are clearly stated along with theorems. See
Section 3 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setup, including data splits, model parameters, and the
procedure for applying conformal risk control, is described in detail. This information is
sufficient to reproduce the main experimental results. See Section 4 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides links to the UCI ML repository for the datasets used,
and the code used for experiments will be made available upon publication. Sufficient
instructions are included for reproducing the experiments. See Section 4 and Appendix B.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper includes detailed information about data splits, model training,
hyperparameters, and the selection process, allowing readers to understand and reproduce
the results. See Section 4 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The paper reports mean squared errors and risks, and the experiments are
averaged over multiple random splits, providing sufficient information on variability and
significance suitable for our context. See Section 4 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the use of XGBoost models and mentions typical execution
times and resources used for the experiments. See Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to ethical guidelines by ensuring transparency, repro-
ducibility, and careful consideration of societal impacts, especially in the context of model
alignment and fairness.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The discussion includes potential positive impacts of improved model align-
ment on fairness and transparency, as well as the challenges and limitations that need to be
addressed. See Section 1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve high-risk data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: The paper uses publicly available datasets from the UCI ML repository, which
are properly credited and cited. See Section 4 and Appendix B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new datasets or models.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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