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ABSTRACT

While generative models have made significant advancements in recent years, they
also raise concerns such as privacy breaches and biases. Machine unlearning has
emerged as a viable solution, aiming to remove specific training data, e.g., con-
taining private information and bias, from models. In this paper, we study the ma-
chine unlearning problem in Image-to-Image (I2I) generative models. Previous
studies mainly treat it as a single objective optimization problem, offering a soli-
tary solution, thereby neglecting the varied user expectations towards the trade-off
between complete unlearning and model utility. To address this issue, we propose
a controllable unlearning framework that uses a control coefficient ε to control
the trade-off. We reformulate the I2I generative model unlearning problem into
a ε-constrained optimization problem and solve it with a gradient-based method
to find optimal solutions for unlearning boundaries. These boundaries define the
valid range for the control coefficient. Within this range, every yielded solution is
theoretically guaranteed with Pareto optimality. We also analyze the convergence
rate of our framework under various control functions. Extensive experiments
on two benchmark datasets across three mainstream I2I models demonstrate the
effectiveness of our controllable unlearning framework.

1 INTRODUCTION

Generative models have recently made significant progress in fields such as image recognition (Ho
et al., 2020; Dhariwal & Nichol, 2021) and natural language processing (OpenAI, 2023; Touvron
et al., 2023), capturing significant academic interest due to their boundless generative potential. Typ-
ically trained on vast datasets from the Internet, generative models inevitably assimilate latent biases
and expose private information (Schwarz et al., 2021; Yang et al., 2025). Existing studies (Kuppa
et al., 2021; Tirumala et al., 2022; Carlini et al., 2023; Xu et al., 2024) have revealed that genera-
tive models have a strong tendency to recall specific instances encountered during training, raising
concerns that the models might output biases and leak private information when put into practical
situations. Machine unlearning (Nguyen et al., 2022; Feng et al., 2024) presents a viable solution to
address this issue. It aims to eliminate the knowledge learned from specific training data (forget set)
while preserving the knowledge learned from the remaining data (retain set).

Implementing unlearning for generative models serves dual objectives, i.e., fulfilling privacy re-
quirements and enhancing model reliability. On the one hand, legislation such as the General Data
Protection Regulation (Voigt & Von dem Bussche, 2017) grants individuals the right to be forgot-
ten. Consequently, service providers must unlearn specific private information from the model in
response to an individual’s request. On the other hand, the data available on the Internet is rife with
biases and inaccuracies, which compromises model performance when used for training. By proac-
tively unlearning the biased and inaccurate data, the service providers can improve the liability of
their models.
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Figure 1: An overview of controllable unlearning. On the left, the first and second rows represent the
forget set and the retain set, respectively. We first present the effect of unlearning in I2I generative
models, followed by a collection of controllable solutions, where ε is the control coefficient. On the
right, we demonstrate that for each ε, our solution is guaranteed with the Pareto optimality.

In this paper, we focus on the unlearning problem in Image-to-Image (I2I) generative models (Yang
et al., 2023), where unlearning is defined by the model’s incapacity to reconstruct the full image
from a partially cropped one (Li et al., 2024a), as shown in Figure 1. Previous study (Li et al.,
2024a) frames machine unlearning in generative models as a single-objective optimization problem,
with the loss defined as a combination of performance on both the forget and retain sets. However,
this approach faces three main challenges: i) First and foremost, this approach offers a fixed result,
ignoring the real-world need for flexible trade-offs between model utility and unlearning complete-
ness aligned with varying user expectations. Regrettably, this challenge remains overlooked in the
majority of current research on unlearning. ii) This approach relies wholly on fine-tuning with
manual terminating conditions, lacking a theoretical guarantee for convergence. iii) This approach
integrates two optimization objectives into a single loss function, which compromises unlearning
efficiency due to the competition or conflict between different objectives.

To address these challenges, we propose a controllable unlearning approach that provides a set
of Pareto optimal solutions to cater to varied user expectations. Users can select a solution based
on the degree of unlearning completeness through a simple control coefficient ε. Specifically, we
reframe machine unlearning of I2I generative models into a bi-objective optimization problem (Kim
& De Weck, 2005), i.e., unlearning the forget set (1st objective, unlearning completeness) while
preserving the retain set (2nd objective, model utility). Due to legislation requirements, the first
objective prioritizes the second objective, meaning that minimizing the negative impact on the retain
set only arises once the unlearning objective is sufficiently optimized. Therefore, we reformulate the
bi-objective optimization problem into a ε-constrained optimization problem, where the unlearning
objective is treated as a constraint (primary to satisfy) and ε is the control coefficient. Utilizing
gradient-based methods to solve this ε-constrained optimization, we can obtain two Pareto optimal
solutions for the boundaries of unlearning with theoretical guarantee, which can be used to deter-
mine the valid range of values for ε. Subsequently, we select the value of ε within its valid range
and relax the constraints on the unlearning objective by increasing ε. As a result, we obtain a set of
solutions that dynamically fulfill user’s varied expectations regarding the trade-off between unlearn-
ing completeness and model utility. Finally, to enhance the efficiency of unlearning, we analyze the
convergence rates of our unlearning framework under various settings of the control function which
is utilized to govern the direction of parameter updates. The main contributions of this paper are
summarized as follows:

• We focus on I2I generative models, and propose a controllable unlearning approach that balances
unlearning completeness and model utility, providing a set of solutions to fulfill varied user ex-
pectations. To the best of our knowledge, we are the first to study controllable unlearning.

• We reformulate the machine unlearning of generative models as a ε-constrained optimization prob-
lem with unlearning the forget set as the constraint, guaranteeing optimal theoretical solutions for
the boundaries of unlearning. By progressively relaxing the unlearning constraint, we obtain the
Pareto set and plot the corresponding Pareto front.

• We utilize gradient-based methods to solve the ε-constrained optimization problem. To enhance
the efficiency of unlearning, we analyze our framework’s performance across different settings of
the control function and validate with multiple combinations.
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• We conduct extensive experiments to evaluate our proposed method over diverse I2I generative
models. The results from two large datasets demonstrate that the Pareto optimal solutions yielded
by our method significantly outperform baseline methods. Additionally, the solution set achieves
controllable unlearning to fulfill varied expectations regarding the trade-off between unlearning
completeness and model utility.

2 RELATED WORK

2.1 I2I GENERATIVE MODELS

Many computer vision tasks can be formulated as I2I generation processes, e.g., style transfer (Zhu
et al., 2017), image extension (Chang et al., 2022), restoration (Teterwak et al., 2019), and image
synthesis (Yu et al., 2020). There are mainly three architectures for I2I generative models, i.e., Auto-
Encoders (AEs) (Alain & Bengio, 2014), Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014), and diffusion models (Ho et al., 2020). AEs mainly aim to reduce the mean squared
error between generated and ground truth images but often produce lower-quality outputs (Doso-
vitskiy et al., 2021; Esser et al., 2021). GANs, through adversarial training, significantly improve
generation quality, despite their unstable training (Arjovsky et al., 2017; Gulrajani et al., 2017; Brock
et al., 2019). Diffusion models, which use a diffusion-then-denoising approach, aim for stable train-
ing and high-quality generation by minimizing the distributional distance between generated images
and ground truth images (Ho et al., 2020; Song & Ermon, 2020; Salimans & Ho, 2022). How-
ever, diffusion models require a greater amount of data and computational resources (Saharia et al.,
2022b; Rombach et al., 2022). In this paper, we aim to design a universal unlearning method that
can be applied across different I2I models.

2.2 MACHINE UNLEARNING

Machine unlearning aims to eliminate the influence of specific training data (unlearning target) from
a trained model. A naive approach is to retrain the model from scratch using a modified dataset
that excludes the unlearning target. However, this approach can be computationally prohibitive in
practice. Based on the degree of unlearning completeness, machine unlearning can be categorized
into exact unlearning and approximate unlearning (Xu et al., 2023).

Exact unlearning aims to ensure that the unlearning target is fully unlearned, i.e., as complete
as retraining from scratch (Bourtoule et al., 2021; Yan et al., 2022; Li et al., 2024b). This ap-
proach, which typically relies on retraining, is limited to unlearning specific instances and cannot
be readily extended to generative models with strong feature generalizations. Approximate un-
learning aims to obtain an approximate model, whose performance closely aligns with a retrained
model (Golatkar et al., 2020; Sekhari et al., 2021). This approach estimates the influence of unlearn-
ing targets, and updates the model accordingly, usually through gradient-based updates, avoiding
full retraining (Basu et al., 2021; Li et al., 2023b). However, accurate influence estimation is still
challenging (Graves et al., 2021), reducing the applicability of this approach to generative models.

In text-to-image generative models, unlearning typically refers to concept erasure Gandikota et al.
(2023); Pham et al. (2023); Lu et al. (2024), such as removing an abstract concept like the artistic
style represented by “Van Gogh” or the entity concept represented by “Musk”. In contrast, in I2I
generative models, the objective of unlearning is to remove the knowledge the model has acquired
from a specific set of samples. In this paper, We focus on I2I generative models. The exploration
of unlearning is accomplished by minimizing a composite loss, which is a combination of training
loss on the retain and the forget sets (Li et al., 2024a). This approach is highly dependent on manual
parameter tuning and cannot guarantee unlearning completeness. As for comparison, the solutions
yielded by our proposed framework are theoretically guaranteed with Pareto optimality.

3 PRELIMINARY

3.1 UNLEARNING PRINCIPLES

As outlined in (Chen et al., 2022; Li et al., 2024c), an unlearning task typically has three main
principles: i) unlearning completeness, which involves eliminating the influence of specific data
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from an already trained model; ii) unlearning efficiency, which focuses on enhancing the speed of
the unlearning process; and iii) model utility, which aims to ensure that the performance of the
unlearned model remains comparable to that of a model retrained from scratch.

3.2 PARETO OPTIMALITY

Given a multi-objective optimization problem, where fi(θ) represents the i-th objective, the problem
can be formalized as: minθ f(θ) = (f1(θ), f2(θ), · · · , fm(θ))

⊤.

Pareto dominance. Let θa, θb be two points in feasible set Ω, θa is said to dominate θb
(
θa ≺ θb

)
if and only if fi (θa) ≤ fi

(
θb
)
,∀i ∈ {1, . . . ,m} and fj (θa) < fj

(
θb
)
,∃j ∈ {1, . . . ,m}.

Pareto optimality (Lin et al., 2019). A point θ∗ is Pareto optimal if there is no θ̂ ∈ Ω for which
θ̂ ≺ θ∗. The collection of all such Pareto optimal points forms the Pareto set, and the surface of this
set in the loss space is called the Pareto front.

3.3 I2I GENERATIVE MODEL UNLEARNING

Model architecture. Encoder-decoder structures are widely used in I2I models, with: i) an encoder
Eγ reducing images to the latent space, and ii) a decoder Dϕ reconstructing images from the latent
space. For model Iθ with input image x, the output is:

Iθ(x) = Dϕ(Eγ(T (x))), (1)

where T (x) denotes the cropping operation (such as center cropping or random cropping), and
θ = {γ, ϕ} denotes the full parameter set.

Unlearning objective. Define the unlearning task for an I2I generative model Iθ0 involving data
partitions Df (forget set) and Dr (retain set). Consider an Iθ0 , i.e., the original model, with training
data D = Df ∪Dr. Assume that Iθ0 is proficiently trained to generate satisfactory results on both
Df and Dr. The objective of unlearning is to obtain an unlearned model Iθ that cannot generate
satisfactory results on Df (1st objective, unlearning completeness) while maintaining comparable
performance on DR (2nd objective, model utility). Formally,

max
θ

(
Div

(
P(Xf )∥P(Iθ(T (Xf )))

))
, and min

θ

(
Div

(
P(Xr)∥P(Iθ(T (Xr)))

))
, (2)

where Xf and Xr are the variables for ground truth images in Df and Dr, P(Iθ(X)) is the model
output distribution for input variable X , and Div(·||·) represents distributional distance, measured
by Kullback-Leibler (KL) divergence in this paper.

Following prior work (Kingma et al., 2019; Xia et al., 2022; Wallace et al., 2023), as the model
is proficiently trained, we hypothesize that Iθ0 can approximately replicate the distributions over
both forget and retain sets (Kingma et al., 2019; Xia et al., 2022; Wallace et al., 2023), i.e.,
P(Xf ) ≈ P(Iθ0(T (Xf ))), and P(Xr) ≈ P(Iθ0(T (Xr))). Let PX := P(Iθ0(T (X))) and
PX̂ := P(Iθ(T (X))). Then, Eq. (2) can be simplified to:

max
θ
Div(PXf

||PX̂f
), and min

θ
Div(PXr

||PX̂r), (3)

where PXf
and PX̂f

represent the output distributions of the forget set before and after unlearning
respectively. Similarly, PXr

and PX̂r
represent those for the retain set.

4 METHODOLOGY

In this section, we first introduce a controllable unlearning framework for I2I generative models,
which formulates unlearning as a constrained optimization with the unlearning objective as a con-
straint. We utilize a gradient-based method to obtain the boundaries of unlearning. Then we relax
the constraint within the boundaries to derive a set of Pareto optimal solutions to fulfill varied user
expectations.
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4.1 ε-CONSTRAINED OPTIMIZATION FORMULATION

The unlearning task for I2I models is reformulated as a bi-objective optimization (Eq. (3)), with the
first objective to maximizeDiv(PXf

||PX̂f ). Nonetheless, the value ofDiv(·||·) can theoretically be
maximized to infinity, yielding an infinite number of possible PX̂f (Li et al., 2024a), consequently
resulting in extremely diminished model utility. To balance unlearning completeness and model
utility, we bound Div(PXf

||PX̂f
) by Lemma 1.

Lemma 1 (Divergence Upper Bound (Cover & Thomas, 2012)). Assuming the forget set with dis-
tribution PXf

characterized by a zero-mean and covariance matrix Σ, and a signal PX̂f
with the

same statistical properties, the maximal KL divergence is realized when PX̂f
= N (0,Σ).

Div(PXf
||PX̂f

) ≤ Div(PXf
||N (0,Σ)). (4)

As image normalization typically involves mean subtraction (Elasri et al., 2022), we can assume
PXf

and PX̂f
follow zero-mean distributions for conciseness without sacrificing generality. Lemma

1 reveals that the upper bound of Div(PXf
||PX̂f ) is achieved when PX̂f

∼ N (0,Σ). This suggests
that maximizing Div(PXf

||PX̂f ) equates to minimizing Div(PX̂f
||N (0,Σ)). Consequently, we

rewrite Eq. (3) as:
min
θ
Div(N (0,Σ)||PX̂f

), and min
θ
Div(PXr

||PX̂r
). (5)

As both terms in Eq. (5) depend on θ, we define f1(θ) := Div(N (0,Σ)||PX̂f ) and f2(θ) :=

Div(PXr
||PX̂r

) for conciseness. However, unlike classification models where their outputs are
precisely univariate discrete distributions (Kurmanji et al., 2024; Zhang et al., 2024a; Shaik et al.,
2022; Wu et al., 2024a), high-dimensional KL divergence calculations in I2I generative models are
intractable. Thus, following (Li et al., 2024a), we adopt the L2 loss as a surrogate. Due to privacy
legal requirements, unlearning objectives typically takes precedence. Thus, we set f1(θ) as the
primary constraint and treat Eq. (5) as a ε-constrained optimization problem:

min
θ∈Rd

f2(θ) s.t. f1(θ) ≤ ε, (6)

where ε is a parameter to control the completeness of unlearning. We minimize f2(θ) inside the
feasible set Ω = {θ : f1(θ) ≤ ε}, which implies that our priority lies in unlearning the forget set
rather than mitigating performance degradation on the retain set.

4.2 SOLVING THE ε-CONSTRAINT OPTIMIZATION

To solve the ε-constrained optimization problem in Eq. (6), approaches such as Sequential Quadratic
Programming (SQP) (Nocedal & Wright; Bonnans et al., 2006), penalty function method (Yeniay,
2005), and interior point method (Renegar, 2001) are commonly employed. Given the extensive
parameter set of the I2I generative model, we select a special variant of the SQP algorithm for its
lower complexity and comparable convergence guarantee (Nocedal & Wright; Gill & Wong, 2011;
Gong et al., 2021).

Specifically, we employ a gradient-based method to solve Eq. (6), updating the parameter by θt+1 ←−
θt−µtgt. Here, µt > 0 denotes the step size, and gt represents the direction of the parameter update,
which is determined by solving a convex quadratic programming problem w.r.t. g (for a detailed
derivation, please refer to the Appendix C.1):

gt = min
g∈Rd

{
∥∇f2(θt)− g∥2 s.t. ∇f1(θt)⊤g ≥ f1(θt)− ε

}
. (7)

Due to the inability to obtain the effective range of ε in the early stages of unlearning, direct com-
putation of f1(θt) − ε is not feasible. Consequently, we adjust the constraint of Eq. (7) by em-
ploying a control function ψ(θt) (i.e., ∇f1(θt)⊤g ≥ ψ(θt)), which should satisfy sign(ψ(θt)) =
sign(f1(θt) − ε), where sign(x) = x/|x| for x ̸= 0 and sign(0) = 0. This ensures that the di-
rection of updates remains as consistent as possible before and after the substitution. Further, we
provide a summary of our proposed unlearning algorithm in Algorithm 1.
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Algorithm 1 ε-Constraint Optimization Algorithm

Require: Original model Iθ0 , forget set Df , retain set Dr, control function ψ(θ), step size µ, co-
variance matrix Σ, numerical stability variable ϖ = 1e− 7.

1: Initial: Initialize t = 0, Iθt = Iθ0 ;
2: for t = 0 to T − 1 do
3: Sample {xf}, {xr} and {xn} fromDf ,Dr andN (0, ε) respectively, ensuring that |{xf}| =
|{xr}| = |{xn}|;

4: Compute loss:
5: f1(θt) = ∥Iθt(T (Df ))− Iθ0(T (xn))∥2
6: f2(θt) = ∥Iθt(T (Dr))− Iθ0(T (Dr))∥2
7: Compute gradient: ∇f1(θt), ∇f2(θt);
8: Compute the solution to the dual problem of Eq. (7): ηt = max

(
ψ(θt)−∇f2(θt)⊤∇f1(θt)

∥∇f1(θt)∥2+ϖ
, 0
)

;
9: Compute parameter update direction: gt = ∇f2(θt) + ηt∇f1(θt);

10: Update the parameter of the target model Iθt+1 : θt+1 ←− θt − µtgt;
11: end for
12: Return Unlearned model IθT ;

Assumption 1. Assume f1(θ) and f2(θ) are continuously differentiable, and the trajectory {θt :

t ∈ [0,+∞)} follows the continuous-time dynamics θ̇t = −gt, where gt is defined in Eq. (7) and
maxt∈[0,+∞) ηt < +∞.

The convergence analysis of Algorithm 1 regarding Eq. (6) utilizes the continuous-time framework
given by θ̇t = −gt, as mentioned in Assumption 1. Please refer to Lemma 3 in Appendix C.2 for
further details of convergence.

4.3 A CONTROLLABLE UNLEARNING FRAMEWORK

Our controllable unlearning framework consists of two phases. In Phase I, we reformulate Eq.
(6) into a special form to obtain the solution for the boundaries of unlearning. In Phase II, we
adjust the value ε within its valid range to relax the unlearning constraint and obtain the Pareto
optimal solutions for controllable unlearning. This relaxation of unlearning completeness allows
for a controllable trade-off between completeness and model utility, thereby catering to varied user
expectations.

Phase I: Boundaries of unlearning. The boundaries of unlearning refer to the two Pareto optimal
solutions with the highest and lowest degrees of unlearning completeness.

To obtain the Pareto optimal solutions with the highest degrees of unlearning completeness, we
reformulate Eq. (6)into the following special form:

min
θ∈Rd

f2(θ) s.t. f1(θ) ≤ ε,

where ε = f∗1 , and f∗1 := inf
θ∈Rd

f1(θ). (8)

The solution of this optimization problem can be obtained by Algorithm 1. According to Assump-
tion 1, we need to ensure that ψ(θ) ≥ 0 in Eq. (8) to guarantee the same sign with f1(θ)− ε. In this
paper, we we simply define ψ(θ) = α∥∇f1(θ)∥δ with α > 0 and δ ≥ 1.
Proposition 1 (Boundary of Pareto Set). Under Assumption 1, let f∗1 > −∞ and f∗2 > −∞ be the
infimum of f1(θ), f2(θ), respectively. Further, let ψ(θ) be continuous and ∇f1(θ) be continuously
differentiable. If θt → θ∗ and gt → 0 as t → +∞, with ∇2f1(θ) of constant rank near θ∗ and
f1(θ), f2(θ) being convex near θt, then θ∗ is a Pareto optimal solution and f1(θ∗) = f∗1 .

Proof. The proof can be found in Appendix C.3.

Proposition 1 ensures that the solution θ∗1 obtained by Algorithm 1 for solving Eq. (8) is on the
boundary of the Pareto set, specifically refer to the highest degree of unlearning completeness.
Meanwhile, f1(θ∗1) achieve the infimum of f1(θ).
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Figure 2: Pipeline of the controllable unlearning framework. (a) shows the unlearning task of the
I2I generative model which is framed as a ε-constrained optimization problem. (b) shows that
the implementation of controllable unlearning unfolds in two phases: i) initially identifying two
boundary points of unlearning, necessitating a strict reduction in f1(θ) (or f2(θ)) for optimality; and
ii) then locating the given ε’s Pareto optimal point, with strict reduction in f1(θ) when f1(θt) > ε
and permitting an increase when f1(θt) ≤ ε.

Obtaining the Pareto optimal solution with the lowest unlearning completeness is similar to the
process mentioned above, with the difference of exchanging the positions of f1(θ) and f2(θ) in
Eq. (8). This new problem is formulated as minθ∈Rd f1(θ), s.t. f2(θ) ≤ ε, where ε = f∗2 , and
f∗2 := infθ∈Rd f2(θ). The solution θ∗2 obtained by solving this problem is another boundary the
Pareto set, i.e., the Pareto optimal solution with the lowest unlearning completeness, with f2(θ∗2)
achieving the infimum of f2(θ).

Phase II: Controllable unlearning. To adjust the trade-off between unlearning completeness and
model utility, we relax the unlearning constraint by defining f1(θ∗1) < ε < f1(θ

∗
2) in Eq. (6), where

θ∗1 and θ∗2 have already been obtained in Phase I. Then we rewrite Eq. (8) for controllable unlearning:

min
θ∈Rd

f2(θ) s.t. f1(θ) ≤ ε,

where ε > f∗1 , and f∗1 := inf
θ∈Rd

f1(θ), (9)

where ε ∈ R is used to adjust the completeness of unlearning. In Phase II, according to the sign
condition in Assumption 1, we simply set ψ(θ) = β(f1(θ)−ε)δ with β > 0, δ = 2n+1 and n ∈ N.
Proposition 2 (Interior of Paret Set). Under Assumption 1, let f∗2 = infθ∈Rd f2(θ) > −∞ and
supt∈[0,+∞) ηt = ηmax < +∞. If θt is a stationary point with gt = 0 and ηt < +∞, and both
f1(θ) and f2(θ) are convex at θt, then θt is a Pareto optimal solution w.r.t. ε.

Proof. The proof can be found in Appendix C.4.

From Proposition 2, Eq. (9) provides a Pareto optimal solution w.r.t. ε. By progressively increasing
ε from f∗1 , which is estimated by f1(θ∗1) in Phase I, we can trace a path of Pareto optimal solutions
for different completeness of unlearning. As a result, this path offers controllable unlearning for
varied user expectations. In addition, our framework demonstrates high unlearning efficiency, with
a detailed efficiency analysis provided in Appendix D.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

We evaluate our proposed method on three mainstream I2I generative models, i.e., Masked Autoen-
coder (MAE) (He et al., 2022), Vector Quantized Generative Adversarial Networks (VQ-GAN) (Li
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et al., 2023a), and diffusion probabilistic models (Saharia et al., 2022a). Please refer to Appendix E.1
for the settings of hyperparameters.

Datasets: Following (Li et al., 2024a), we conduct experiments on the following two large-scale
datasets: i) ImageNet-1K (Deng et al., 2009), from which we randomly select 200 classes, designat-
ing 100 of these as the forget set and the remaining 100 as the retain set. Each class contains 150
images, with 100 allocated for training and the remaining for validation; and ii) Places-365 (Zhou
et al., 2017), from which we randomly select 100 classes, designating 50 of these as the forget set
and the remaining 50 as the retain set. Each class contains 5500 images, with 5000 allocated for
training and the remaining 500 for validation.

Baselines: We first report the performance of the original model (i.e., before unlearning) as a ref-
erence. Following (Li et al., 2024a), we set the following baselines: i) Max Loss (Warnecke et al.,
2023; Gandikota et al., 2023), which maximizes the training loss on the forget set; ii) Retain La-
bel (Kong & Chaudhuri, 2023), which minimizes training loss by setting the true values of the retain
samples as those of the forget set; iii) Noisy Label (Graves et al., 2021; Gandikota et al., 2023),
which minimizes the training loss by introducing Gaussian noise to the ground truth images of the
forget set; and iv) Composite Loss (Li et al., 2024a), the State-Of-The-Art (SOTA) method, which
builds upon Noisy Label by calculating the loss on the retain set and obtaining their weighted sum,
thereby minimizing this weighted training loss.

Evaluation metrics. We adopt three different types of metrics to comprehensively compare our
method with other baselines: i) Inception Score (IS) of the generated images (Salimans et al., 2016);
ii) the Frechét Inception Distance (FID) between the generated images and the ground truth im-
ages (Heusel et al., 2017); and iii) the cosine similarity between the CLIP embeddings of the gen-
erated images and the ground truth images (Radford et al., 2021). IS evaluates the quality of the
generated images independently, while the FID further measures the similarity between the gener-
ated and ground truth images. On the other hand, the distance of CLIP embeddings assesses whether
the generated images still capture similar semantics. Please refer to Appendix E.2 for more infor-
mation of evaluation metrics.

5.2 UNLEARNING PERFORMANCE

We test our method on image extension, inpainting, and reconstruction tasks. We report the results
for center uncropping (i.e., inpainting) in Tabel 1, and the others in Appendix I.1.

Baseline comparison: As shown in Table 1, compared to the original model, our method retains
almost the same performance on the retain set or only exhibits minor degradation. Meanwhile, there
is a significant reduction in the three metrics on the forget set. In contrast, these baselines generally
cannot perform well simultaneously on both the forget set and the retain set. For instance, in MAE,
Composite Loss has the least performance degradation on the retain set, but its performance on the
forget set is also the worst. We also observe similar findings for Max Loss in VQ-GAN. Furthermore,
we provide some examples of generated images in Figure 3, and more images in Appendix G.

T-SNE analysis: Following (Li et al., 2024a), we conduct a T-SNE analysis (Van der Maaten &
Hinton, 2008) to further analyze our method’s effectiveness. Using our unlearned model, we gen-
erate 50 images for both the retain set and the forget set. We then calculate the CLIP embedding
vectors for these images and their corresponding ground truth images. As illustrated in Figure 4,
after unlearning, the embeddings of retain set are close to that of the ground truth images, while
most of the generated images on the forget set diverge significantly from the ground truth one.

Unlearning robustness: We validate the performance of our controllable unlearning framework
in different image generation tasks by changing the cropping patterns. The results indicate that
our framework is robust to various image generation tasks and generally outperforms baselines,
with detailed results provided in Appendix I.1. Moreover, we examine the unlearning effects of
our controllable unlearning framework under different crop ratios. The results in Appendix I.3
demonstrate that our framework is robust to different crop ratios. Furthermore, we find that the
visual effects of unlearning control are more prominent with larger crop ratios.

Summary: These results validate the effectiveness of our proposed method, which is universally
applicable to mainstream I2I generative models as well as a variety of image generation tasks, con-
sistently achieving favorable outcomes across all these tasks.
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Table 1: Results of center cropping 50% of the images. ‘F’ and ‘R’ stand for the forget set and retain
set, respectively. Here, ”Ours” refers to the boundary points of unlearning obtained in Phase I, that
is, the solution with the highest degree of unlearning completeness. The best results are highlighted
in bold, and secondary results are highlighted with underline.

MAE VQ-GAN Diffusion Models

IS FID CLIP IS FID CLIP IS FID CLIP

F ↓ R ↑ F ↑ R ↓ F ↓ R ↑ F ↓ R ↑ F ↑ R ↓ F ↓ R ↑ F ↓ R ↑ F ↑ R ↓ F ↓ R ↑
Original 21.59 21.83 16.28 14.87 0.88 0.88 23.74 24.06 21.80 18.17 0.78 0.85 16.90 19.65 82.12 81.51 0.89 0.91

Max Loss 15.42 16.55 129.54 87.13 0.72 0.72 19.20 21.23 23.52 43.88 0.77 0.75 17.27 18.10 95.93 108.70 0.83 0.79
Retain Label 20.74 14.14 90.62 103.72 0.71 0.73 14.44 19.24 106.01 46.25 0.47 0.75 17.02 19.08 86.10 89.18 0.87 0.83
Noisy Label 15.38 17.97 135.47 63.89 0.71 0.77 15.95 20.63 93.55 47.03 0.49 0.74 17.15 18.36 125.99 121.55 0.72 0.76

Composite Loss 13.96 15.71 149.78 74.14 0.70 0.72 14.34 21.60 103.17 37.92 0.48 0.77 14.33 17.80 149.22 98.82 0.64 0.80
Ours 12.33 17.47 154.60 68.453 0.69 0.75 13.23 22.55 139.21 26.39 0.46 0.82 11.84 18.47 165.05 95.42 0.55 0.81

Forget 
Set

Retain
Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

Figure 3: Generated images of cropping 50% at the center of the image on VQ-GAN. From left to
right, the images generated by baselines are presented. Our method results in the highest degree of
unlearning completeness while maintaining a minimal reduction in model utility.

5.3 CONTROLLABLE UNLEARNING

We also evaluate the controllability of our method which provides a set of solutions for varied user
expectations. First, we obtain two boundary points of unlearning, thereby establishing the valid
range of values for ε. We linearly increase the value of ε within this range, adding 25% of the range
interval each time, to obtain optimum solutions corresponding to different ε values. We provide
some generated images corresponding to these solutions in Figure 1. Due to the space limit, please
refer to Appendix H for more examples. For results of more fine-grained control (i.e., smaller
increments of the linear increase of ε), please refer to Appendix I.2.

We verify the unlearned models at different ε values, and report results in Table 2. As ε increases,
we observe a trade-off: the unlearning completeness decreases, while the generated images’ perfor-
mance on the forget set progressively improves, and, simultaneously, the performance on the retain
set also improves. This observation clearly demonstrates the controllability of our proposed method,
which can cater to varied user expectations. Please refer to Appendix J for additional results of the
generated images and T-SNE analysis, which corroborates the above numerical results.

Before Unlearning: Forget Set Before Unlearning: Retain Set Unlearning: Forget Set× Unlearning: Retain Set×

(c) Diffusion Model(b) VQ-GAN(a) MAE

Figure 4: T-SNE analysis between images generated by our method and ground truth images.
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Table 2: Results of center cropping 50% of the images under different unlearning completeness.
“Highest” and “Lowest” respectively represent the two boundary points of unlearning identified in
Phase I. ε is a coefficient used to control the unlearning completeness in Phase II.

MAE VQ-GAN Diffusion Models

IS FID CLIP IS FID CLIP IS FID CLIP

F ↓ R ↑ F ↑ R ↓ F ↓ R ↑ F ↓ R ↑ F ↑ R ↓ F ↓ R ↑ F ↓ R ↑ F ↑ R ↓ F ↓ R ↑
Original 21.59 21.83 16.28 14.87 0.88 0.88 23.74 24.06 21.80 18.17 0.78 0.85 16.90 19.65 82.12 81.51 0.89 0.91

Highest 12.33 17.47 154.60 68.453 0.69 0.75 13.23 22.55 139.21 26.39 0.46 0.82 11.84 18.47 165.05 95.42 0.55 0.81
ε-25% 17.93 20.55 85.36 59.09 0.74 0.77 14.14 22.65 130.71 24.57 0.46 0.82 15.12 19.27 137.95 84.21 0.60 0.81
ε-50% 19.47 21.42 57.81 50.99 0.77 0.79 14.60 22.25 123.32 22.65 0.47 0.83 15.92 18.70 118.76 71.43 0.66 0.83
ε-75% 20.68 22.87 42.51 31.80 0.80 0.82 15.20 22.53 116.59 20.63 0.47 0.84 16.33 19.53 104.21 63.62 0.73 0.83
Lowest 21.23 22.92 31.28 25.83 0.82 0.84 15.77 22.75 109.28 20.26 0.48 0.84 16.36 20.78 90.03 52.96 0.77 0.84

5.4 UNLEARNING EFFICIENCY

To enhance the efficiency of our controllable unlearning framework, we modify the selections of
control function ψ(θ) during various phases. Specifically, we empirically examine the convergence
under these conditions to assess the framework’s unlearning performance of efficiency. In Phase I,
with the control function satisfying ψ(θ) = α∥∇f1(θ)∥δ , we manipulate the value of the exponent
δ to change the control function. Additionally, we verify the changes in the convergence rates of
f1(θ) and f2(θ) under four different δ values across three models, with results shown in Appendix
K. It is evident that f1(θ) and f2(θ) achieve an optimal balance in convergence rates when δ =
2, and the overall rate of convergence is fastest. In Phase II, where the control function satisfies
ψ(θ) = β(f1(θ) − ε)δ , we test the changes in the convergence rates of f1(θ) and f2(θ) for two
different δ values on three models. To stabilize the optimization process, we scale the form of the
control function (i.e., ψ(θ) = β(f1(θ) − ε)δ∥∇f1(θ)∥2), selecting two different δ values, with
results presented in Appendix K. It can be observed that at δ = 1 the overall rate of convergence
was optimized.

6 CONCLUSION

In this paper, we propose a controllable unlearning framework for I2I generative models to over-
come the limitation of the existing method’s incapability to fulfill varied user expectations. Our
approach allows for a controllable trade-off between unlearning completeness and model utility by
introducing a control coefficient ε to control the degrees of unlearning completeness. We reformu-
late unlearning as a ε-constrained optimization problem and solve it with a gradient-based method
to find two boundary points that guide the valid range for ε. Within this range, every chosen value of
ε will lead to a Pareto optimal solution, addressing the existing method’s issue of lacking theoretical
guarantee. Extensive experiments on two large datasets (i.e., ImageNet-1K and Places-365) across
three mainstream I2I models (i.e., MAE, VQ-GAN, diffusion model) demonstrate significant advan-
tages of our method over the SOTA methods with higher unlearning efficiency, and a controllable
balance between the unlearning completeness and model utility.
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A BROADER IMPACTS AND LIMITATIONS

The abundance of training data not only enhances the performance of generative models but also
introduces issues with privacy, unfairness, and bias. Our proposed controllable unlearning frame-
work offers a viable solution to these issues. Our proposed framework is not limited to unlearning
in I2I generation models but can be easily extended to other types of generative models, including
text-to-image and text-to-text models. However, the unlearning framework presented herein has cer-
tain limitations. Note that Propositions 1 and 2 in Section 4 assume the convexity of the objective
function and the feasible set. This assumption is essential to guarantee that the yielded solutions are
Pareto optimal. In cases where the objective function and the feasible set are non-convex, the solu-
tions obtained from solving Eq. (6) can only be guaranteed to be weakly Pareto optimal (Miettinen,
1999) or Pareto stability (Chen et al., 2024).

B DISCUSSION ON THE OBJECTIVE OF UNLEARNING

Describing the unlearning target as inpainting an image using only background content is feasible
to some extent, such as concept unlearning (Wu et al., 2024b). For instance, if we aim to protect
privacy by unlearning parts of an image generation model that contain personal information (i.e.,
an abstract concept), we can first identify the region of the image containing such information, then
simply mask this region, and subsequently generate a new image through inpainting, ensuring that
the model’s output aligns with the inpainted new image. However, this approach has two issues:

• Firstly, it must be ensured that the new image generated through inpainting does not contain the
information that needs to be forgotten. We believe this can be accomplished by incorporating an
additional adversarial discriminator using GAN training strategies or by employing reinforcement
strategies.

• Secondly, aligning the model’s output with the inpainted new image merely confuses the knowl-
edge learned by the model, increasing uncertainty during generation, which constitutes a super-
ficial form of unlearning. However, based on our experimental experience, if the goal is merely
to erase the influence of certain samples on the model, directly aligning with Gaussian noise may
yield a more pronounced unlearning effect.

C THEORETICAL VALIDATION

C.1 PROOF OF EQUIVALENCE

Given the original problem

min
θ∈Rd

f2(θ) s.t. f1(θ) ≤ ε, (10)

which is a constrained nonlinear programming problem. To solve it, we formulate its Lagrangian
equation:

L(θ, λ) = f2(θ) + λ(f1(θ)− ε). (11)

Further, we derive the KKT conditions for Eq. (11):

∇θL(θ∗, λ∗) = ∇f2(θ∗) + λ∗∇[f1(θ∗)− ε] = 0

f1(θ
∗)− ε ≤ 0

λ∗ ≥ 0

λ∗(f1(θ
∗)− ε) = 0.

(12)

The standard Newton’s Method searches for the solution Lθ(θ, λ) = 0 by iterating the following
equation:[

θt+1

λt+1

]
=

[
θt
λt

]
−
[

∇2
θL ∇[f1(θt)− ε]

∇[f1(θt)− ε]T 0

]−1

︸ ︷︷ ︸
∇2L−1

[
∇θL(θt, λt)
f1(θt)− ε

]
︸ ︷︷ ︸

∇L

, (13)
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where ∇2
θ denotes the Hessian matrix. However, the Newton step gt = (∇2

θL)−1∇θL cannot be
calculated directly and we also have other optimal condition in Eq. (12) introduced by the inequality
constraints. Instead, the basic sequential quadratic programming algorithm defines an appropriate
search direction gt at an iterate (θt, λt), as a solution to the quadratic programming subproblem.

Denoting by gt = (gθt , g
λ
t ) the change in the variables at the current point (θt, λt), where (gθt , g

λ
t )

solve the Newton–KKT system (Nocedal & Wright):

∇θL(θt, λt)gθt +∇[f1(θt)− ε]gλt = −∇θL(θt, λt)
f1(θt)− ε+∇[f1(θt)− ε]gθt ≤ 0

λt + gλt ≥ 0

(λt + gλt )
(
f1(θ

∗)− ε+∇[f1(θt)− ε]gθt
)
= 0.

(14)

Denoting by λt+1 = λt + gλt , we have

∇θL(θt, λt)gθt +∇[f1(θt)− ε]λt+1 = −∇f2(θt)
f1(θt)− ε+∇[f1(θt)− ε]gθt ≤ 0

λt+1 ≥ 0

λt+1

(
f1(θ

∗)− ε+∇[f1(θt)− ε]gθt
)
= 0.

(15)

It is easy to check that Eq. (15) is the optimality system of the following quadratic problem (QP)

min
g

f2 (θt) +∇f2 (θt)⊤ g +
1

2
g⊤∇2

θL (θt, λt) g

f1(θt)− ε+∇[f1(θt)− ε]g ≤ 0.
(16)

Setting gθt = g, the KKT conditions for Eq. (16) are consistent with the constraints specified in
Eq. (15). Further, according to Lemma 2, the optimal solution for Eq. (16), when approaching the
optimal solution of the original Problem (i.e., Eq. (10)), satisfies the KKT conditions of Eq. (10).
Considering that the models discussed in this paper are all deep neural networks, based on previous
studies (Welling & Teh, 2011; Martens, 2016; Zhang et al., 2021; 2022; 2023; 2024b), the initial
guess Hessian matrix can be approximated as an identity matrix. Additionally, for consistency with
the main text (i.e., θt+1 ←− θt − µtgt), setting g = −gt yields the following form:

min
gt

∇f2 (θt)⊤∇f2 (θt)− 2∇f2 (θt)⊤ gt + g⊤t gt

∇f1(θt)gt ≥ f1(θt)− ε.
(17)

Lemma 2. Theorem of Robinson (1974). Suppose that θ∗ is a local solution of Eq. (10) at which
the KKT conditions are satisfied for some λ∗. Suppose, too, that the linear independence constraint
qualification, the strict complementarity condition, and the second-order sufficient conditions hold
at (θ∗, λ∗). Then if (θt, λt) is sufficiently close to (θ∗, λ∗), there is a local solution of the subproblem
Eq. (16) whose active set At is the same as the active set A (θ∗) of the nonlinear program Eq. (10)
at θ∗.

C.2 BASIC COMPONENTS

Before exploring the proofs of Propositions 1 and 2, it is essential to define some fundamental
concepts and lemmas. This references some works (Boyd & Vandenberghe, 2004; Pardalos et al.,
2017; Gong et al., 2021) mentioned earlier; for the sake of readability, we will reiterate them here.

Penalty Function. An alternative method to evaluate the optimality of Algorithm 1 involves the L1

penalty function given by:
Pξ(θ) = f2(θ) + ξ[f1(θ)− ε]+, (18)

where ξ > 0 is a scaling coefficient. The minima of Eq. (18) align with the solutions to Eq. (6) for
sufficiently large values of ξ (Nocedal & Wright).

First-order KKT Condition and KKT Function. We revisit the first-order KKT condition (No-
cedal & Wright) for the constrained optimization described in Eq. (9). Assume θ∗ is a local optimum
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with continuously differentiable f1(θ) and f2(θ), and ∥∇f1(θ∗)∥ ≠ 0. There exists a Lagrange mul-
tiplier ω∗ ∈ [0,+∞) such that:

∇f2(θ∗) + ω∗∇f1(θ∗) = 0, f1(θ
∗) ≤ ε, ω∗(f1(θ

∗)− ε) = 0. (19)

This setup highlights the importance of ∥∇f1(θ∗)∥ ≠ 0 as a constraint qualification condition.

Utilizing Algorithm 1 for Eq. (9), and for η ≥ 0, the KKT function (Gong et al., 2021) to verify the
first-order KKT condition is defined as:

Kτ (θt, ηt) = ∥∇f2(θt) + ηt∇f1(θt)∥2 + τ [ψ(θt)]+ + ηt[−ψ(θt)]+, (20)

where τ > 0, and [x]+ = max(x, 0). It is clear that Kτ(θt, ηt) ≥ 0 for all θt ∈ Rd and ηt ≥ 0,
achieving Kτ (θt, ηt) = 0 iff (θt, ηt) satisfies the first-order KKT condition.

Second-order KKT Condition and KKT Function

In the context of Algorithm 1 applied to Eq. (8), we expect that ∥∇f1(θt)∥ approaches zero, leading
to ηt potentially diverging to infinity. This scenario indicates a violation of the first-order KKT
condition, potentially interpreted as η∗ = +∞.

While the first-order condition (Eq. (19)) is inadequate, the second-order KKT conditions involving
the Hessian∇2f1(θ) are applicable (Dempe et al., 2010). Consider the relaxed form of Eq. (8) as:

min
θ∈Rd

f2(θ) s.t. ∇f1(θ) = 0. (21)

If θ∗ is a local minimum of Eq. (8), it coincides with a local minimum of Eq. (21). Assuming f2(θ)
and ∇f1(θ) are continuously differentiable, with the Hessian ∇2f1(θ) maintaining constant rank
near θ∗ (Janin, 1984), the first-order KKT condition for Eq. (21) can be formulated. There exists a
vector ω∗ ∈ Rd such that:

∇f2 (θ∗) +∇2f1 (θ
∗)ω∗ = 0. (22)

This condition implies that∇f2(θ∗) is orthogonal to the null space of∇2f1(θ
∗), defining the tangent

space of the stationary manifold {θ : ∇f1(θ) = 0} for f1(θ).

For verifying local optimality under the constraints of Eq. (8) where ψ(θ) ≥ 0, the KKT function is
proposed as:

Kτ (θt, ηt) = ∥∇f2 (θt) + ηt∇f1 (θt)∥2 + τψ (θt) , (23)
where ψ(θt) = 0 asserts that θt is stationary for f1(θ), and ∥∇f2(θt) + ηt∇f1(θt)∥ = 0 signifies
local optimality with respect to f2(θ), aligning with the KKT condition for the relaxed problem
minθ{f2(θ) s.t. f1(θ) ≤ εt}, with εt = f1(θt).

In the analysis of Algorithm 1, a fundamental theorem concerning the behavior of the penalty func-
tion Pξ(θ) and the KKT functionKτ (θ, η), given in Eqs. (20) and (23), is essential for understanding
the algorithm’s convergence and feasibility characteristics. This lemma is stated as follows:
Lemma 3. Theorem 3.2 of Gong et al. (2021). Assume Assumption 1 holds, for any ξ ≥ 0, we have

d

dt
Pξ(θt) ≤ −Kξ−ηt(θt, ηt),∀t ∈ [0,+∞). (24)

This equation indicates that Pξ(θt) is non-increasing w.r.t. time t provided that Kξ−ηt(θt, ηt) ≥ 0.
This condition is satisfied if ξ is sufficiently large such that ξ − ηt ≥ 0, or when the constraint is
met, i.e., f1(θt) ≤ ε, ensuring [ψ(θt)]+ = 0.

C.3 PROOF OF PROPOSITION 1

Proof of Proposition 1. As θt converges to θ∗ for t → +∞ and given the continuity of ψ(θ) and
∇f1(θ), it follows that limt→+∞ ψ (θt) = ψ (θ∗), and limt→+∞ ∥∇f1 (θt)∥ = ∥∇f1 (θ∗)∥.
Let f∗1 = infθ∈Rd f1(θ) and f∗2 = infθ∈Rd f2(θ). Since ψ(θ) ≥ 0, by substituting Eq. (23) into
Eq. (24), we have for any ξ ≥ 0,

d

dt

(
f2 (θt) + ξ [f1 (θt)− ε]+

)
≤ −∥∇f2 (θt) + ηt∇f1 (θt)∥2 − (ξ − ηt)ψ (θt) , ∀t ∈ [0,+∞).
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Integrating both sides from 0 to t yields:∫ t

0

(
∥∇f2 (θs) + ηs∇f1 (θs)∥2 + (ξ − ηs)ψ (θs)

)
ds ≤ (f2 (θ0)− f∗2 ) + ξ (f1 (θ0)− f∗1 ) .

(25)

Given ψ(θ) ≥ 0 and ε = f∗1 , Eq. (25) establishes that
∫ +∞
0

ψ (θt) dt ≤ f1 (θ0) − f∗1 < +∞.
Consequently, limt→+∞ ψ (θt) = ψ (θ∗) = 0.

Given θ∗ as a limit point of {θt}, there exists an increasing sequence {tn : n = 1, 2, · · · } such
that tn → +∞ and θtn → θ∗ as n → +∞. The continuity of ψ(θ) and ∇f1(θ) ensures
limn→+∞ ψ (θtn) = ψ (θ∗) = 0, and limn→+∞ ∥∇f1 (θtn)∥ = ∥∇f1 (θ∗)∥.
Since ψ (θ∗) = 0 and the sign condition of ψ(θ), it implies sign (f1 (θ∗)− f∗1 ) = sign (ψ (θ∗)) = 0.
Therefore f1 (θ∗) = f∗1 and θ∗ is a minimum point of f1(θ). This gives limn→+∞ ∥∇f1 (θtn)∥ =
∥∇f1 (θ∗)∥ = 0.

Given limt→+∞ gt = 0, we deduce that limt→+∞ ∥∇f2 (θt) + ηt∇f1 (θt)∥ = limt→+∞ ∥gt∥ = 0.
Additionally, employing ψ(θ) ≥ 0, Eq. (23) implies limt→+∞Kτ (θt, ηt) = 0 for some τ > 0.

Combining limt→+∞ ∥∇f2 (θt) + ηt∇f1 (θt)∥ = 0 and ∇f1 (θ∗) = limn→+∞∇f1 (θtn) = 0, we
can derive

∥∇f2 (θt) + ηt∇f1 (θt)∥ = ∥∇f2 (θt) + ηt (∇f1 (θt)−∇f1 (θ∗))∥ =
∥∥∇f2 (θt) +∇2f1 (θ

′
t)ω

′
t

∥∥ .
where θ′t is a convex combination of θt and θ∗, and we defined ω′

t = ηt (θt − θ∗).

Define ωt =
(
∇2f1 (θ

′
t)
)+∇f2 (θt), where

(
∇2f1 (θ

′
t)
)+

denotes the Moore-Penrose pseudo-
inverse of matrix∇2f1 (θ

′
t), which satisfies that

ωt = argmin
ω∈Rd

{
∥ω∥ s.t. ω ∈ argmin

w

∥∥∇f2 (θt) +∇2f1 (θ
′
t)ω

∥∥} .
It follows that∥∥∇f2 (θt) +∇2f1 (θ

′
t)ωt

∥∥ ≤ ∥∥∇f2 (θt) +∇2f1 (θt)ω
′
t

∥∥ = ∥∇f2 (θt) + ηt∇f1 (θt)∥ .

Given ∥∇f2 (θtn) + ηtn∇f1 (θtn)∥ → 0 as n → +∞, we have
∥∥∇f2 (θtn) +∇2f1

(
θ′tn

)
ωtn

∥∥ →
0. Assuming θtn → θ∗ and θ′tn → θ∗ as n → +∞, and by the constant rank
condition and relevant corollary of Stewart (1977) (rephrased in Lemma 4), we deduce(
∇2f1

(
θ′tn

))+ →
(
∇2f1 (θ

∗)
)+

and hence ωtn → ω∗ as n → +∞, where ω∗ :=(
∇2f1 (θ

∗)
)+∇f2 (θ∗). Thus,

∥∥∇f2 (θt) +∇2f1 (θ
′
t)ωt

∥∥ → ∥∥∇f2 (θ∗) +∇2f1 (θ
∗)ω∗

∥∥, lead-
ing to

∥∥∇f2 (θ∗) +∇2f1 (θ
∗)ω∗

∥∥ = 0, which implies that θ∗ satisfies the second-order KKT con-
ditions for Eq. (22).

Given the convexity of f1(θ) and f2(θ) with respect to θ, then f2(θ∗) is the minimum in the feasible
set Ω = {θ : f1(θ) ≤ ε}, without any θ̂ ∈ Ω such that f2(θ̂) < f2(θ

∗). Consequently, θ∗ is
a solution to Eq. (8). According to Chankong & Haimes (1982), this solution is unique without
further checking, as affirmed by theorem of Miettinen (1999) (rephrased in Lemma 5), θ∗ is Pareto
optimal.

Therefore, combining the conclusions, θ∗ is established as both the minimum of f1(θ) and Pareto
optimal, confirming its status as Pareto optimal for complete unlearning.

Lemma 4. Corollary 3.5 of Stewart (1977). Let {At} be a sequence of matrices converging to A∗
as t → +∞. The condition limt→+∞A+

t = A+
∗ is equivalent to the condition that rank(At) =

rank(A∗) for all t sufficiently large.
Lemma 5. Theorem 3.2.4 of Miettinen (1999). A point θ∗ ∈ Ω is Pareto optimal if it is
a unique solution of ε-constraint problem (Eq. (6)) for any given upper bound vector ε =

(ε1, . . . , εℓ−1, εℓ+1, . . . , εt)
T .
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C.4 PROOF OF PROPOSITION 2

Proof of Proposition 2. Since θt is stationary, θ̇t = −gt = 0, implying d
dtPξ(θt) = 0 for all ξ ≥ 0.

From Eq. (24), we have d
dtPξ(θt) ≤ −Kξ−ηt(θt, ηt). Consequently, Kξ−ηt(θt, ηt) ≤ 0 for all

ξ ≥ ηt. Setting ξ = ηt+τ , where τ ≥ 0, it follows thatKτ (θt, ηt) = 0. This implies that θ∗ satisfies
the first-order KKT conditions for Eq. (19), i.e., there exists a Lagrange multiplier η∗ ∈ [0,+∞)
such that

∇f2 (θ∗) + η∗∇f1 (θ∗) = 0, f1 (θ
∗) ≤ ε, η∗ (f1 (θ

∗)− ε) = 0.

As affirmed by theorem of Miettinen (1999) (rephrased in Lemma 6), θt is a Pareto optimal solution.

Lemma 6. Theorem 3.1.8 of Miettinen (1999). (Karush-Kuhn-Tucker sufficient condition for Pareto
optimality) Let the objective and the constraint functions of problem Eq. (9) be convex and continu-
ously differentiable at a decision vector θ∗ ∈ Ω. A sufficient condition for θ∗ to be Pareto optimal is
that there exist multipliers µ∗ > 0 and η∗ > 0 such that

(1) µ∗∇f2 (θ∗) + η∗∇f1 (θ∗) = 0

(2) η∗ (f1 (θ
∗)− ε) = 0.

D ENHANCING THE EFFICIENCY OF UNLEARNING

To enhance the efficiency of unlearning, we investigate the influence of the control function ψ(θ) on
convergence rates across different phases, as outlined in the lemma below:

Lemma 7. An extension based on Proposition 3.7 of Gong et al. (2021). Under Assumption 1, with
f∗2 = infθ∈Rd f2(θ) > −∞, then: For Phase I, if ψ(θ) = α∥∇f1(θ)∥δ with α > 0 and δ ≥ 1, the

convergence rates of f1(θ) and f2(θ) are O
(
1/t

1
δ

)
and O

(
1/t

1
2−

1
2δ

)
, respectively. For Phase II,

if ψ(θ) = β(f1(θ)− ε)δ with β > 0, δ = 2n+ 1, n ∈ N, and supt∈[0,+∞) ηt = ηmax < +∞, the

convergence rate of [f1(θ)− ε]+ is O
(
1/t

1
δ

)
.

Lemma 7 demonstrates that the convergence rate depends on the exponent δ in ψ(θ), where higher
values of δ result in a faster convergence rate of f1(θ). However, excessively large δ can also lead
to a slower convergence rate of f2(θ) and instabilities in training. To balance convergence rate and
training stability, we explore various ε in ψ(θ) in both phases with extensive empirical studies. The
results can be found in Section 5.4.

E MORE DETAILS OF EXPERIMENTS

E.1 HYPER-PARAMETER OF EXPERIMENTS

MAE. We set the learning rate to 10−4 with no weight decay. Both baselines and our method
employ AdamW as the foundational optimizer with β = (0.90, 0.95), with the distinction being
that our method necessitates some improvements on the basic optimizer. We set the input image
resolution to 224×224 and batch size to 32. Simultaneously, we set the coefficient of ψ(θ) in Phase
I to α = 5, and the coefficient of ψ in Phase II to β = 5, followed by training for 8 epochs. Overall,
it takes an hour on an NVIDIA A40 (48G) server.

VQ-GAN. We set the learning rate to 10−4 with no weight decay. Both baselines and our method
employ AdamW as the foundational optimizer with β = (0.90, 0.95). Our method necessitates
some improvements on the basic optimizer. We set the input image resolution to 256×256 and batch
size to 16. Simultaneously, we set the coefficient of ψ(θ) in Phase I to α = 10, and the coefficient
of ψ(θ) in Phase II to β = 10, followed by training for 10 epochs. Overall, it takes two hours on an
NVIDIA A40 (48G) server.
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Diffusion model. We set the learning rate to 10−5 with no weight decay. Both baselines and our
method employ Adam as the foundational optimizer. Our method necessitates some improvements
on the basic optimizer. We set the input image resolution to 256×256 and batch size to 16. Simulta-
neously, we set the coefficient of ψ(θ) in Phase I to α = 1, and the coefficient of ψ(θ) in Phase II to
β = 1, followed by training for 4 epochs. Overall, it takes twelve hours on an NVIDIA A40 (48G)
server.

E.2 EVALUATION METRICS

IS. Following (Li et al., 2024a), for ImageNet-1K, we directly use the Inception-v3 model check-
point to calculate the IS score. For Places-365, we use the Resnet-50 model checkpoint to calculate
IS scores (Zhou et al., 2017).

FID. Regardless of whether it is ImageNet-1K or Places-365, we directly use the Inception-v3
model checkpoint to calculate the FID score.

CLIP. Following (Li et al., 2024a), whether it is for ImageNet-1K or Places-365, we use the ViT-
H-14 model checkpoint to calculate the clip embedding vectors of the generated images and the
ground truth images (Radford et al., 2021). Afterward, we calculate the cosine similarity between
the two vectors as the clip score.

F ROBUSTNESS TO RETAIN SAMPLES AVAILABILITY

In machine unlearning, sometimes the real retain samples are not available due to data retention
policies. To tackle this challenge, following (Li et al., 2024a), we assess our method using images
from other classes as substitutes for real retain samples. For instance, on ImageNet-1K, since we
have already selected 200 classes, we randomly chose some images from the remaining 800 classes
to act as a “proxy retain set” during the unlearning process. We incrementally reduce the proportion
of real retain samples in the retain set and increased the proportion of proxy retain samples, with the
experimental results presented in Table 3. As demonstrated, our method is largely unaffected by the
reduced availability of retain samples, indicating robust performance.

Table 3: Results of center cropping 50% of the images under different retain set usage proportions.
↑ indicates higher is better, and ↓ indicates lower is better. ‘F’ and ‘R’ stand for the forget set
and retain set, respectively. Here, all results are based on the solution with the highest degree of
unlearning completeness in Phase I.

MAE VQ-GAN Diffusion Models

IS FID CLIP IS FID CLIP IS FID CLIP

F ↓ R ↑ F ↑ R ↓ F ↓ R ↑ F ↓ R ↑ F ↑ R ↓ F ↓ R ↑ F ↓ R ↑ F ↑ R ↓ F ↓ R ↑
Original 21.59 21.83 16.28 14.87 0.88 0.88 23.74 24.06 21.80 18.17 0.78 0.85 16.90 19.65 82.12 81.51 0.89 0.91

100% 12.33 17.47 154.60 68.453 0.69 0.75 13.23 22.55 139.21 26.39 0.46 0.82 11.84 18.47 165.05 95.42 0.55 0.81
80% 12.32 17.46 150.05 73.14 0.70 0.73 13.27 22.30 138.49 24.83 0.46 0.81 11.91 18.10 167.32 98.82 0.55 0.80
60% 12.22 17.42 150.55 74.22 0.70 0.73 13.24 22.54 140.35 24.92 0.61 0.81 12.06 18.53 165.24 98.43 0.60 0.80
40% 112.29 17.43 150.27 73.63 0.70 0.74 12.77 22.39 141.67 25.84 0.61 0.81 12.05 18.64 168.83 96.42 0.60 0.79
20% 12.50 17.68 147.45 70.75 0.70 0.74 12.77 22.39 144.38 28.08 0.60 0.81 13.49 18.67 168.26 95.47 0.57 0.79

0 12.21 17.68 147.31 68.09 0.70 0.74 12.39 22.35 147.17 29.79 0.62 0.80 13.24 18.76 168.43 96.63 0.60 0.79

G MORE GENERATED IMAGES: BASELINES VS OURS

We conduct various generative tasks on three mainstream I2I generative models (i.e., MAE, VQ-
GAN, and the diffusion model), including image expansion, inpainting, and reconstruction (Zhong
& Wang, 2025; Wang et al., 2025; Xiao et al., 2024; Tao et al., 2023), to assess both baselines
and our proposed method. Specifically, we conduct evaluations of image inpainting and expansion
tasks on VQ-GAN, image reconstruction tasks on MAE, and image inpainting tasks on the diffusion
model. The results indicate that our method can adapt to mainstream I2I generative models and
various image generation tasks.
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VQ-GAN. We conduct experiments on image inpainting and expansion task unlearning on VQ-
GAN, where examples of the image inpainting tasks are illustrated in Figure 5, and examples of
image expansion can be referred to in Appendix I. Our unlearning method is effective for both
image inpainting and image expansion tasks, and it significantly surpasses baselines.

(a) Forget Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(a) Forget Set

(b) Retain Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(b) Retain Set

Figure 5: VQ-GAN: generated images of cropping 50% at the center of the image. The upper part
(a) represents the forget set, while the lower part (b) represents the retain set. ”Ours” denotes the
boundary condition of unlearning obtained in Phase I, which represents the point of the highest
degree of unlearning completeness. It is evident that our method significantly outperforms baselines
in terms of the unlearning effect on the forget set, most closely approximating Gaussian noise, and
exhibits the least performance degradation on the retain set.

MAE. We conduct experiments on unlearning image reconstruction tasks on the MAE. As shown
in figure 6, our unlearning method is also effective in the task of image reconstruction, with the
effects of unlearning showing a significant advantage over baselines.
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(a) Forget Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(a) Forget Set

(b) Retain Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(b) Retain Set

Figure 6: MAE: reconstruction of random masked images. We set the proportion of the random
mask to 50%. The upper part (a) represents the forget set, while the lower part (b) represents
the retain set. ”Ours” denotes the boundary condition of unlearning obtained in Phase I, which
represents the point of the highest degree of unlearning completeness.
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Diffusion model. We validate our unlearning framework on the diffusion model task for image in-
painting. As shown in figure 7, the results indicate that our method is equally applicable to diffusion
models, and the effectiveness of unlearning surpasses that of baselines.

(a) Forget Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(a) Forget Set

(b) Retain Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(b) Retain Set

Figure 7: Diffusion model: generated images of cropping 50% at the center of the image. The upper
part (a) represents the forget set, while the lower part (b) represents the retain set. ”Ours” denotes
the boundary condition of unlearning obtained in Phase I, which represents the point of the highest
degree of unlearning completeness.

H MORE GENERATED IMAGES: DIFFERENT DEGREES OF COMPLETENESS

We validate the control effect of our controllable unlearning framework across multiple genera-
tive tasks in three mainstream I2I generative models. The results demonstrate that our controllable
unlearning framework can effectively control unlearning across various image generation tasks of
mainstream I2I generative models.
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VQ-GAN. We center-cropp the image by 50% and utilize the VQ-GAN for image inpainting.
Subsequently, we applied our unlearning framework to enforce unlearning. The results in Figure 8
demonstrate the effectiveness of our method, with the control effect being very pronounced.

(a) Forget Set

Ground Truth Input Original
Model

Boundary-𝜺𝒎𝒊𝒏

Highest Degree
Relax-𝜺𝟏

25% 
Relax-𝜺𝟐

50% 
Boundary-𝜺𝒎𝒂𝒙

Lowest Degree
Relax-𝜺𝟑

75% 

(a) Forget Set

Ground Truth Input Original
Model

Relax-𝜺𝟏
25% 

Relax-𝜺𝟐
50% 

Boundary-𝜺𝒎𝒂𝒙

Lowest Degree
Relax-𝜺𝟑

75% 

(b) Retain Set

Boundary-𝜺𝒎𝒊𝒏

Highest Degree

(b) Retain Set

Figure 8: VQ-GAN: generated images of cropping 50% at the center of the image under different
degrees of unlearning completeness requirements. The upper half (a) represents the forget set, and
the lower half (b) represents the retain set. Our method first determines the two boundary conditions
of unlearning, and then linearly increases the value of ε within its range (here, we increase by 25%
each time) to adjust the balance between unlearning completeness and model utility.

MAE. We verify the control effect of our controllable unlearning framework within the reconstruc-
tion task using the MAE. The results in Figure 9 indicate that our method can effectively control the
completeness of unlearning in image reconstruction tasks as well.
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(a) Forget Set
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Figure 9: MAE: construction of random masked images under different degrees of unlearning com-
pleteness requirements. We set the proportion of the random mask to 50%. The upper half (a)
represents the forget set, and the lower half (b) represents the retain set. Our method first determines
the two boundary conditions of unlearning, and then linearly increases the value of εwithin its range
(here, we increase by 25% each time) to adjust the balance between unlearning completeness and
model utility.
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Diffusion model. We validate the control effect of our controllable unlearning framework within
the inpainting task of a diffusion model. As shown in Figure 10, the findings illustrate that our
method can effectively adjust the balance between the completeness of unlearning and the utility of
the model in the context of a diffusion model.

(a) Forget Set

Ground Truth Input Original
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Figure 10: Diffusion model: generated images of cropping 50% at the center of the image under
different degrees of unlearning completeness requirements. The upper half (a) represents the forget
set, and the lower half (b) represents the retain set. Our method is also effective when applied to the
diffusion model.

I ABLATION STUDY

To verify the robustness of our method on mainstream I2I generative models and various image
generation tasks, we conducted the following ablation studies: i) we vary the cropping patterns to
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demonstrate robustness across multiple image generation tasks; ii) we decrease the linear increment
size of ε to validate that our method allows for more fine-grained control; and iii) we alter the
cropping ratios to confirm the robustness of our method to changes in crop ratio.

I.1 MORE GENERATIVE TASKS

Similar to validating unlearning in classification models through Membership Inference At-
tacks Choi & Na (2023), generative models can also be assessed for unlearning robustness by em-
ploying attack methods to reconstruct the forget set. Although there is substantial research in this
area Kumari et al. (2023); Petsiuk & Saenko (2025), it typically focuses on concept unlearning in
text-to-image generative models. In contrast, our focus is on unlearning in image-to-image gener-
ative models. Unlike unlearning a single concept, our goal is to unlearn the influence of a set of
samples or their distribution on the model. This makes it challenging to validate the effectiveness
and robustness of our method through attacks. Specifically, we validate the effectiveness and robust-
ness of our controllable unlearning framework for image extension tasks on VQ-GAN by varying
the patterns of cropping. The results indicate that our controllable unlearning framework is robust
to different cropping patterns.

I.1.1 OUTPAINTING TASK

We retain 25% of the image center and utilize VQ-GAN for image outpainting. As shown in Figure
11, our method produces outpainting on the forget set that is most similar to Gaussian noise, and the
outpainting performance on the retain set shows the least decline compared to the original model.

I.1.2 UPWARD EXTENSION TASK

We crop the upper half of the image, retain the lower half, and employ VQ-GAN for image exten-
sion. The results in Figure 12 indicate that our method produces extension on the unlearning set
that closely resembles Gaussian noise, and on the retain set, the extension performance decreases
the least compared to the original model.

I.1.3 LEFTWARD EXTENSION TASK

We crop the right half of the image, retain the left half, and use VQ-GAN for image extension. As
shown in Figure 13, our method produces leftward extension on the forget set that closest resem-
bles Gaussian noise and, on the retain set, the leftward extension performance exhibits the minimal
decrease compared to the original model.

I.2 MORE FINE-GRAINED CONTROL OF UNLEARNING COMPLETENESS

After obtaining two boundary points of unlearning, our controllable unlearning framework linearly
increases within its valid range to balance the completeness of unlearning and the utility of the
model. However, in the main paper, the increase of ε is by 25% each time. For example, if the range
of ε is [1,9], then the sequence of ε values would be {3,5,7}. It is evident that the increments of ε
are quite substantial, which results in a coarser granularity of control. Here, we reduce the linear
increment of ε to extend the effectiveness of our controllable unlearning framework across various
image generation tasks in VQ-GAN. The results show that our framework can achieve fine-grained
control.

I.2.1 OUTPAINTING TASK

We retain the central 25% of the image and utilize VQ-GAN for image outpainting. The results
in Figure 14 show that the performance of our controllable unlearning framework on the forget set
gradually improves with the increase of ε, and the extent of decline in outpainting performance on
the retain set, compared to the original model, is also reducing.
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(a) Forget Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(a) Forget Set

(b) Retain Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(b) Retain Set

Figure 11: Outpainting by VQ-GAN. We retain 25% of the image center. The upper half (a) desig-
nated as the unlearning set and the lower half (b) as the retain set. For each subset, we compared the
performance of both the baselines and our method on the outpainting task, where ”Ours” represents
the boundary condition of unlearning in Phase I, indicating the point of highest degree of unlearn-
ing completeness. The results show that our method significantly outperforms the baselines on the
outpainting task.

30



Published as a conference paper at ICLR 2025

(a) Forget Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(a) Forget Set

(b) Retain Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(b) Retain Set

Figure 12: Upward extension by VQ-GAN. We retain 50% of the lower half of the image. The
upper half (a) is the forget set, and the lower half (b) is the retain set. For each set, we compare the
performance of the baselines and our method on the upward extension task, where ”Ours” represents
the unlearning boundary condition in Phase I, which is the point of the highest degree of unlearning
completeness. The results suggest that our method also significantly outperforms the baselines on
the upward extension task.
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(a) Forget Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(a) Forget Set

(b) Retain Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(b) Retain Set

Figure 13: Leftward extension by VQ-GAN. We retain 50% of the right half of the image. The
upper half (a) is the forget set, and the lower half (b) is the retain set. For each set, we compare the
performance of the baselines and our method on the upward extension task, where ”Ours” represents
the unlearning boundary condition in Phase I, which is the point of highest degree of unlearning
completeness. The results suggest that our method also significantly outperforms the baselines on
the upward extension task.
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Figure 14: Outpainting by VQ-GAN under different degrees of unlearning completeness. We retain
25% of the image center. The upper half (a) is the forget set, while the lower half (b) is the retain set.
For each part, we compare the unlearning effects of our method at different values of ε. ”Highest”
and ”Lowest” represent the conditions of the highest and lowest degree of unlearning completeness,
respectively. We increase ε 16% each time.
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I.2.2 UPWARD EXTENSION TASK

We retain the lower half of the image center and crop the upper half, employing VQ-GAN for image
extension. As shown in Figure 15, results indicate that, with an increase in the value of ε, the
upward extension effectiveness on the forget set of our controllable unlearning framework gradually
improves. Concurrently, the degree of decrease in upward extension effectiveness on the retain set,
in comparison to the original model, also diminishes.
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Lowest Degree

(b) Retain Set

Figure 15: Upward extension by VQ-GAN under different degrees of unlearning completeness. We
retain 50% of the lower half of the image. The upper half (a) is the forget set, while the lower half
(b) is the retain set. For each part, we compare the unlearning effects of our method at different
values of ε. ”Highest” and ”Lowest” represent the conditions of the highest and lowest degree of
unlearning completeness, respectively. We increase ε 16% each time.

I.2.3 LEFTWARD EXTENSION TASK

We retain the right half of the image and utilize VQ-GAN to extend the image from the left. The
results in Figure 16 demonstrate that the leftward extension performance on the forget set of our
controllable unlearning framework progressively improves with the increase of ε, and the reduction
in leftward extension performance on the retain set is also diminishing compared to the original
model.
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Figure 16: Leftward extension by VQ-GAN under different degrees of unlearning completeness.
We retain 50% of the right half of the image. The upper half (a) is the forget set, while the lower
half (b) is the retain set. For each part, we compare the unlearning effects of our method at different
values of ε. ”Highest” and ”Lowest” represent the conditions of the highest and lowest degree of
unlearning completeness, respectively. We increase ε 16% each time.
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I.3 VARYING CROPPING PATTERNS AND RATIOS

In the preceding sections, we have demonstrated the performance of our controllable unlearning
framework under various cropping patterns, yet the cropping ratio remained constant. By altering
the cropping ratio on VQ-GAN, we validate the effectiveness of our controllable unlearning frame-
work at different cropping ratios. The results indicate that our controllable unlearning framework is
robust to different cropping ratios. Simultaneously, compared to larger cropping ratios, the extent of
variation in the images generated under our controllable unlearning framework will be smaller for
smaller cropping ratios.

I.3.1 INPAINTING TASK

We retain one-sixteenth of the image center and use VQ-GAN for image inpainting. The results in
Figure 17 show that our controllable unlearning framework significantly outperforms the baselines
in terms of unlearning effect on the forget set, most closely approximating Gaussian noise, and
exhibits a lesser decline in unlearning effect on the retain set than the baselines. Simultaneously, we
can finely control the balance between unlearning completeness and model utility.

I.3.2 DOWNWARD EXTENSION TASK

We crop the bottom 25% of the image and utilize VQ-GAN for image extension from the bottom. As
shown in Figure 19, the results demonstrate that our controllable unlearning framework significantly
surpasses the baselines in terms of the unlearning effect on the forget set, closely approximating
Gaussian noise, and shows a lesser reduction in unlearning effect on the retain set compared to the
baselines. At the same time, we can finely adjust the balance between unlearning completeness and
model utility.

I.3.3 RIGHTWARD EXTENSION TASK

We crop the right 25% of the image and utilize VQ-GAN for image extension from the bottom. The
results in Figure 21 demonstrate that our controllable unlearning framework significantly surpasses
the baselines in terms of the unlearning effect on the forget set, closely approximating Gaussian
noise, and shows a lesser reduction in unlearning effect on the retain set compared to the baselines.
At the same time, we can finely adjust the balance between unlearning completeness and model
utility.

J T-SNE ANALYSIS FOR CONTROLLABLE UNLEARNING

In Table 2 of the main paper, we present the evaluation metrics corresponding to different degrees of
unlearning completeness solutions (i.e., IS, FID and CLIP) obtained by our controllable unlearning
framework in mainstream I2I generative models. Here, we analyze the images generated at differ-
ent degrees of unlearning completeness for each corresponding model. We use T-SNE analysis to
compare the clip embedding distances between the images generated on the forget set and retain set
and the ground truth images. As shown in Figure 23, for any model, under the highest degree of
unlearning completeness, the distance between the clip embeddings of the images generated on the
forget set by the unlearned model and the ground truth images is larger, while the distance on the
retain set is smaller. Simultaneously, as ε increases, the distance between the clip embeddings of the
images generated on the forget set by the unlearning model and the ground truth images gradually
decreases (still significantly higher than the situation of the retain set), and the distance on the retain
set also gradually decreases. Lastly, among these three mainstream I2I generation model structures,
the effect of VQ-GAN is the most significant.

K EFFICIENCY EXPERIMENTS FOR CONTROLLABLE UNLEARNING
FRAMEWORK

In the main paper, we analyze the convergence efficiency corresponding to different control func-
tions ψ(θ) at each phase from a theoretical perspective, and based upon this analysis, we aim to
enhance the unlearning efficiency of our controllable unlearning framework. Here, we validate our
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Figure 17: Generated images of cropping 25% at the center of the image. We crop the center 1/16
of the image. The upper half (a) is the forget set, and the lower half (b) is the retain set. For each set,
we compare the performance of the baselines and our method on the inpainting task, where ”Ours”
represents the extreme case of the unlearning boundary in Phase I, that is, the point of highest degree
of unlearning completeness.
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Figure 18: Generated images of cropping 50% at the center of the image under different degrees
of unlearning completeness requirements. We crop the central 1/16 of the image. The upper half
(a) represents the forget set, and the lower half (b) represents the retain set. For each section, we
compare the effectiveness of our method’s unlearning under different values of ε. Here, ”Highest”
and ”Lowest” indicate the conditions of the highest and lowest degree of unlearning completeness,
respectively.
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Figure 19: Downward extension by VQ-GAN. We crop the bottom 25% of the image. The upper
half (a) is designated as the forget set, and the lower half (b) as the retain set. For each section, we
compared the performance of the baselines and our method on the downward extension task, where
”Ours” denotes the unlearning boundary condition in Phase I, that is, the point of highest degree of
unlearning completeness.
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Figure 20: Downward extension by VQ-GAN under different degrees of unlearning completeness.
We crop the bottom 25% of the image. The upper half (a) represents the forget set, and the lower
half (b) represents the retain set. For each section, we compare the effectiveness of our method’s
unlearning under different values of ε. Here, ”Highest” and ”Lowest” indicate the conditions of the
highest and lowest degree of unlearning completeness, respectively.
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Figure 21: Rightward extension by VQ-GAN. We crop the right 25% of the image. The upper half
(a) is designated as the forget set, and the lower half (b) as the retain set. For each section, we
compared the performance of the baselines and our method on the rightward extension task, where
”Ours” denotes the unlearning boundary condition in Phase I, that is, the point of highest degree of
unlearning completeness.
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Figure 22: Rightward extension by VQ-GAN under different degrees of unlearning completeness.
We crop the right 25% of the image. The upper half (a) represents the forget set, and the lower
half (b) represents the retain set. For each section, we compare the effectiveness of our method’s
unlearning under different values of ε. Here, ”Highest” and ”Lowest” indicate the conditions of the
highest and lowest degree of unlearning completeness, respectively.
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Figure 23: T-SNE analysis between images generated by our method and ground truth images under
different degrees of unlearning completeness.

analysis on three mainstream I2I generative models. During the two different phases of controllable
unlearning, we design the form of the control function ψ(θ) separately.

Specifically, in Phase I, we set ψ(θ) = α∥∇f1(θ)∥δ , where we test the convergence rates of f1(θ)
and f2(θ), as well as the overall convergence rate, for δ = 1, δ = 2, δ = 3, and δ = 4. As
shown in Figure 24, It is apparent that at Phase I for c = 2, that is ψ(θ) = α∥∇f1(θ)∥2, the overall
convergence rate is optimal.

In Phase II, we set ψ(θ) = β(f1(θ) − ε)δ , where we tested the convergence rates for δ = 1 and
δ = 3. Subsequently, we changed the form of ψ(θ) to ψ(θ) = β(f1(θ) − ε)δ∥∇f1(θ)∥2, and we
tested the convergence rates for δ = 1 and δ = 3. Comparing the aforementioned scenarios, the
overall optimal convergence rate in Phase II is obtained when ψ(θ) = β(f1(θ)− ε)1∥∇f1(θ)∥2.
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Figure 24: The convergence rates under different control functions ψ(θ). As illustrated in figure,
include three sections: MAE, VQ-GAN, and the diffusion model. Each section contains two rows,
corresponding to Phase I and Phase II, respectively. The titles on each subplot indicate the forms of
the control function ψ(θ).
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