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ABSTRACT

Recently, the rectified flow (RF) has emerged as the new state-of-the-art among
flow-based diffusion models due to its high efficiency advantage in straight path
sampling, especially with the amazing images generated by a series of RF models
such as Flux 1.0 and SD 3.0. Although a straight-line connection between the
noisy and natural data distributions is intuitive, fast, and easy to optimize, it still
inevitably leads to: 1) Diversity concerns, which arise since straight-line paths only
cover a fairly restricted sampling space. 2) Multi-scale noise modeling concerns,
since the straight line flow only needs to optimize the constant velocity field v
between the two distributions π0 and π1. In this work, we present Discretized-RF,
a new family of rectified flow (also called momentum flow matching models since
they refer to the previous velocity component and the random velocity component
in each diffusion step), which discretizes the straight path into a series of variable
velocity field sub-paths (namely “momentum fields”) to expand the search space,
especially when close to the distribution pnoise. Different from the previous case
where noise is directly superimposed on x, we introduce noise on the velocity
v of the sub-path to change its direction in order to improve the diversity and
multi-scale noise modeling abilities. Experimental results on several representative
datasets demonstrate that learning momentum flow matching by sampling random
velocity fields will produce trajectories that are both diverse and efficient, and can
consistently generate high-quality and diverse results.

1 INTRODUCTION

Flow-based diffusion models (Lipman et al.; Bartosh et al., 2024; Luo et al., 2024; Liu et al., 2023b)
have recently attracted widespread attention, which generate a wide variety of realistic natural images
from pure noise by modeling trajectories from noise distributions to data distributions. As a milestone
work, the most popular flow models currently are the rectified flow (RF) models (Liu et al., 2023a) built

Figure 1: Graphical momentum flow trajectories.
Momentum Flow (orange) vs. Rectified Flow (blue).

upon straight-line trajectories, which signifi-
cantly improves their sampling efficiency by es-
tablishing the shortest straight-line connection
between the noise distribution π0 and the data
distribution π1. Furthermore, the models can
be easily optimized by directly calibrating this
straight-line trajectory dxt/dt = vθ at a con-
stant rate x1 − x0. Due to its high sampling
efficiency (even enabling one-step diffusion gen-
eration), RF is also considered to be one of the
fastest flow-based optimal transport models.

Though remarkable success has been witnessed, RF still suffers from limitations in diversity and
multi-scale noise modeling. Specifically, 1) Diversity concerns, which arise since the straight-line
path can only cover a fairly restricted sampling space. 2) Multi-scale noise modeling concerns, since
the straight-line flow only needs to directly optimize the constant velocity field vθ → (x1 − x0)
between the two distributions π0 and π1, instead of considering multi-scale progressive denoising.
At the other extreme, the diffusion probability models (e.g., DDPM) based on fluctuation trajectories
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have extremely strong diversity and multi-scale noise modeling capabilities but face the challenge of
training- and sampling-efficiency because they require a large number of time steps to sample, and
each step should be optimized iteratively to achieve high-fidelity modeling of the reverse trajectory.
In this work, to strike a balance and take into account both efficiency and diversity (especially the
potential diversity when close to noise distribution π1), we propose a Discretized-RF model, also
known as the momentum flow matching (MFM) model. For clarity, we first give a unified definition
of the flow transport problem and then introduce our momentum flow transport.

Flow Transport Problem Definition. Given empirical observations of two distributions x0 ∼ π0

(real data distribution) and x1 ∼ π1 (noise distribution) on Rd, define a forward transport trajectory
To : Rd → Rd that satisfies x1 := To(x0) ∼ π1 when x0 ∼ π0. At the same time, the forward
flow transport should own the estimable property of the reverse solution trajectory, that is, x0 :=
T̃θ(x1) ∼ π0 when x1 ∼ π1, which requires the trajectory to be continuous and tractable.

Momentum Flow Transport (Discritized-RF). Given the shortest optimal transport dxt/dt = v
(straight-line trajectory) at a constant rate v = x1 − x0 and a series of discretized anchor points
{z1, · · · , zT−1}, define a segmented straight-line trajectory Tx0 7→x1

= {x0, z1, · · · , zT−1,x1}
that satisfies dzt/dt = vt and vt =

√
γvt−1+

√
(1− γ)ϵt, ϵt ∼ N (0, I). Meanwhile, the endpoint

transport of this momentum flow trajectory are respectively defined as: Tx0 7→z1 : dzt/dt = v0
(initialized by x1 − x0) and TzT−1 7→x1 : dzt/dt = ϵ, ϵ ∼ N (0, I). The momentum flow ensures
that the velocity is Gaussian divergent when approaching π1, while the velocity is more deterministic
and faster when approaching π0. Note that the acceleration ϵ follows the same Gaussian distribution
N (0, I) and can therefore be easily estimated by the neural model ϵθ to obtain a learnable and
tractable inverse transport trajectory T̃x1 7→x0;θ = {x1, zT−1;θ, · · · , z1;θ,x0;θ}.
Beyond image generation, the challenge of balancing efficiency and diversity is even more pronounced
when generating 3D geometric structures, where the data lies on inherently non-Euclidean manifolds
instead of the common Euclidean manifold Rd. Consequently, to further demonstrate the scope and
applicability of our momentum flow, we extend it to the Special Euclidean group SE(3) for protein
backbone generation. In this context, each amino acid residue is represented by a frame (i.e., 3D
rigid body) in SE(3), parameterizing its spatial orientation and position. This extension is profoundly
advantageous: by leveraging the Lie algebra se(3), which is the tangent space of SE(3) and linearly
isomorphic to R6, we transform the complex nonlinear manifold of protein structures into a vector
space where rotations and translations are seamlessly unified within a single stochastic momentum
field, achieving diverse and efficient frame sampling without expensive SE(3) geodesic calculations.

The goal of this work is to extend the constant velocity field model to the acceleration field model by
learning the momentum flow matching via stochastic velocity field sampling, so as to finally derive a
compromise transport path with both speed and diversity. Main contributions are summarized below:

• A momentum-driven flow model for reasonable diversity-efficiency trade-off: Is the straighter
the flow, the better? Unlike rectified flows that are modeled on a straight-line trajectory or diffusion
models that adopt completely stochastic paths, our momentum flow discretizes the straight path into
a series of variable velocity field sub-paths. This makes the trajectory more deterministic (efficient)
near the data distribution and more random (diverse) near the noise distribution, thus achieving a
proper balance between diversity and efficiency without sacrificing straight-path advantages.

• Segmented straight-line sampling for multi-scale noise modeling: Our proposed Discretized-RF
solution trajectory (i.e., segmented flow trajectory where each small segment is a straight line) is a
better approximation of multi-scale noise-adding and denoising. It is easier to optimize than the
stochastic differential equation (i.e., fluctuation flow trajectory) and can better model multi-scale
noise than the constant velocity field differential equation (i.e., rectified flow trajectory).

• Superior performance on multiple image datasets: Extensive experiments show that our Mo-
mentum Flow achieves competitive FID and recall scores with substantially fewer denoising steps.
Specifically, on multiple image datasets, including CIFAR-10 (Krizhevsky, 2009), CelebA-HQ (Kar-
ras et al., 2018) and ImageNet (Deng et al., 2009), it consistently matches or even outperforms the
performance of Rectified Flow while requiring only half the number of sampling steps.

• High adaptability to SE(3) for protein generation: By unifying rotations and translations in
a single stochastic momentum field via se(3)-R6 isomorphism, our MFM enables efficient and
diverse frame sampling, demonstrating its better adaptability to non-Euclidean manifolds than RF.
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2 RELATED WORK

Diffusion Models: High Diversity at the Cost of Efficiency. Diffusion models (Song & Ermon,
2019; Ho et al., 2020; Song et al., 2020b; Nichol & Dhariwal, 2021; Kawar et al., 2022; Ma et al.,
2024d; Ma et al.; 2025; 2024b) have emerged as a powerful class of generative models, known for
their impressive sample diversity. However, their stochastic diffusion trajectories typically require
hundreds or thousands of sampling steps, leading to significant computational costs. To overcome
this inefficiency, researchers have proposed some optimization methods along two primary directions:
sampling acceleration strategies (Liu et al., 2022a; Salimans & Ho, 2022; Gonzalez et al., 2023;
Meng et al., 2023; Song et al., 2023; Sauer et al., 2024; Xu et al., 2024) and model architecture
improvements (Li et al., 2023; Zhao et al., 2024; Xu et al., 2024; Li et al., 2024a; Ma et al., 2024c).
For instance, DDIM (Song et al., 2020a) introduces a non-Markovian reverse process that decouples
temporal dependencies, substantially reducing the number of sampling steps. DeepCache (Ma et al.,
2024a) accelerates inference by caching and retrieving features across adjacent denoising stages to
avoid redundant computations. On the architectural side, some works enhance model efficiency by
employing custom multi-decoder U-Net designs that combine time-specific decoders with a shared
encoder (Zhang et al., 2024), or by enabling parallel decoder execution to speed up the denoising
process (Li et al., 2024b). Moreover, in the field of protein backbone generation, FrameDiff (Yim
et al., 2023b) develops a SE(3)-invariant diffusion model on SE(3)N for protein modelling, thereby
generating designable, novel and diverse monomers beyond the Protein Data Bank (PDB) (Berman
et al., 2000) without relying on a pretrained protein structure prediction network. Despite these
advances, diffusion-based models still depend on curved stochastic paths, which remain inherently
more expensive to compute than deterministic or straight-path methods. As a result, the fundamental
trade-off remains: high sample diversity comes at the expense of computational efficiency.

Rectified Flows: Faster Sampling Meets Less Diversity. Rectified flow models (Liu, 2022; Liu
et al., 2023a;b; Wang et al., 2024a; Zhu et al., 2024b; Gat et al., 2024) significantly improve sampling
efficiency over diffusion models by optimizing straight-line trajectories in probability space. However,
their deterministic and straight sampling paths fundamentally limit their diversity. To solve this issue,
various techniques have been proposed to enhance sample diversity while maintaining efficiency.
Some methods focus on optimizing noise sampling techniques (Yan et al., 2024; Wang et al., 2024c;
Liu et al., 2024), such as training on perceptually relevant noise scales (Esser et al., 2024) or sampling
from multi-modal flow directions (Guo & Schwing, 2025). Other efforts aim to improve generation
quality (Lee et al., 2024; Li et al., 2024c; Dalva et al., 2024) include applying flow matching in the
latent space of pretrained autoencoders (Dao et al., 2023), mitigating numerical errors in the ODE-
solving process (Wang et al., 2024b) or introducing posterior-mean-based optimal estimators (Ohayon
et al., 2025). Moreover, some protein-related methods (Yim et al., 2023a; Campbell et al., 2024; Lin
et al., 2024) utilize RF for protein modelling, achieving speedup during frame sampling. However,
the trade-off between sampling speed and diversity persists, motivating the development of adaptive
flow-based methods that preserve computational efficiency while enhancing sampling diversity.

Unlike previous methods, our momentum flow matching model introduces a momentum field into the
forward process, where multi-scale noise dynamically adjusts the trajectory directions to promote
sampling diversity. To improve computational efficiency, the reverse trajectory is discretized into
multiple sub-paths, each optimized via rectified flow. As a result, our model retains the fast sampling
speed of rectified flow while recovering much of the sample diversity achieved by diffusion models.

3 METHOD

In this section, we propose Momentum Flow Transport, a novel flow-based diffusion model family
that aims to achieve an effective balance between diversity and efficiency via a brand-new momentum
flow matching technique in Sec. 3.1. Momentum Flow is a dynamically compromise approximation of
multi-scale noise-adding (or de-noising) between a straight line and a fluctuating line by combinating:
1) fluctuation flow trajectory (close to x1) for diversity and 2) rectified flow trajectory (close to x0)
for efficiency. We then further introduce the momentum-guided forward process in Sec. 3.2, the
acceleration fields-driven reverse process in Sec. 3.3 and its extension to SE(3) in Sec. 3.4.

3.1 MOMENTUM FLOW MATCHING

Optimal Transport (OT). The optimization problem from noise distribution π1 to data distribution
π0 can be regarded as an optimal transport (OT) problem. Since it is extremely difficult to directly
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(b) Rectified Flow (c) DDPM(a) Momentum Flow

𝜋0

Momentum Flow Rectified Flow DDPM

𝑥0 𝑥1𝑢𝑡 = 𝛾𝑡𝑣0 + 1 − 𝛾𝑡𝜖 𝑥0 𝑥1𝑢𝑡 = 𝑥1 − 𝑥0 𝑥0 𝑥1𝑝(𝑥𝑡|𝑥0, 𝑥𝑡−1)

Momentum Transport Rectified Transport Stochastic Transport𝜋1 𝜋0 𝜋1 𝜋0 𝜋1

Figure 2: Overview of Momentum Flow. Compared with Rectified Flow (Liu et al., 2023a) (Efficiency-
OT) and DDPM (Ho et al., 2020) (Diversity-OT), the momentum flow tends to explore diversity when
close to noise distribution π1, and tends to focus on efficiency when close to data distribution π0.

solve the trajectory fromπ1 toπ0, recent flow-based methods (Lipman et al.; Liu et al., 2023a) usually
first give a tractable forward trajectory To to transport any x0 ∼ π0 to x1 ∼ N (0, I) (approximation
of π1), and then solve the posterior p(π0|π1) = T̃θ(π1) via a flow-matching trajectory estimator T̃θ,

π1 = To(π0) =

∫
dztTo (π1 | zt)π (zt) , π0 = T̃θ(π1) =

∫
dz(0:T )π (zT )

T∏
t=1

p (zt−1 | zt) .

(1)
Stochastic Transport (Diversity-OT) and Rectified Transport (Efficiency-OT). Stochastic Trans-
port (Ho et al., 2020; Song et al., 2020a) and Rectified Transport (Liu et al., 2023a;b) are two common
optimal transport methods, which are respectively known for their high sampling quality (diversity)
and fast sampling speed (efficiency). However, they both struggle with the balance between efficiency
and diversity, either relying on overly divergent sampling steps (trajectory variance βT → ∞) or
predefined straight trajectories (βT = 0). Our work aims to find a balanced trajectory To in terms of
optimal efficiency and optimal diversity so that the trajectory variance tends to 0 when close to data
distribution π0 (for efficiency) and tends to∞ when close to noise distribution π1 (for diversity).

Momentum Field (Acceleration Field). In order to find a balanced trajectory, we introduce the
momentum field. That is a variable velocity field referring to the previous velocity component and
the random velocity component in each diffusion step. Let ν = {vt}T−1

0 represent the momentum
field (for guiding x0 to x1), vt denote the velocity vector from time t to time t+ 1, we have:

dzt
dt

= vt, vt =


β(ϵ0 − x0) if t = 0
√
γtvt−1 +

√
1− γtβϵt if 0 < t < T

βϵT if t = T.

(2)

Here zt ∼ π(zt) is the middle noise-perturbed distribution during the forward diffusion process
and {γt}T−1

1 is the momentum decay coefficient, which can be chosen as a constant γ (γ < 1) or
a positive decreasing series. We choose the former in our work. For convenience, β denotes the
normalization coefficient β := (

√
γ − 1)/(

√
γT − 1) and {ϵt}T0 ∼ N (0, I) denotes the standard

Gaussian noises. Under the influence of this momentum field, for ∀ x0 ∼ π0 and x1 ∼ π1, data x0

will gradually transform into noise x1 via the trajectory Tx0 7→x1 = {x0, z1, · · · , zT−1,x1}. Note
this momentum field {vt}T−1

0 maintains the dynamics of the rectified flow (Liu et al., 2023a) during
the initial noise-adding stage with the fastest initial vector v0 = β(ϵ0 − x0). As the velocity v0 is
gradually noise-perturbed until approaching the noise βϵT , we complete the progressively diverse
modeling of an OT trajectory Tx0 7→x1 . Similar to DDPM (Ho et al., 2020), we can directly obtain the
momentum vt at any timestep t via the one-step update formula as (see App. B for details),

vt =
√
γ̄tv0 +

√
1− γ̄tβϵt, v0 = β(ϵ0 − x0), (3)

where γ̄t :=
∏t

i=1 γi. As derived from eq. (3), the proportion of v0 in vt decays exponentially with
increasing t. This indicates that during the forward process, the momentum vt gradually deviates
from the linear direction defined by v0, thereby progressively expanding the exploration diversity.

Momentum Flow Matching Objective. Building upon the flow matching framework for velocity
field regression, we optimize the optimal transport (OT) problem by minimizing the MSE between
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Algorithm 1: Momentum Flow Transport: Forward Process
1: Procedure: To = MomentumField((z0, zT )):
2: Input: z0 ∼ π0, zT = ϵ0 ∼ π1, T , {γt}T−1

1 , β, v0 = β(ϵ0 − z0).
3: For t← 1 to T do repeat noise disturbance:

• ϵt ∼ N (0, I).
• zt = zt−1 + vt−1.
• vt =

√
γtvt−1 +

√
1− γtβϵt.

4: Return: Trajectory To = {z0, z1, · · · , zT−1, zT }.

predicted momentum and ground-truth. The momentum flow matching objective is formulated as:

LMFM(θ) = Et∼U [0,1]∥uθ(zt, t)− vt∥2, (4)

where θ denotes learnable parameters for neural network uθ(·, t), and t ∼ U [0, 1]. In the inference
phase, once the momentum estimate vθ;t = uθ(·, t) is obtained, the reverse OT trajectory T̃θ can be
derived, as detailed in the subsequent forward and reverse processes.

3.2 FORWARD PROCESS OF THE MOMENTUM FLOW

Let z0 = x0 ∼ π0 and zT = x1 ∼ π1 respectively denote the data and noise distributions on Rd.
When applying our momentum flow to the forward diffusion process, we can obtain the intermediate
noisy distribution {zt ∼ π(zt)}T−1

1 at discretized anchor points zt. In general, the forward diffusion
process is defined as a Markov chain that progressively injects Gaussian noise ϵ into x0 over T
timesteps according to the forward coefficient at and bt, which can be formally expressed as

q(zt|zt−1) = N (zt; atzt−1, b
2
t I), q(z(1:T )|z0) =

T∏
t=1

q(zt|zt−1). (5)

We subsequently introduce our momentum field into the classical diffusion process to adjust the bal-
ance between optimal diversity and optimal efficiency for the exploration of the forward compromise
trajectory To, and the detailed process is presented in Algorithm 1.

Forward Momentum Flow. From eq. (3), we can observe that the recursive formulation of our
momentum field shares the similar form as that in DDPM (Ho et al., 2020), allowing us to directly
obtain the prior probability distribution q(vt|vt−1) of the momentum flow:

q(vt|vt−1) = N (vt;
√
αtvt−1, (1− αt)β

2I), q(vt|v0) = N (vt;
√
ᾱtv0, (1− ᾱt)β

2I), (6)

where αt := γ and ᾱt :=
∏t

i=1 αi = γt (γ < 1 is a fixed constant). Notably, the formal alignment
between the momentum flow and the forward process in DDPM (Ho et al., 2020) also allows a
straightforward derivation of the posterior distribution pθ(vt−1|vt) of momentum flow, see Sec. 3.3.

Forward Data Flow. Based on the above momentum flow, we can further build the forward trajectory
(i.e., data flow) To = {z0, z1, · · · , zT−1, zT }, which is represented in the form of a conditional
probability distribution q(zt|zt−1). According to eq. (2) and eq. (3), the one-step forward data
distribution can be obtained (see App. C for a detailed derivation) as

q(zt|z0) = N

(
zt; (1− (

√
γt − 1
√
γ − 1

)β)z0, ((

√
γt − 1
√
γ − 1

)2 − γt − 1

γ − 1
+ t)β2I

)
. (7)

Due to β := (
√
γ − 1)/(

√
γT − 1), when computing the noise distribution π(zT ), we can elim-

inate the complex coefficient in front of z0 in eq. (7) to derive a zero-mean Gaussian distribution
(independent of the data distribution π0), which can be formally expressed as

q(zT |z0) = N

(
zT ; 0, ((

√
γT − 1
√
γ − 1

)2 − γT − 1

γ − 1
+ T )β2I

)
, (8)

This simplified formula facilitates the subsequent reverse momentum transport process and signifi-
cantly reduces computational complexity during training and inference.

5
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Algorithm 2: Momentum Flow Matching: Reverse Process

1: Procedure: T̃θ = MomentumFlow((z0, zT )):
2: Input: Momentum model uθ(·, t) : Rd × [0, 1]→ Rd with parameters θ.
3: Training: θ̂ = argminθ

∑T
t=1 E

[
∥uθ(mzt + (1−m)zt−1,m)− (zt − zt−1)∥2

]
,

with m ∼ U [0, 1].
4: For t← T to 1 do repeat sampling:

• Draw (zt−1, zt) from π(zt−1)× π(zt), with zt−1 ∼ π(zt−1) and zt ∼ π(zt).
• Solve ODE: dzt

dt = uθ(z
m
t ,m), with z0 ∼ π0.

• Return: Sub-trajectory zt = {zmt : m ∈ [0, 1]}.
5: Return: Trajectory T̃θ = {zt : t ∈ [0, 1]}.

3.3 REVERSE PROCESS OF THE MOMENTUM FLOW

The reverse process of the momentum flow aims to restore noise distribution π1 to data distribution
π0 via an inverse trajectory T̃θ = {zT , zT−1;θ, · · · , z1;θ, z0;θ}, which is estimated by a neural
network for approximating zt;θ ∼ π(zt;θ). To achieve this, we can approximate the momentum
field {vt}T−1

0 and then utilize the relationship zt−1;θ = zt;θ − vt−1;θ to estimate zt−1;θ from zt;θ
and vt−1;θ, as illustrated in Algorithm 2. We denote the estimated values of (zt,vt) as (zt;θ,vt;θ).
Based on this framework, we discuss two ways to approximate the momentum field. The first way
is to approximate vt by estimating pθ(vt−1|vt). Benefiting from the formal similarity between the
forward momentum flow and the DDPM formulation (Ho et al., 2020), we can derive directly the
corresponding posterior distribution and estimate vt−1;θ from vt;θ by training a noise predictor ϵθ:

pθ(vt−1|vt) = N

(√
γ
(
1− γt−1

)
+
√
γt−1(1− γ)

1− γt
vt −

(1− γ)βϵθ√
γ(1− γt)

,
(1− γ)

(
1− γt−1

)
1− γt

β2I

)
,

(9)

vt−1;θ =

√
γ
(
1− γt−1

)
+
√
γt−1(1− γ)

1− γt
vt;θ −

(1− γ)βϵθ√
γ(1− γt)

+

√
(1− γ) (1− γt−1)

1− γt
βϵ. (10)

The second method directly approximates vt by employing rectified flow on each sub-path. Specifi-
cally, between each adjacent intermediate noise-perturbed distribution pair (π(zt),π(zt−1)) at the
discretized anchor point pair (zt, zt−1), we insertM intermediate points z(m)

t−1 via linear interpolation:

z
(m)
t−1 = mzt + (1−m)zt−1, (11)

where m ∼ U [0, 1]. To enhance sampling efficiency, we apply rectified flow to formulate a straight
path for each sub-path {π(zt)→ π(zt−1)}T1 , with the network uθ(·, t) trained to match the corre-
sponding velocity vt−1 = zt − zt−1. Therefore, the original objective, i.e., eq. (4), is reformulated
into the following optimization objective:

LMFM(θ) =

T∑
t=1

Et∼U [0,1]

[
∥uθ(mzt + (1−m)zt−1,m)− (zt − zt−1)∥2

]
. (12)

The second method achieves much higher computational efficiency than DDPM by using rectified
flow to optimize the trajectory. Therefore, we follow the second method in all experiments.

3.4 MOMENTUM FLOW MATCHING ON SE(3)

We now describe the extension of our MFM to protein backbone generation. The backbone atom
positions of each residue in a protein backbone are parameterized by a rigid transformation T ∈ SE(3).
Each frame T = (r, x) consists of a rotation matrix r ∈ SO(3) and a translation vector x ∈ R3. A
protein backbone consists of N residues meaning it can be parameterized as T = [T (1), . . . , T (N)]
with T ∈ SE(3)N . For notational simplicity, our extension focuses on a single frame but applies to
all frames in a backbone since SE(3)

N is a product space and we use an additive metric over frames.
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Different from previous methods where noise is directly superimposed on T ∈ SE(3), we introduce
noise on its tangent space se(3) to characterize momentum. Specifically, the Lie algebra se(3)
consists of all infinitesimal generators of rigid body motions and can be formally represented as:

se(3) =

{(
[ω]× v
0 0

)
∈ R4×4

∣∣∣∣ ω,v ∈ R3

}
, (13)

where [ω]× denotes the rotation generator corresponding to the angular velocity ω and v denotes the
translation generator, i.e., linear velocity. Thus, each element in se(3) is uniquely determined by 6
parameters (ω,v) ∈ R6. Moreover, benefiting from the linear isomorphism se(3) ∼= R6, calculations
can be simplified smoothly from the complex nonlinear manifold SE(3) to the vector space R6.

4 EXPERIMENTS

In this section, we conduct experiments using the rectified flow framework implemented in PyTorch
to evaluate the image generation diversity and efficiency of the proposed momentum flow model.
The primary objectives are to compare the generating performance between momentum flow and
rectified flow, and to analyze the impact of the momentum field on the diversity and speed of the
generative process. The results show that momentum flow retains the fast sampling capability of
straight velocity fields. In addition, by injecting multi-scale noise through the momentum fields, the
diversity and the quality of the generated images are significantly enhanced.

4.1 UNCONDITIONED IMAGE GENERATION

Experiment Settings. We build upon the official open-source implementation as the foundation
of our model framework, and all experiments are conducted as illustrated in Table 4. To maximize
performance within our computational budget, we conduct a grid search over learning rates and
weight decay parameters. For evaluation, we generate 50, 000 samples from each model and evaluate
generating quality and diversity using the Fréchet Inception Distance (FID) (Seitzer, 2020) and the
recall value (Sajjadi et al., 2018). As ’recall’ is defined as the coverage rate of generated samples over
the real data distribution, we evaluate the diversity of generated samples by calculating the Recall
value. Additional training and implementation details are provided in App. E.

Table 1: Quantitative results on the CIFAR-10
dataset, while γ = 0.99 in our Momentum Flow.

method NFE FID↓
RectifiedFlow (Liu et al., 2022b) 50 50.26
NanoFlow (Zhu et al., 2024a) 50 47.40
MomentumFlow (ours) 50 45.66

Comparison on CIFAR-10. We report uncondi-
tional image generation results on the CIFAR-10
dataset (Krizhevsky, 2009). We train all models
for 20,000 steps with a batch size of 1, 024. In
Table 1, the FID-50K scores are obtained using
50-NFE sampling. All entries employ the same
U-Net architecture, applied directly in the pixel
space. On this dataset, our method demonstrates
a clear advantage over prior approaches.

Table 2: Quantitative results on CelebA-HQ and
ImageNet-64 datasets. Here Ŝtep is the number of
denoising steps in each sub-path (γ = 0.98).

N Ŝtep
CelebA-HQ ImageNet-64

FID ↓ NFE ↓ Recall ↑ FID ↓ NFE ↓ Recall ↑

1 (Rectified Flow)
10 98.98 10 0.268 61.48 10 0.366
50 65.38 50 0.384 42.42 50 0.457

100 58.90 100 0.445 41.83 100 0.451

2 (Ours)
5 84.61 10 0.345 60.34 10 0.368
25 54.07 50 0.457 41.99 50 0.454
50 50.57 100 0.488 41.77 100 0.459

5 (Ours)
2 110.72 10 0.177 104.06 10 0.258
10 99.57 50 0.249 96.70 50 0.294
20 94.61 100 0.261 94.87 100 0.294

Comparison on CelebA-HQ and ImageNet.
As shown in Table 2, the momentum flow model
consistently achieves superior performance com-
pared to the rectified flow model, as evidenced
by significantly lower FID and higher recall val-
ues across various settings. The improvements
on CelebA-HQ dataset are significant, achieving
an average improvement of over 11 FID points
and 0.06 recall values. In addition, when reduc-
ing the number of function evaluations (NFE)
from 100 to 10, the performance degradation
is minimal, and the model remains competitive
with rectified flow under the same sampling bud-
get, highlighting the efficiency of our method
grounded in balanced transport (OT). These results indicate that the momentum flow model preserves
the fast sampling efficiency of rectified flow while generating higher-quality images.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

𝑁 = 2
𝛾 = 0.98

𝑁 = 5
𝛾 = 0.99

𝑁 = 5
𝛾 = 0.98

𝑁 = 1
𝛾 = 1

O
u
rs

N
an
o

Fl
o
w

𝑁 = 5
𝛾 = 0.99

𝑁 = 5
𝛾 = 0.98

𝑁 = 2
𝛾 = 0.98

𝑁 = 1
𝛾 = 1

Figure 3: Samples of different datasets. Top: Samples on the CIFAR-10 dataset. Bottom: Momentum
Flow samples with varying N and γ, shown for CelebA-HQ (left) and ImageNet-64 (right).
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Figure 4: (a) shows the relationship between model performance (FID, Recall) and the γ setting. (b)
illustrates the relationship between denoising steps and the quality of the generated images.

As shown in Figure 3, the deterministic nature of straight-line modeling in rectified flow leads to
noticeable distortions in local details (e.g., mouth, eyes, and accessories). In contrast, the momentum
flow model employs momentum-guided trajectories to explore a broader space, resulting in signif-
icantly improved detail generation. By dynamically injecting controllable velocity deviations via
the momentum field, our method enhances both generating diversity and fidelity on high-resolution
datasets such as CelebA-HQ, highlighting the effectiveness of multi-scale noise in guiding generation.

Acceleration Process of Momentum Flow. We empirically evaluate the efficiency of momentum
flow in image generation. Although additional noise is injected into the velocity field, the linear
straight structure ensures a constant velocity within each sub-path. This design preserves the
efficiency of the original rectified flow. We compare the visual quality of generated images under
different total denoising step settings: 10 and 50 steps while more examples can be found in the
appendix . Momentum flow achieves comparable or even superior results to rectified flow with only
half the number of sampling steps, as highlighted in the red-marked values in Table 2. These results
demonstrate momentum flow inherits the acceleration advantages of rectified flows while further
benefiting from enhanced flexibility.

Sampling Efficiency and Generating Diversity. Under a fixed image input, we compare the number
of sampling steps under the same network architecture to assess their sampling efficiency. The
Momentum Flow model achieves superior performance within the same time budget and requires
fewer steps to reach comparable results, demonstrating its strong sampling efficiency. As shown in
Figure 3, our method exhibits significant advantages in object color, shape, and background, and by
adjusting N and γ, Momentum Flow can produce more diverse colors and finer rendering details.
These results confirm that our model effectively balances efficiency and diversity in the generative
process, as visually shown in Figure 4.

Momentum Decay Coefficient. In our model framework, the decay coefficient γ controls the level
of noise perturbation by modulating the influence of the momentum flow, thereby enabling dynamic
refinement of the forward trajectory. We observe that decreasing γ causes the momentum flow
to deviate more rapidly from the initial momentum direction v0, which expands the exploration
region and enhances sample diversity. However, excessive decay in the early stages may weaken
the guidance from the initial momentum v0, so γ should not be set too low. As shown in Figure 4,
when the number of noise-injecting steps is set to N = 2, a decay coefficient of γ = 0.99 results in
significantly lower FID scores and higher recall values compared to γ = 0.999 and γ = 0.98. In
contrast, when N = 5, the best performance is achieved with γ = 1, indicating that a larger number
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Figure 5: Reverse trajectories of momentum flow and rectified flow at different denoising steps,
where the optimized velocity field of momentum flow improves image details.

of forward steps N requires a slower decay (i.e., a γ closer to 1) to maintain effective guidance of
v0. These experimental results suggest that appropriately selecting the decay coefficient γ and the
number of velocity steps N can substantially improve both quality and diversity of generated images.

Broader Analysis. We compare the sampling processes of rectified flow and momentum flow
to assess the advantages of our method in the denoising trajectory. In the early stages of genera-
tion—specifically the first few sampling steps—the results of both models appear similar. To illustrate
this, we select zt at t = 0.4 and perform a single denoising step using the predicted velocity field
to obtain a reference image, as shown on the right side of Figure 5. While the early-stage images
generated by both methods show no notable differences, particularly in regions such as the hair,
momentum flow exhibits a clear advantage in detail fidelity after passing the anchor point (t = 0.5).

Ignoring the refinement methods like distillation (Lee et al., 2024; Zhao et al., 2024), the initial
velocity field often struggles to effectively bridge the gap between the noise and data distributions
due to its reliance on fixed straight-line trajectories. The strength of our method lies in its ability
to encourage broader exploration of the data space. By introducing momentum-guided velocity
deviations, the model is not constrained to a fixed straight-line trajectory. Instead, it gains the
flexibility to adjust its path dynamically.

4.2 RESULTS OF PROTEIN BACKBONE GENERATION

Table 3: Protein backbone generation results.

Model Sampling Accuracy Metrics Confidence Metrics
scTM (> 0.5)↑ scRMSD↓ pLDDT↑ pAE↓

GENIE SDE 0.09 (0.0) 27.97 55.03 19.65
FrameFlow ODE 0.39 (0.15) 9.92 59.09 12.64
Ours MFM 0.47 (0.45) 8.05 70.09 9.50

To verify the effectiveness of Momentum Flow
on the protein monomer generation task, fol-
lowing GENIE (Lin & AlQuraishi, 2023) and
FrameFlow (Yim et al., 2023a), we train it on
the SCOPe dataset (Chandonia et al., 2022) with
proteins below length 128 for a total of 3, 938
examples. During evaluation, we sample 10 backbones for every length between 60 and 3001 then
use ProteinMPNN (Dauparas et al., 2022) to design 8 sequences for each backbone. We then evaluate
the quality of generated proteins based on four metrics: scTM, scRMSD, pLDDT, and pAE. The
quantitative results are reported in Table 3. See App. H for complete settings and detailed analysis.

5 CONCLUSIONS

Discretized-RF proposes a compromise transport method to balance the trade-off between diversity
and efficiency. By injecting multi-scale noise perturbations based on momentum flow and formulating
discretized straight-line trajectories, our approach effectively optimizes two key limitations of previous
models: restricted generating diversity and high computational cost. Extensive experiments show
that the momentum flow model achieves both high-quality image generation and fast sampling speed.
Looking ahead, we believe the Discretized-RF framework offers a promising direction for designing
more flexible flow trajectories and further exploring the diversity-efficiency optimal method.

1The upper limit of 300 here differs from the upper limit of 128 during training. We increase the upper limit
during evaluation to demonstrate the generalization of our model in generating long sequence proteins.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kingma DP Ba J Adam et al. A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
1412(6), 2014.

Grigory Bartosh, Dmitry P Vetrov, and Christian Andersson Naesseth. Neural flow diffusion models:
Learnable forward process for improved diffusion modelling. Advances in Neural Information
Processing Systems, 37:73952–73985, 2024.

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research, 28(1):
235–242, 2000.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

John-Marc Chandonia, Lindsey Guan, Shiangyi Lin, Changhua Yu, Naomi K Fox, and Steven E
Brenner. Scope: improvements to the structural classification of proteins–extended database to
facilitate variant interpretation and machine learning. Nucleic acids research, 50(D1):D553–D559,
2022.

Yusuf Dalva, Kavana Venkatesh, and Pinar Yanardag. Fluxspace: Disentangled semantic editing in
rectified flow transformers, 2024. URL https://arxiv.org/abs/2412.09611.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space, 2023. URL
https://arxiv.org/abs/2307.08698.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning–based
protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

RA Engh and R Huber. Structure quality and target parameters. International Tables for Crystallog-
raphy, 2012.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
Forty-first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=FPnUhsQJ5B.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi
Adi, and Yaron Lipman. Discrete flow matching. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 133345–133385. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/f0d629a734b56a642701bba7bc8bb3ed-Paper-Conference.pdf.

Martin Gonzalez, Nelson Fernandez Pinto, Thuy Tran, elies Gherbi, Hatem Hajri, and Nader
Masmoudi. Seeds: Exponential sde solvers for fast high-quality sampling from diffusion mod-
els. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 68061–68120. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/d6f764aae383d9ff28a0f89f71defbd9-Paper-Conference.pdf.

Pengsheng Guo and Alexander G. Schwing. Variational rectified flow matching, 2025. URL
https://arxiv.org/abs/2502.09616.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

10

https://arxiv.org/abs/2412.09611
https://arxiv.org/abs/2307.08698
https://openreview.net/forum?id=FPnUhsQJ5B
https://openreview.net/forum?id=FPnUhsQJ5B
https://proceedings.neurips.cc/paper_files/paper/2024/file/f0d629a734b56a642701bba7bc8bb3ed-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f0d629a734b56a642701bba7bc8bb3ed-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d6f764aae383d9ff28a0f89f71defbd9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d6f764aae383d9ff28a0f89f71defbd9-Paper-Conference.pdf
https://arxiv.org/abs/2502.09616


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. In Proceedings of the International Conference on
Learning Representations (ICLR), 2018. URL https://arxiv.org/abs/1710.10196.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. arXiv preprint arXiv:2201.11793, 2022.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report TR-2009,
University of Toronto, 2009.

Adam Leach, Sebastian M Schmon, Matteo T Degiacomi, and Chris G Willcocks. Denoising diffusion
probabilistic models on so (3) for rotational alignment. In ICLR 2022 workshop on geometrical
and topological representation learning, 2022.

Sangyun Lee, Zinan Lin, and Giulia Fanti. Improving the training of rectified flows. Advances in
Neural Information Processing Systems, 37:63082–63109, 2024.

Muyang Li, Tianle Cai, Jiaxin Cao, Qinsheng Zhang, Han Cai, Junjie Bai, Yangqing Jia, Kai Li,
and Song Han. Distrifusion: Distributed parallel inference for high-resolution diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7183–7193, 2024a.

Senmao Li, Taihang Hu, Joost van de Weijer, Fahad Shahbaz Khan, Tao Liu, Linxuan Li,
Shiqi Yang, Yaxing Wang, Ming-Ming Cheng, and Jian Yang. Faster diffusion: Rethink-
ing the role of the encoder for diffusion model inference. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neu-
ral Information Processing Systems, volume 37, pp. 85203–85240. Curran Associates, Inc.,
2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/9ad996b5c45130de2bc00b60d8607904-Paper-Conference.pdf.

Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Zichun Liao, Yusuke Kato, Kazuki Kozuka,
and Aditya Grover. Omniflow: Any-to-any generation with multi-modal rectified flows. arXiv
preprint arXiv:2412.01169, 2024c.

Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. Snapfusion: Text-to-image diffusion model on mobile devices within two seconds.
Advances in Neural Information Processing Systems, 36:20662–20678, 2023.

Haitao Lin, Odin Zhang, Huifeng Zhao, Dejun Jiang, Lirong Wu, Zicheng Liu, Yufei Huang, and
Stan Z Li. Ppflow: Target-aware peptide design with torsional flow matching. arXiv preprint
arXiv:2405.06642, 2024.

Yeqing Lin and Mohammed AlQuraishi. Generating novel, designable, and diverse protein structures
by equivariantly diffusing oriented residue clouds. arXiv preprint arXiv:2301.12485, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
for generative modeling. In The Eleventh International Conference on Learning Representations.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds, 2022a. URL https://arxiv.org/abs/2202.09778.

Peng Liu, Dongyang Dai, and Zhiyong Wu. Rfwave: Multi-band rectified flow for audio waveform
reconstruction, 2024. URL https://arxiv.org/abs/2403.05010.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport, 2022. URL
https://arxiv.org/abs/2209.14577.

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In The Eleventh International Conference on Learning Representations, 2022b.

11

https://arxiv.org/abs/1710.10196
https://proceedings.neurips.cc/paper_files/paper/2024/file/9ad996b5c45130de2bc00b60d8607904-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9ad996b5c45130de2bc00b60d8607904-Paper-Conference.pdf
https://arxiv.org/abs/2202.09778
https://arxiv.org/abs/2403.05010
https://arxiv.org/abs/2209.14577


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. In The Eleventh International Conference on Learning
Representations (ICLR), 2023a.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference on
Learning Representations, 2023b.

Ao Luo, Xin Li, Fan Yang, Jiangyu Liu, Haoqiang Fan, and Shuaicheng Liu. Flowdiffuser: Advancing
optical flow estimation with diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 19167–19176, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 15762–15772, June 2024a.

Zhiyuan Ma, Guoli Jia, Biqing Qi, and Bowen Zhou. Safe-sd: Safe and traceable stable diffusion
with text prompt trigger for invisible generative watermarking. In ACM Multimedia 2024.

Zhiyuan Ma, Guoli Jia, and Bowen Zhou. Adapedit: Spatio-temporal guided adaptive editing
algorithm for text-based continuity-sensitive image editing. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 4154–4161, 2024b.

Zhiyuan Ma, Zhihuan Yu, Jianjun Li, and Bowen Zhou. Lmd: faster image reconstruction with latent
masking diffusion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 4145–4153, 2024c.

Zhiyuan Ma, Liangliang Zhao, Biqing Qi, and Bowen Zhou. Neural residual diffusion models for
deep scalable vision generation. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024d.

Zhiyuan Ma, Yuzhu Zhang, Guoli Jia, Liangliang Zhao, Yichao Ma, Mingjie Ma, Gaofeng Liu,
Kaiyan Zhang, Ning Ding, Jianjun Li, et al. Efficient diffusion models: A comprehensive survey
from principles to practices. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2025.

Siegfried Matthies, J Muller, and GW Vinel. On the normal distribution in the orientation space.
Texture, Stress, and Microstructure, 10(1):77–96, 1988.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 14297–14306, June 2023.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Guy Ohayon, Tomer Michaeli, and Michael Elad. Posterior-mean rectified flow: Towards mini-
mum mse photo-realistic image restoration, 2025. URL https://arxiv.org/abs/2410.
00418.

Frank C Park and Roger W Brockett. Kinematic dexterity of robotic mechanisms. The International
Journal of Robotics Research, 13(1):1–15, 1994.

Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
generative models via precision and recall. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models, 2022.
URL https://arxiv.org/abs/2202.00512.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. In European Conference on Computer Vision, pp. 87–103. Springer, 2024.

12

https://arxiv.org/abs/2410.00418
https://arxiv.org/abs/2410.00418
https://arxiv.org/abs/2202.00512


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid, August 2020. Version 0.3.0.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
scaffolding problem. arXiv preprint arXiv:2206.04119, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Fu-Yun Wang, Ling Yang, Zhaoyang Huang, Mengdi Wang, and Hongsheng Li. Rectified diffusion:
Straightness is not your need in rectified flow, 2024a. URL https://arxiv.org/abs/2410.
07303.

Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu
Li, and Ying Shan. Taming rectified flow for inversion and editing, 2024b. URL https:
//arxiv.org/abs/2411.04746.

Yongqi Wang, Wenxiang Guo, Rongjie Huang, Jiawei Huang, Zehan Wang, Fuming You, Ruiqi Li,
and Zhou Zhao. Frieren: Efficient video-to-audio generation with rectified flow matching. arXiv
e-prints, pp. arXiv–2406, 2024c.

Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale
text-to-image generation via diffusion gans. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8196–8206, 2024.

Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, and Jiashi Feng. Perflow:
Piecewise rectified flow as universal plug-and-play accelerator. arXiv preprint arXiv:2405.07510,
2024.

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023a.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277, 2023b.

Huijie Zhang, Yifu Lu, Ismail Alkhouri, Saiprasad Ravishankar, Dogyoon Song, and Qing Qu.
Improving training efficiency of diffusion models via multi-stage framework and tailored multi-
decoder architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7372–7381, June 2024.

Yang Zhao, Yanwu Xu, Zhisheng Xiao, Haolin Jia, and Tingbo Hou. Mobilediffusion: Instant
text-to-image generation on mobile devices. In European Conference on Computer Vision, pp.
225–242. Springer, 2024.

Kan Zhu, Yilong Zhao, Liangyu Zhao, Gefei Zuo, Yile Gu, Dedong Xie, Yufei Gao, Qinyu Xu, Tian
Tang, Zihao Ye, Keisuke Kamahori, Chien-Yu Lin, Stephanie Wang, Arvind Krishnamurthy, and
Baris Kasikci. Nanoflow: Towards optimal large language model serving throughput, 2024a. URL
https://arxiv.org/abs/2408.12757.

13

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://arxiv.org/abs/2410.07303
https://arxiv.org/abs/2410.07303
https://arxiv.org/abs/2411.04746
https://arxiv.org/abs/2411.04746
https://arxiv.org/abs/2408.12757


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yixuan Zhu, Wenliang Zhao, Ao Li, Yansong Tang, Jie Zhou, and Jiwen Lu. Flowie: Efficient image
enhancement via rectified flow. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 13–22, June 2024b.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ORGANIZATION OF THE SUPPLEMENTARY

In this supplementary, we first provide a detailed proof of the one-step momentum update in App. B.
In App. C, we derive the one-step forward data distribution. In App. D, we conduct a toy experiment
to illustrate the theoretical background of our momentum flow. In App. E, we present additional
image experiments and more complete ablation studies. In particular, we recall in App. F some
important theoretical preliminaries about SO(3) and SE(3). Using these, we introduce in App. G
our protein backbone parameterization, the conversion between coordinates and frames, and the
architecture of FramePred. In App. H, we show more detailed analysis of protein experiments.

B PROOF OF THE ONE-STEP MOMENTUM UPDATE

In this section, we provide a detailed proof of the one-step update based on the recursive formulation
(refer to eq. (2)) of the momentum field {vt}T−1

0 . The specific proof process is as follows:

vt =
√
γtvt−1 +

√
1− γtβϵt

=
√
γtγt−1vt−2 +

√
γt − γtγt−1βϵt +

√
1− γtβϵt−1

=
√
γtγt−1vt−2 +

√
1− γtγt−1βϵt

= · · ·
=
√
γtγt−1 · · · γ1v0 +

√
1− γtγt−1 · · · γ1βϵt

=
√
γ̄tv0 +

√
1− γ̄tβϵt

(14)

where γ̄t :=
∏t

i=1 γi.

C PROOF OF THE ONE-STEP FORWARD DATA DISTRIBUTION

In the forward process, the data distribution evolves under the momentum field {vt}T−1
0 . According

to the one-step momentum update formula (refer to eq. (3)), the forward data distribution π(zt)
originates from the π0, perturbed by a exponentially scaled decaying contribution of the initial
momentum v0, along with random noise ϵt. The specific derivation process is as follows:

zt = zt−1 + vt−1

= z0 + v0 + v1 + v2 + · · ·+ vt−1

= z0 + v0(1 +
√
γ +

√
γ2 + · · ·+

√
γt−1) +

t−1∑
i=1

√
1− γiβϵi

= z0 + v0(

√
γt − 1
√
γ − 1

) +
√
t− (1 + γ + γ2 + · · ·+ γt−1)βϵt

= z0 + (ϵ0 − z0)(
√
γt − 1
√
γ − 1

)β +

√
t− γt − 1

γ − 1
βϵt

= (1− (

√
γt − 1
√
γ − 1

)β)z0 +

√
(

√
γt − 1
√
γ − 1

)2 − γt − 1

γ − 1
+ tβϵt.

(15)

Thus we have

q(zt|z0) = N

(
zt; (1− (

√
γt − 1
√
γ − 1

)β)z0, ((

√
γt − 1
√
γ − 1

)2 − γt − 1

γ − 1
+ t)β2I

)
. (16)

D MFM TOY EXPERIMENT

D.1 TOY EXPERIMENT PARAMETERIZATION

To illustrate the theoretical background of our momentum flow, we provide an example in Figure 6,
demonstrating the expected momentum flow in the forward process and the optimal transport path in
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Forward Step=10 Step=100 Step=1000 Step=10 Step=100 Step=1000Forward

(a) N=1 (Rectified Flow) (b) N=2 

(c) N=5 (d) N=10 

Figure 6: Forward and reverse trajectories of our momentum flow with different numbers N of
discretized anchor points. In our settings, blue points are sampled from π0, orange points are sampled
from π1, green points denote generated samples, and lines represent transport trajectories.

the reverse process. Momentum flow is simulated utilizing the Euler method with a constant step
size of 1/N , computed at N discrete anchor points, where N denotes the number of such points,
corresponding to the value of T in Momentum Flow. The number of sampling points on each segment
is defined as Ŝtep, and the total number of sampling steps is defined as Step = Ŝtep×N . Note that
in all experiments in this section, this notation is used by default. Moreover, we define the use of a
fully connected neural network with two hidden layers to estimate the momentum field. In practice,
the model is trained using full-batch gradient descent and optimized with the Adam optimizer.

D.2 ADDITIONAL ANALYSIS FOR MFM TOY EXPERIMENTS

As shown in Figure 6, increasing the number of discretized anchor points causes significant fluctua-
tions in the velocity field near π0 during the forward process, highlighting the impact of trajectory
complexity on learning. Furthermore, our method encourages exploration of diverse trajectories, as
evidenced by the “turning-back” phenomenon observed in the early stages of the reverse process
when the number of discretized anchor points (N ) increases. This allows for more exploration in the
space rather than directly pointing to the π0 distribution. Despite the unpredictability of the varying
velocity field, the residual correlation between the forward and reverse velocity fields, enabled by the
momentum field, facilitates velocity field prediction. Additionally, the piecewise linear nature of the
trajectory preserves the accelerated denoising capability of Rectified Flow, enabling the generation of
high-quality samples with a small number of steps while maintaining high denoising efficiency.

E ADDITIONAL IMAGE EXPERIMENTS

E.1 EXPERIMENT DETAILS

Dataset Description: We use three datasets for training, including

1. CIFAR-10: Images with a resolution of 32× 32 from the CIFAR-10 training split.

2. CelebA-HQ: Images from the ‘img_align_celeba_png.7z’ version of the CelebA-HQ dataset,
resized to 256× 256 resolution.

3. ImageNet: Images from ImageNet resized respectively to 32× 32 and 64× 64 resolutions.

Note that during training, images are normalized to have zero mean and unit variance.

Implementation Details: The experiments are implemented in PyTorch (version 2.6.0) and conducted
on an NVIDIA A800-SXM4-80GB GPU. Random seeds are set to 42 for reproducibility.

Performance Details: Given that our training commenced from scratch and employed a relatively
simple network architecture (U-net), our baseline performance is not as robust as that of most diffusion
models with more intricate designs. However, since all our experiments were conducted within the
same architectural framework that we designed, our comparisons remain fair and persuasive.

Additional Notes: Ablation studies are conducted to analyze the impact of different hyperparameters.
Hyperparameter tuning is performed using grid search over the learning rate and batch size.
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Dataset CIFAR-10 CelebA-HQ ImageNet Scope

resolution 32 256 64 -
params (M) 35 120 120 45
step 20k 70k 70k 1k
batch size 1024 128 512 40
optimizer Adam
learning rate 3e− 4
ema decay 0.9999

Table 4: Configurations for different datasets.

E.2 EXPERIMENTS ON CELEBA-HQ AND IMAGENET

As shown in Table 2, the momentum flow model consistently achieves significant improvements
on CelebA-HQ and ImageNet. By balancing N and γ,we verify that more anchor points bring
greater gains and γ should increase with the number of anchor points to reduce velocity abruptness
in momentum field.As shown in 7 and 8xuezh, a larger N brings more significant diversity, but it
may compromise image quality, so the noise intensity γ should be correspondingly adjusted. The
momentum flow model retains the fast sampling efficiency of rectified flow, while also generating
higher-quality images, as shown by these results.

N=1
𝜸 = −

N=2
𝜸 =0.98

N=5
𝜸 =0.98

N=5
𝜸 = 𝟎. 𝟗𝟗𝟗

Figure 7: The impact of adjusting N and γ on image details in Momentum Flow (Step = 50). Here
‘–’ means that γ do not influence the trajectories while N = 1.
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𝜸 =0.95 𝜸 =0.98 𝜸 =0.99 𝜸 =0.999 𝜸 = 𝟏. 𝟎

Figure 8: Generated images under different values of gamma, where both excessively large and
excessively small gamma values can deteriorate image quality (N = 2, Step = 50).

Rectified flow

Step=10

Step=50

Rectified flow

Step=10

Ours

Ours

Step=50

Figure 9: Face generation by Rectified Flow and Momentum Flow under different sampling steps.

F THEORETICAL PRELIMINARIES ABOUT SO(3) AND SE(3)

This section synthesizes the theoretical foundations of Lie groups SO(3) and SE(3) from two com-
plementary perspectives: geometric structure and representation theory. By integrating these theories,
we establish a rigorous mathematical toolkit for rigid-body transformations in computational biology.
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F.1 SO(3) LIE GROUP

The Special Orthogonal group in 3 dimensions, SO(3) consists of the 3D rotation matrices:
SO(3) =

{
r ∈ R3×3 : r⊤r = rr⊤ = I, det r = 1

}
. (17)

F.1.1 LIE ALGEBRA OF SO(3) AND HAT OPERATION

SO(3) is a matrix Lie group and its Lie algebra so(3) consists of all 3× 3 skew-symmetric matrices:
so(3) =

{
r ∈ R3×3 : r⊤ = −r

}
. (18)

so(3) is 3-dimensional and is isomorphic to the R3 vector via the hat operation (̂·) : R3 → so(3) as

r = ω̂ =

(
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

)
∈ so(3), ∀ω = (ω1, ω2, ω3)

⊤ ∈ R3. (19)

The matrix r can be uniquely identified with a vector ω ∈ R3 such that ∀v ∈ R3, rv = ω̂v = ω× v,
where × indicates the cross product. The vector ω is known as the rotation vector, i.e., angular
velocity. Moreover, the Lie bracket on so(3) corresponds to the cross product in R3:

[ω̂1, ω̂2] = ω̂1ω̂2 − ω̂2ω̂1 = ω̂1 × ω2. (20)
This so(3)-R3 isomorphism allows the rotation vector ω ∈ R3 to encode both rotation axis (direction
of ω) and angle (||ω||) in a unified framework. Specifically, the magnitude of this vector, θ = ||ω||
denotes the angle of rotation and the direction of this vector, eω = ω

||ω|| denotes the axis of rotation.

F.1.2 PARAMETERIZATIONS OF SO(3)

Here we describe two different possible parameterizations of SO(3) and its Lie algebra so(3).
Axis-angle. Let a unit vector eω = (a, b, c) ∈ S2 represent the rotation axis, where (a, b, c) ∈ R3

and a2 + b2 + c2 = 1, and θ ∈ R+ represent the rotation angle. Hence, any rotation matrix in SO(3)
can be formally written via the exponential mapping as r = exp(r) ∈ SO(3), where r = θX ∈ so(3)
and X = aX1 + bX2 + cX3

2. The parameterization of SO(3) using (eω, θ) is called the axis-angle
theory. Notably, X3 = −X and the explicit form of r can be given by the Rodrigues’ formula as

r = exp(θX) = I + sin θ ·X + (1− cos θ)X2, (21)
which provides a concise way of computing the exponential. In addition, for ∀(a, b, c), v ∈ R3,
Xv = (aX1 + bX2 + cX3)v = eω × v, X2v = (aX1 + bX2 + cX3)

2v = ⟨eω, v⟩eω − v. (22)
Then substitute these into the expression above to obtain the Rodrigues’ rotation formula:

rv = exp(θX)v = cos θ · v + sin θ · (eω × v) + (1− cos θ)⟨eω, v⟩eω. (23)
As this formula shows, exp(θX)v denotes the rotation of the vector v of angle θ around the axis eω .
Moreover, an equivalent representation defines the rotation matrix as r = exp(r) = exp(ω̂), where
ω̂ ∈ so(3) and ω = ||ω|| ω

||ω|| = θ eω is the rotation vector. So there exists another expression of r:

r = exp (ω̂) = I +
sin θ

θ
ω̂ +

1− cos θ

θ2
ω̂2. (24)

Notably, it is continuous at θ = 0, yielding the identity matrix I . And the vector rotation formula is:

rv = exp (ω̂) v = cos θ · v +
sin θ

θ
(ω × v) +

1− cos θ

θ2
⟨ω, v⟩ω. (25)

Euler angles. Rotation can also be decomposed into sequential elementary rotations about coor-
dinate axes. A common convention is to utilize the x-convention with three angles (ψ, ϕ, φ) ∈ R3.
Specifically, the rotation is given by: a rotation about the z-axis by ψ, a second rotation about the
former x-axis by ϕ, and a last one about the former z-axis by φ. It can be formally expressed as
r = exp [ψX3] exp [ϕX1] exp [φX3]

=

(
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

)(
1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

)(
cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

)
.

(26)

Technically speaking, these three angles ψ, ϕ, φ are called the Euler angles: ψ is called the precession
angle, ϕ is called the nutation angle, and φ is called the angle of proper rotation (or spin).

2X is a skew-symmetric matrix in so(3) and (X1, X2, X3) is the standard basis of so(3).
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F.1.3 METRIC ON SO(3)

The metric on a Lie group G is a smooth assignment of the inner product to each of its tangent space
TgG3, where g ∈ G. Thus, a common way to construct a metric onG is to first define the inner product
on g and then extend it to the entire group via left (or right) translation. A particularly important class
is the bi-invariant metric, which maintains invariant under both left and right translations.

Let Q be a symmetric positive-definite matrix defining a quadratic form on g, formally expressed as

Q =

(
A B⊤

B C

)
. (27)

Depending on the matrix Q, the inner product between two elements X0, Y0 ∈ g is given by
⟨X0, Y0⟩g = tr(X⊤

0 QY0). (28)
Then this inner product on g can be extended to a left-invariant metric on g ∈ G via

⟨u, v⟩TgG = ⟨dLg−1u, dLg−1v⟩g, ∀u, v ∈ TgG. (29)
Specifically, to calculate the inner product of two tangent vectors u, v ∈ TgG at g ∈ G, we first use the
differential dLg−1(·)4 to “pull back” u, v to the identity element e, thus becoming U = dLg−1(u) ∈ g
and V = dLg−1(v) ∈ g, and then use the inner product ⟨·, ·⟩g defined in advance to calculate the
inner product of U and V . This result is further defined as the inner product of u and v at g ∈ G.
Similarly, this inner product on g can also be extended to a right-invariant metric on h ∈ G via

⟨m,n⟩ThG = ⟨dRh−1m, dRh−1n⟩g, ∀m,n ∈ ThG. (30)
To sum up, the metric is bi-invariant. Moreover, a canonical choice for the metric of SO(3) is obtained
by taking Q = 1/2I , resulting in a bi-invariant metric on SO(3). Therefore, the metric is given by

⟨r1, r2⟩so(3) = tr(r⊤1 Qr2) =
1

2
tr(r⊤1 r2), ∀r1, r2 ∈ so(3). (31)

Note that the inner product on Lie groups essentially acts on elements of the Lie algebra and, since the
left action is transitive, this inner product is well-defined for all tangent spaces of the group elements.
To further verify the bi-invariance of the SO(3) metric, consider the adjoint action Adr(r) = rrr⊤

for ∀r ∈ SO(3) and r ∈ so(3). Then the specific action process can be formally expressed as

⟨Adrr1,Adrr2⟩so(3) =
1

2
tr
(
(rr1r

⊤)⊤(rr2r
⊤)
)
=

1

2
tr(rr⊤1 r2r

⊤) =
1

2
tr(r⊤1 r2) = ⟨r1, r2⟩so(3),

(32)
where we utilize the cyclic property of the trace5 and the orthogonality of r, i.e., r⊤r = I . This result
shows the metric is invariant under the adjoint action, which implies bi-invariance on SO(3).

The geodesic distance between two elements r1, r2 ∈ SO(3) induced by this metric is given by
dSO(3)(r1, r2) = ||log(r⊤1 r2)||F , (33)

where log is the matrix logarithm mapping and || · ||F is the Frobenius norm.

F.1.4 THE ISOTROPIC GAUSSIAN DISTRIBUTION ON SO(3)

IGSO(3) density. The isotropic Gaussian distribution on SO(3), denoted as IGSO(3), is parameter-
ized by a mean rotation r ∈ SO(3) and a concentration parameter ϵ ∈ R. It can be expressed in the
axis–angle representation (refer to App. F.1.2), where the rotation axis is sampled uniformly and the
rotation angle θ follows a probability density function (abbreviated as pdf) given by

f(θ, ϵ) =

∞∑
l=0

(2l + 1)e−l(l+1)ϵ sin ((l + 1/2)θ)

sin(θ/2)
. (34)

Although this expression involves a complex infinite series, Matthies et al. (1988) has shown that for
ϵ ⩽ 1, it can be accurately approximated by a closed-form expression:

f(θ, ϵ) =
√
πϵ−3/2e

ϵ−θ2/ϵ
4

(
θ − e−π2/ϵ

(
(θ − 2π)eπθ/ϵ + (θ + 2π)e−πθ/ϵ

))
2 sin

(
θ
2

) . (35)

3At the identity element e ∈ G, the tangent space TeG coincides with the Lie algebra g.
4The notation dLg−1(·) is standard in differential geometry, where Lg−1 denotes left translation by g−1,

defined as Lg−1(h) = g−1h. And the differential dLg−1 is a linear mapping that pull back a tangent vector
u ∈ TgG at g ∈ G to the tangent space at the identity element e, i.e., dLg−1 : TgG→ TeG = g.

5This property is embodied in: 1
2
tr(rr⊤1 r2r

⊤) = 1
2
tr(r(r⊤1 r2)r

⊤) = 1
2
tr((r⊤1 r2)r

⊤r) = 1
2
tr(r⊤1 r2).
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Sampling from IGSO(3). Sampling from IGSO(3) follows the procedure described by Leach et al.
(2022). The rotation angle θ is obtained via inverse transform sampling, using the cumulative
distribution function (abbreviated as cdf) derived from the pdf above. And this cdf is normalized
appropriately, accounting for the uniform base density on SO(3), i.e., f(θ) = 1−cos θ

π . Moreover, the
rotation axis is sampled uniformly from the two-sphere S2. Notably, The closed-form approximation
of eq. (35) achieves fast computation of the cdf, thus making the sampling process highly efficient.

F.2 SE(3) LIE GROUP

The Special Euclidean group, denoted as SE(3), constitutes the set of all rigid-body transformations
(including rotation and translation) in three-dimensional space. It can be formally defined as

SE(3) =
{(

r v
0 1

)
: r ∈ SO(3),v ∈ (R3,+)

}
, (36)

where each element is represented by a 4 × 4 matrix. And endowed with the group operation of
matrix multiplication, SE(3) can also be seen as a subgroup of the general linear group GL(4,R).

The corresponding Lie algebra of the Lie group SE(3), i.e., se(3), is given by

se(3) =

{
ξ =

(
r v
0 0

)
: r ∈ so(3),v ∈ R3

}
, (37)

where r can also be denoted as [ω]×, indicating the skew-symmetric matrix form of its axis-angle
representation ω ∈ R3. Note that the tangent space of the translation group (R3,+) is isomorphic to
R3 itself so we can directly use the notation v instead of v. Hence, each element ξ ∈ se(3) is uniquely
determined by 6 parameters (ω,v) ∈ R6 and there further exists an isomorphism between se(3)
and R6 via the mapping: ξ 7→ (ω,v)6. Moreover, since the translation group (R3,+) is a normal
subgroup of SE(3), the full group can be written as a semi-direct product: SE(3) = SO(3)⋉ (R3,+).

Metric on SE(3). While numerous metrics can be defined on SE(3), none of them are bi-invariant.
Thus, it is common to construct either a left- or right-invariant metric. A straightforward choice for
the quadratic form Q from eq. (27) is setting the matrices A = C = I3 and B = 0 (Park & Brockett,
1994). Consequently, the matrix Q after the assignment can be formally expressed as

Q =

(
I3 0
0 I3

)
. (38)

Utilizing this metric we can define an inner product on SE(3) as ⟨ξ1, ξ2⟩se(3) = tr(ξ⊤1 Qξ2)
7, where

tr is the trace operation. For ξ1, ξ2 ∈ se(3), the inner product expands explicitly as

tr(ξ⊤1 Qξ2) = tr(

(
r1 v1
0 0

)⊤(
I3 0
0 I3

)(
r2 v2
0 0

)
) = tr

(
r⊤1 r2 r⊤1 v2
v⊤1 r2 v⊤1 v2

)
. (39)

After further derivation, we can obtain: tr(ξ⊤1 Qξ2) = tr(r⊤1 r2) + tr(v⊤1 v2) = tr(r⊤1 Qr2) + v
⊤
1 v2

8.
Therefore, the metric on SE(3) can be formally decomposed into the metrics on SO(3) and R3:

⟨ξ1, ξ2⟩se(3) = ⟨r1, r2⟩so(3) + ⟨v1,v2⟩R3 . (40)

Hence, geodesics on SE(3) can be derived from those on the product manifold SO(3)× R3 and the
distance between x1 = (r1,v1) ∈ SE(3) and x2 = (r2,v2) ∈ SE(3) is given by

dSE(3)(x1, x2) =
√
dSO(3)(r1, r2)2 + dR3(v1,v2)2. (41)

where dSO(3) is defined in eq. (33) and dR3 denotes the standard Euclidean distance.

6The isomorphism between se(3) and R6 identifies each element ξ ∈ se(3) with a twist comprising rotational
(i.e., angular velocity ω) and translational components (i.e., linear velocity v).

7Similarly, the inner product on the Lie group SE(3) essentially acts on elements of its Lie algebra se(3).
8v⊤

1 is a 3-dim row vector and v2 is a 3-dim column vector, so v⊤
1 v2 is a 1×1 matrix, and tr(v⊤

1 v2) = v⊤
1 v2.
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G ADDITIONAL DETAILS ABOUT PROTEIN BACKBONE GENERATION

G.1 PROTEIN BACKBONE PARAMETERIZATION

Here our protein backbone parameterization follows the seminal work of AlphaFold2 (Jumper
et al., 2021) in that we associate a rigid-body frame with each residue in the amino acid sequence.
Specifically, an N residue backbone is parameterized by a collection of N orientation preserving
rigid transformations, i.e., frames, and each frame maps from fixed coordinates of four heavy atoms
N∗,C∗

α,C
∗,O∗ ∈ R3 centered at C∗

α = (0, 0, 0). Notably, each atom coordinate assumes chemically

Cα

N C

O

v1v2

Figure 10: Protein parameterization with frames.

idealized bond angles and lengths measured
experimentally (Engh & Huber, 2012). Thus,
residue i ∈ [N ] is denoted as an action of T (i)

on idealized coordinates of the backbone main
atoms [N(i),C(i)

α ,C(i)] = T (i) · [N∗,C∗
α,C

∗],
where T (i) is a member of the special Euclidean
group SE(3), the set of orientation preserving
rigid transformations in Euclidean space. Each
T (i) can be formally decomposed into two com-
ponents T (i) = (r(i), x(i)) where r(i) ∈ SO(3)
is a 3 × 3 rotation matrix and x(i) ∈ R3 repre-
sents a translation vector. And we collectively
denote all N frames as T = [T (1), . . . , T (N)] ∈
SE(3)N . Moreover, to construct the backbone
oxygen atom O, we rotate O∗ around the bond
between Cα and C with an additional torsion
angle ψ ∈ SO(2). Figure 10 visually shows our
backbone parameterization with frames.

G.2 CONVERSION BETWEEN COORDINATES AND FRAMES

As discussed above, N∗,C∗
α,C

∗,O∗ are idealized atom coordinates that assumes chemically idealized
bond angles and lengths measured experimentally (Engh & Huber, 2012). However, these coordinates
differ slightly per amino acid type. Here we uniformly take the idealized values of Alanine which are

N∗ = (−0.525, 1.363, 0.0),
C∗
α = (0.0, 0.0, 0.0),

C∗ = (1.526, 0.0, 0.0),

O∗ = (0.627, 1.062, 0.0).

Notably, these idealized values are derived with C∗
α as the origin. And using a central frame T (i), we

can construct the realistic backbone main atoms of residue i via [N(i),C(i)
α ,C(i)] = T (i) · [N∗,C∗

α,C
∗].

And the realistic backbone oxygen requires rotating a idealized oxygen around the C− Cα bond:

O(i) = T (i) · T ∗
psi(ψ

(i)) · O∗, (42)

where ψ(i) is a backbone torsion angle of residue i and T ∗
psi(ψ

(i)) = (rx(ψ
(i)), xpsi) is a Euclidean

transformation that maps the central frame T (i) to a new frame T (i) · T ∗
psi(ψ

(i)) centered at C and
rotated around the x-axis by ψ(i). Note ψ(i) is a tuple of two values describing a point on the unit
circle, ψ(i) = [ψ

(i)
1 , ψ

(i)
2 ] where (ψ

(i)
1 )2 + (ψ

(i)
2 )2 = 1. So rx(ψ(i)) and xpsi

9 can be expressed as

rx(ψ
(i)) =

1 0 0

0 ψ
(i)
1 −ψ(i)

1

0 ψ
(i)
2 ψ

(i)
1

 , xpsi = (1.526, 0.0, 0.0). (43)

9The translation vector xpsi transfers the oxygen atom with the rotation rx(ψ(i)) applied from the coordinate
system with the origin Cα to the coordinate system with the origin C. Specifically, T (i) maps the ideal coordinate
system (origin at C∗

α) to the real coordinate system (origin at C(i)
α ). In real space, the vector from C(i)

α to C(i) is
the same as the vector (1.526, 0, 0) from C∗

α to C∗ in ideal space (because T (i) is a rigid-body transformation,
preserving local distances and angles). So the translation vector xpsi directly uses the ideal vector (1.526, 0, 0).
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To sum up, the mapping from frames to idealized coordinates, i.e., frame2atom, is implemented by
combining [N(i),C(i)

α ,C(i)] = T (i) · [N∗,C∗
α,C

∗] and eq. (42), which can be formally expressed as

[N(i),C(i)
α ,C(i),O(i)] = frame2atom(T (i), ψi). (44)

We next introduce constructing rigid-body frames from atom coordinates, i.e., atom2frame. Each
frame can be obtained as described in the rigidFrom3Points algorithm in AF2 (Jumper et al., 2021):

Algorithm 3: Rigid from 3 points using the Gram-Schmidt process

Data: Coordinates of the three backbone atoms N(i),C(i)
α ,C(i) of residue i

Result: The rigid-body frame T (i) corresponding to residue i

1: def rigidFrom3Points(N(i),C(i)
α ,C(i)): // N(i),C(i)

α ,C(i) ∈ R3

2: v⃗1 = C(i) − C(i)
α

3: v⃗2 = N(i) − C(i)
α

4: e⃗1 = v⃗1/||v⃗1||
5: u⃗2 = v⃗2 − e⃗1(e⃗⊤1 v⃗2)
6: e⃗2 = u⃗2/||u⃗2||
7: e⃗3 = e⃗1 × e⃗2
8: r(i) = concat(e⃗1, e⃗2, e⃗3) // r(i) ∈ R3×3

9: x(i) = C(i)
α

10: return (r(i), x(i))

The conversion from coordinates to frames can be expressed as T (i) = atom2frame(N(i),C(i)
α ,C(i)).

G.3 FRAMEPRED ARCHITECTURE

Overview of FramePred. To predict the rigid-body frame for every protein residue, we utilize the
FramePred architecture introduced in FrameDiff (Yim et al., 2023b) which performs iterative updates
to the frames over a series of L layers using a combination of spatial and sequence based attention
modules. Specifically, hℓ = [h

(1)
ℓ , · · · , h(N)

ℓ ] ∈ RN×Dh are node embeddings of the ℓ-th layer where
h
(i)
ℓ is the embedding for residue i ∈ [N ]. And zℓ ∈ RN×N×Dz are edge embeddings with z(nm)

ℓ
encoding the edge between residues n and m. The frame of each residue at the ℓ-th is denoted as
Tℓ ∈ SE(3)N . Unless stated otherwise, all instances of Multi-Layer Perceptrons (MLPs) use 3 Linear
layers with biases, ReLU activation, and LayerNorm after the final layer. When FramePred is running,
node embeddings hℓ are first updated using Invariant Point Attention (IPA) (Jumper et al., 2021) with
a skip connection. Before Transformer, the initial node embeddings h0 and post-IPA embeddings
are concatenated. After transformer, we include a skip connection with post-IPA embeddings. The
updated node embeddings hℓ+1 are then used to update edge embeddings zℓ+1 as well as predict
frame updates Tℓ+1. And so on to get the final frames TL of all protein residues.

Feature initialization. Following the methodology established by Trippe et al. (2022), node and
edge embeddings are initialized using a combination of residue indices and timestep information.
Specifically, sinusoidal embeddings ϕ(·) (Vaswani et al., 2017) are applied to these features, after
which an MLP is used to project them into the desired embedding space. For residue i ∈ [N ],
the initial node embedding at layer 0 incorporates the residue index i and the diffusion timestep t,
i.e., h(i)0 = MLP([ϕ(n), ϕ(t)]) ∈ RDh10, where Dh denotes the dimension of node embeddings.
Moreover, for a residue pair (n,m), the edge embedding z(nm)

0 additionally includes the relative
sequence distance ϕ(m− n) and a binned displacement feature derived from self-conditioned Cα

coordinates ϕ(disp(nm)
sc ). The initial edge embeddings can be formally expressed as

z
(nm)
0 = MLP([ϕ(n), ϕ(m), ϕ(m− n), ϕ(t), ϕ(disp(nm)

sc )]) ∈ RDz , (45)

10Here we stipulate that superscripts without parentheses are used to refer to time step, superscript numbers
within parentheses refer to residue indices, and subscripts refer to variable names (layer indices in most cases).
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where Dz denotes the dimension of edge embeddings and dispsc is the self-conditioning of predicted
Cα displacements. Specifically, let x̂sc be the Cα coordinates (in Å) predicted during self-conditioning.
And to prevent over-reliance on self-conditioned outputs, we set x̂sc = 0 with 50% probability during
training. The binned displacement between residues n and m is formally expressed as

disp(mn)
sc =

Nbins∑
i=1

1{|x̂(n)sc − x̂(m)
sc | < νi}, (46)

where ν1, · · · , νNbins = Linspace(0, 20)11 are equally spaced intervals between 0 and 20 angstroms.

To construct initial frames, Cα coordinates are first zero-centered and all backbone coordinates
(N,Cα,C,O) are scaled to nanometers as done in AF2 (Jumper et al., 2021) by multiplying coordi-
nates by 1/10. We then construct initial frames for each protein residue i as

T 0,(i) = (r0,(i), x0,(i)) = atom2frame(N (i), C(i)
α , C(i)). (47)

Node update. IPA is first introduced in AF2 (Jumper et al., 2021) and we apply this algorithm
without modifications. And Transformer is also used without modification from Vaswani et al. (2017).
Node update is formally represented as follows, including specific operations and data dimensions.

hipa = LayerNorm(IPA(hℓ, zℓ,Tℓ) + hℓ) ∈ RN,Dh

hskip = Linear(h0) ∈ RN,Dskip

hin = concat(hipa,hskip) ∈ RN,(Dskip+Dh)

htrans = Transformer(hin) ∈ RN,(Dskip+Dh)

hout = Linear(htrans) + hℓ ∈ RN,Dh

hℓ+1 = MLP(hout) ∈ RN,Dh

Edge update. Each directed edge is updated through an MLP of the current edge and the embed-
dings of the source and target nodes. Edge update is also formally expressed as follows.

hdown = Linear(hℓ+1) ∈ RN,Dh/2

z
(nm)
in = concat(h

(n)
down, h

(m)
down, z

(nm)
ℓ ) ∈ RN,(Dh+Dz)

zℓ+1 = LayerNorm(MLP(zin)) ∈ RN,N,Dz

Notably, in the first line, node embeddings are first projected down to half the dimension.

Backbone update. As for the backbone update, we follow the BackboneUpdate algorithm proposed
in AF2 (Jumper et al., 2021) and present its specific operations in detail as follows.

bi, ci, di, x
(i)
update = Linear(hiℓ)

(ai, bi, ci, di) = (1, bi, ci, di)/
√
1 + bi + ci + di

r
(i)
update =

(
(ai)2 + (bi)2 − (ci)2 − (di)2 2bici − 2aidi 2bidi + 2aici

2bici + 2aidi (ai)2 − (bi)2 + (ci)2 − (di)2 2cidi − 2aibi

2bidi − 2aici 2cidi + 2aibi (ai)2 − (bi)2 − (ci)2 + (di)2

)
T

(i)
update = (r

(i)
update, x

(i)
update)

T
(i)
ℓ+1 = T

(i)
ℓ · T

(i)
update

where bi, ci, di ∈ R12, r(i)update ∈ SO(3), and x(i)update ∈ R3. Here we first constructs a normalized
quaternion (2nd line) and then convert it into a valid rotation matrix (3rd line).

Torsion Prediction. We still follow AF2 (Jumper et al., 2021) to predict the torsion angle ψ.

hpsi = MLP(hL) ∈ RN,Dh

ψunnormalized = Linear(hpsi + hL) ∈ SO(2)N

ψ̂ = ψunnormalized/||ψunnormalized|| ∈ SO(2)N

11In our experiments we set Nbins = 22.
12Due to space limitations, we use superscripts without parentheses instead of superscripts with parentheses.
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H COMPLETE PROTEIN EXPERIMENTS

H.1 EXPERIMENTAL SETUP

Training. To verify the effectiveness of Momentum Flow on the protein monomer generation task,
following GENIE (Lin & AlQuraishi, 2023) and FrameFlow (Yim et al., 2023a), we train it on the
SCOPe dataset (Chandonia et al., 2022) with proteins below length 128 for a total of 3, 938 examples.
Our model is trained for 10 hours on two NVIDIA A800-80G GPUs using the batching strategy
from FrameDiff (Yim et al., 2023b) of combining proteins with the same length into the same batch
to remove extraneous padding and we take the optimal 3 checkpoints for evaluation. We use the
Adam (Adam et al., 2014) optimizer with a learning rate of 0.0001, β1 = 0.9, and β2 = 0.999.

Metrics. During evaluation, we sample 10 backbones for every length between 60 and 300 then
use ProteinMPNN (Dauparas et al., 2022) to design 8 sequences for each backbone. Notably, the
upper limit of 300 here differs from the upper limit of 128 during training. We increase the upper
limit during evaluation to show the generalization of our model in generating long sequence proteins.

The assessment of generated protein structures employs complementary metrics evaluating distinct
aspects of protein quality. Accuracy is quantified by comparing predictions against native structures
in PDB using scRMSD for atomic-level precision and TM-score (referred to as pdbTM) for global
topological fidelity, with a TM-score > 0.5 indicating a correct fold. Intrinsic structural plausibility,
a proxy for designability, is assessed using confidence estimates from deep learning models: pLDDT
reports per-residue local reliability, while pAE evaluates the self-consistency of long-range inter-
residue distances. Moreover, scTM and scRMSD also serve as the fundamental distance measures for
quantifying novelty (against known structures in PDB) and diversity (within a generated ensemble).

Baselines. We compare our results to GENIE (Lin & AlQuraishi, 2023) and FrameFlow (Yim et al.,
2023a), a diffusion model and a rectified flow model for protein backbone generation, respectively,
that do not rely on a pre-trained folding network. We retrain both models according to their default
recommended settings. Our baselines are intended to demonstrate tradeoffs in efficiency and diversity.

H.2 HYPERPARAMETERS

Neural network hyperparameters.

Global parameters : Dh = 256 Dz = 128 Dskip = 64 L = 4

IPA parameters : heahs = 8 query points = 8 value points = 12

Transformer parameters : heads = 4 layers = 2

With these parameters, our neural network has 17, 446, 190 trainable weights.

SDE parameters.

Translations : schedule = linear βmin = 0.1 βmax = 20

Rotations : schedule = logarithmic βmin = 0.1 βmax = 1.5

H.3 FURTHER EXPERIMENTAL ANALYSIS

We use the Euler-Maruyama integrator for SDE sampling and the Euler integrator for ODE sampling.
The number of integration timesteps for all methods is set to 100. Quantitative results are shown
in Table 3. We use SDE sampling for GENIE (Lin & AlQuraishi, 2023) and ODE sampling for
FrameFlow (Yim et al., 2023a) since these are the methods used in their respective papers.

As illustrated in Table 3, both GENIE (Lin & AlQuraishi, 2023) and FrameFlow (Yim et al., 2023a)
exhibit limitations—either in sampling fidelity or structural plausibility—our model consistently
outperforms them across all four metrics. Our momentum flow significantly improves structural
accuracy, as evidenced by the highest scTM (0.47) and lowest scRMSD (8.05), indicating generated
backbones more closely resemble native-like folds. Meanwhile, our momentum flow enhances
designability, reflected in the highest pLDDT (70.09) and lowest pAE (9.50), suggesting superior
local and global structural self-consistency without relying on ground-truth alignment.
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While GENIE has less parameters (4.1M) than FrameFlow/Momentum Flow (17.4M), i.e., the
FramePred architecture introduced in App. G.3, it uses expensive triangle updates (Jumper et al.,
2021) that requires high memory cost and greater compute for each forward call. Sampling a length
100 protein with 100 timesteps on an NVIDIA A800-80G GPU takes GENIE around 10 seconds
while for FrameFlow/Momentum Flow sampling with 100 timesteps takes around 4 seconds.

In conclusion, our Momentum Flow achieves a more favorable efficient-diverse trade-off, where
high-quality and various protein backbone samples can be generated with reduced computational
overhead—–a critical advantage for practical protein design applications.

I LLM USAGE STATEMENT

During the preparation of this manuscript, we employed GPT-5 exclusively for language refinement.
The model was instructed to improve grammar, clarity, and readability while preserving the original
meaning of the content.
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