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ABSTRACT

Speech recognition applications cover a range of different audio and text distri-
butions, with different speaking styles, background noise, transcription punctu-
ation and character casing. However, many speech recognition systems require
dataset-specific tuning (audio filtering, punctuation removal and normalisation of
casing), therefore assuming a-priori knowledge of both the audio and text distri-
butions. This tuning requirement can lead to systems failing to generalise to other
datasets and domains. To promote the development of multi-domain speech sys-
tems, we introduce the End-to end Speech Challenge (ESC) for evaluating the per-
formance of a single automatic speech recognition (ASR) system across a broad
set of speech datasets. Benchmarked systems must use the same data pre- and
post-processing algorithm across datasets - assuming the audio and text data dis-
tributions are a-priori unknown. We compare a series of state-of-the-art (SoTA)
end-to-end (E2E) systems on this benchmark, demonstrating how a single speech
system can be applied and evaluated on a wide range of data distributions. We find
E2E systems to be effective across datasets: in a fair comparison, E2E systems
achieve within 2.6% of SoTA systems tuned to a specific dataset. Our analysis re-
veals that transcription artefacts, such as punctuation and casing, pose difficulties
for ASR systems and should be included in evaluation. We believe E2E bench-
marking over a range of datasets promotes the research of multi-domain speech
recognition systems.

1 INTRODUCTION

Speech recognition covers various applications, including dictation, voice assistants, video caption-
ing, telephone conversations and meeting transcriptions (Aksënova et al., 2021). Each application
has domain-specific data distributions for both the audio inputs and transcription outputs. The audio
inputs are derived from different recording conditions, degrees of background noise, speakers and
styles (narrated, oratory or spontaneous). The nature of the transcriptions is also domain-dependent;
in formal settings, such as meeting transcriptions, the text must be orthographic1 and satisfy standard
formatting conventions. Whereas in more informal settings, such as telephone conversations, punc-
tuation and casing are often omitted (Kim & Woodland, 2003). To handle the diversity of speech
recognition conditions, there is a need for multi-domain systems that maintain their performance
over a collection of datasets with different audio and transcription distributions.

However, most automatic speech recognition (ASR) systems are trained and evaluated on a single
dataset, utilising dataset-specific model architectures and pre-/post-processing to optimise for single
dataset performance (Likhomanenko et al., 2020). Such dataset-specific tuning assumes a-priori
knowledge of both the audio and text distribution and yields systems that transfer poorly to other
datasets and domains. A generalisable system should transfer to different datasets and domains
with training data, but without the need for dataset-specific tuning (Wang et al., 2019b) or a-priori
knowledge of the data distributions. End-to-end (E2E) systems consist of a single model that maps
the raw audio inputs to the transcription outputs (Graves & Jaitly, 2014). Learning directly from
data, E2E systems do not require dataset-specific configurations (Hannun et al., 2014). As such,

1orthographic: the accepted way of spelling and writing words according to standard usage (McIntosh &
Cambridge University Press., 2015).
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they can be applied independently to different datasets and domains (Chan et al., 2021; Radford
et al., 2022).

To facilitate the research of multi-domain, generalisable ASR systems, we present the End-to-end
Speech Challenge (ESC), a benchmark for evaluating a single ASR system across a collection of
speech datasets spanning different domains and speech recognition conditions. Benchmarked sys-
tems must use the same architecture across datasets and may not use dataset-specific pre- or post-
processing. Therefore, ESC favours systems that can be applied independently across speech recog-
nition domains with no a-priori knowledge of the data distributions. None of the datasets presented
in ESC were created specifically for the benchmark; all datasets are pre-existing for the reason that
they are widely considered by the speech community to be the most applicable, challenging and
interesting datasets. We adopt an open-source and open-science approach by considering datasets
that are freely available and accessible.

To demonstrate ESC, we perform baseline experiments with five different E2E approaches. We find
these E2E systems to be effective across datasets. In a fair comparison, they perform to within
2.6% word error rate of state-of-the-art systems tuned to a specific dataset. Our analysis shows
that transcription artefacts, such as punctuation and casing, make the task of speech recognition
more difficult and should be included in evaluation. We believe E2E benchmarking over a range of
datasets encourages the research of multi-domain speech recognition systems.

2 RELATED WORK

Speech recognition datasets have long focused on covering different domains and speaking styles:
the TIMIT (Garofolo et al., 1993a) and Wall-Street Journal (Garofolo et al., 1993b) corpora contain
news broadcast recordings, SwitchBoard (Godfrey et al., 1992) and Fisher (Cieri et al., 2004a;b;
2005a;b) spontaneous telephone conversations, LibriSpeech (Panayotov et al., 2015) narrated au-
diobooks, Common Voice (Ardila et al., 2020) narrated Wikipedia articles and TED-LIUM (Her-
nandez et al., 2018) oratory educational talks. More recently, datasets such as People’s Speech
(Galvez et al., 2021) and GigaSpeech (Chen et al., 2021) extend this to cover multiple domains in
one dataset. However, these datasets lack certain important domains and speaking styles, such as
conversational speech, which are currently only covered by certain individual datasets. We see this
as an important trend towards multi-domain speech recognition and collect different datasets to form
a unified ASR benchmark.

Traditionally, ASR systems are trained on case and punctuation normalised text (NIST, 1998; Povey
et al., 2011); the transcriptions are pre-processed to remove casing and punctuation before training
and evaluation. However, in certain speech recognition applications, orthographic transcriptions are
required Kim & Woodland (2001). Recent work has looked at training ASR systems on orthographic
transcriptions (O’Neill et al., 2021; Radford et al., 2022), relying on a data-driven E2E approach in
learning to predict cased and punctuated outputs. However, the features of orthographic text remain
challenging for ASR systems. We evaluate a single system over multiple datasets and include all
dataset-specific transcription formatting requirements.

For text understanding, GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al., 2019a) pro-
vide well established benchmarks for assessing the generalisation abilities of a single system over
a range of different natural language understanding tasks. The SUPERB (wen Yang et al., 2021)
and XTREME-S (Conneau et al., 2022) benchmarks assess a single system over a multiple spoken
language processing tasks. This paper extends these efforts to show that English ASR has sufficient
diversity in datasets and domains to merit a benchmark of its own.

3 MOTIVATION FOR AN END-TO-END BENCHMARK

Different speech domains have different data distributions for audio artefacts (quality, speakers and
styles) and transcription outputs (punctuation, casing, orthography). In using the term end-to-end
(E2E), we refer to systems that map from the raw audio inputs to the transcription outputs without
domain-specific architectures or additional processing. In this section, we describe the existing
works regarding multi-domain and E2E ASR and outline the principal issues involved.
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Recent datasets have focused on domains with more challenging audio inputs, specifically in audio
quality, speakers and speaking style (Panayotov et al., 2015; Ardila et al., 2020; Wang et al., 2021;
Hernandez et al., 2018; Chen et al., 2021; O’Neill et al., 2021; Del Rio et al., 2022; Carletta, 2007;
Renals et al., 2007; Godfrey et al., 1992; Cieri et al., 2004a;b; 2005a;b). These datasets incorporate
distinct audio domains, each with different recording conditions and degrees of background noise.
Each dataset includes speakers from both native or non-native English speaking backgrounds, and
together cover accents and dialects from seven different language regions (Del Rio et al., 2022). The
speaking style for each dataset falls into one of three categories: narrated, oratory or spontaneous,
with each style having different distributions for speaking speed and utterance length. We discuss
the individual datasets in detail in Section 4.

For many ASR systems, a series of dataset specific pre- and post-processing steps are applied when
training and evaluating systems on individual datasets. For the 10 datasets in this work, there are 10
different Kaldi (Povey et al., 2011) recipes in use, each with unique pre- and post-processing steps.
Of these recipes, one is not even publicly accessible. Employing dataset-specific pre-processing
steps results in systems that do not transfer to different domains. For example, a system that extracts
speech features without a noise-suppression algorithm works adequately well for a dataset with low-
background noise, but the same approach produces much worse results on a noisy dataset (Kim &
Stern, 2016).

Recent speech recognition datasets also include full transcriptions with all the necessary ortho-
graphic features required for their respective domains (Carletta, 2007; Renals et al., 2007; O’Neill
et al., 2021; Del Rio et al., 2022). These datasets aim to encourage ASR systems capable of pro-
ducing transcriptions that adhere to the formatting requirements of the target text domain. We note
that this differs from the standard ASR output transcription format known as Standard Normalised
Orthographic Representation (SNOR) (NIST, 1998), which consists of single-case letters without
punctuation marks or numbers. This format is necessary for ASR systems that do not predict punctu-
ated and cased outputs, relying on post-processing to restore transcription formatting (Chen, 1999).
Per contra, many speech recognition applications, such as financial meeting transcriptions or legal
documents, require orthographic text.

In circumstances where orthographic text is required, it is typically achieved through a series of
dataset-specific post-processing steps applied to the ASR output, each of which treats a single or-
thographic feature (Beeferman et al., 1998; Lita et al., 2003; Kim & Woodland, 2003; Gravano et al.,
2009; Yuan & Briscoe, 2016). However, there are significant shortcomings to this pipeline approach.
Firstly, certain orthographic decisions can only be made using acoustic information rather than text
alone. For instance, an inflection in vocal pitch at the end of an sentence can change its mean-
ing from a statement to a question, thus requiring a question mark instead of a period. Secondly,
cascading a series of post-processing steps into the speech recognition pipeline may lead to error
propagation that hampers overall system performance (Knill et al., 2018; Lu et al., 2019). Finally,
the pipeline system is evaluated for each post-processing component individually. This can result in
individual components being optimised in isolation, at the expense of lower overall performance due
to distribution shift (Sculley et al., 2015). As a result, post-processing can lead to systems failing to
accurately predict orthographic transcriptions on datasets where it is required.

These issues and the need for dataset specific pre- or post-processing can be bypassed entirely by
designing end-to-end models - from speech directly to orthographic transcripts (Graves & Jaitly,
2014; Chan et al., 2016). E2E models have been shown to outperform traditional cascaded ASR
systems, particularly when large amounts of labelled speech data is available (Hannun et al., 2014;
Synnaeve et al., 2020; Radford et al., 2022). What is more, E2E ASR systems require a single stage
of evaluation; the ASR system is assessed on the cased and punctuated transcription outputs that are
generated for the downstream application, giving a single, unified measure of overall performance.
However, for the further development and refinement of these systems, it is important to have a
benchmark targeting the specific challenges that end-to-end models face.

4 ESC DATASETS

The ESC benchmark comprises eight English speech recognition datasets, capturing a broad range
of domains, acoustic conditions, speaker styles, and transcription requirements. We retain all punc-
tuation, casing and formatting in the transcription outputs. Only annotation mistakes, such as double
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Table 1: Datasets description and statistics. Speaking style falls into one of three categories: narrated
(N), oratory (O) and spontaneous (S). Datasets with multiple speaking styles are shown separated
by a comma. Dataset sizes for the train/validation/test splits are quoted in hours of audio data. The
transcription format is either normalised (Norm.), punctuated (P) or punctuated and cased (P+C).

Dataset Domain Style Train/Val/Test Trans.
LibriSpeech Audiobook N 960 / 11 / 11 Norm.
Common Voice Wikipedia N 1409 / 27 / 27 P+C
VoxPopuli EU Parliament O 523 / 5 / 5 Norm.
TED-LIUM TED talks O 454 / 2 / 3 Norm.
GigaSpeech Audiobook, podcast, YouTube N, S 2500 /12 / 40 P
SPGISpeech Meetings O, S 4900 / 100 / 100 P+C
Earnings-22 Meetings O, S 105 / 5 / 5 P+C
AMI Meetings S 78 / 9 / 9 P+C
SwitchBoard (optional) Telephone S 3572 / 30 / 7 Norm.
CHiME-4 (optional) Broadcast news N 19/11/7 P+C

empty spaces, or annotation elements that cannot be considered transcriptions, such as <unk>, are
corrected. A comprehensive list of all transcription error corrections are detailed in Appendix A.2.
As the objective of ESC is to motivate the development of end-to-end ASR, systems must use the
same architecture across all datasets without any dataset-specific pre-processing or post-processing.
Good performance requires systems capable of handling a range of audio and text conditions without
any prior dataset-specific knowledge of the data distributions. The main datasets in ESC are accessi-
ble with permissive licensing. We also include three optional paid datasets that challenge interesting
and unique domains of speech recognition, but do not require their inclusion for submission to the
benchmark. We describe the datasets below and in Table 1, with additional details in Appendix A.

LibriSpeech (Panayotov et al., 2015) is a standard large-scale dataset for evaluating ASR systems.
It consists of approximately 1000 hours of narrated audiobooks collected from the LibriVox2 project.
Whilst instrumental in facilitating researchers to leverage a large body of pre-existing transcribed
speech data, its standalone use presents limitations. The audiobook domain provides high-quality
recording conditions that result in little to no background noise and the narrated speaking style lacks
the acoustic and prosodic features of spontaneous speech. The transcriptions are non-orthographic
without punctuation and casing. Since the books read are in the public domain, many contain an-
tiquated language and writing styles atypical of modern-day speech. We anticipate competitive
systems to perform extremely well on LibriSpeech (Zhang et al., 2020). We include LibriSpeech
in the ESC benchmark to facilitate a comparison of performance between ideal speech recognition
conditions and the more challenging settings presented by other datasets in the benchmark. We use
the standard split of train, validation (dev-clean, dev-other) and test sets (test-clean, test-other).

Common Voice (Ardila et al., 2020) is a series of crowd-sourced open-licensed speech datasets
where speakers record text from Wikipedia in various languages. Since anyone can contribute
recordings, there is significant variation in both audio quality and speakers. The audio conditions
are challenging, with recording artefacts, accented speech, hesitations, and the presence of foreign
words. The transcriptions are orthographic, with both casing and punctuation. However, the speak-
ing style remains narrated (a shortcoming shared with LibriSpeech). We use the English subset of
version 9.0 (27-4-2022), with approximately 1,400 hours and data splits provided therein.

VoxPopuli (Wang et al., 2021) is a large-scale multilingual speech corpus consisting of data sourced
from 2009-2020 European Parliament event recordings. Consequently, it occupies the unique do-
main of oratory, political speech, largely sourced from non-native speakers. We use the English
subset with approximately 550 hours and the canonical data splits.

TED-LIUM (Hernandez et al., 2018) is based on English-language TED Talk conference videos.
The transcribed talks cover a range of different cultural, political, and academic topics, resulting in a

2https://librivox.org/
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technical vocabulary. We use Release 3 edition of the training set with approximately 450 hours and
the legacy distribution of validation and test data, consistent with earlier releases for comparison.

GigaSpeech (Chen et al., 2021) is a multi-domain English speech recognition corpus curated from
audiobooks, podcasts and YouTube. It covers both narrated and spontaneous speech over a variety
of topics, such as arts, science and sports. It is the only corpus in the benchmark to cover multiple
domains. We use the large subset (2,500 hours) to train and the standard validation and test splits.

SPGISpeech (O’Neill et al., 2021) is an English speech recognition corpus composed of company
earnings calls that have been manually transcribed by S&P Global, Inc. The transcriptions are fully-
formatted according to a professional style guide for oratory and spontaneous speech. We train on
the large subset (5,000 hours) and evaluate on the canonical validation and test splits.

Earnings-22 (Del Rio et al., 2022) is a 119-hour corpus of English-language earnings calls collected
from global companies. The dataset was developed with the goal of aggregating a broad range of
speakers and accents covering a range of real-world financial topics. There is large diversity in the
speakers and accents, with speakers taken from seven different language regions. To create train-
validation-test splits, we partition the Earnings-22 corpus 90:5:5.

AMI (Carletta, 2007; Renals et al., 2007) comprises 100 hours of meeting recordings captured using
different recording streams. The corpus contains manually annotated orthographic transcriptions of
the meetings aligned at the word level. Individual samples of the AMI dataset contain very large
audio files (between 10 and 60 minutes), which we segment to lengths feasible for training most
ASR systems (for details, see Appendix A). We use the individual headset microphones (AMI-IHM)
version of the dataset and the train, validation and test sets provided therein.

SwitchBoard (optional) is a collection of two-sided conversational telephone speech amongst
speakers from the US. Recorded over 10 years ago and at a lower sampling rate than the other
corpora, it presents a noisy and challenging ASR problem. We partition 5% of the SwitchBoard
(Godfrey et al., 1992) corpus to form the validation split. We combine the remainder of the Switch-
Board corpus with Fisher (Cieri et al., 2004a;b) to form a train set consisting of approximately
3,600 hours. The test sets are the Hub5Eval2000 (Linguistic Data Consortium, 2002) data with two
subsets: SwitchBoard and CallHome.

CHiME-4 (optional) (Vincent et al., 2017) consists of narrated samples from the Wall Street Journal
corpus (Garofolo et al., 1993b). Recordings are taken in challenging noisy environments using a 6-
channel tablet based microphone array. We limit the official training data to single-channel and 18
hours by randomly selecting one of the six channels for each of the official training recordings. We
use the official 1-channel development and test sets in their original annotated form.

SwitchBoard is a popular dataset for assessing ASR systems due to its unique telephone conversation
domain. Alongside CHiME-4, these two datasets present challenging and noisy audio conditions.
However, both datasets require payment for use. Thus, we include these corpora as optional extras in
the ESC benchmark; the score for these datasets is standalone and does not contribute to the overall
benchmark score.

5 EVALUATION

System Requirements ESC requires a single system to be defined and evaluated across the con-
stituent datasets. The system must use the same architecture as well as training and evaluation
algorithms for all datasets. This requirement includes using the same data pre- and post-processing
of the audio inputs, target transcriptions, and system predictions. There is no restriction on the sys-
tem being a single model, provided it is defined uniformly across all datasets. Given the range in
size of the different datasets, hyper-parameter tuning is permitted, provided the algorithm for hyper-
parameters tuning is consistent across datasets. The validation sets from each dataset are used to
optimise system configurations and for hyper-parameter tuning, while the test sets are used only for
the final evaluation.

Systems submitted to ESC may use any public or private data to train and develop their systems,
including unlabelled audio data for pretraining, unlabelled text corpora for training language models
(LMs) and labelled audio data for supervised training. However, systems may only use the ESC-
distributed versions of the datasets included in the benchmark; in some cases, these datasets include
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different data preparation and train/validation/test splits than other public versions. In addition,
systems may not use the unlabelled test data for training or development in any way, and may not
share information across test samples in any way.

Metrics We evaluate system predictions against the target transcriptions using the word error rate
(WER) metric. However, to encourage multi-domain systems capable of predicting orthographic
transcriptions, we retain all dataset-specific transcription requirements (punctuation and casing) in
our evaluation and evaluate systems on a per-dataset level. This decision leads to an orthographic
WER that is both punctuation (Kim & Woodland, 2001; 2003) and case (O’Neill et al., 2021) sensi-
tive. Punctuation symbols constitute their own words, such that incorrect punctuation is considered a
word substitution error, missing punctuation a word deletion error and additional punctuation a word
insertion error. To account for casing, we keep the upper and lower-case character sets distinct. Con-
sequently, incorrect (resp. missing) capitalisation yields a word substitution (resp. deletion) error.

Benchmark Scoring We average WERs over individual datasets to give the final score. Through
a macro-average, we aim to give a sense of aggregate system performance over all datasets. As with
GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al., 2019a), we lack a fair criterion with which
to weigh the contribution of each dataset, and thus weigh each dataset equally. As LibriSpeech has
multiple test sets (test-clean and test-other), we use an unweighted average of the WERs as the score
for the dataset when computing the macro-average, so as not to weight it more heavily.

Leaderboard The ESC leaderboard keeps track of system submissions (similar to SemEval
(Emerson et al., 2022), Kaggle3, GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al., 2019a)).
Data for the benchmark is available for download through Hugging Face Datasets (Lhoest et al.,
2021). Each dataset contains standardised audio-transcriptions pairs for the training and validation
sets. Only the unlablled audio samples are included for the test set. To submit a system, one must
evaluate the system on the unlabelled audio test data for each of the ESC datasets and upload the pre-
dictions to https://huggingface.co/spaces/esc-benchmark/esc for scoring. The
benchmark site details the orthographic WERs for the individual datasets and a macro-average of
these scores to determine a system’s position on the leaderboard.

6 BASELINES

We evaluate five different systems. These baselines collectively represent current state-of-the-art
approaches in E2E ASR. We describe them below, with additional details included in Appendix B.

wav2vec 2.0 CTC wav2vec 2.0 (Baevski et al., 2020) initialised from the official wav2vec 2.0
LARGE LV-60k checkpoint. The checkpoint is pretrained on an unsupervised task with 60k hours
of unlabelled audio data from the LibriVox corpus. We follow Baevski et al. (2020) and add a
randomly initialised linear layer on top of the Transformer block to predict characters. The system
is fine-tuned using the connectionist temporal classification (CTC) (Graves et al., 2006) objective.

wav2vec 2.0 CTC + n-gram wav2vec 2.0 CTC with a 5-gram KenLM (Heafield, 2011) to perform
LM boosted beam search decoding for CTC. The 5-gram LM is trained on the train split transcrip-
tions for each dataset.

wav2vec 2.0 AED An attention-based encoder-decoder (AED) with a wav2vec 2.0 encoder and
Transformer (Vaswani et al., 2017) decoder. Encoder weights are initialised with the wav2vec 2.0
LARGE checkpoint and decoder weights with the official BART LARGE (Lewis et al., 2020) check-
point pretrained on 160 GB of text data. We follow Li et al. (2020) and Babu et al. (2021) in adding
a randomly initialised adapter network to interface the encoder and decoder, consisting of three
1-dimensional CNN blocks. The system is fine-tuned using the cross-entropy objective.

Whisper AED An AED network initialised with the encoder and decoder weights from the Whisper
(Radford et al., 2022) medium.en checkpoint pretrained on a supervised task with 680k hours of
weakly labelled audio-transcription data. The system is fine-tuned using the cross-entropy objective.

Conformer RNN-T The Conformer Transducer architecture (Gulati et al., 2020), combining a Con-
former encoder with an RNN-Transducer (RNN-T) (Graves, 2012) decoder. System weights from

3https://www.kaggle.com
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Table 2: Baseline performance on the test sets and overall benchmark scores. We report orthographic
WERs in %. SwitchBoard, CallHome and CHiME-4 do not contribute to the benchmark score.

wav2vec 2.0 Whisper Conformer
Dataset CTC CTC +

n-gram AED AED RNN-T
LibriSpeech test-clean 2.9 2.4 2.8 2.2 2.0
LibriSpeech test-other 7.5 5.9 5.8 5.2 4.0
Common Voice 26.1 22.2 16.3 15.8 14.8
VoxPopuli 11.4 10.2 10.1 7.4 7.3
TED-LIUM 8.4 6.7 6.9 4.7 5.0
GigaSpeech 25.3 22.0 23.4 17.3 18.6
SPGISpeech 8.1 7.1 5.4 5.5 6.3
Earnings-22 26.0 31.7 23.6 16.0 17.6
AMI 32.0 33.1 19.3 14.5 15.1

SwitchBoard 16.1 12.8 15.3 10.0 10.8
CallHome 26.6 20.9 24.3 15.9 23.3
CHiME-4 29.2 26.8 56.9 12.7 14.2

ESC Score 17.8 17.1 13.7 10.6 11.0

the NVIDIA NeMo (Kuchaiev et al., 2019) XLARGE checkpoint4 trained on a supervised task with
24k hours of audio-transcription pairs. The system is fine-tuned using the RNN-T objective.

7 BENCHMARK RESULTS

We present performance on ESC for all baselines in Table 2. We quote orthographic WER for each
dataset and a macro-average to yield to the overall benchmark score.

Amongst the wav2vec 2.0 baselines trained with unsupervised pretraining, CTC achieves competi-
tive results on LibriSpeech test-clean. Incorporating a LM with CTC + n-gram reduces the bench-
mark WER score by 0.7% absolute, attaining significant gains on seven of the test sets. On Earnings-
22 and AMI, CTC + n-gram performs worse than CTC. The AED architecture significantly outper-
forms CTC and CTC + n-gram on the datasets with transcription punctuation and character casing,
namely Common Voice, SPGISpeech, Earnings-22 and AMI. It performs comparably to CTC +
n-gram for the others. Overall, it achieves a score 3.4% lower on the ESC benchmark.

Whisper AED and Conformer RNN-T incorporate supervised pretraining. Whisper AED improves
on wav2vec 2.0 AED for all datasets bar SPGISpeech, achieving the best performance on four of the
nine ESC test sets and competitive scores on the others. Conformer RNN-T also performs strongly
across the board, achieving the best performance on the remaining four ESC test sets. Whisper and
RNN-T achieve comparable ESC scores, with average WERs of 10.6 and 11.0% respectively.

A similar ranking pattern emerges on the optional datasets. CTC + n-gram improves on CTC for all
three test sets. wav2vec 2.0 AED performs similarly to CTC and CTC + n-gram on SwitchBoard
and CallHome, both test sets that are single-cased and un-punctuated. It fails on CHiME-4, the
smallest of the ten training sets, where 18 hours of labelled audio data is unlikely enough to train
this system. Whisper AED and Conformer RNN-T yield the strongest results overall, with Whisper
the only model to achieve a WER significantly lower than 20% on CallHome.

Notably, we find that results on LibriSpeech do not correlate with ESC score. The most performant
results for the LibriSpeech test sets are the two lowest across all datasets, with 2.0 and 4.0% respec-
tively. The most competitive WERs for VoxPopuli, TED-LIUM and SPGISpeech all range between
4.7 and 10.0%. Common Voice, GigaSpeech, AMI, SwitchBoard, CallHome and CHiME-4 all pose
challenges even for the best performing systems, with WERs greater than 10.0%. These results
indicate that solving ESC is beyond the capabilities of current models and methods.

4https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_
conformer_transducer_xlarge
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8 ANALYSIS

Table 3: Minimum WERs for the
baselines ranked highest to lowest
with speaking style.

Dataset Best Style
GigaSpeech 17.3 N, S
Earnings-22 16.0 S
CallHome 15.9 S
Common Voice 14.8 N
AMI 14.5 S
CHiME-4 12.7 N
SwitchBoard 10.0 S
VoxPopuli 7.3 O
SPGISpeech 5.4 O, S
TED-LIUM 4.7 O
LibriSpeech(o) 4.0 N
LibriSpeech(c) 2.0 N

Table 3 displays the ranked WERs alongside the speaking style
for the 12 test sets. Of the audio artefacts, the speaking style
matters greatly and is reflected in the benchmark. Five of the
seven test sets with the highest WERs contain some degree of
spontaneous speech. The next three test sets all contain com-
ponents of oratory speech. The two test sets with the low-
est WERs contain narrated speech alone. Although Common
Voice is narrated, it is an outlier and sits in fourth position.
This is likely due to its crowd-sourced nature; the high vari-
ability in speakers, accents and quality pose difficulties for
ASR systems. CHiME-4 is also narrated and ranks in sixth po-
sition. This is attributed to the fact it is only 18 hours, has high
degrees of noise on the audio inputs and orthographic tran-
scriptions. Whilst SPGISpeech contains oratory and sponta-
neous speech, it is similar in WER to the test sets that are or-
atory only (TED-LIUM and VoxPopuli). SPGISpeech poten-
tially contains a much higher proportion of oratory speech than
spontaneous and is the largest dataset in ESC (5,000 hours).

Figure 1 plots ESC performance against pretraining data.
wav2vec 2.0 is pretrained on an unsupervised task with 60k hours of unlabelled data from nar-
rated audiobooks. The three wav2vec 2.0 based systems have the highest ESC score of the five
baselines. Whisper AED and Conformer RNN-T are pretrained on 680k and 24k hours of labelled
audio data from diverse sources, including multiple domains and speaking styles. These systems
achieve competitive performance across the ESC test sets. This suggests that pretraining on diverse,
labelled audio data facilitates ASR systems that can be applied to different datasets and domains.

To understand the impact of orthographic transcription features on system performance, we re-
compute the per-dataset WERs by modifying outputs and targets: (i) remove punctuation, (ii) re-
move casing, (iii) apply full normalisation. We employ the full English text normaliser from Radford
et al. (2022), which removes filler words (“uh”, “uhm”, “mhm”), standardises number formatting
(“0” to “zero”) and makes spellings consistent.

Figure 1: ESC score against pretraining data
for the five baselines.

Table 4 shows the orthographic ESC scores and the
macro-average WERs (per-dataset scores are in Ap-
pendix D). Removing punctuation yields a reduction
of 2.0% or more for all systems. Punctuation proves
difficult for all five systems, but particularly so for
CTC + n-gram which exhibits the largest reduction
(4.1%). The deep fusion systems have the lowest ab-
solute reductions in WER following punctuation re-
moval (2.3, 2.0 and 2.3% respectively). Casing fur-
ther reduces the score by 0.5-0.6% for all systems.
We observe another 0.5% drop with full normalisa-
tion. In total, transcription features account for up-
wards of 3% of the ESC score for all systems. This
reveals the difficulty that orthographic transcription
features pose for ASR systems.

To compare the E2E baselines with SoTA systems
for individual datasets, we assess the baselines on comparable transcription conditions. Namely,
we remove all transcription punctuation and character casing. For GigaSpeech and AMI, we also
remove filler words. For Common Voice, we apply the full English text normaliser from Radford
et al. (2022). We list the SoTA results as of 09-2022, except for Earnings-22 where the entire
dataset is used as a test-set only. Table 5 details the WERs under comparable conditions for the
five E2E baselines and individual SoTA. The WER for the best forming E2E systems are to within
2.6% of SoTA for the ESC test sets. The gap is wider for the optional datasets, standing at 7.6%
for CallHome. We achieve SoTA results on Common Voice, TED-LIUM and SPGISpeech with
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Table 4: The effect of punctuation, casing and full normalisation on benchmark score. We show the
orthographic ESC score (no post-processing), score with punctuation removed, score with casing
removed and score with full normalisation.

wav2vec 2.0 Whisper Conformer
Score CTC CTC +

n-gram AED AED RNN-T
Orthographic (ESC) 17.8 17.1 13.7 10.6 11.0
- punctuation 14.8 13.0 11.4 8.6 8.7
- casing 14.3 12.4 10.8 8.0 8.1
- normalisation 13.7 11.6 10.3 7.4 7.2

Table 5: WER on the ESC test sets under non-orthographic conditions (case and punctuation nor-
malised, removal of fillers for GigaSpeech and AMI, full normalisation for Common Voice). SoTA
results are shown alongside those for the five baseline systems. The SoTA results for LibriSpeech are
from Zhang et al. (2020), Common Voice Radford et al. (2022), VoxPopuli Conneau et al. (2022),
TED-LIUM Zhang et al. (2022), GigaSpeech Chen et al. (2021), AMI Zhang et al. (2022), Switch-
Board and CallHome Tüske et al. (2021), and CHiME-4 Du et al. (2016).

wav2vec 2.0 Whisper Conformer
Dataset CTC CTC +

n-gram AED AED Best E2E SoTA
LibriSpeech test-clean 2.9 2.4 2.8 2.2 2.0 1.4
LibriSpeech test-other 7.5 5.9 5.8 5.2 4.0 2.6
Common Voice 21.9 16.8 12.6 12.2 9.7 10.1
VoxPopuli 10.3 8.3 9.8 7.2 7.1 7.0
TED-LIUM 8.4 6.7 6.9 4.7 5.0 5.0
GigaSpeech 17.6 14.3 14.3 10.5 11.7 10.5
SPGISpeech 4.4 3.3 2.2 2.4 2.7 2.3
Earnings-22 20.4 20.5 19.6 11.5 12.6 -
AMI 22.8 20.6 15.2 10.4 10.5 7.8

SwitchBoard 14.1 10.6 12.0 8.1 8.8 4.3
CallHome 25.9 20.2 19.8 14.4 22.4 6.8
CHiME-4 30.7 25.7 62.8 11.9 13.4 10.9

Conformer RNN-T, Whisper AED and wav2vec 2.0 AED respectively. These results demonstrate
that E2E systems can be applied effectively to a range of different ASR datasets and domains,
although there is still remaining future work on some datasets.

9 CONCLUSION

We introduce ESC, a benchmark for evaluating a end-to-end ASR systems across a broad range of
speech domains. The eight datasets in our benchmark include speech recognition domains with dif-
ferent distributions for the audio artefacts and transcription requirements. We motivate the need for
dataset-agnostic systems that can be applied across different domains without additional processing.
We evaluate five different E2E systems on ESC, demonstrating how a single E2E system can be
applied to different datasets and domains. In aggregate, systems pretrained on labelled data achieve
better performance than those trained on unlabelled data, but still leave scope for improvement.

We believe that ESC offers a benchmark for developing improved speech recognition systems. Cur-
rent results show that E2E systems near the performance of state-of-the-art systems on standard
measures. Our analysis demonstrates the difficulty that different audio domains as well as punctua-
tion and casing pose for ASR systems. As methods for pretraining ASR systems improve, we expect
these issues to narrow as well.

9
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REPRODUCIBILITY STATEMENT

ESC has been designed from the ground up to be accessible to everybody. All mandatory datasets
have permissive licences, are free to use, and can be downloaded with a single line of code via
the Hugging Face Datasets library5. SwitchBoard and CHiME-4 are optional, as we believe open-
sourcing every core aspect of ESC is beneficial for promoting the research and development of
ASR systems. In this regard, much work has gone into improving how the community can ac-
cess the datasets included in ESC. Datasets exceeding 5,000 hours of training data were not con-
sidered for the benchmark, thus ensuring ESC remains practically feasible for academic research
and that members of the speech community with modest computational requirements can submit
to the benchmark. Furthermore, we strongly encourage submissions to include all code, training
logs, fine-tuned checkpoints, and evaluation runs necessary to reproduce a results. All of our base-
line checkpoints, training logs and code are fully open-sourced and can easily be accessed on the
Hugging Face Hub6. Additionally, we describe all details regarding our baselines and evaluation
strategies in Appendix B.
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A ADDITIONAL DATASET DETAILS

In this section, we give an exhaustive list of the relevant qualitative and quantitative information
regarding the datasets used in the ESC benchmark. Furthermore, we list the minimal transcription
error corrections that were performed on the raw transcriptions, in order to ensure systems were
trained on suitably formatted text. Finally, we present a diagnostic dataset to help people submitting
to the ESC benchmark find weaknesses in their systems.

A.1 IN-DETAIL DATASETS INFORMATION

In the following section, we give an-in detail overview of all relevant characteristics of each dataset
of the ESC benchmark. The data can be viewed in tabular at Table 6 and Table 7. For some datasets,
we could not reliably retrieve the number of speakers. We denote these missing entries with ?.
In addition to the metrics below, we attempted to estimate the signal-to-noise ratio (SNR) of each
dataset to quantify their noisiness. We experimented with WADA-SNR (Kim & Stern, 2008) using
this python script, but found our results to be in-conclusive and deemed them largely in-correct. In
addition, we tried pre-processing the audio with voice-activity detection (VAD), using the popular
webrtcvad7 VAD tool. However, this also produced unreasonable estimates with high variance in our
estimates. Combined with a lack of literature on reference numbers, we excluded SNR estimations
from our results.

A.2 TRANSCRIPTION ERROR CORRECTION

Below we describe the annotation correction steps taken for each dataset. To re-iterate, we do not
consider any of the following pre-processing steps to be any form of normalisation. Instead, we see
them as steps to correct erroneously annotated transcriptions or to remove junk annotations, such as
<unk> or <noise>. These junk annotations fully unrelated to any kind of punctuation or text and
cannot be considered part of speech recognition. All our error corrections steps are reflected in the
publicly available code that is used to download and prepare the benchmark’s datasets.

LibriSpeech No annotation error corrections.

Common Voice Many examples have incorrect trailing quotations marks, e.g ”the cat sat on the
mat.” instead of the cat sat on the mat., probably due to wrong transcription submissions. It does
not make sense to wrap a standalone sentence that is considered without any context into quotation
marks. In these cases, we strip the trailing quotation marks, leaving: the cat sat on the mat.. Addi-
tionally double or triple quotation marks are corrected to single quotation marks (e.g. ”””wait!”””
they cried to ”wait!” they cried) as double or triple quotation marks do not exist in the English
language.

VoxPopuli No annotation error corrections.

TED-LIUM Transcriptions in the train set contain instances of the <unk> token that are not
present in the validation and test sets. We remove these tokens from the train set. Additionally, we
correct incorrect leading spaces before apostrophes by collapsing spaced apostrophes into un-spaced
apostrophes (e.g. it ’s to it’s). We omit transcriptions labelled ignore time segment in scoring from
our evaluation by filtering them out.

GigaSpeech We remove official junk tokens (<sil>, <music>, <noise>, <other>) as they can-
not be considered audio transcriptions, but rather elements useful for audio classification. We con-
vert the spelled out punctuation to symbolic form (e.g. <comma> to ,) since the speaker did not
pronounce comma, but instead the orthographic comma is meant.

Earnings-22 The Earnings-22 dataset contains audio recordings of financial meetings upwards of
10 minutes in duration. We generate time-stamps for the audio files from the official wav2vec 2.0
CTC + 4-gram model fine-tuned on LibriSpeech (Baevski et al., 2020). We split samples at the

7https://github.com/wiseman/py-webrtcvad
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Table 6: Exhaustive datasets description and statistics (Part 1). Metrics in sample numbers are de-
noted by (#). Metrics in hours are denoted by (h). Missing entries are marked with ?. Orthographic
means that text has been formatted with all casing and punctuation according to a professional,
consistent style guide.

Domain Rec. device Source Speakers (#)
LibriSpeech (c) Audiobook Close-talk mic. Expert 1252
LibriSpeech (o) Audiobook Close-talk mic. Expert 1232
Common Voice Wikipedia Teleconf. Crowd 81085
VoxPopuli EU Parliament Close-talk mic. Expert 1313
TED-LIUM TED talks Close-talk mic. Expert 2028
GigaSpeech Audiobook, pod., YouT. Close-talk mic. Expert, Crowd ?
SPGISpeech Financial Meet. Teleconf. Expert 50000
Earnings-22 Financial Meet. Teleconf. Expert ?
AMI Meetings Close-talk mic. Expert ?
Switchboard Telephone conv. Teleconf. Expert 543
CHiME-4 Broadcast news Distant Mic. Expert 87

Style Non-native Alignment License
LibriSpeech (c) Narrated No Automatic CC-BY-4.0
LibriSpeech (o) Narrated No Automatic CC-BY-4.0
Common Voice Narrated Yes Manual CC0-1.0
VoxPopuli Oratory Yes Automatic CC0
TED-LIUM Oratory Yes Automatic CC-BY-NC-ND 3.0
GigaSpeech Narrated, spontaneous Yes Automatic apache-2.0
SPGISpeech Oratory, spontaneous Yes Manual User Agreement
Earnings-22 Oratory, spontaneous Yes Automatic CC-BY-SA-4.0
AMI Spontaneous Yes Automatic CC-BY-4.0
Switchboard Spontaneous No Manual LDC
CHiME-4 Narrated No Automatic LDC

Samp. Rate (kHz) Cased Punctuated Orthographic
LibriSpeech (c) 16 No No No
LibriSpeech (o) 16 No No No
Common Voice 48 Yes Yes No
VoxPopuli 16 No No No
TED-LIUM 16 No No No
GigaSpeech 16 No Yes No
SPGISpeech 16 Yes Yes Yes
Earnings-22 16 Yes Yes Yes
AMI 16 Yes Yes Yes
Switchboard 8 No No No
CHiME-4 16 Yes Yes Yes
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Table 7: Exhaustive datasets description and statistics (Part 2). Metrics in sample numbers are
denoted by (#). Metrics in hours are denoted by (h).

Validation (h) Validation (h) Test (h) Mean Length (s)
LibriSpeech (c) 460 5 5 12.4
LibriSpeech (o) 500 5 5 11.8
Common Voice 1409 27 27 5.6
VoxPopuli 523 5 5 10.3
TED-LIUM 454 2 3 6.1
GigaSpeech 2500 12 40 4.0
SPGISpeech 4900 100 100 9.2
Earnings-22 105 5 5 7.2
AMI 78 9 9 2.6
Switchboard 3572 30 7 3.5
CHiME-4 19 11 7 6.7

Train (#) Validation (#) Test (#) Mean Length (words)
LibriSpeech (c) 132,553 2,703 2,620 34.0
LibriSpeech (o) 148,688 2,864 2,939 31.9
Common Voice 890,116 16,335 16,335 9.9
VoxPopuli 182,482 1,753 1,842 26.1
TED-LIUM 268,263 591 1,469 18.3
GigaSpeech 2,266,371 6,750 25,619 12.9
SPGISpeech 1,926,805 39,304 39,341 24.1
Earnings-22 52,006 2,650 2,735 17.6
AMI 108,502 13,098 12,643 7.3
Switchboard 3,712,270 21,296 4,466 9.9
CHiME-4 9137 6426 4096 16.3

time-stamps for punctuation. If the split samples are longer than 20 s, we further split them at the
longest silence in the utterance. We then train a wav2vec 2.0 CTC system on audio-transcription
pairs. We repeat the process of generating time-stamps to yield more robust audio segments.

To form train-validation-test splits, we partition based on audio files, thus keeping speakers distinct
between the splits. Files 4420696.wav, 4448760.wav, 4461799.wav, 4469836.wav,
4473238.wav and 4482110.wav form the validation split. Files 4432298.wav,
4450488.wav, 4470290.wav, 4479741.wav, 4483338.wav and 4485244.wav form
the test split. The remainder form the train split.

For transcription error correction, we remove the official junk tokens (<crosstalk>, <affirmative>,
<inaudible>, <laugh>).

SPGISpeech No annotation error corrections.

AMI Audio samples in the AMI meeting corpus vary from between 10 and 60 minutes in duration.
We segment the audio samples according the the Kaldi (Povey et al., 2011) recipe for AMI8; we split
samples longer than 30 words at the time-stamps for punctuation to yield utterance of suitable length
for training speech recognition systems.

We remove the junk token <unk>, but otherwise leave the transcriptions un-changed. We fully
retain the orthography of the text.

SwitchBoard (optional) We partition 5% of the SwitchBoard corpus to form the validation
split:sw02001-sw02096 and sw04300-sw04387 are partitioned as the validation split, the
remainder form the train split.

8https://github.com/kaldi-asr/kaldi/tree/master/egs/ami/s5b
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We remove background noises and non-speech sounds denoted by square brackets, for example
[silence]. We remove angle braced words that mark speech to someone, such as <a aside>,
<b aside>, <e aside>. We remove partially pronounced words, again denoted by square brackets,
for example comm[unity]- is corrected to comm-. We remove annotations for common alternate
pronunciations denoted by underscores, for instance okay 1 is corrected to okay. Words that contain
laughter are donated in square brackets, e.g.: [laughter-because]. We extract the relevant word only:
because. We remove the curly braces that denote coinages, changing {alrighty} to alrighty. Filler
words such as uh and uhm are annotated in the train set but not the test set. We thus remove these
from the train set.

CHiME-4 (optional) We convert out all spelled out punctuation tokens to their symbolic form
(e.g. COMMA to ,). We do not remove any tokens from the originally annotated transcriptions.

A.3 DIAGNOSTIC DATASET

We also provide a new diagnostic dataset consisting of re-annotated portions of ESC using a con-
sistent transcription style, including both normalised and orthographic text formats. As such, it
facilitates the reliable evaluation across existing academic datasets and encourages the development
of new end-to-end ASR systems.

B ADDITIONAL BASELINE DETAILS

In this section, we present the five end-to-end baseline systems in more detail. We include details
on network topology (architecture, number of layers, dimensions), model initialisation, training and
evaluation.

wav2vec 2.0 CTC A wav2vec 2.0 (Baevski et al., 2020) encoder consisting of seven layers of con-
volutions (512 channels with strides (5,2,2,2,2,2,2) and kernel widths (10,3,3,3,3,2,2)) followed by a
Transformer (Vaswani et al., 2017) network with 24 layers, model dimension 1,024, inner dimension
4,096 and 16 attention heads. To predict characters, we follow Baevski et al. (2020) in appending
a randomly initialised linear layer to the output of the Transformer block with dimensionality equal
to the size of the vocabulary. The wav2vec 2.0 model is implemented as a Flax (Heek et al., 2020)
neural network module in the Hugging Face Transformers (Wolf et al., 2020) library.

We initialise the encoder weights with the official wav2vec 2.0 LARGE checkpoint trained on Lib-
riVox (LV-60k) (Baevski et al., 2020). We define the output vocabulary by computing the frequency
of characters in the train set and discarding those below a relative frequency of 0.01%.

For training, we filter audio samples longer than 20 s. We resample all audio data to 16 kHz and
normalise utterances to zero mean and unit variance. The system is fine-tuned using the Lingvo
(Shen et al., 2019) JAX implementation of the CTC objective. During fine-tuning, we follow the
settings of Baevski et al. (2020) and freeze the parameters of the convolutional waveform encoder.
We use an Optax (Babuschkin et al., 2020) implementation of the Adam (Kingma & Ba, 2015)
optimiser. We train on a single TPU v3-8 (Jouppi et al., 2020) with a batch size of 8 sequences
per device, giving an effective batch size of 64 sequences. We train for a total of 50k optimisation
steps. We use the slanted triangular learning rate (STLR) (Howard & Ruder, 2018) schedule, linearly
increasing the learning rate from zero to a maximum of 1e-4 over the first 5k steps and then linearly
decaying it to zero. During training, we evaluate the system on the validation set at 10k step intervals.
We select the checkpoint with the best validation performance for evaluation on the test set.

wav2vec 2.0 CTC + n-gram We combine the wav2vec 2.0 CTC system with a 5-gram language
model. We use the training transcriptions as an LM corpus for each dataset. We compute a MLE
of the 5-gram KenLM parameters with Kneser-Ney smoothing (Ney et al., 1994; Heafield et al.,
2013). For decoding, we use an LM weight of 0.5 and a word-insertion penalty of 1.5. We use 100
beams and a one pass beam-search decoder from pyctcdecode9 to perform LM boosted beam search
decoding for CTC.

9https://github.com/kensho-technologies/pyctcdecode
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wav2vec 2.0 AED We employ an attention-based encoder-decoder (AED) system. The encoder
uses the same wav2vec 2.0 network as described in the wav2vec 2.0 CTC baseline. The decoder is
also a Transformer network, consisting of 12 layers, model dimension 1,024, inner dimension 4,096
and 16 attention heads. We follow Li et al. (2020) and Babu et al. (2021) in adding a randomly
initialised adapter network to interface the encoder and decoder, consisting of three 1-dimensional
CNN blocks, each of kernel size 3 and stride 2. The wav2vec 2.0 AED model is implemented as a
Flax neural network module in the Hugging Face Transformers library.

We initialise the encoder weights with the official wav2vec 2.0 LARGE LV-60k checkpoint and
the decoder model weights with the official BART LARGE (Lewis et al., 2020) checkpoint. The
vocabulary is un-changed from the vocabulary of the pretrained BART large model, and thus inherits
the BART byte-level Byte-Pair-Encoding (BPE) (Sennrich et al., 2016) tokenizer.

The wav2vec 2.0 AED system is fine-tuned in much the same way as the CTC system, with the
exception of the objective function and learning-rate schedule. The system is fine-tuned using the
cross-entropy objective implementation in Optax. We again use the STLR schedule, linearly in-
creasing the learning rate from zero to a maximum of 3e-4 over the first 500 steps and then linearly
decaying it to zero. We select the checkpoint with the best validation set performance for optimising
the generation hyper-parameters. We use a beam size of 12 and a maximum sequence length of 225
tokens. We select the length penalty as the value that yields the best performance on the validation
set. We use this setting for the final evaluation on the test set.

Whisper AED We employ a second AED network. We use 80-dimensional filterbank features
from a 25 ms sliding window and a stride of 10 ms as the inputs to the encoder. The input is passed
through two convolutional layers with filter widths of 3 and strides of 1 and 2. The encoder consists
of a Transformer network with 12 layers, model dimension 1,024, inner dimension 4,096 and 16
attention heads. The decoder is also a Transformer network with the same dimensions and number
of layers. The model is implemented as a PyTorch (Paszke et al., 2019) neural network in the official
Whisper (Radford et al., 2022) repository.

We initialise the system weights entirely with the official Whisper medium.en checkpoint pretrained
on 680k hours of weakly labelled audio data. The tokenizer is the same BPE tokenizer used in
GPT-2 (Radford et al., 2019).

For training, we truncate audio samples to 30 seconds and resample them to 16 kHz. The system is
fine-tuned using the cross-entropy objective. During fine-tuning, we freeze the encoder network. We
use the PyTorch implementation of the Adam optimiser. We train on a single NVIDIA A-100 GPU
(Choquette et al., 2021) with a batch-size of 64. We train for a total of 5k steps. We use the STLR
schedule, linearly increasing the learning rate from zero to a maximum of 1e-4 over the first 500
steps and then linearly decaying it to zero. During training, we evaluate the system on the validation
set at 500 step intervals. We decode using greedy search with a maximum sequence length of 225
tokens. We select the checkpoint with the best validation performance for evaluation on the test set.

Due to the short period of time between the official Whisper checkpoint release and the submission
deadline, we did not exhaustively explore training configurations or generation hyper-parameters
(such as beam search). Doing so would most likely have led to improved results. We leave this as
future work.

Conformer RNN-T We use 80-dimensional filterbank features from a 25 ms sliding window and
a stride of 10 ms as the inputs to the encoder. The encoder consists of a Conformer network with 24
layers, model dimension 1,024, inner dimension 4096, convolutional kernel size 5 and 8 attention
heads. The prediction network consists of 2 RNN layers with hidden dimension 640. The tran-
scription network consists of a single feedforward layer with hidden dimension 640. The unit of
prediction for the system is SentencePiece (Kudo & Richardson, 2018) tokenized text with a vocab-
ulary of size 1,024. The model is implemented as a PyTorch neural network module in the NVIDA
NeMo (Kuchaiev et al., 2019) library.

Since the official weights for the Conformer Transducer are not open-sourced, we use the nearest
like-for-like open-source replacement. We initialise the model weights from the NVIDIA NeMo
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Table 8: Baseline performance on the validation sets and overall benchmark scores. We report
orthographic WERs in &. SwitchBoard and CHiME-4 are optional datasets for the ESC benchmark.

wav2vec 2.0 Whisper Conformer
Dataset CTC CTC +

n-gram AED AED RNN-T
LibriSpeech test-clean 2.9 2.4 2.8 2.2 2.0
LibriSpeech test-other 7.5 5.9 5.8 5.2 4.0
Common Voice 22.8 18.9 14.0 13.6 13.2
VoxPopuli 11.4 9.1 10.2 7.2 7.5
TED-LIUM 8.7 7.1 12.4 5.0 5.6
GigaSpeech 25.9 22.5 22.2 18.0 19.0
SPGISpeech 8.1 7.1 5.4 5.6 6.3
Earnings-22 26.7 38.9 22.8 16.0 18.3
AMI 32.1 32.9 20.5 16.5 17.8

SwitchBoard 15.0 11.4 11.3 8.2 8.3
CHiME-4 19.6 18.9 52.3 9.1 12.2

XLARGE checkpoint10 trained on combination of 11 speech recognition datasets totalling nearly
24k hours: LibriSpeech (Panayotov et al., 2015), Fisher (Cieri et al., 2004a;b), SwitchBoard (God-
frey et al., 1992), Wall-Street Journal 0 and 1 (Garofolo et al., 1993b), National Speech Corpus
(Part 1, Part 6) (Koh et al., 2019), VCTK (Yamagishi et al., 2019), VoxPopuli (Wang et al., 2021),
Europarl-ASR (EN) (Garcés Dı́az-Munı́o et al., 2021), Multilingual Librispeech (MLS EN, 2k hours
subset) (Pratap et al., 2020), Mozilla Common Voice (version 8.0) (Ardila et al., 2020) and People’s
Speech (12k hours subset) (Galvez et al., 2021). We train a BPE SentencePiece tokenizer on the
transcriptions from the train split for each dataset.

For training, we filter audio samples longer than 20 s. We resample all audio data to 16 kHz and
normalise utterances to zero mean and unit variance. We use SpecAugment (Park et al., 2019) for
data augmentation during training with mask parameter F = 27 and ten time masks with maximum
time mask ration of p = 0.05. We set the maximum size of the time mask to p times the length of the
utterance and do not use time warping. We fine-tune the system using the NeMo implementation of
the Transducer objective. We use the PyTorch implementation of the Adam optimiser. We train on a
single NVIDIA A-100 GPU with a batch size of 8 sequences. We train for a total of 100k optimisa-
tion steps. We use the STLR schedule, linearly increasing the learning rate from zero to a maximum
of 1e-4 over the first 500 steps and then linearly decaying it to zero. During training, we evaluate
the system on the validation set at 2.5k step intervals. We decode using greedy search. We find that
this yields comparable results to beam-search with a beam-size of 5, but with substantially faster
computation times. We select the checkpoint with the best validation performance for evaluation on
the test set.

C DEVELOPMENT SET RESULTS

To provide a reference for system development and future work on ESC, we present the best valida-
tion set results achieved by our baselines in Table 8.

D ADDITIONAL ANALYSIS RESULTS

Table 9 details the orthographic WER scores for the ESC test sets on a per-dataset level for no post-
processing, and under three post-processing conditions: (i) remove punctuation, (ii) remove casing,
(iii) apply full normalisation. Table 10 shows the same metrics for the optional test sets.

10https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_
conformer_transducer_xlarge

22

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_transducer_xlarge
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_transducer_xlarge


Under review as a conference paper at ICLR 2023

Table 9: The effect of punctuation, casing and full normalisation on orthographic WER scores for
the ESC test sets. We show the WER without post-processing, WER with punctuation removed,
WER with casing removed and WER with full normalisation.

wav2vec 2.0 Whisper Conformer
Dataset CTC CTC +

n-gram AED AED RNN-T
LibriSpeech test-clean 2.9 2.4 2.8 2.2 2.0
- punctuation 2.9 2.4 2.8 2.2 2.0
- casing 2.9 2.4 2.8 2.2 2.0
- normalisation 2.8 2.3 2.6 2.1 1.9

LibriSpeech test-other 7.5 5.9 5.8 5.2 4.0
- punctuation 7.5 5.9 5.8 5.2 4.0
- casing 7.5 5.9 5.8 5.2 4.0
- normalisation 7.4 5.8 5.6 5.1 3.8

Common Voice 26.1 22.2 16.3 15.8 14.8
- punctuation 23.9 18.8 14.4 14.2 12.3
- casing 22.4 17.3 13.1 12.8 10.9
- normalisation 21.9 16.8 12.6 12.2 9.7

VoxPopuli 11.4 10.2 10.1 7.4 7.3
- punctuation 10.3 8.3 9.8 7.2 7.1
- casing 10.3 8.3 9.8 7.2 7.1
- normalisation 10.0 8.1 9.6 7.0 6.7

TED-LIUM 8.4 6.7 6.9 4.7 5.0
- punctuation 8.4 6.7 6.9 4.7 5.0
- casing 8.4 6.7 6.9 4.7 5.0
- normalisation 7.9 6.2 6.3 4.0 4.5

GigaSpeech 25.3 22.0 23.4 17.3 18.6
- punctuation 18.2 14.9 15.3 11.0 12.4
- casing 18.2 14.9 15.3 11.0 12.4
- normalisation 17.5 13.9 14.3 10.2 11.3

SPGISpeech 8.1 7.1 5.4 5.5 6.3
- punctuation 5.8 4.6 3.3 3.6 3.9
- casing 4.4 3.3 2.2 2.4 2.7
- normalisation 4.2 3.0 2.0 2.2 2.4

Earnings-22 26.0 31.7 23.6 16.0 17.6
- punctuation 20.9 21.0 20.1 12.1 13.3
- casing 20.4 20.5 19.6 11.5 12.6
- normalisation 19.3 18.8 18.3 9.9 10.2

AMI 32.0 33.1 19.3 14.5 15.1
- punctuation 26.0 25.1 16.8 12.2 12.3
- casing 24.8 23.7 15.5 10.8 11.0
- normalisation 23.7 22.0 15.0 10.3 10.2
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Table 10: The effect of punctuation, casing and full normalisation on orthographic WER scores for
the optional test sets. We show the WER without post-processing, WER with punctuation removed,
WER with casing removed and WER with full normalisation.

wav2vec 2.0 Whisper Conformer
Dataset CTC CTC +

n-gram AED AED RNN-T
SwitchBoard 16.1 12.8 15.3 10.0 10.8
- punctuation 14.1 10.6 12.0 8.1 8.8
- casing 14.1 10.6 12.0 8.1 8.8
- normalisation 14.0 10.4 10.2 7.8 8.3

CallHome 26.6 20.9 24.3 15.9 23.3
- punctuation 25.9 20.2 19.8 14.4 22.4
- casing 25.9 20.2 19.8 14.4 22.4
- normalisation 25.7 19.9 17.1 13.5 22.1

CHiME-4 29.2 26.8 56.9 12.7 14.2
- punctuation 28.3 24.4 59.2 11.7 13.3
- casing 27.4 23.4 59.0 11.0 12.6
- normalisation 30.7 25.7 62.8 11.9 13.4
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