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ABSTRACT

Proper Orthogonal Decomposition (POD) is a cornerstone reduced-order model-
ing technique for accelerating the solution of partial differential equations (PDEs)
by extracting energy-optimal orthogonal bases. However, POD’s inherent linear
assumption limits its expressive power for complex nonlinear dynamics, and its
snapshot-based fixed bases generalize poorly to unseen scenarios. Meanwhile,
emerging deep learning solvers have explored integrating decomposition architec-
tures, yet their purely data-driven nature lacks essential physical priors and leads
to modal collapse, where decomposed modes lose discriminative power. To ad-
dress these challenges, we revisit POD from an information-theoretic perspective.
We theoretically establish that POD’s classical energy-maximization criterion is,
in essence, a principle of maximizing mutual information. Guided by this insight,
we propose OrthoSolver, a neural proper orthogonal decomposition framework
that generalizes this core information-theoretic principle to the nonlinear domain.
OrthoSolver iteratively and adaptively extracts a set of compact and expressive
nonlinear basis modes by directly maximizing their mutual information with the
data field. Furthermore, an orthogonality regularization is imposed to preserve the
diversity of the learned modes and effectively mitigate mode collapse. Extensive
experiments on seven PDE benchmarks demonstrate that OrthoSolver consistently
outperforms state-of-the-art deep learning baselines.

1 INTRODUCTION

Partial Differential Equations (PDEs) constitute the fundamental language describing physical laws
across numerous scientific and engineering disciplines (Wazwaz, 2002). However, high-fidelity nu-
merical simulations of complex, real-world systems are often computationally prohibitive (Rozza
et al., 2022). To address this issue, decomposition has emerged as a powerful paradigm, simplify-
ing problem-solving by breaking down complex problems into a series of simpler, more tractable
sub-tasks. This paradigm is central to the evolution of PDE-solving methodologies. Traditional
numerical solvers, for instance, leverage Model Order Reduction (MOR) techniques, such as Proper
Orthogonal Decomposition (POD), for acceleration (Carere et al., 2021). In parallel, data-driven
models, spearheaded by deep learning, are evolving from monolithic architectures toward decom-
positional, multi-scale, and factorized structures to better model complex physical processes (Bhat-
tacharya et al., 2021).

Within the domain of traditional MOR, Proper Orthogonal Decomposition (POD) is a cornerstone
technique (Bright et al., 2013). Its core principle involves projecting a high-dimensional dynami-
cal system onto a low-dimensional subspace spanned by a set of energy-optimal orthogonal basis
functions, thereby achieving significant computational acceleration. Despite its widespread adop-
tion, predicated on its mathematical optimality under linear assumptions, the efficacy of POD is
fundamentally constrained (Demo et al., 2023). First, it exhibits limited generalization, as basis
functions generated for specific operating conditions often fail to extend to new scenarios. Second,
POD’s strict linear assumption precludes it from capturing the complex dynamics of highly non-
linear systems. For example, when addressing multi-physics problems, POD typically decomposes
each variable independently or assumes a linear correlation between them, thereby failing to capture
the underlying nonlinear physical couplings (Lario et al., 2022).
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Although deep learning-based PDE solvers have advanced rapidly, they face distinct bottlenecks.
Monolithic operator architectures, such as the Fourier Neural Operator (FNO) (Li et al., 2021) and
DeepONet (Lu et al., 2021), have limited modeling capacity when confronted with complex scenar-
ios (Wu et al., 2023). In response, subsequent work has explored more sophisticated architectures;
U-Net-like (Ronneberger et al., 2015) models including LSM (Wu et al., 2023), U-NO (Rahman
et al., 2022), and U-FNO (Wen et al., 2022) employ multi-scale structures, whereas models like
Transolver (Wu et al., 2024), Factformer (Li et al., 2023a), and F-FNO (Tran et al., 2023) utilize
factorization and data slicing to simplify the problem. While these decompositional strategies like
Transolver provide a powerful means of simplifying complexity, these approaches often lack ef-
fective mechanisms to enforce independence among the decomposed components, leading to mode
collapse in complex scenarios—a phenomenon wherein the decomposed modes become indistin-
guishable, thus losing their differential representation power (Luo et al., 2025). Consequently, a
critical challenge has emerged: designing a unified framework that combines efficient decomposi-
tion with robust nonlinear modeling while simultaneously preventing mode collapse.

The crux of this challenge stems from a fundamental dichotomy: while traditional decomposition
methods like POD rest upon solid mathematical foundations, their reliance on variance-based met-
rics introduces significant errors when applied to nonlinear physical systems. Conversely, the de-
composition strategies employed in existing data-driven models often lack a sound theoretical un-
derpinning. To address this gap, this work revisits POD from an information-theoretic perspective,
theoretically establishing that its core principle is equivalent to the maximization of Mutual Infor-
mation (MI) under a linear-Gaussian assumption (Chechik et al., 2003; Burges et al., 2010). This
theoretical link not only elucidates the foundations of POD but also underscores the limitations of
variance-based approaches in nonlinear regimes. Consequently, MI, as a universal measure of sta-
tistical dependence unconstrained by linearity, provides a more principled framework for capturing
the intricate correlations characteristic of nonlinear systems (Globerson & Tishby, 2003).

This insight motivates the proposed framework, OrthoSolver: a deep proper orthogonal decomposi-
tion framework guided by the principle of maximizing mutual information. OrthoSolver comprises
two key modules: a orthogonal basis extraction module predicated on the maximum mutual in-
formation principle and a dynamics evolution module inspired by POD. The former leverages an
information-theoretic objective to extract salient modes from the nonlinear dynamics, while the lat-
ter performs efficient evolution within the resulting low-dimensional space. To mitigate mode col-
lapse, an orthogonality regularization is introduced to enforce the independence and representational
efficacy of the decomposed modes. The contributions of this paper are as follows:

• Theoretical Contribution: We reveal and formally establish a deep theoretical connection
between POD and mutual information maximization, proving that POD’s energy-optimal
orthogonal basis decomposition is a special case of maximum mutual information under
the linear Gaussian assumption.

• Methodological Contribution: We propose OrthoSolver, an end-to-end, information-
theoretic-guided deep learning framework for orthogonal decomposition that extends the
physical principles of POD to the nonlinear domain.

• Extensive experiments on seven benchmark datasets, spanning a diverse range of physi-
cal phenomena across both 1D and 2D PDEs, demonstrate that OrthoSolver significantly
outperforms existing state-of-the-art methods.

2 RELATED WORK

Neural Operators for PDEs. Learning solution operators for entire families of PDEs is a central
theme in scientific machine learning. Dominant approaches include DeepONet (Lu et al., 2021)
and the Fourier Neural Operator (FNO) (Li et al., 2021), which parameterizes global convolutions
efficiently using the FFT. The success of FNO has inspired a range of extensions and hybrid archi-
tectures. To better capture features at different resolutions, several works have combined FNO with
the hierarchical U-Net (Ronneberger et al., 2015) architecture, leading to models like U-FNO (Wen
et al., 2022) and U-NO (Rahman et al., 2022). Other extensions have adapted the core idea to handle
complex geometries (Geo-FNO (Li et al., 2023b)) or leverage alternative transforms like wavelets
(MWT (Gupta et al., 2021)). Concurrently, Transformers (Vaswani et al., 2017), a cornerstone of
deep learning, have been successfully adapted for solving PDEs. Models like FactFormer (Li et al.,
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2023a) leverage low-rank structures to boost efficiency, while others like OFormer (Li et al., 2022)
and GNOT (Hao et al., 2023) address the quadratic complexity of attention by incorporating lin-
ear Transformer variants. However, these monolithic operator learning approaches often struggle
to generalize in complex physical scenarios, facing challenges with intricate boundary conditions
and capturing the full spectrum of physical dynamics (Wu et al., 2023). Our work instead adopts
a decompositional paradigm, aiming for greater interpretability and robustness by breaking down
complex fields into simpler, fundamental components.

Decomposition-based Models for PDEs. An alternative paradigm focuses on decomposing the so-
lution field. One line of work employs purely data-driven decompositions; for instance, LSM (Wu
et al., 2023) maps solutions to a latent spectral basis, while Transolver (Wu et al., 2024) decomposes
the input into learnable slices. A key challenge for these methods is the lack of physical grounding,
which can lead to mode collapse, where learned basis functions become redundant (Luo et al., 2025).
Another line of work leverages traditional physics-based decomposition, such as Proper Orthogo-
nal Decomposition (POD), and then uses a neural network to evolve the mode coefficients (e.g.,
POD-DeepONet (Lu et al., 2022)). This hybrid approach, however, is fundamentally constrained
by the linear decomposition error inherent in POD when applied to nonlinear systems. While some
methods (Lario et al., 2022) attempt to learn this residual error with machine learning, they do not
address the core limitation of the initial linear decomposition. Notably, several theoretical works
have explored the connection between Proper Orthogonal Decomposition (POD) and mutual infor-
mation from an information-theoretic perspective (Chechik et al., 2003; Globerson & Tishby, 2003;
Burges et al., 2010). However, these studies remain confined to proving theoretical equivalences and
do not attempt to leverage this insight to generalize POD. In contrast, our work builds directly on this
theoretical foundation and presents the first framework that extends POD to the nonlinear regime.
OrthoSolver achieves this by learning a nonlinear decomposition guided by a physically principled
objective, thereby simultaneously circumventing mode collapse and the linear approximation error
inherent in classical POD.

Information Theory in Deep Learning. The use of Mutual Information (MI) as an objective has
proven to be a powerful tool for learning structured and disentangled representations in deep learn-
ing. Foundational concepts such as the InfoMax principle (Veličković et al., 2018) and the Informa-
tion Bottleneck principle (Tishby et al., 2000) have been widely applied in representation learning
to distill salient features. While direct MI computation is intractable, this challenge has spurred
the development of a rich literature on neural MI estimators that provide tractable bounds, includ-
ing MINE (Belghazi et al., 2018), InfoNCE (Oord et al., 2018), and CLUB (Cheng et al., 2020),
among others. OrthoSolver innovatively bridges the gap between this line of research and scientific
computing. To the best of our knowledge, this is the first framework to leverage these modern MI
estimators to guide the decomposition of PDE solutions.

3 PRELIMINARIES

3.1 PROBLEM SETUP: OPERATOR LEARNING

In classical machine learning, the goal is to learn a mapping between finite-dimensional Euclidean
spaces, f : Rdin → Rdout , using a dataset of input–output pairs P = {(xi,yi)}Ni=1. While effective
for many tasks, this vector-to-vector paradigm is not naturally suited for problems governed by
PDEs, where the goal is to learn a mapping between functions.

Consider a parametric PDE of the form (Lau)(x) = f(x), where La is a differential operator
parameterized by a function a(x) (encoding boundary conditions, coefficients, or source terms). For
each a(x), there exists a solution u(x). Learning across this PDE family amounts to approximating
the solution operator that maps input functions a to output functions u. This motivates the operator-
learning paradigm, which seeks to learn mappings between infinite-dimensional function spaces.

Operator Learning (Anandkumar et al., 2020) can be defined as:

F : X ×Θ → Y, (1)

where X = {x |x : Ω → Rdx} and Y = {y | y : Ω → Rdy} denote input and output function spaces
over domain Ω ⊂ Rd, dx and dy are channel dimensions, and Θ denotes the parameters.
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3.2 PROPER ORTHOGONAL DECOMPOSITION (POD)

Proper Orthogonal Decomposition (POD) (Rozza et al., 2022) is a classical model reduction tech-
nique that formulates an explicit variance-maximization problem (see Appendix C.1 for deriva-
tion). Its goal is to identify a low-dimensional subspace that captures as much data variability (“en-
ergy”) as possible from the snapshots {ui}Ni=1. Treating each snapshot as a realization of a random
variable u ∈ Rm, POD formally constructs the orthonormal basis {ϕk}rk=1 by iteratively solving
the following sequential optimization problem:

ϕk = argmax
∥ϕ∥=1

ϕ⊥{ϕ1,...,ϕk−1}

Var(⟨u, ϕ⟩). (2)

where the objective explicitly seeks directions that maximize the projected variance subject to or-
thogonality constraints.

Practically, this optimal basis is obtained via a linear matrix factorization, typically Singular Value
Decomposition (SVD) of the snapshot matrix U = [u1, . . . , uN ]. Any snapshot can then be approx-
imated as a linear combination of these basis modes:

ui ≈
r∑

k=1

aikϕk, (3)

where aik = ⟨ui, ϕk⟩ is the projection coefficient. By maximizing variance, POD finds the optimal
linear subspace. However, its reliance on linear factorization limits its capacity to capture complex
nonlinear dynamics, motivating data-driven generalizations.

3.3 BEYOND LINEAR CORRELATION: MUTUAL INFORMATION

While variance maximization, used in POD, is sensitive to linear correlations, it does not capture
more complex statistical structures. In contrast, Mutual Information (MI) from information theory
provides a general measure of dependency (Globerson & Tishby, 2003). Defined as I(X;Y ) =
H(X) −H(X|Y ), MI quantifies the reduction in uncertainty about one variable given knowledge
of another. Crucially, its formulation allows it to capture arbitrary nonlinear relationships, making it
a more comprehensive tool for dependency analysis than linear correlation.

4 METHODOLOGY: THE ORTHOSOLVER FRAMEWORK

4.1 FROM VARIANCE TO MUTUAL INFORMATION: A PRINCIPLED GENERALIZATION

As Section 3.2 mentioned, the fundamental limitation of Proper Orthogonal Decomposition (POD)
is its reliance on maximizing projected variance as equation 2, a principle optimal for linear systems
but ill-suited for complex, nonlinear dynamics. To overcome this, we re-contextualize POD from
an information-theoretic perspective, positing that its variance-based objective is a constrained spe-
cial case of a more general principle maximizing mutual information (MI). Existing theoretical
works have formally proven that maximizing variance is equivalent to maximizing MI under linear
Gaussian assumptions (Chechik et al., 2003; Globerson & Tishby, 2003; Burges et al., 2010):
Theorem 1. Assume that the data snapshots u follow a multivariate Gaussian distribution and that
the projection a = ⟨u, ϕ⟩ is a linear operation. Then, maximizing the projection variance Var(a) is
equivalent to maximizing the mutual information I(u; a) between the original data and its projection
coefficient.

Proof. Since u is Gaussian, its linear projection a is also a univariate Gaussian random variable.
The differential entropy of a zero-mean Gaussian variable is given by

H(a) =
1

2
log

(
2πe ·Var(a)

)
. (4)

Because the logarithm is a monotonic function, maximizing the variance Var(a) is equivalent to
maximizing the entropy H(a):

argmaxVar(a) ⇐⇒ argmaxH(a). (5)
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Figure 1: Overall architecture of OrthoSolver. The input function u(µ) is first decomposed into
global basis functions and coefficients, which are then evolved in the latent space by the solver and
recombined to produce Ŷ(µ′).

The mutual information between u and a is defined as I(u; a) = H(a) − H(a|u). Since a is a
deterministic function of u, its conditional entropy vanishes, i.e., H(a|u) = 0. Therefore, I(u; a) =
H(a). Combining these results yields:

argmaxVar(a) ⇐⇒ argmaxH(a) ⇐⇒ argmax I(u; a). (6)

This proves that under linear Gaussian conditions, the variance-maximization objective of POD is
equivalent to a mutual-information-maximization objective.

Existing theoretical studies have proven Theorem 1 that POD’s variance maximization is equiva-
lent to mutual information maximization under linear Gaussian assumptions. However, these works
remain largely theoretical and have not leveraged this insight to practically generalize POD. We
observe that Theorem 1 reveals a key insight: POD’s use of variance to identify dominant bases
is essentially a specific instance of using mutual information. However, the variance maximization
criterion is fundamentally limited to capturing second-order moments, making it ill-suited for char-
acterizing the complex, high-order dependency structures in highly nonlinear PDEs. By contrast,
mutual information can effectively capture complex nonlinearities. Building on Theorem 1, we gen-
eralize the linear decomposition paradigm of POD from the restricted variance metric to the general
mutual information metric. This leads to the development of OrthoSolver, which adaptively extracts
the most informative bases in nonlinear spaces, thereby extending the core philosophy of POD to
nonlinear decomposition.

4.2 ORTHOSOLVER: MODEL ARCHITECTURE

We generalize the classical POD framework to an operator-learning setting by leveraging
information-theoretic principles. Unlike traditional POD, which relies on a fixed linear basis ob-
tained from snapshot matrices, OrthoSolver adaptively learns a nonlinear basis that maximizes mu-
tual information with the data, enabling more expressive and data-efficient representations.

Neural POD Operator Learning. In contrast to conventional operator learning methods that seek to
learn a direct mapping F : X → Y (Anandkumar et al., 2020), the proposed framework decomposes
this process into a composition of three distinct operators:

F = D ◦ Sθ ◦ Eθ (7)
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where ◦ denotes operator composition. The Basis Decomposition Operator Eθ : X → (Φ,RK)
maps an input function x(µ) to a set of K global basis functions {Φk} and corresponding co-
efficients {ak(µ)}. The Solver Operator Sθ evolves these coefficients to new parameter con-
ditions µ′. Finally, the Synthesis Operator D reconstructs the solution by linear superposition:
Ŷ(µ′) =

∑K
k=1 âk(µ

′)Φk.

Adaptive Basis Learning. Guided by the principle established in Section 4.1, our decomposition
operator Eθ operationalizes the generalization of POD. Instead of maximizing variance, its core
objective is to learn a set of basis functions {Φk} that maximize the mutual information (MI) :

Φ⋆
k = arg max

{Φk}
I
(
Proj(u, {Φk});u

)
, (8)

where Proj(·) represents the projection of the data onto the learned basis. This information-theoretic
objective drives the learning of a compact and expressive basis capable of capturing complex non-
linear dependencies. To implement this, we design Eθ as a residual-based sequential process, where
each step extracts the single most informative basis-coefficient pair (Φk, ak(µ)) from the current
data field.

Data Flow. Figure 1 illustrates the data flow: (i) decomposition onto global basis, (ii) coefficient
evolution in a low-dimensional latent space, and (iii) synthesis into the final solution. This modular
factorization provides interpretability and allows efficient generalization to new parameter regimes.

4.3 BASIS DECOMPOSITION MODULE VIA MUTUAL INFORMATION MAXIMIZATION

Our basis decomposition module implements the information-theoretic principle outlined in Section
4.1. It mimics the sequential, residual-based process of POD but replaces the linear, variance-driven
objective with a non-linear, information-driven one. The module iteratively extracts basis-coefficient
pairs to greedily maximize the information captured from the data field.

Formally, the input function u(µ) is defined as the initial residual X1. At each step k, this module
produce a basis–coefficient pair (Φk, ak) by solving

max
Φk,ak

I(Xk, ak), (9)

where I(·, ·) denotes the mutual information between the residual and the extracted coefficient.
Intuitively, this ensures that Φk represents the most informative mode contained in Xk. The
BasisExtractor is realized as a Factorized Fourier Neural Operators (F-FNO) (Tran et al.,
2023), selected for its efficacy in operator learning tasks within function spaces, while the
CoeffExtractor is a Multi-Layer Perceptron (MLP):

Φk = FNO(Xk;θfno,k), (10)
ak = MLP(Xk;θmlp,k). (11)

The residual is then updated as
Xk+1 = Xk − akΦk, (12)

and the process is repeated for K steps.

For practical optimization, direct maximization of I(Xk, ak) is computationally challenging. We
reformulate the objective as minimizing the mutual information between the current representation
and the residual after extracting ak, i.e.,

min I(Xk,Xk − akΦk) = min I(Xk,Xk+1) (13)

where Xk+1 denotes the residual representation. As demonstrated in Appendix C.2, maximizing the
information captured by the mode is equivalent to minimizing the information carried over in the
residual. The final MI-based loss is formulated as the average over all steps:

Lmi =
1

K

K∑
k=1

I(Xk,Xk+1) (14)

MI Estimation. Direct computation of mutual information is generally intractable in deep learn-
ing, as it requires access to the true joint and marginal distributions. To address this, we adopt

6
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a variational approach that optimizes a tractable upper bound of the MI. Specifically, we employ
the Contrastive Log-ratio Upper Bound (CLUB) (Cheng et al., 2020), which provides a tight and
efficiently trainable surrogate. For a given pair (Xk, ak), CLUB estimates the MI by learning a
variational distribution q(ak|Xk) to approximate the true posterior p(ak|Xk). In practice, this con-
ditional distribution can be parameterized by a neural network, such as a multi-layer perceptron
(MLP). Then the upper bound can be caculated by:

ICLUB(Xk, ak) = Ep(Xk,ak)[log q(ak|Xk)]− Ep(Xk)p(ak)[log q(ak|Xk)] (15)

This estimator can be efficiently optimized using samples from the training batch. This tractable
estimate is then substituted into Equation equation 14 to facilitate end-to-end training.

Reconstruction Constraint. To ensure the learned basis functions and coefficients can accurately
reconstruct the original input data, a reconstruction constraint is imposed. This loss penalizes the
discrepancy between the original function and its reconstruction from the full set of extracted modes:

Lrecon =

∥∥∥∥∥u−
K∑

k=1

ak(u)Φk

∥∥∥∥∥
2

F

(16)

Basis Orthogonality Constraint. As noted in (Luo et al., 2025; Doimo et al., 2022), in complex
dataset scenarios, deep learning models employing decomposition strategies such as (Wu et al.,
2024) may suffer from mode collapse, a phenomenon where optimizers tend to converge towards
the redundant features rather than decoupling truly independent components. Mathematically, this
phenomenon manifests as high similarity between the learned basis vectors (i.e., ϕi ≈ ϕj), leading
to approximate linear dependence among the column vectors of the basis matrix G. This results in
a decrease in the effective rank of G (i.e., rank(G) < K), thereby limiting the representational
capacity of the subspace.

To theoretically strictly avoid this degeneracy and promote basis diversity, we introduce an orthogo-
nality constraint. By regularizing the Gram matrix of the basis functions to approximate the identity
matrix (i.e., GTG ≈ I), we theoretically ensure the linear independence of the basis vectors, thereby
maintaining the full-rank property of the decomposition (rank(G) ≈ K). The loss function is de-
fined using the Frobenius norm as follows:

Lortho =
∥∥GTG− I

∥∥2
F

(17)

where G = [Φ1,Φ2, . . . ,ΦK ] is the matrix consisting of flattened basis vectors as columns, and I
is the identity matrix.

4.4 DYNAMICS EVOLUTION AND SOLUTION SYNTHESIS

Once the decomposition module has extracted the global basis functions {Φk} and their corre-
sponding coefficients {ak(µ)}, the Solver Operator Sθ predicts the system’s evolution in the low-
dimensional latent space.

For each mode k, a dedicated F-FNO-based SolutionOperator evolves the coefficient ak(µ)
to a new parameter state µ′. The operator takes the coefficient history and the static basis function
as input to predict the new coefficient âk(µ′):

âk(µ
′) = FNOk (Concat (ak(µ) ,Φk)) (18)

Once the set of predicted coefficients {âk(µ′)}Kk=1 has been inferred for all modes, the Synthesis
Operator D assembles the final high-dimensional solution. This is a parameter-free linear combi-
nation of the global basis functions weighted by their newly predicted coefficients:

Ŷ(µ′) =

K∑
k=1

âk(µ
′)Φk (19)

To train the solver networks, we define a prediction loss that measures the discrepancy between
the synthesized solution and the ground truth. We use the Relative L2 error, which is common for
evaluating physics-based learning problems:

Lpred =
∥Y(µ′)− Ŷ(µ′)∥2

∥Y(µ′)∥2
(20)

7
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4.5 MODEL TRAINING

The OrthoSolver framework is trained end-to-end by minimizing a composite objective function that
incorporates the four distinct loss terms derived in the previous sections. The overall loss, Ltotal, is a
dynamically weighted sum of these components, designed to balance the multifaceted goals of our
model.

Total Loss Function. The total loss is composed of four terms, each targeting a specific aspect of
the learning process. The Mutual Information loss (LMI) from Eq. equation 14 drives the extraction
of informative basis functions. The Reconstruction loss (Lrecon) from Eq. equation 16 ensures the
decomposition is faithful to the original data. The Orthogonality loss (Lortho) from Eq. equation 17
encourages diversity among the basis functions. Finally, the Prediction loss (Lpred) from Eq. equa-
tion 20 trains the solver to accurately evolve the latent coefficients. The combined objective is:

Ltotal = λMILMI + λreconLrecon + λorthoLortho + λpredLpred (21)

where λ are the weights for each loss component.To balance these multi-task objectives, Dynamic
Weight Averaging (DWA) is employed (Liu et al., 2019).

5 EXPERIMENTS

To comprehensively evaluate the performance and robustness of our proposed OrthoSolver frame-
work, we conduct extensive experiments on a diverse suite of 7 benchmark datasets from the field
of fluid dynamics. These datasets span both 1D and 2D problems and cover a range of physical phe-
nomena and complexities. Reproducibility details like code and datasets can be obtained in section
Reproducibility Statement. A comprehensive analysis of model efficiency, including parameters,
training times, and memory consumption, is detailed in the Appendix D.6.

5.1 DATASETS AND BASELINES

Our evaluation is performed on seven benchmark datasets from PDEBench (Takamoto et al., 2022),
detailed in Appendix D.1. They include canonical problems such as Burgers’ equation and Ad-
vection equation, as well as more challenging simulations like time-dependent Navier-Stokes flow,
allowing us to test the model’s ability to handle varying levels of non-linearity and dimensionality.

We benchmark OrthoSolver against a comprehensive suite of ten state-of-the-art methods, rep-
resenting the primary families of neural operator learning. These baselines include: Fourier-
based models: the foundational FNO (Li et al., 2021) and its variants like F-FNO (Tran et al.,
2023) and Wavelet-based model MWT (Gupta et al., 2021)). Transformer-based architectures:
which leverage attention mechanisms, including GNOT (Hao et al., 2023), Factformer (Li et al.,
2023a), UPT (Alkin et al., 2024), Erwin (Zhdanov et al., 2025). Multi-scale and hybrid architec-
tures: which employ hierarchical structures, such as the classic U-Net (Ronneberger et al., 2015),
and its operator-learning extensions U-FNO (Wen et al., 2022) and U-NO (Rahman et al., 2022).
Decomposition-based models: utilize the decomposition idea, represented by the LSM (Wu et al.,
2023) and Transolver (Wu et al., 2024) and Transolver++ (Luo et al., 2025).

5.2 IMPLEMENTATION DETAILS

The model was implemented in PyTorch and trained on a single NVIDIA 3090 GPU. For all
OrthoSolver models, we set the number of decomposed modes from K ∈ [1, 2, 4, 6]. The
BasisExtractor and SolutionOperator both utilize 1 layer F-FNO. The temperature pa-
rameter for Dynamic Weight Averaging (DWA) was set to T = 1.0. Models were trained using the
Adam optimizer with an initial learning rate of 1e − 3. The training duration was 500 epochs for
1D datasets and 200 epochs for 2D datasets. The Relative L2 error (Eq. 20) serves as the primary
evaluation metric.

5.3 MAIN RESULTS

Table 1 presents the primary quantitative comparison of OrthoSolver against a comprehensive suite
of baseline methods. The results unequivocally demonstrate that our proposed framework achieves

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Overall comparison of Relative L2 error across the seven benchmark datasets. Best and
second-best results are in bold and underlined, respectively.

1D Datasets 2D Datasets

Model Advection Burgers NS DiffSorp DiffReac NS DiffReac

FNO (Li et al., 2021) 0.0051 0.0166 0.0168 0.001446 0.0038 0.0168 0.0884
F-FNO (Tran et al., 2023) 0.0038 0.0920 0.0399 0.001911 0.0429 0.0091 0.0584
MWT (Gupta et al., 2021) 0.5823 0.5403 0.1702 0.027137 0.0132 0.0861 0.6015
GNOT (Hao et al., 2023) 0.9999 0.9999 0.4801 0.163441 0.0830 0.9017 0.9961
Factformer (Li et al., 2023a) 0.0076 0.0849 0.0971 0.005038 0.0062 0.0305 0.1040
Erwin (Zhdanov et al., 2025) 0.0054 0.0923 0.0507 0.001703 0.0046 0.0155 0.0189
UPT (Alkin et al., 2024) 0.0085 0.2352 0.0861 0.002361 0.0053 0.0245 0.1573
U-Net (Ronneberger et al., 2015) 0.0247 0.0570 0.0936 0.001398 0.0016 0.0341 0.1261
U-FNO (Wen et al., 2022) 0.0060 0.0192 0.0221 0.002224 0.0023 0.0130 0.0313
U-NO (Rahman et al., 2022) 0.0240 0.0932 0.3626 1.344320 0.9792 0.0449 0.1261
LSM (Wu et al., 2023) 0.0271 0.4188 0.3025 0.001445 0.0011 0.0370 0.0817
Transolver (Wu et al., 2024) 0.0036 0.0973 0.0335 0.001380 0.0012 0.0282 0.1662
Transolver++ (Luo et al., 2025) 0.0077 0.2892 0.1137 0.001678 0.0026 0.0197 0.1363

OrthoSolver(Ours) 0.0033 0.0150 0.0157 0.001372 0.0008 0.0055 0.0172

new state-of-the-art performance across all seven benchmark datasets, often by a significant mar-
gin. The superiority of our method is particularly pronounced in the complex, multi-dimensional
2D scenarios. For instance, on the 2D Navier-Stokes and 2D Diffusion-Reaction benchmarks, Or-
thoSolver reduces the prediction error by over 39% and 45% respectively, compared to the next-best
performing methods. Furthermore, OrthoSolver consistently secures the top rank on all five 1D
datasets, showcasing its robustness and versatility across diverse physical systems. This consistent,
state-of-the-art performance validates the core principles of our framework: by replacing the linear
assumptions of classical decomposition with a non-linear, information-theoretic objective, Ortho-
Solver effectively identifies a more compact and expressive basis, leading to superior accuracy.

5.4 ABLATION AND ANALYSIS

Table 2: Ablation studies on loss components and parameter sensitivity analysis of the number of
modes (K). We report the Relative L2 error across all benchmarks. The full model uses K = 4.

Ablation Design Adv Burgers 1D-NS DiffSorp 1D-Reac 2D-NS 2D-Reac

w/o
MI Obj (LMI) 0.0045 0.0216 0.0334 0.001530 0.0013 0.0109 0.0262
Recon (Lrecon) 0.0046 0.0181 0.0229 0.001474 0.0011 0.0079 0.0233
Ortho (Lortho) 0.0053 0.0186 0.0494 0.001413 0.0011 0.0159 0.0238

Modes

K=1 0.0117 0.0638 0.0932 0.003000 0.0040 0.0335 0.0237
K=2 0.0065 0.0321 0.0319 0.001608 0.0022 0.0087 0.0241
K=3 0.0037 0.0178 0.0208 0.001527 0.0018 0.0076 0.0247
K=5 0.0046 0.0162 0.0269 0.001398 0.0009 0.0069 0.0229
K=6 0.0050 0.0235 0.0305 0.001504 0.0012 0.0170 0.0197

OrthoSolver (K=4) 0.0033 0.0150 0.0157 0.001372 0.0008 0.0055 0.0172

Ablation results are summarized in Table 2. Removing any of the three auxiliary loss constraints
leads to a significant degradation in performance: eliminating the orthogonality constraint (Lortho)
causes an average drop of 35.43%, removing the Mutual Information objective (LMI) results in a
34.71% drop, and removing the reconstruction constraint (Lrecon) leads to a 23.71% decline. These
results demonstrate that every module extended from Theorem 1 plays a significant role in our
nonlinear decomposition framework.

Experimental Results on Mode Collapse. In our baseline experiments, we observed that while
Transolver (Wu et al., 2024) ranks second on the relatively simple Advection and DiffSorp datasets,
its performance drops significantly on the NS and Burgers equations, which involve more variables
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and higher complexity. To further quantify the linear correlations between modes across differ-
ent datasets, we calculated their inter-mode correlation coefficients. Higher coefficients indicate
stronger linear correlations, implying greater redundancy among modes. The average correlation
coefficients of Advection and DiffSorp datasets are 0.3796 and 0.4729, respectively. In contrast,
these values are significantly higher on the NS and Burgers datasets, reaching 0.7470 and 0.8104,
respectively. This clearly indicates that in complex datasets, high similarity between modes leads to
mode collapse, ultimately resulting in performance degradation.

Table 3: Comparison of correlation coefficients.
Method Adv Burgers 1D-NS DiffSorp 1D-Reac 2D-NS 2D-Reac

w/o Ortho. Constraint 0.6487 0.8071 0.7962 0.7731 0.8760 0.7598 0.8217
OrthoSolver 0.0702 0.0626 0.0894 0.0437 0.0738 0.0533 0.0480

To further demonstrate the effectiveness of our model in addressing mode collapse, we analyzed
the change in average correlation coefficients before and after adding orthogonal regularization in
Table 3. Experiments show that introducing orthogonality constraints reduces the average linear
correlation between bases from 0.7832 to 0.0631, indicating effective suppression of mode collapse.

Sensitivity Analysis of Parameter K. Our study on the number of modes K in Table 2, reveals
that performance improves across different datasets as K increases from 1 to 4. However, further
increasing the number of modes to K = 6 leads to a decline in performance. This suggests that
the initial modes extracted by our MI-maximization principle capture the most significant physical
information, while subsequent modes contain diminishingly useful information for the prediction
task and may even introduce noise. This result proves the effectiveness of our approach in identifying
a compact yet highly informative basis.

Table 4: Mutual information between initial state X0 and mode functions ϕk.
Dataset MI(X0, ϕ0) MI(X0, ϕ1) MI(X0, ϕ2) MI(X0, ϕ3)

Adv 3.6432 0.2524 0.0242 0.0173
Burgers 0.1693 0.0767 0.0115 0.0050
1D-NS 2.5685 0.7470 0.3063 0.0803
DiffSorp 0.1093 0.0687 0.0429 0.0015
1D-Reac 0.6522 0.4821 0.4352 0.0821
2D-NS 0.1434 0.0783 0.0249 0.0027
2D-Reac 2.3915 1.1094 0.3091 0.0926

Analysis of Mode Interpretability. To further verify whether our extracted modes align with the
principle of capturing the most important components, we calculated the mutual information be-
tween different modes and the original data. The results are presented in Table 4. Across different
datasets, we observe a trend similar to POD: the mutual information between the extracted modes
and the original variables gradually decreases as K increases. This proves that our decomposition
mechanism, based on mutual information maximization, extracts features of the basis space with the
maximum information content at each step.

6 CONCLUSION

This work resolves the dual challenges of linearity in classical POD and mode collapse in deep
learning solvers through a novel information-theoretic perspective. We theoretically establish that
POD’s energy-maximization principle is, in essence, a form of mutual information (MI) maximiza-
tion. Building on this fundamental insight, we introduce OrthoSolver, a framework that generalizes
this principle to non-linear systems. By iteratively extracting basis functions that maximize MI
with the data field while enforcing orthogonality, OrthoSolver learns a compact and highly infor-
mative basis, effectively mitigating mode collapse. Extensive experiments confirm that our method
consistently outperforms state-of-the-art baselines. This information-theoretic reframing not only
addresses longstanding challenges but also opens new avenues for developing more principled and
physics-aware deep learning models for scientific computing.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide a comprehensive set of resources.

Source Code. Our full implementation is available at URL1. The repository includes a detailed
README.md file with instructions for setting up the environment, downloading data, and running
the training and evaluation scripts. All dependencies are listed in the requirements.txt file.

Datasets. Our experiments are conducted on publicly available datasets from PDEBench (Takamoto
et al., 2022) which is public available. More details about datasets can be obtained in D.1.

Implementation Details. All hyperparameters, model architectures, and experimental settings are
detailed in D.4. This includes learning rates, and optimizer configurations and model configurations
for each experiment.

Theoretical Details. The proof of our theoretical claims are provided in Theorem 1, C.1 and C.2.

Computing Environment. All experiments were conducted on a server with an NVIDIA RTX 3090
GPU, using PyTorch version 2.3.0, CUDA 11.8, and Python 3.10.
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A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this work, the use of LLMs was confined to the following areas: language
polishing and code debugging. For the manuscript, LLMs were employed to improve grammar, re-
fine sentence structure, and enhance the overall clarity of the text. For the software implementation,
LLMs served as a debugging aid, assisting in the identification of potential errors in code snippets
and suggesting structural improvements.

B NOTATION

Here we summarize the key notations used throughout the paper.

Table 5: The notation in this paper
Symbol Meaning

X Input function space
Y Output function space
u A single data snapshot; a high-dimensional discrete field
µ Parameters of the PDE (e.g., boundary conditions, coefficients)
Ŷ The predicted function or data snapshot
Xk Residual data field at the k-th decomposition step
Φk The k-th basis function (a high-dimensional field)
ak The scalar coefficient for the k-th basis function
âk The predicted coefficient for the k-th basis function
Eθ The Basis Decomposition Operator (Encoder)
Sθ The Solver Operator that evolves coefficients
D The Synthesis Operator that reconstructs the solution

C THEORETICAL FOUNDATIONS

C.1 THEORETICAL DERIVATION OF PROPER ORTHOGONAL DECOMPOSITION

Proper Orthogonal Decomposition (POD) aims to extract an orthonormal basis that captures as much
data variability (“energy”) as possible from a set of centered snapshots {uj}Mj=1, where uj ∈ RN

and 1
M

∑M
j=1 uj = 0. Treating each snapshot as a realization of a random variable u, POD seeks a

sequence of orthonormal basis vectors {ϕk}rk=1 that maximize the variance of the projected data in
a hierarchical manner:

ϕk = argmax
∥ϕ∥=1

ϕ⊥{ϕ1,...,ϕk−1}

Var(⟨u, ϕ⟩). (22)

Since the data is centered, the variance of the projection can be expressed as

Var
(
⟨u,ϕ⟩

)
=

1

M

M∑
j=1

(u⊤
j ϕ)

2 = ϕ⊤

 1

M

M∑
j=1

uju
⊤
j

ϕ = ϕ⊤Cϕ, (23)

where C ∈ RN×N is the sample covariance matrix of the data.

Maximizing ϕ⊤Cϕ under the unit-norm constraint leads to the following eigenvalue problem:
Cϕ = λϕ, (24)

where ϕ is an eigenvector of C and λ is its associated eigenvalue. The POD modes are thus given by
the eigenvectors of C, sorted in descending order of λ, so that ϕ1 captures the maximum variance,
ϕ2 the second largest variance, and so on.

Any snapshot can then be approximated as a linear combination of the first r modes:

uj ≈
r∑

k=1

ajkϕk, ajk = ⟨uj ,ϕk⟩. (25)
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Thus, POD provides an optimal linear subspace (in the sense of maximum variance) for representing
the data.

C.2 PROOFS OF INVERSION OF MI OBJECTIVE

In our framework, we aim to sequentially extract the most informative basis-coefficient pair (Φk, ak)
from a residual field Xk. The ideal objective is to maximize the Mutual Information (MI) that the
extracted coefficient ak shares with the field Xk, as this ensures the extracted mode is maximally
informative. This objective is written as:

max I(Xk, ak)

However, direct optimization of this term can be challenging. Instead, we use a surrogate objective:
minimizing the MI between the current field Xk and the subsequent residual field Xk+1. We now
prove the equivalence of these objectives.

The total information content of the field Xk is its entropy, H(Xk). The decomposition step splits
Xk into the extracted component (represented by ak) and the residual Xk+1. Since Xk can be
perfectly reconstructed from ak, Φk, and Xk+1 (where Xk+1 = Xk − akΦk), the conditional
entropy H(Xk|ak, Xk+1) is zero.

The MI between Xk and the pair (ak, Xk+1) is thus:

I(Xk; ak, Xk+1) = H(Xk)−H(Xk|ak, Xk+1) = H(Xk)

Using the chain rule for mutual information, we can expand this term:

I(Xk; ak, Xk+1) = I(Xk; ak) + I(Xk;Xk+1|ak)

Combining these two equations gives:

H(Xk) = I(Xk; ak) + I(Xk;Xk+1|ak)

Since H(Xk) is a constant for a given data distribution, maximizing the term I(Xk; ak) is mathe-
matically equivalent to minimizing the term I(Xk;Xk+1|ak).
Now, we analyze the term that our model minimizes in practice, LMI ∝ I(Xk, Xk+1). By defini-
tion, I(Xk, Xk+1) = H(Xk+1)−H(Xk+1|Xk). Since Xk+1 is a deterministic function of Xk, the
conditional entropy H(Xk+1|Xk) is zero. Therefore, minimizing the MI between the input and the
residual is equivalent to minimizing the entropy of the residual itself:

min I(Xk, Xk+1) ⇐⇒ minH(Xk+1)

The objective minH(Xk+1) (making the residual as random/unstructured as possible) serves as a
practical and effective surrogate for the ideal objective min I(Xk;Xk+1|ak). Intuitively, by ensuring
the residual field Xk+1 contains minimal information (low entropy), we enforce that the maximal
amount of salient, structured information from Xk has been captured in the extracted coefficient
ak. This justifies the inversion: maximizing the information captured by the mode is achieved by
minimizing the information that remains in the residual.

Thus, we establish the equivalence:

max I(Xk, ak) ⇐⇒ min I(Xk, Xk+1)

C.3 MATHEMATICAL ANALYSIS OF MODE COLLAPSE AND ORTHOGONALITY SOLUTION

In this section, we provide a rigorous mathematical explanation of the Mode Collapse phenomenon
observed in decomposition-based deep learning models and explicitly prove how our proposed or-
thogonality constraint theoretically resolves this issue.

C.3.1 THE MATHEMATICAL ESSENCE OF MODE COLLAPSE

Let the learned basis functions be represented by the matrix G = [ϕ1,ϕ2, . . . ,ϕK ] ∈ Rd×K , where
K is the number of modes and d is the feature dimension.
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Definition (Mode Collapse). Mode collapse in the context of subspace decomposition is charac-
terized by the redundancy of learned features, where a subset of basis vectors converges to highly
similar directions. Mathematically, this implies that for distinct indices i ̸= j, ϕi ≈ c · ϕj for some
scalar c.

Rank Deficiency. This redundancy leads to linear dependence among the column vectors of G.
Consequently, the effective rank of the basis matrix decreases:

rank(G) < K (26)

When the rank is deficient, the subspace spanned by G, denoted as span({ϕk}Kk=1), has a dimension
strictly less than K. This indicates that the model has wasted computational capacity on redundant
features and failed to capture the full spectrum of physical dynamics, leading to suboptimal recon-
struction and prediction performance.

C.3.2 THEORETICAL GUARANTEE OF THE ORTHOGONALITY CONSTRAINT

To prevent the rank deficiency described above, we introduce the Basis Orthogonality Constraint.
We formally prove that minimizing this objective ensures the basis matrix remains full-rank, thereby
preventing mode collapse.

Proposition. Minimizing the orthogonality loss Lortho = ∥G⊤G − I∥2F promotes linear in-
dependence among basis vectors {ϕk}Kk=1, ensuring that G maintains full column rank, i.e.,
rank(G) = K.

Proof. Consider the global minimum of the optimization problem where Lortho = 0.

1. The condition Lortho = 0 implies that the Gram matrix of the basis functions equals the
identity matrix:

G⊤G = IK (27)

2. By definition of the identity matrix, for any distinct pair of columns i, j:

ϕ⊤
i ϕj = 0 (if i ̸= j), and ∥ϕi∥2 = 1 (28)

This indicates that the set of vectors {ϕ1, . . . ,ϕK} is orthonormal.
3. Linear Independence: An orthonormal set of non-zero vectors is linearly independent.

Suppose there exist scalars c1, . . . , cK such that
∑K

i=1 ciϕi = 0. Taking the inner product
with any ϕj : 〈

K∑
i=1

ciϕi,ϕj

〉
=

K∑
i=1

ci⟨ϕi,ϕj⟩ = cj · 1 = 0 =⇒ cj = 0 (29)

Since this holds for all j, the vectors are linearly independent.
4. Full Rank Property: Since the K columns of G are linearly independent, the matrix G

has full column rank:
rank(G) = K (30)

D EXPERIMENT DETAILS

D.1 BENCHMARKS

Our evaluation is performed on seven benchmark datasets from PDEBench (Takamoto et al., 2022), a
comprehensive suite for scientific machine learning. The selected problems cover a range of canoni-
cal and challenging simulations to test our model’s ability to handle varying levels of dimensionality
and non-linearity.

1D Advection The 1D Advection equation models the transport of a quantity without deformation
or diffusion. It is a linear, first-order hyperbolic PDE fundamental to fluid dynamics. The governing
equation is:

∂tu(t, x) + β∂xu(t, x) = 0

where u(t, x) is the transported quantity and β is the constant advection speed.
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1D Burgers’ Equation The Burgers’ equation is a non-linear PDE that models fundamental pro-
cesses in fluid dynamics, including shock formation and wave breaking. It incorporates both non-
linear advection and diffusion terms:

∂tu(t, x) + ∂x(u
2(t, x)/2) = ν/π · ∂xxu(t, x)

where ν is the diffusion coefficient.

1D and 2D Compressible Navier-Stokes (NS) The compressible Navier-Stokes (NS) equations
are a set of coupled non-linear PDEs that describe the motion of viscous, compressible fluids.
They are foundational in aerodynamics and gas dynamics, modeling complex phenomena like shock
waves.

∂tρ+∇ · (ρv) = 0, ρ(∂tv + v · ∇v) = −∇p+ η∆v + (ζ + η/3)∇(∇ · v)

∂t(ε+ ρv2/2) +∇ · [(p+ ε+ ρv2/2)v − v · σ′] = 0

where ρ is the mass density, v is the fluid velocity, p is the gas pressure, ε is an internal energy
described by the equation of state, σ′ is the viscous stress tensor, and η and ζ are shear and bulk
viscosity, respectively. This equation can describe more complex phenomena, such as shock wave
formation and propagation. For simplicity, we denote them as NS in our tables.

1D Diffusion-Sorption (DiffSorp) This equation models a diffusion process that is slowed down
by a sorption mechanism, where the retardation factor depends non-linearly on the variable itself. It
is highly applicable to real-world problems like contaminant transport in groundwater. The govern-
ing equation is:

∂tu(t, x) = D/R(u) · ∂xxu(t, x)
where D is the diffusion coefficient and R(u) is the non-linear retardation factor.

1D and 2D Diffusion-Reaction (DiffReac) This system models the interaction between diffusion
processes and local reactions.

• 1D Diffusion-Reaction: This equation combines a standard diffusion process with a non-
linear source term that can drive rapid, exponential dynamics. The equation is: ∂tu(t, x)−
ν∂xxu(t, x)− ρu(1− u) = 0.

• 2D Diffusion-Reaction: This is a more complex extension involving two non-linearly cou-
pled variables, an activator and an inhibitor, which can produce complex patterns. The sys-
tem is modeled by the Fitzhugh-Nagumo equations and is applicable to biological pattern
formation.

Table 6: Details of the seven benchmark datasets selected from PDEBench. NS refers to the com-
pressible Navier-Stokes equations.

Dataset Dimensions Resolution (Space × Time) Variables Samples
1D Advection 1D 1024× 200 1 10,000
1D Burgers 1D 1024× 200 1 10,000
1D NS 1D 1024× 100 3 10,000
1D DiffSorp 1D 1024× 100 1 10,000
1D DiffReac 1D 1024× 200 1 10,000
2D NS 2D 642 × 21 4 1,000
2D DiffReac 2D 642 × 100 2 1,000

D.2 METRICS

The primary evaluation metric used across all experiments is the Relative L2 error, also referred to as
the normalized RMSE (nRMSE) in the PDEBench paper. It provides a scale-independent measure
of the prediction error. The metric is defined as:

Lrel =
∥upred − utrue∥2

∥utrue∥2
(31)
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where upred is the predicted solution, utrue is the ground truth solution, and ∥ · ∥2 denotes the
L2-norm. The Relative L2 error we used is not averaged over time but calculated over the entire
spatiotemporal domain.

D.3 DYNAMIC WEIGHT AVERAGING (DWA)

As discussed in Model Training, we employ the Dynamic Weight Averaging (DWA) strategy (Liu
et al., 2019) to balance the contributions of multiple loss components and avoid manual hyperpa-
rameter tuning. The total objective function is composed of four terms:

Ltotal = λMILMI + λreconLrecon + λorthoLortho + λpredLpred (32)

The DWA algorithm dynamically adjusts the weights λk based on the rate of change of each loss.
For the k-th loss component at training epoch t, the relative loss change rate wk(t) is calculated as:

wk(t) =
Lk(t− 1)

Lk(t− 2)
(33)

where Lk(t−1) and Lk(t−2) represent the average loss values for task k in the previous two epochs.
The weight λk(t) is then updated using a softmax normalization with a temperature parameter T :

λk(t) =
exp(wk(t)/T )∑
j exp(wj(t)/T )

(34)

where k, j ∈ {MI, recon, ortho, pred}. This mechanism automatically assigns higher weights to
tasks with slower convergence rates to balance the training process.

D.4 IMPLEMENTATION DETAILS

We benchmark OrthoSolver against a comprehensive suite of 13 state-of-the-art methods, represent-
ing the primary families of neural operator learning. These baselines include:

• Spectral-based models:
– FNO (Li et al., 2021): A pioneering method that learns the integral kernel of an op-

erator in Fourier space, performing efficient global convolution via the Fast Fourier
Transform.

– F-FNO (Tran et al., 2023): A parameter-efficient FNO variant that factorizes the
multi-dimensional spectral convolution into a sequence of one-dimensional transforms
to enable deeper architectures.

– MWT (Gupta et al., 2021): An operator learning model that uses multiwavelet trans-
forms to create a sparse, multi-resolution representation of the integral kernel, ex-
celling at capturing localized features.

• Transformer-based architectures:
– GNOT (Hao et al., 2023): A flexible Transformer architecture designed to han-

dle irregular meshes and multiple heterogeneous input functions via a novel linear-
complexity attention mechanism.

– Factformer (Li et al., 2023a): A scalable Transformer for structured grids that factor-
izes the high-dimensional attention kernel into a product of one-dimensional integrals
along each spatial axis.

– Erwin (Zhdanov et al., 2025): A hierarchical Transformer that leverages ball tree
partitioning to achieve linear-complexity attention for large-scale irregular physical
systems, capturing both local detail and global interactions through progressive coars-
ening and cross-ball rotation mechanisms.

– UPT (Alkin et al., 2024): A universal neural operator framework that compresses
arbitrary Eulerian or Lagrangian inputs into a fixed-size latent space, enabling effi-
cient latent-space rollouts and flexible spatio-temporal querying across diverse physi-
cal simulation paradigms.

• Multi-scale and hybrid architectures:
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– U-Net (Ronneberger et al., 2015): A classic symmetric encoder-decoder architecture
that fuses multi-scale features using skip connections to enable precise localization of
details.

– U-FNO (Wen et al., 2022): A hybrid model that embeds Fourier Neural Operator
blocks within a U-Net’s hierarchical framework to capture both global dynamics and
local features.

– U-NO (Rahman et al., 2022): A general, memory-efficient meta-architecture that
adapts the U-Net’s multi-resolution structure to accommodate any type of neural op-
erator block.

• Decomposition-based models:
– LSM (Wu et al., 2023): A method based on Learned Spectral Methods, which decom-

poses the solution into a series of learned spectral functions.
– Transolver (Wu et al., 2024): An efficient model that slices the high-dimensional

spatial domain into lower-dimensional subspaces and applies transformers therein.
– Transolver++ (Luo et al., 2025): An accurate and highly parallel neural PDE solver

that decomposes million-scale mesh data into adaptive “eidetic physical states” via
local-aware slicing and Gumbel reparameterization, achieving linear scalability and
state-of-the-art performance on industrial-scale geometries.

To ensure a rigorous and fair comparison, all experiments are conducted within a unified framework,
sharing the same data loader, training pipeline, and evaluation metrics.

Training Protocol All models are trained using the AdamW optimizer with an initial learning
rate of 1 × 10−3. We employ a cosine annealing learning rate scheduler to gradually decrease the
learning rate throughout the training process. The number of training epochs is set to 500 for 1D
datasets and 200 for 2D datasets to account for the increased computational cost.

Hyperparameter Settings Baseline Models: All baseline models, including FNO, U-FNO, U-
NO, LSM, Transformer, Factformer, GNOT, MWT, F-FNO, and U-Net, are implemented with a
unified configuration. Specifically, the hidden dimension (n hidden) is set to 64, the number of
attention heads (n heads) is 8, and the number of layers (n layers) is 8. For Transolver, its
unique number of slices (slice num) is set to 64. For Erwin, we use small erwin configs
which is mainly used in Experiments in the code repo. All hyperparameter settings were aligned
with the original papers as closely as possible. Furthermore, all experiments were implemented
within the Neural-Solver-Library framework to ensure consistency.

Our Model: Our proposed model, OrthoSolver, is implemented with a network depth (n layers)
of 2 and 4 modes (num blocks). All other training strategies and hyperparameters are kept identi-
cal to the baselines to ensure a fair comparison, highlighting the parameter efficiency and represen-
tational power of our architecture.

D.4.1 COMPUTATIONAL ENVIRONMENT

All experiments were conducted on a single NVIDIA RTX 3090 GPU with 24GB of VRAM. Our
implementation is based on the PyTorch framework.

D.5 MAIN RESULTS

The comprehensive experimental results, along with the quantified percentage improvements of
our model relative to current state-of-the-art (SOTA) baselines, are summarized in Table 7. This
comparison clearly highlights the consistent performance gains achieved by our approach across all
benchmark datasets.

D.6 MODEL EFFICIENCY

To comprehensively evaluate the computational efficiency of our proposed OrthoSolver framework,
Table 8 provides a detailed summary of all models in terms of parameter count, as well as memory
and time consumption during both training and testing phases.
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Table 7: Overall comparison of Relative L2 error across the seven benchmark datasets. Best and
second-best results are in bold and underlined, respectively.

1D Datasets 2D Datasets

Model Advection Burgers NS DiffSorp DiffReac NS DiffReac

FNO (Li et al., 2021) 0.0051 0.0166 0.0168 0.001446 0.0038 0.0168 0.0884
F-FNO (Tran et al., 2023) 0.0038 0.0920 0.0399 0.001911 0.0429 0.0091 0.0584
MWT (Gupta et al., 2021) 0.5823 0.5403 0.1702 0.027137 0.0132 0.0861 0.6015
GNOT (Hao et al., 2023) 0.9999 0.9999 0.4801 0.163441 0.0830 0.9017 0.9961
Factformer (Li et al., 2023a) 0.0076 0.0849 0.0971 0.005038 0.0062 0.0305 0.1040
Erwin (Zhdanov et al., 2025) 0.0054 0.0923 0.0507 0.001703 0.0046 0.0155 0.0189
UPT (Alkin et al., 2024) 0.0085 0.2352 0.0861 0.002361 0.0053 0.0245 0.1573
U-Net (Ronneberger et al., 2015) 0.0247 0.0570 0.0936 0.001398 0.0016 0.0341 0.1261
U-FNO (Wen et al., 2022) 0.0060 0.0192 0.0221 0.002224 0.0023 0.0130 0.0313
U-NO (Rahman et al., 2022) 0.0240 0.0932 0.3626 1.344320 0.9792 0.0449 0.1261
LSM (Wu et al., 2023) 0.0271 0.4188 0.3025 0.001445 0.0011 0.0370 0.0817
Transolver (Wu et al., 2024) 0.0036 0.0973 0.0335 0.001380 0.0012 0.0282 0.1662
Transolver++ (Luo et al., 2025) 0.0077 0.2892 0.1137 0.001678 0.0026 0.0197 0.1363

OrthoSolver(Ours) 0.0033 0.0150 0.0157 0.001372 0.0008 0.0055 0.0172

Relative Promotion 8.33% 9.64% 6.55% 0.58% 27.27% 39.56% 8.99%

Table 8: A comprehensive summary of performance and efficiency metrics for all evaluated models,
including dataset-specific ranks.

Model Params Training Testing Rel-L2 Rank
Mem (MB) Time (s) Mem (MB) Time (s)

FNO 4753412 430.65 720.83 124.65 102.41 (4, 2, 2, 5, 6, 4, 5)
F FNO 1591044 374.17 1315.18 41.52 140.66 (3, 6, 5, 6, 9, 2, 3)
MWT 27437 118.68 14996.90 23.26 1099.46 (10, 10, 8, 9, 8, 10, 10)
GNOT 1236572 4942.57 4714.25 38.93 445.55 (11, 11, 11, 10, 10, 11, 11)
Factformer 451972 1261.89 3036.21 29.75 267.77 (6, 5, 7, 8, 7, 6, 6)
U Net 17320388 672.12 1000.88 220.10 141.43 (8, 4, 6, 3, 4, 7, 7)
U FNO 39394188 1327.12 2167.64 532.97 270.92 (5, 3, 3, 7, 5, 3, 2)
U-NO 50798104 2393.08 2393.08 987.84 214.15 (7, 7, 10, 11, 11, 9, 8)
LSM 19201348 1077.44 2186.17 301.88 221.02 (9, 9, 9, 4, 2, 8, 4)
Transolver 779204 2305.22 2315.93 41.21 240.91 (2, 8, 4, 2, 3, 5, 9)

OrthoSolver 1113748 1639.52 3727.69 47.77 224.67 (1, 1, 1, 1, 1, 1, 1)

The analysis reveals that OrthoSolver achieves a highly competitive efficiency profile while deliv-
ering its state-of-the-art predictive accuracy (ranked first on all datasets). Firstly, regarding model
size, OrthoSolver, with 1.1M parameters, is a lightweight model. It is substantially more parameter-
efficient than large-scale architectures such as U-Net (17.3M), LSM (19.2M), and U-FNO (39.4M),
making it easier to store and deploy.

The advantages of OrthoSolver are particularly pronounced during the inference (testing) phase.
Its testing memory footprint (47.77 MB) is remarkably low, significantly outperforming models
like FNO, U-Net, and LSM. This indicates strong potential for deployment in resource-constrained
environments. Concurrently, its testing time (224.67 s) is moderate and practical, ensuring swift
predictions and surpassing several baselines including Factformer, U-FNO, and GNOT.

The primary computational trade-off for OrthoSolver lies in the training phase. Its training time
and memory consumption are in the mid-to-high range, exceeding those of simpler models like
the standard FNO. We posit that this increased training cost is a reasonable price for its superior
performance, likely attributable to the framework’s more complex optimization process required to
learn the decomposition and reconstruction of an orthogonal basis for the physical fields.

In summary, OrthoSolver strikes an effective balance between state-of-the-art accuracy and com-
putational efficiency. While its training is more resource-intensive, it yields a highly compact and
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efficient model for inference, making it a compelling framework for practical applications where
deployment performance is critical.

D.7 ABLATION AND ANALYSIS

Table 9: Ablation studies on loss components and modes. We report the Relative L2 error and the
percentage deterioration relative to the full model.

Ablation Design Adv Burgers 1D-NS DiffSorp 1D-Reac 2D-NS 2D-Reac

w/o MI Obj (LMI) 0.0045 0.0216 0.0334 0.001530 0.0013 0.0109 0.0262
% deterioration 27% 31% 53% 10% 38% 50% 34%

Recon (Lrecon) 0.0046 0.0181 0.0229 0.001474 0.0011 0.0079 0.0233
28% 17% 31% 7% 27% 30% 26%

Ortho (Lortho) 0.0053 0.0186 0.0494 0.001413 0.0011 0.0159 0.0238
38% 19% 68% 3% 27% 65% 28%

Modes

K=1 0.0117 0.0638 0.0932 0.003000 0.0040 0.0335 0.0237
K=2 0.0065 0.0321 0.0319 0.001608 0.0022 0.0087 0.0241
K=3 0.0037 0.0178 0.0208 0.001527 0.0018 0.0076 0.0247
K=5 0.0046 0.0162 0.0269 0.001398 0.0009 0.0069 0.0229
K=6 0.0050 0.0235 0.0205 0.001504 0.0012 0.0170 0.0197

OrthoSolver (K=4) 0.0033 0.0150 0.0157 0.001372 0.0008 0.0055 0.0172

Table 10: Mutual information between initial state X0 and mode functions ϕk.
Dataset MI(X0, ϕ0) MI(X0, ϕ1) MI(X0, ϕ2) MI(X0, ϕ3)

Adv 3.6432 0.2524 0.0242 0.0173
Burgers 0.1693 0.0767 0.0115 0.0050
1D-NS 2.5685 0.7470 0.3063 0.0803
DiffSorp 0.1093 0.0687 0.0429 0.0015
1D-Reac 0.6522 0.4821 0.4352 0.0821
2D-NS 0.1434 0.0783 0.0249 0.0027
2D-Reac 2.3915 1.1094 0.3091 0.0926

Table 11: Comparison of correlation coefficients.
Method Adv Burgers 1D-NS DiffSorp 1D-Reac 2D-NS 2D-Reac

w/o Ortho. Constraint 0.6487 0.8071 0.7962 0.7731 0.8760 0.7598 0.8217
OrthoSolver 0.0702 0.0626 0.0894 0.0437 0.0738 0.0533 0.0480
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