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Abstract

We present experiments and their corresponding theory, demonstrating that synaptic1

neural balancing can significantly enhance deep learning speed, accuracy, and2

generalization due to the symmetry that it creates in the synaptic weights. Given3

an additive cost function (regularizer) of the synaptic weights, a neuron is said4

to be in balance if the total cost of it incoming weights is equal to the total cost5

of its outgoing weights. For large classes of networks, activation functions, and6

regularizers, neurons can be balanced fully or partially using scaling operations7

that do not change their functionality. Furthermore, these balancing operations are8

associated with a strictly convex optimization problem with a single optimum and9

can be carried in any order. In our simulations, we systematically observe that:10

(1) Fully balancing before training results in better performance as compared to11

several other training approaches; (2) Interleaving partial (layer-wise) balancing12

and stochastic gradient descent steps during training results in faster learning13

convergence and better overall accuracy (with L1 balancing converging faster14

than L2 balancing; and (3) When given limited training data, neural balanced15

models outperform plain or regularized models. and this is true both for both16

feedforward and recurrent networks. In short, the evidence supports that neural17

balancing operations with their symmetry ought to be added to the arsenal of18

methods used to regularize and train neural networks.19

1 Introduction20

Broadly speaking, neural balance refers to the idea of achieving or keeping a certain equilibrium in21

a neural network during training or after training, whereby such equilibrium may facilitate better22

information flow, or lower energy expenditure Shwartz-Ziv [2022]. As such, there are different notions23

of neural balance including, for example, the notion of balance between excitation and inhibition in24

biological neural networks [Froemke, 2015, Field et al., 2020, Howes and Shatalina, 2022, Kim and25

Lee, 2022, Shirani and Choi, 2023]. Here we develop the concept of synaptic neural balance which26

refers to any systematic relationship between the input and output synaptic weights of individual27

neurons, or layers of neurons. Specifically, we consider the case where the cost of the input weights28

is equal to the cost of the output weights, where the cost is defined by some regularizer. One of29

the most basic examples of such a relationship, described below, is when the sum of the squares of30

the input weights of a neuron is equal to the sum of the squares of its output weights. In this work,31

we briefly describe the theory of synaptic neural balance and demonstrate its applications to deep32

learning regularization. We now describe the base case of synaptic neural balance.33

Base Case: Consider a neuron with a ReLU activation function inside a network trained to minimize34

a regularized error function E = E +R, where E is the data-dependent error (typically the negative35

log-likelihood of the data) and R is the regularizer (typically L2 regularizer). If we multiply the36
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incoming weights of the neuron by some λ > 0 (including the bias) and divide the outgoing weights37

of the neuron by the same λ, it is easy to see that this scaling operation does not affect in any way the38

contribution of the neuron to the rest of the network. Thus, the error E which depends only on the39

input-output function of the network is unchanged. However, the value of the L2 regularizer changes40

continuously with λ, and the corresponding contribution is given by:41

∑
i∈IN

(λwi)
2 +

∑
i∈OUT

(wi/λ)
2 = λ2A+

1

λ2
B (1)

where IN and OUT denote the set of incoming and outgoing weights respectively, A =
∑

i∈IN w2
i ,42

and B =
∑

i∈OUT w2
i . When λ moves away from 1, the contribution increases in one direction and43

decreases in the other. In the direction where it decreases, we can solve for the value λ∗ associated44

with the mimimal cost. Without taking derivatives, we note that the product of the two terms on45

the right-hand side of Equation 1 is equal to AB and does not depend on λ. Thus, the minimum46

is achieved when these two terms are equal, which yields: (λ∗)4 = B/A for the optimal λ∗. The47

corresponding new set of weights, vi = λ∗wi for the input weights and vi = wi/λ
∗ for the outgoing48

weights, must be balanced:
∑

i∈IN v2i =
∑

i∈OUT v2i . This is because the optimal scaling factor for49

the optimal synaptic weights can only be λ∗ = 1. Thus, we can define two operations that can be50

applied to the incoming and outgoing weights of a neuron: scaling and balancing. In between, we can51

also consider favorable scaling, or partial balancing, where λ is chosen to reduce the cost without52

necessarily minimizing it.53

There have been isolated previous studies of this kind of synaptic balance [Du et al., 2018, Stock et al.,54

2022] under special conditions. For instance, in Du et al. [2018], it is shown that if a deep network is55

initialized in a balanced state with respect to the sum of squares metric, and if training progresses56

with an infinitesimal learning rate, then balance is preserved throughout training. However, using an57

infinitesimal learning rate is not practical. Furthermore, there are many intriguing questions that can58

be raised. For instance: Why does balance occur? Does it occur only with ReLU neurons? Does it59

occur only with L2 regularizers? Does it occur only in fully connected feedforward architectures?60

Does it occur only at the end of training? What happens if we iteratively balance neurons at random in61

a large network? And can partial or full balancing, before or during learning, be used as an effective62

regularization technique? All these questions, but the last one, are addressed by the theory of synaptic63

neural balance that we have developed and briefly describe in the next section. The last question,64

on using balancing as a learning regularizer, is the main topic of this paper and is addressed by the65

experiments presented in the following sections. Unless otherwise specified, throughout the paper,66

terms like “balancing” or “neural balancing” refer to “synaptic neural balancing”.67

2 The Theory of Synaptic Neural Balance68

We present a brief summary of the main point of the theory. The complete theory is described in the69

Appendix with the detailed proofs of all the theorems.70

Theorem: (Balance and Regularizer Minimization) Consider a neural network with BiLU activation71

functions in all the hidden units and overall error function of the form:72

E = E(W ) +R(W ) with R(W ) =
∑
w

gw(w) (2)

where each function gw(w) is continuously differentiable, depends on the magnitude |w| alone, and73

grows monotonically from gw(0) = 0 to gw(+∞) = +∞. For any setting of the weights W and any74

hidden unit i in the network and any λ > 0 we can multiply the incoming weights of i by λ and the75

outgoing weights of i by 1/λ without changing the overall error E. Then, for any neuron, there exists76

at least one optimal value λ∗ that minimizes R(W ). Any optimal value must be a solution of the77

consistency equation:78

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (3)

Once the weights are rebalanced accordingly, the new weights must satisfy the generalized balance79

equation:80
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Type No FB at Start FB at Start
Plain L1 Reg. L2 Reg. Plain L1 Reg. L2 Reg.

2 Layer FCN 90.09% 90.05% 90.062% 91.22% 93.96% 91.18%
3 Layer FCN 89.594% 89.67% 89.70% 90.83% 93.47% 90.79%
5 Layer FCN 89.09% 87.85% 90.3% 91.37% 95.50% 91.59%

Figure 1: Test accuracy during training of Plain, L1 Regularized, and L2 Regularized Fully Connected
Networks trained on MNIST, comparing full balancing before training with no full balance before
training. Full balancing before training results in faster convergence, as well as universally higher
attained test accuracy.

∑
w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (4)

In particular, if gw(w) = |w|p for all the incoming and outgoing weights of neuron i, then the optimal81

value λ∗ is unique and equal to:82

λ∗ =
(∑

w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p
=
( ||OUT (i)||p

||IN(i)||p

)1/2
(5)

The decrease ∆R ≥ 0 in the value of the Lp regularizer R =
∑

w |w|p is given by:83

∆R =

(( ∑
w∈IN(i)

|w|p
)1/2 − ( ∑

w∈OUT (i)

|w|p
)1/2)2

(6)

After balancing neuron i, its new weights satisfy the generalized Lp balance equation:84 ∑
w∈IN(i)

|w|p =
∑

w∈OUT (i)

|w|p (7)

3 Experiments and Results85

In the following experiments, we train and compare various neural network architectures using full86

neural balancing, partial balancing, and L1 or L2 regularization. The term “plain” is used to refer87

to training of neural networks without balancing and without regularizers. Full balance is obtained88

by iteratively balancing all BiLU neurons in the network until convergence is achieved. Partial89

balance is implemented by balancing the neurons in a layer-wise fashion, starting from the input90

layer and moving towards the output layer or vice-versa (no significant differences are observed).91

Due to the gradual nature of partial balance, the periodicity of the balancing operation is key to its92

implementation. In partial balance, the balancing operation can be performed up to once per epoch.93

Through the use of partial balancing during training, it has been observed that the ratio of the norms94

of a neuron’s output to input weights tends to equalize, irrespective of the periodicity of epochs95

that we perform partial balancing operations. We have also observed that partial balancing helps the96

network converge faster and achieve a balanced state as is expected in a fully-trained network, same97

is in full balancing. The balancing operations for each neuron in each layer take place in parallel so98

they do not impose a bottleneck during training.99

A more detailed description of our experimental setup can be found in the Appendix. The roadmap of100

our experiments is organized as follows: first, we present experiments with the full dataset on both101

FCNs and RNNs. Then, we move onto data-scarce environments, amplifying the complexity of the102

experiments. For every experiment we deploy FCNs and RNNs ranging from smaller to larger sizes.103

The term FCN refers to Feedforward-layered networks with full connectivity between the layers.104

3.1 Assessment of Full Balance Before Training105

In fig. 1, we assess the use of the full balancing operation before the commencement of training.106

We test this on FCNs of various sizes, trained using different methodologies on the MNIST dataset.107
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Type Plain L1 Regularization L2 Regularization
No NB at Start 88.26 88.23 88.22
NB at Start 88.64% 88.24% 88.57%

Figure 2: Test accuracy for a Recurrent Neural Network trained on the IMDB sentiment analysis
dataset, comparing Plain, L1 Regularized, and L2 Regularized models with and without a full balance
at the start of training. As observed in fig. 9, neural balancing universally results in a higher test
accuracy during training.

Compared to a standard initialization, the application of full balancing results in faster convergence,108

and higher overall accuracy when using the same model architecture, hyperparameters, and training109

methodologies. Larger model sizes tend to exhibit a stronger correlation between the use of neural110

balancing, and the model’s rate of convergence.111

3.2 Full Balance on Recurrent Neural Networks112

We continue our assessment of neural balancing with experiments performed on the RNN architecture.113

We train a 3-layered RNN on the IMDB sentiment analysis dataset, once again assessing full neural114

balancing with a ’plain’, and regularized models. fig. 2 shows that when full balancing is performed115

before training, the model has a better final accuracy when compared to equivalent, non-balanced116

methodlologies.117

3.3 Discussion118

Summing up our experiments we observe the following quantitative results. In FCNs, Neural Balance119

yields a notable improvement in model performance and convergence speed. Specifically, this method120

results in a 3-5% performance increase over plain models, and more than a 1% improvement over121

optimally L1-regularized models. Additionally, L1 neural balancing facilitates convergence at a rate122

1.5 to 10 times faster, contingent on model size. When trained on limited datasets (1% of the full123

data), L1 neural balancing enhances performance by 3-10% compared to plain models, and by 1-5%124

relative to models regularized with L1 and L2 techniques. Moreover, it achieves up to a 10-fold125

increase in convergence speed, depending on model size. In RNNs, L1 neural balancing contributes126

to a 2-5% increase in convergence speed, with the application of L2 neural balancing leading to a127

more than 15% acceleration in convergence when training on 5% of the data.128

4 Conclusions129

Synaptic balancing provides a novel approach to regularization that is supported by an underlying130

theory. Synaptic balancing is very general in the sense that it can be applied with all usual cost131

functions, including all Lp cost functions. Synaptic balancing can be carried in full or in partial132

manner, due to the convexity connection provided by the main theorem. Full or partial synaptic133

balancing can be applied effectively to any set of weights, at any time during the training process It134

can be applied in combination with any training algorithm and any other regularizer. For example, one135

could train a network with L2 regularization and apply L1 balancing to the weights after the training136

is complete. Given, neural balance has some limitations; as mentioned earlier it can be applied only137

to neurons with specific activation functions (BiLU or slightly more general activation functions as138

shown in the Appendix). Another limitation is that it cannot be applied to neurons in Convolution139

layers due to the nature of the convolution operation with the kernels. Simulations show that these140

approaches can improve learning in terms of speed (fewer epochs), accuracy or generalization abilities.141

Thus, in short, balancing is a novel effective approach to regularization that can be added to the142

list of tools available to regularize networks, like dropout, and other regularization tools. Finally, a143

neuron can balance its weights independently of all other neurons in the network. The knowledge144

required for balancing is entirely local and available at each neuron. In this sense, balancing is a145

natural algorithm for distributed asynchronous architectures and physical neural systems, and as such146

it may find applications in neuromorphic chip designs or brain studies.147
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A Appendix174

Here we detail the additional theory, datasets, models, and training procedures used in the experiments175

in the main paper, separated into subsections which correspond to that of the main paper. We also176

included some supplemental experiments that are not present in the main paper.177

In order to ensure that our results are reproducible, when we compare training methodologies, we do178

so using a sample size of 8 different, and random, seeds per methodology, with those seeds being179

shared with the other training methodologies. We train all of our models on a server equipped with 8180

Nvidia RTX A6000 Ada Generation graphics cards, with 384 GB of total memory, run on CUDA181

version 12.4.182

A.1 Establishing Partial Balancing183

In our experiments, we annotate 2 different kinds of neural balancing operations: L1 Neural Balancing,184

and L2 Neural Balancing. The names represent the norms used when balancing the input and output185

weights, with the L1 norm being used for L1 Neural Balancing, and the L2 norm being used for L2186

Neural Balancing.187
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A.2 Toy Experiment on a Circle Toy Dataset188

To validate our initial hypothesis, which is that the balancing operation results in the equalization of189

the norms of the input and output weights for every neuron in a neural network, we observe the ratio190

between the aforementioned norms during training. We do this through a toy network trained on a191

simple 2-dimensional dataset for a binary classification task, where the limited number of layers and192

’neurons’ allow us to measure weights without the computational intensity attributed to accessing193

values from a large network. We compare the use of full balancing with partial balancing during194

training. Both methodologies result in the optimal factor λ∗ calculated during balancing to converge195

to 1, confirming that the norms of the input and output weights for each neuron equalize through the196

use of balancing. fig. 3 contains partial balancing performed every epoch on a 5-neuron toy model197

trained on a 2-dimensional concentric circle toy dataset showing that the input and output weight198

norms equalize for each neuron.199
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Figure 3: Partial balancing performed every
epoch on a 5-neuron toy model trained on a 2-
dimensional dataset for a binary classification
task showing that the input and output weight
norms equalize for each neuron
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Figure 4: Full balancing performed every
epoch on a 5-neuron toy model trained on
a 2-dimensional dataset for a binary classifi-
cation task showing that the input and output
weight norms equalize for each neuron

To contextualize the rate of convergence of the norms from the partial balancing toy experiment,200

we measure the input and output norms of each neuron after a full-balance has been performed on201

the network. While the full-balance guarantees that the input and output norms of each neuron will202

always be close to each other, since full balancing is performed until that requirement is met, it203

remains useful as a benchmark for the rate of convergence of partial-balancing. fig. 4 delineates204

the rate of convergence of the input and output norms, doing so almost immediately, due to the205

methodology of full balancing. fig. 3 demonstrates the efficacy of partial-balancing, resulting in a206

rapid, and computationally less expensive method of ’balancing’ neurons.207

A.3 Assessment of Full Balance Before Training208

In the main paper, we assess the use of the full balancing operation before the start of training to209

demonstrate its efficacy at increasing the rate of convergence and overall test accuracy of various210

model architectures and training styles. Partial balancing at every epoch after a full balance results211

in the least change due to the fundamentally similar nature of the full balancing operation to the212

partial balancing operation, hence its omission from the plots. Repeated partial balancing results in213

wthe same outcome weights when using the same seed, albeit, over time since those weights aren’t214

balanced from the start. In these experiments, we use fully connected neural networks in a few sizes215

to demonstrate the range of the balancing operation. Full balance before training is shown to increase216

the rate of convergence, as well as the overall accuracy obtainable during training. To assess full217

neural balance before training, we performed a full balancing operation on the neurons of the model218

after the initialization of the model’s weights, and before the commencement of training.219
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Figure 5: A demonstration of the effect of a full neural balance before the start of training on
various sizes of fully connected networks, using various training methodologies. Regardless of L2
Regularization, neural partial balancing, or plain accuracy used in training, a neural full balance
results in faster convergence, and a higher overall accuracy.

Type No FB at Start FB at Start
Plain L1 Reg. L2 Reg. Plain L1 Reg. L2 Reg.

2 Layer FCN 90.09% 90.05% 90.062% 91.22% 93.96% 91.18%
3 Layer FCN 89.594% 89.67% 89.70% 90.83% 93.47% 90.79%
5 Layer FCN 89.09% 87.85% 90.3% 91.37% 95.50% 91.59%

Figure 6: Accompanying fig. 5, Test accuracy during training of Plain, L1 Regularized, and L2
Regularized Fully Connected Networks trained on MNIST, comparing full balancing before training
with no full balance before training. As observed in fig. 5, full balancing before training results in
faster convergence, as well as universally higher attained test accuracy.

A.4 Partial Balance with FCNs220

In the main paper, we assess the use of the partial balancing operation during training to demonstrate its221

efficacy at increasing the rate of convergence and overall test accuracy of various model architectures222

and training styles. As included in the main paper in ??, we supplement our tabular results in fig. 7223

with plots that delineate the positive impact of partial and full neural balance as performed through224

the balancing operation during/before training. Following the line of inquiry on the performance of225

neural balancing on FCNs trained on MNIST, we assess its performance on FashionMNIST using the226

same model architectures. We use FCNs of various sizes, and perform a partial balance on the model227

at every epoch, identically to the MNIST experiments. We observed similar results on performance228

and convergence on FashionMNIST. Regardless of the size of the model, or the methodology used229

to train said model, neural balancing significantly increases the rate of convergence, as well as its230

overall test accuracy.231

Type Plain L2 NB L1 NB L2 1e-5 L1 1e-5
2-FCN 91.22% 91.19% 94.542% 91.18% 93.96%
3-FCN 90.84% 90.86% 93.94% 90.79% 93.47%
5-FCN 91.37% 91.63% 96.26% 91.59% 95.48%

Table 1: Test accuracy across training comparisons of partial balancing, L2 Regularization, and Plain
Accuracy for FCNs of varying sizes on MNIST. We observe that L1 partial balancing outperforms
the other training methodologies on all model sizes
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Figure 7: Accompanying ??, comparison of neural balance, L1 and L2 Regularization on MNIST.
We observe that as the models grow bigger, neural balance helps model converge faster and perform
better than the other techniques.
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Figure 9: A comparison between partial balancing, L2 Regularization, and Plain Accuracy on a 3
Layer RNN using the IMDB sentiment analysis dataset. We also contrast the standard initialization
with a full neural balancing operation performed before the start of training. We observe that neural
partial balancing performed every epoch, paired with a full balance before training, results in the best
overall accuracy, and convergence speed.
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Figure 8: Test accuracy across training comparisons of partial balancing, L2 Regularization, and
Plain Accuracy for FCNs of varying sizes on Fashion MNIST. We observe that L1 partial balancing
outperforms the other training methodologies on all model sizes.

A.5 Full Balance with RNNs on IMDB232

In the main paper, we assess the use of the partial balancing operation during training to demonstrate233

its efficacy at increasing the rate of convergence and overall test accuracy of a recurrent neural234

network architecture, comparing various training styles in the process. For these experiments, we235

use the IMDB sentiment analysis dataset. The IMDB dataset is a collection of positively/negatively236

labeled text containing movie reviews from the popular movie review website IMDB. We use a237

recurrent neural network with 3 hidden layers to demonstrate the efficacy of the partial balancing238

operation.239
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Type Plain L1 Regularization L2 Regularization
No NB at Start 88.26 88.23 88.22
NB at Start 88.64% 88.24% 88.57%

Table 2: Accompanying fig. 9, Test accuracy for a Recurrent Neural Network trained on the IMDB
sentiment analysis dataset, comparing Plain, L1 Regularized, and L2 Regularized models with and
without a full balance at the start of training. A full balance before the commencement of training
universally results in a higher test accuracy during training.
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Figure 10: A comparison between partial balance, standard regularization, and Plain Accuracy, on
various Fully Connected Networks trained on 1% of the MNIST dataset. We observe that neural
balancing consistently has a positive impact on the rate of convergence and overall accuracy of the
model.

A.6 Neural Balance in Limited Data Environments240

As mentioned in the main paper, we assess the performance of a full neural balance, as well as partial241

balance during training. These experiments are executed by stratifying samples equally according to242

their class labels to maintain a balanced distribution of classes within the training data. Accompanying243

??, we add plots to visualize the tabular information, and to demonstrate the efficacy of neural balance244

at incresing the rate of convergence of training. fig. 10 delineates the efficacy of partial balance at245

improving overall accuracy and training speed.246

A.7 Neural Balancing in Transformers247

Transformers models, characterized by their attention mechanism, represent the state of the art248

in the field of Natural Language Processing. In our study, neural balancing is only applied to the249

feed-forward, linear layers in the transformer block, as any manipulation of the attention matrix250

strongly affects the model output. We observe that the best training method is the ’clean’ style, where251

neither neural balancing, nor L2 regularization is applied to the model. For these experiments, we use252

the IMDB sentiment analysis dataset, and we use a transformer model with 8 attention heads, and 6253

feedforward encoder layers, each with a hidden dimensionality of 2048 units.254
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Type Plain L1 Regularization L2 Regularization
No NB at Start 83.66% 81.95% 83.36%
NB at Start 83.52% 81.65% 83.21%

Table 3: Accompanying fig. 11, Test accuracy for a Transformer Network trained on the IMDB
sentiment analysis dataset, comparing Plain, L1 Regularized, and L2 Regularized models with and
without a full balance at the start of training.
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Figure 11: A comparison of various combinations of full balancing and training methodologies using
a transformer model. The combination of L2 regularization and neural balancing fails after some
epochs, and the clean model without any form of balancing performs the best out of the training
styles.

A.8 Neural Balance in Bioplausible Architectures255

In the main paper, we detail the use of neural balancing operations in biologically plausible systems.256

Specifically, we employ Direct Feedback Alignment (DFA) in place of backpropagation as the257

biologically plausible alternative, and perform partial balancing during the training of the model to258

achieve neural balance.259

Type Accuracy
clean 97.764%
nb 97.764%
L2 with λ = 1e− 4 97.758%
L2 with λ = 1e− 5 97.764%

Figure 12: Comparison between neural bal-
ancing and L2 with various lambda values
using a ’clean’ model as a benchmark, trained
with DFA on a 2-layer fully connected net-
work

Type Accuracy
clean 97.4525%
nb 97.4525%
L2 with λ = 1e− 4 95.417%
L2 with λ = 1e− 5 97.4525

Figure 13: Comparison between neural bal-
ancing and L2 with various lambda values
using a ’clean’ model as a benchmark, trained
with DFA on a 7-layer fully connected net-
work

B Full Proof and Theory260

B.1 Homogeneous and BiLU Activation Functions261

In this section, we generalize the basic example of the introduction from the standpoint of the262

activation functions. In particular, we consider homogeneous activation functions (defined below).263

The importance of homogeneity has been previously identified in somewhat different contexts264

Neyshabur et al. [2015]. Intuitively, homogeneity is a form of linearity with respect to weight scaling265

and thus it is useful to motivate the concept of homogeneous activation functions by looking at other266

notions of linearity for activation functions. This will also be useful for Section B.5 where even more267

general classes of activation functions are considered.268
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B.1.1 Additive Activation Functions269

Definition B.1. A neuronal activation function f : R → R is additively linear if and only if270

f(x+ y) = f(x) + (f(y) for any real numbers x and y.271

Proposition B.2. The class of additively linear activation functions is exactly equal to the class of272

linear activation functions, i.e., activation functions of the form f(x) = ax.273

Proof. Obviously linear activation functions are additively linear. Conversely, if f is additively linear,274

the following three properties are true:275

(1) One must have: f(nx) = nf(x) and f(x/n) = f(x)/n for any x ∈ R and any n ∈ N. As a276

result, f(n/m) = nf(1)/m for any integers n and m (m ̸= 0).277

(2) Furthermore, f(0 + 0) = f(0) + f(0) which implies: f(0) = 0.278

(3) And thus f(x− x) = f(x) + f(−x) = 0, which in turn implies that f(−x) = −f(x).279

From these properties, it is easy to see that f must be continuous, with f(x) = xf(1), and thus f280

must be linear.281

B.1.2 Multiplicative Activation Functions282

Definition B.3. A neuronal activation function f : R → R is multiplicative if and only if f(xy) =283

f(x)(f(y) for any real numbers x and y.284

Proposition B.4. The class of continuous multiplicative activation functions is exactly equal to the285

class of functions comprising the functions: f(x) = 0 for every x, f(x) = 1 for every x, and all the286

even and odd functions satisfying f(x) = xc for x ≥ 0, where c is any constant in R.287

Proof. It is easy to check the functions described in the proposition are multiplicative. Conversely,288

assume f is multiplicative. For both x = 0 and x = 1, we must have f(x) = f(xx) = f(x)f(x) and289

thus f(0) is either 0 or 1, and similarly for f(1). If f(1) = 0, then for any x we must have f(x) = 0290

because: f(x) = f(1x) = f(1)f(x) = 0. Likewise, if f(0) = 1, then for any x we must have291

f(x) = 1 because: 1 = f(0) = f(0x) = f(0)f(x) = f(x). Thus, in the rest of the proof, we can292

assume that f(0) = 0 and f(1) = 1. By induction, it is easy to see that for any x ≥ 0 we must have:293

f(xn) = f(x)n and f(x1/n) = (f(x))1/n for any integer (positive or negative). As a result, for any294

x ∈ R and any integers n and m we must have: f(xn/m) = f(x)n/m. By continuity this implies that295

for any x ≥ 0 and any r ∈ R, we must have: f(xr) = f(x)r. Now there is some constant c such296

that: f(e) = ec. And thus, for any x > 0, f(x) = f(elog x) = [f(e)]log x = ec log x = xc. To address297

negative values of x, note that we must have f [(−1)(−1 = f(1) = 1f(−1)2. Thus, f(−1) is either298

equal to 1 or to -1. Since for any x > 0 we have f(−x) = f(−1)f(x), we see that if f(−1) = 1299

the function must be even (f(−x) = f(x) = xc), and if f(−1) = −1 the function must be odd300

(f(−x) = −f(x)).301

We will return to multiplicative activation function in a later section.302

B.1.3 Linearly Scalable Activation Functions303

Definition B.5. A neuronal activation function f : R → R is linearly scalable if and only if304

f(λx) = λf(x) for every λ ∈ R.305

Proposition B.6. The class of linearly scalable activation functions is exactly equal to the class of306

linear activation functions, i.e., activation functions of the form f(x) = ax.307

Proof. Obviously, linear activation functions are linearly scalable. For the converse, if f is linearly308

multiplicative we must have f(λx) = λf(x) = xf(λ) for any x and any λ. By taking λ = 1, we get309

f(x) = f(1)x and thus f is linear.310

Thus the concepts of linearly additive or linearly scalable activation function are of limited interest311

since both of them are equivalent to the concept of linear activation function. A more interesting312

class is obtained if we consider linearly scalable activation functions, where the scaling factor λ is313

constrained to be positive (λ > 0), also called homogeneous functions.314
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B.1.4 Homogeneous Activation Functions315

Definition B.7. (Homogeneous) A neuronal activation function f : R → R is homogeneous if and316

only if: f(λx) = λf(x) for every λ ∈ R with λ > 0.317

Remark B.8. Note that if f is homogeneous, f(λ0) = λf(0) = f(0) for any λ > 0 and thus318

f(0) = 0. Thus it makes no difference in the definition of homogeneous if we set λ ≥ 0 instead of319

λ > 0).320

Remark B.9. Clearly, linear activation functions are homogeneous. However, there exists also321

homogeneous functions that are non-linear, such as ReLU or leaky ReLU activation functions.322

We now provide a full characterization of the class of homogeneous activation functions.323

B.1.5 BiLU Activation Functions324

We first define a new class of activation functions, corresponding to bilinear units (BiLU), consisting325

of two half-lines meeting at the origin. This class contains all the linear functions, as well as the326

ReLU and leaky ReLU functions, and many other functions.327

Definition B.10. (BiLU) A neuronal activation function f : R → R is bilinear (BiLU) if and only if328

f(x) = ax when x < 0, and f(x) = bx when x ≥ 0, for some fixed parameters a and b in R.329

These include linear units (a = b), ReLU units (a = 0, b = 1), leaky ReLU (a = ϵ; b = 1) units,330

and symmetric linear units (a = −b), all of which can also be viewed as special cases of piece-wise331

linear units Tavakoli et al. [2021], with a single hinge. One advantage of ReLU and more generally332

BiLU neurons, which is very important during backpropagation learning, is that their derivative is333

very simple and can only take one of two values (a or b).334

Proposition B.11. A neuronal activation function f : R → R is homogeneous if and only if it is a335

BiLU activation function.336

Proof. Every function in BiLU is clearly homogeneous. Conversely, any homogeneous function f337

must satisfy: (1) f(0x) = 0f(x) = f(0) = 0; (2)f(x) = f(1x) = f(1)x for any positive x; and (3)338

f(x) = f(−u) = f(−1)u = −f(−1)x for any negative x. Thus f is in BiLU with a = −f(−1)339

and b = f(1).340

In Appendix A, we provide a simple proof that networks of BiLU neurons, even with a single341

hidden layer, have universal approximation properties. In the next two sections, we introduce two342

fundamental neuronal operations, scaling and balancing, that can be applied to the incoming and343

outgoing synaptic weights of neurons with BiLU activation functions.344

B.2 Scaling345

Definition B.12. (Scaling) For any BiLU neuron i in network and any λ > 0, we let Sλ(i) denote346

the synaptic scaling operation by which the incoming connection weights of neuron i are multiplied347

by λ and the outgoing connection weights of neuron i are divided by λ.348

Note that because of the homogeneous property the scaling operation does not change how neuron i349

affects the rest of the network. In particular, the input-output function of the overall network remains350

unchanged after scaling neuron i bt any λ > 0. Note also that scaling always preserves the sign of351

the synaptic weights to which it is applied, and the scaling operation can never convert a non-zero352

synaptic weight into a zero synaptic weight, or vice versa.353

As usual, the bias is treated here as an additional synaptic weight emanating from a unit clamped to354

the value one. Thus scaling is applied to the bias.355

Proposition B.13. (Commutativity of Scaling) Scaling operations applied to any pair of BiLU356

neurons i and j in a neural network commute: Sλ(i)Sµ(j) = Sµ(j)Sλ(i), in the sense that the357

resulting network weights are the same, regardless of the order in which the scaling operations are358

applied. Furthermore, for any BiLU neuron i: Sλ(i)Sµ(i) = Sµ(i)Sλ(i) = Sλµ(i).359

This is obvious. As a result, any set I of BiLU neurons in a network can be scaled simultaneously or360

in any sequential order while leading to the same final configuration of synaptic weights. If we denote361
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by 1, 2, . . . , n the neurons in I , we can for instance write:
∏

i∈I Sλi(i) =
∏

σ(i)∈I Sλσ(i)
(σ(i)) for362

any permutation σ of the neurons. Likewise, we can collapse operations applied to the same neuron.363

For instance, we can write: S5(1)S2(2)S3(1)S4(2) = S15(1)S8(2) = S8(2)S15(1)364

Definition B.14. (Coordinated Scaling) For any set I of BiLU neurons in a network and any λ > 0,365

we let Sλ(I) denote the synaptic scaling operation by which all the neurons in I are scaled by the366

same λ.367

B.3 Balancing368

Definition B.15. (Balancing) Given a BiLU neuron in a network, the balancing operation B(i) is369

a particular scaling operation B(i) = Sλ∗(i), where the scaling factor λ∗ is chosen to optimize a370

particular cost function, or regularizer, asociated with the incoming and outgoing weights of neuron371

i.372

For now, we can imagine that this cost function is the usual L2 (least squares) regularizer, but in373

the next section, we will consider more general classes of regularizers and study the corresponding374

optimization process. For the L2 regularizer, as shown in the next section, this optimization process375

results in a unique value of λ∗ such that sum of the squares of the incoming weights is equal to376

the sum of the squares of the outgoing weights, hence the term “balance”. Note that obviously377

B(B(i)) = B(i) and that, as a special case of scaling operation, the balancing operation does not378

change how neuron i contributes to the rest of the network, and thus it leaves the overall input-output379

function of the network unchanged.380

Unlike scaling operations, balancing operations in general do not commute as balancing operations381

(they still commute as scaling operations). Thus, in general, B(i)B(j) ̸= B(j)B(i). This is because382

if neuron i is connected to neuron j, balancing i will change the connection between i and j, and, in383

turn, this will change the value of the optimal scaling constant for neuron j and vice versa. However,384

if there are no non-zero connections between neuron i and neuron j then the balancing operations385

commute since each balancing operation will modify a different, non-overlapping, set of weights.386

Definition B.16. (Disjoint neurons) Two neurons i and j in a neural network are said to be disjoint387

if there are no non-zero connections between i and j.388

Thus in this case B(i)B(j) = Sλ∗(i)Sµ∗(j) = Sµ∗(j)Sλ∗(i) = B(j)B(i). This can be extended to389

disjoint sets of neurons.390

Definition B.17. (Disjoint Set of Neurons) A set I of neurons is said to be disjoint if for any pair i391

and j of neurons in I there are no non-zero connections between i and j.392

For example, in a layered feedforward network, all the neurons in a layer form a disjoint set, as long393

as there are no intra-layer connections or, more precisely, no non-zero intra-layer connections. All394

the neurons in a disjoint set can be balanced in any order resulting in the same final set of synaptic395

weights. Thus we have:396

Proposition B.18. If we index by 1, 2, . . . , n the neurons in a disjoint set I of BiLU neurons in a397

network, we have:
∏

i∈I B(i) =
∏

i∈I Sλ∗
i
(i) =

∏
σ(i)∈I Sλ∗

σ(i)
(σ(i)) =

∏
σ(i)∈I B(σ(i)) for any398

permutation σ of the neurons.399

Finally, we can define the coordinated balancing of any set I of BiLU neurons (disjoint or not400

disjoint).401

Definition B.19. (Coordinated Balancing) Given any set I of BiLU neurons (disjoint or not disjoint) in402

a network, the coordinated balacing of these neurons, written as Bλ∗(I), corresponds to coordinated403

scaling all the neurons in I by the same factor λ∗, Where λ∗ minimizes the cost functions of all the404

weights, incoming and outgoing, associated with all the neurons in I .405

Remark B.20. While balancing corresponds to a full optimization of the scaling operation, it is also406

possible to carry a partial optimization of the scaling operation by choosing a scaling factor that407

reduces the corresponding contribution to the regularizer without minimizing it.408

B.4 General Framework and Single Neuron Balance409

In this section, we generalize the kinds of regularizer to which the notion of neuronal synaptic balance410

can be applied, beyond the usual L2 regularizer and derive the corresponding balance equations.411
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Thus we consider a network (feedforward or recurrent) where the hidden units are BiLU units.412

The visible units can be partitioned into input units and output units. For any hidden unit i, if we413

multiply all its incoming weights IN(i) by some λ > 0 and all its outgoing weights OUT (i) by414

1/λ the overall function computed by the network remains unchanged due to the BiLU homogeneity415

property. In particular, if there is an error function that depends uniquely on the input-output function416

being computed, this error remains unchanged by the introduction of the multiplier λ. However, if417

there is also a regularizer R for the weights, its value is affected by λ and one can ask what is the418

optimal value of λ with respect to the regularizer, and what are the properties of the resulting weights.419

This approach can be applied to any regularizer. For most practical purposes, we can assume that420

the regularizer is continuous in the weights (hence in λ) and lower-bounded. Without any loss of421

generality, we can assume that it is lower-bounded by zero. If we want the minimum value to be422

achieved by some λ > 0, we need to add some mild condition that prevents the minimal value to423

be approached as λ → 0), or as λ → +∞. For instance, it is enough if there is an interval [a, b]424

with 0 < a < b where R achieves a minimal value Rmin and R ≥ Rmin in the intervals (0, a] and425

[b,+∞). Additional (mild) conditions must be imposed if one wants the optimal value of λ to be426

unique, or computable in closed form (see Theorems below). Finally, we want to be able to apply the427

balancing approach428

Thus, we consider overall regularized error functions, where the regularizer is very general, as long429

as it has an additive form with respect to the individual weights:430

E(W ) = E(W ) +R(W ) with R(W ) =
∑
w

gw(w) (8)

where W denotes all the weights in the network and E(W ) is typically the negative log-likelihood431

(LMS error in regression tasks, or cross-entropy error in classification tasks). We assume that the gw432

are continuous, and lower-bounded by 0. To ensure the existence and uniqueness of minimum during433

the balancing of any neuron, We will assume that each function gw depends only on the magnitude434

|w| of the corresponding weight, and that gw is monotonically increasing from 0 to +∞ (gw(0) = 0435

and limx→+∞ gw(x) = +∞). Clearly, L2, L1 and more generally all Lp regularizers are special436

cases where, for p > 0, Lp regularization is defined by: R(W ) =
∑

w |w|p.437

When indicated, we may require also that the functions gw be continuously differentiable, except438

perhaps at the origin in order to be able to differentiate the regularizer with respect to the λ’s and439

derive closed form conditions for the corresponding optima. This is satisfied by all forms of Lp440

regularization, for p > 0.441

Remark B.21. Often one introduces scalar multiplicative hyperparameters to balance the effect of442

E and R, for instance in the form: E = E + βR. These cases are included in the framework above:443

multipliers like β can easily be absorbed into the functions gw above.444

Theorem B.22. (General Balance Equation). Consider a neural network with BiLU activation445

functions in all the hidden units and overall error function of the form:446

E = E(W ) +R(W ) with R(W ) =
∑
w

gw(w) (9)

where each function gw(w) is continuous, depends on the magnitude |w| alone, and grows monotoni-447

cally from gw(0) = 0 to gw(+∞) = +∞. For any setting of the weights W and any hidden unit i in448

the network and any λ > 0 we can multiply the incoming weights of i by λ and the outgoing weights449

of i by 1/λ without changing the overall error E. Furthermore, there exists a unique value λ∗ where450

the corresponding weights v (v = λ∗w for incoming weights, v = w/λ∗ for the outgoing weights)451

achieve the balance equation:452

∑
v∈IN(i)

gw(v) =
∑

w∈OUT (i)

gw(v) (10)

Proof. Under the assumptions of the theorem, E is unchanged under the rescaling of the incoming and453

outgoing weights of unit i due to the homogeneity property of BiLUs. Without any loss of generality,454

let us assume that at the beginning:
∑

w∈IN(i) gw(w) <
∑

w∈OUT (i) gw(w). As we increase λ from455

1 to +∞, by the assumptions on the functions gw, the term
∑

w∈IN(i) gw(λw) increases continuously456
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from its initial value to +∞, whereas the term
∑

w∈OUT (i) gw)w/λ) decreases continuously from457

its initial value to 0. Thus, there is a unique value λ∗ where the balance is realized. If at the beginning458 ∑
w∈IN(i) gw(w) >

∑
w∈OUT (i) gw(w), then the same argument is applied by decreasing λ from 1459

to 0.460

Remark B.23. For simplicity, here and in other sections, we state the results in terms of a network of461

BiLU units. However, the same principles can be applied to networks where only a subset of neurons462

are in the BiLU class, simply by applying scaling and balancing operations to only those neurons.463

Furthermore, not all BiLU neurons need to have the same BiLU activation functios. For instance, the464

results still hold for a mixed network containing both ReLU and linear units.465

Remark B.24. In the setting of Theorem B.22, the balance equations do not necessarily minimize the466

corresponding regularization term. This is addressed in the next theorem.467

Remark B.25. Finally, zero weights (w = 0) can be ignored entirely as they play no role in scaling or468

balancing. Furthermore, if all the incoming or outgoing weights of a hidden unit were to be zero, it469

could be removed entirely from the network470

Theorem B.26. (Balance and Regularizer Minimization) We now consider the same setting as in471

Theorem B.22, but in addition we assume that the functions gw are continuously differentiable, except472

perhaps at the origin. Then, for any neuron, there exists at least one optimal value λ∗ that minimizes473

R(W ). Any optimal value must be a solution of the consistency equation:474

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (11)

Once the weights are rebalanced accordingly, the new weights must satisfy the generalized balance475

equation:476 ∑
w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (12)

In particular, if gw(w) = |w|p for all the incoming and outgoing weights of neuron i, then the optimal477

value λ∗ is unique and equal to:478

λ∗ =
(∑

w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p
=
( ||OUT (i)||p

||IN(i)||p

)1/2
(13)

The decrease ∆R ≥ 0 in the value of the Lp regularizer R =
∑

w |w|p is given by:479

∆R =

(( ∑
w∈IN(i)

|w|p
)1/2 − ( ∑

w∈OUT (i)

|w|p
)1/2)2

(14)

After balancing neuron i, its new weights satisfy the generalized Lp balance equation:480 ∑
w∈IN(i)

|w|p =
∑

w∈OUT (i)

|w|p (15)

Proof. Due to the additivity of the regularizer, the only component of the regularizer that depends on481

λ has the form:482

R(λ) =
∑

w∈IN(i)

gw(λw) +
∑

w∈OUT (i)

gw(w/λ) (16)

Because of the properties of the functions gw, Rλ is continously differentiable and strictly bounded483

below by 0. So it must have a minimum, as a function of λ where its derivative is zero. Its derivative484

with respect to λ has the form:485

R′(λ) =
∑

w∈IN(i)

wg′w(λw) +
∑

w∈OUT (i)

(−w/λ2)g′w(w/λ) (17)
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Setting the derivative to zero, gives:486

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (18)

Assuming that the left-hand side is non-zero, which is generally the case, the optimal value for λ487

must satisfy:488

λ =
(∑

w∈OUT (i) wg
′
w(w/λ)∑

w∈IN(i) wg
′
w(λw)

)1/2
(19)

If the regularizing function is the same for all the incoming and outgoing weights (gw = g), then the489

optimal value λ must satisfy:490

λ =
(∑

w∈OUT (i) wg
′(w/λ)∑

w∈IN(i) wg
′(λw)

)1/2
(20)

In particular, if g(w) = |w|p then g(w) is differentiable except possibly at 0 and g′(w) =491

s(w)p|w|p−1, where s(w) denotes the sign of the weight w. Substituting in Equation 20, the optimal492

rescaling λ must satisfy:493

λ∗ =
(∑

w∈OUT (i) ws(w)|w|p−1∑
w∈IN(i) w|ws(w)|p−1

)1/2p
=

(∑
w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p
=
( ||OUT (i)||p

||IN(i)||p

)1/2 (21)

At the optimum, no further balancing is possible, and thus λ∗ = 1. Equation 18 yields immediately494

the generalized balance equation to be satisfied at the optimum:495

∑
w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (22)

In the case of LP regularization, it is easy to check by applying Equation 22, or by direct calculation496

that:497

∑
w∈IN(i)

|λ∗w|p =
∑

w∈OUT (i)

|w/λ∗|p (23)

which is the generalized balance equation. Thus after balancing neuron, the weights of neuron i498

satisfy the Lp balance (Equation 15). The change in the value of the regularizer is given by:499

∆R =
∑

w∈IN(i)

|w|p +
∑

w∈OUT (i)

|w|p −
∑

w∈IN(i)

|λ∗w|p −
∑

w∈OUT (i)

|w/λ∗|p (24)

By substituting λ∗ by its explicit value given by Equation 21 and collecting terms gives Equation500

14.501

Remark B.27. The monotonicity of the functions gw is not needed to prove the first part of Theorem502

B.26. It is only needed to prove uniqueness of λ∗ in the Lp cases.503

Remark B.28. Note that the same approach applies to the case where there are multiple additive504

regularizers. For instance with both L2 and L1 regularization, in this case the function f has the form:505

gw(w) = αw2 + β|w|. Generalized balance still applies. It also applies to the case where different506

regularizers are applied in different disconnected portions of the network.507

Remark B.29. The balancing of a single BiLU neuron has little to do with the number of connections.508

It applies equally to fully connected neurons, or to sparsely connected neurons.509
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B.5 Scaling and Balancing Beyond BiLU Activation Functions510

So far we have generalized ReLU activation functions to BiLU activation functions in the context of511

scaling and balancing operations with positive scaling factors. While in the following sections we512

will continue to work with BiLU activation functions, in this section we show that the scaling and513

balancing operations can be extended even further to other activation functions. The section can be514

skipped if one prefers to progress towards the main results on stochastic balancing.515

Given a neuron with activation function f(x), during scaling instead of multiplying and dividing by516

λ > 0, we could multiply the incoming weights by a function g(λ) and divide the outgoing weights517

by a function h(λ), as long as the activation function f satisfies:518

f(g(λ)x) = h(λ)f(x) (25)
for every x ∈ R to ensure that the contribution of the neuron to the rest of the network remains519

unchanged. Note that if the activation function f satisfies Equation 25, so does the activation function520

−f . In Equation 25, λ does not have to be positive–we will simply assume that λ belongs to some521

open (potentially infinite) interval (a, b). Furthermore, the functions g and h cannot be zero for522

λ ∈ (a, b) since they are used for scaling. It is reasonable to assume that the functions g and h are523

continuous, and thus they must have a constant sign as λ varies over (a, b).524

Now, taking x = 0 gives f(0) = h(λ)f(0) for every λ ∈ (a, b), and thus either f(0) = 0 or h(λ) = 1525

for every λ ∈ (a, b). The latter is not interesting and thus we can assume that the activation function526

f satisfies f(0) = 0. Taking x = 1 gives f(g(λ)) = h(λ)f(1) for every λ in (a, b). For simplicity,527

let us assume that f(x) = 1. Then, we have: f(g(λ)) = h(λ) for every λ. Substituting in Equation528

25 yields:529

f(g(λ)x) = f(g(λ))f(x) (26)
for every x ∈ R and every λ ∈ (a, b). This relation is essentially the same as the relation that defines530

multiplicative activation functions over the corresponding domain (see Proposition B.4), and thus531

we can identify a key family of solutions using power functions. Note that we can define a new532

parameter µ = g(λ), where µ ranges also over some positive or negative interval I over which:533

f(µx) = f(µ)f(x).534

B.5.1 Bi-Power Units (BiPU)535

Let us assume that λ > 0, g(λ) = λ and h(λ) = λc for some c ∈ R. Then the activation function536

must satisfy the equation:537

f(λx) = λcf(x) (27)
for any x ∈ R and any λ > 0. Note that if f(x) = xc we get a multiplicative activation function.538

More generally, these functions are characterized by the following proposition.539

Proposition B.30. The set of activation functions f satisfying f(λx) = λcf(x) for any x ∈ R and540

any λ > 0 consist of the functions of the form:541

f(x) =

{
Cxc if x ≥ 0

Dxc if x < 0.
(28)

where c ∈ R, C = f(1) ∈ R, and D = f(−1) ∈ R. We call these bi-power units (BiPU). If, in542

addition, we want f to be continuous at 0, we must have either c > 0, or c = 0 with C = D.543

Given the general shape, these activations functions can be called BiPU (Bi-Power-Units). Note that544

in the general case where c > 0, C and D do not need to be equal. In particular, one of them can545

be equal to zero, and the other one can be different from zero giving rise to “rectified power units”546

(Figure 14).547

Proof. By taking x = 1, we get f(λ) = f(1)λc for any λ > 0. Let f(1) = C. Then we see548

that for any x > 0 we must have: f(x) = Cxc. In addition, for every λ > 0 we must have:549

f(λ0) = f(0) = λcf(0). So if c = 0, then f(x) = C = f(1) for x ≥ 0. If c ̸= 0, then f(0) = 0. In550
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Figure 14

this case, if we want the activation function to be continuous, then we see that we must have c ≥ 0. So551

in summary for x > 0 we must have f(x) = f(1)xc = Cxc. For the function to be right continuous552

at 0, we must have either f(0) = f(1) = C with c = 0 or f(0) = 0 with c > 0. We can now look553

at negative values of x. By the same reasoning, we have f(λ(−1)) = f(−λ) = λcf(−1) for any554

λ > 0. Thus for any x < 0 we must have: f(x) = f(−1)|x|c = D|x|c where D = f(−1). Thus, if555

f is continuous, there are two possibilities. If c = 0, then we must have C = f(1) = D(f − 1)− and556

thus f(x) = C everywhere. If c ̸= 0, then continuity requires that c > 0. In this case f(x) = Cxc557

for x ≥ 0 with C = f(1), and f(x) = Dxc for x < 0 with f(−1) = D. In all cases, it is easy to558

check directly that the resulting functions satisfy the functional equation given by Equation 27.559

B.5.2 Scaling BiPU Neurons560

A BiPU neuron can be scaled by multiplying its incoming weight by λ > 0 and dividing its outgoing561

weights by 1/λc. This will not change the role of the corresponding unit in the network, and thus it562

will not change the input-output function of the network.563

B.5.3 Balancing BiPU Neurons564

As in the case of BiLU neurons, we balance a multiplicative neuron by asking what is the optimal565

scaling factor λ that optimizes a particular regularizer. For simplicity, here we assume that the566

regularizer is in the Lp class. Then we are interested in the value of λ > 0 that minimizes the567

function:568

λp
∑

w∈IN

|w|p + 1

λpc

∑
w∈OUT

|w|p (29)

A simple calculation shows that the optimal value of λ is given by:569

λ∗ =
(c∑OUT |w|p∑

IN |w|p
)1/p(c+1)

(30)

Thus after balancing the weights, the neuron must satisfy the balance equation:570

c
∑
OUT

|w|p =
∑
IN

|w|p (31)

in the new weights w.571

So far, we have focused on balancing individual neurons. In the next two sections, we look at572

balancing across all the units of a network. We first look at what happens to network balance when a573

network is trained by gradient descent and then at what happens to network balance when individual574

neurons are balanced iteratively in a regular or stochastic manner.575

B.6 Network Balance: Gradient Descent576

A natural question is whether gradient descent (or stochastic gradient descent) applied to a network of577

BiLU neurons, with or without a regularizer, converges to a balanced state of the network, where all578
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the BiLU neurons are balanced. So we first consider the case where there is no regularizer (E = E).579

The results in Du et al. [2018] may suggest that gradient descent may converge to a balanced state. In580

particular, they write that for any neuron i:581

d

dt

( ∑
w∈IN(i)

w2 −
∑

w∈OUT (i)

w2
)
= 0 (32)

Thus the gradient flow exactly preserves the difference between the L2 cost of the incoming and582

outgoing weights or, in other words, the derivative of the L2 balance deficit is zero. Thus if one were583

to start from a balanced state and use an infinitesimally small learning rate one ought to stay in a584

balanced state at all times.585

However, it must be noted that this result was derived for the L2 metric only, and thus would not586

cover other Lp forms of balance. Furthermore, it requires an infinitesimally small learning rate. In587

practice, when any standard learning rate is applied, we find that gradient descent does not converge588

to a balanced state (Figure 1). However, things are different when a regularizer term is included in the589

error functions as described in the following theorem.590

Theorem B.31. Gradient descent in a network of BiLU units with error function E = E +R where591

R has the properties described in Theorem B.26 (including all Lp) must converge to a balanced state,592

where every BiLU neuron is balanced.593

Proof. By contradiction, suppose that gradient descent converges to a state that is unbalanced and594

where the gradient with respect to all the weights is zero. Then there is at least one unbalanced neuron595

in the network. We can then multiply the incoming weights of such a neuron by λ and the outgoing596

weights by 1/λ as in the previous section without changing the value of E. Since the neuron is not in597

balance, we can move λ infinitesimally so as to reduce R, and hence E . But this contradicts the fact598

that the gradient is zero.599

Remark B.32. In practice, in the case of stochastic gradient descent applied to E + R, at the end600

of learning the algorithm may hover around a balanced state. If the state reached by the stochastic601

gradient descent procedure is not approximately balanced, then learning ought to continue. In other602

words, the degree of balance could be used to monitor whether learning has converged or not. Balance603

is a necessary, but not sufficient, condition for being at the optimum.604

Remark B.33. If early stopping is being used to control overfitting, there is no reason for the stopping605

state to be balanced. However, the balancing algorithms described in the next section could be used606

to balance this state.607

B.7 Network Balance: Stochastic or Deterministic Balancing Algorithms608

In this section, we look at balancing algorithms where, starting from an initial weight configuration609

W , the BiLU neurons of a network are balanced iteratively according to some deterministic or610

stochastic schedule that periodically visits all the neurons. We can also include algorithms where611

neurons are partitioned into groups (e.g. neuronal layers) and neurons in each group are balanced612

together.613

B.7.1 Basic Stochastic Balancing614

The most interesting algorithm is when the BiLU neurons of a network are iteratively balanced in a615

purely stochastic manner. This algorithm is particularly attractive from the standpoint of physically616

implemented neural networks because the balancing algorithm is local and the updates occur randomly617

without the need for any kind of central coordination. As we shall see in the following section, the618

random local operations remarkably lead to a unique form of global order. The proof for the stochastic619

case extends immediately to the deterministic case, where the BiLU neurons are updated in a620

deterministic fashion, for instance by repeatedly cycling through them according to some fixed order.621

B.7.2 Subset Balancing (Independent or Tied)622

It is also possible to partition the BiLU neurons into non-overlapping subsets of neurons, and then623

balance each subset, especially when the neurons in each subset are disjoint of each other. In this624
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case, one can balance all the neurons in a given subset, and repeat this subset-balancing operation625

subset-by-subset, again in a deterministic or stochastic manner. Because the BiLU neurons in each626

subset are disjoint, it does not matter whether the neurons in a given subset are updated synchronously627

or sequentially (and in which order). Since the neurons are balanced independently of each other,628

this can be called independent subset balancing. For example, in a layered feedforward network with629

no lateral connections, each layer corresponds to a subset of disjoint neurons. The incoming and630

outgoing connections of each neuron are distinct from the incoming and outgoing connections of631

any other neuron in the layer, and thus the balancing operation of any neuron in the layer does not632

interfere with the balancing operation of any other neuron in the same layer. So this corresponds to633

independent layer balancing,634

As a side note, balancing a layer h, may disrupt the balance of layer h+ 1. However, balancing layer635

h and h + 2 (or any other layer further apart) can be done without interference of the balancing636

processes. This suggests also an alternating balancing scheme, where one alternatively balances all637

the odd-numbered layers, and all the evenly-numbered layers.638

Yet another variation is when the neurons in a disjoint subset are tied to each other in the sense that639

they must all share the same scaling factor λ. In this case, balancing the subset requires finding the640

optimal λ for the entire subset, as opposed to finding the optimal λ for each neuron in the subset.641

Since the neurons are balanced in a coordinated or tied fashion, this can be called coordinated or tied642

subset balancing. For example, tied layer balancing must use the same λ for all the neurons in a given643

layer. It is easy to see that this approach leads to layer synaptic balance which has the form (for an644

Lp regularizer):645

∑
i

∑
w∈IN(i)

|w|p =
∑
i

∑
w∈OUT (i)

|w|p (33)

where i runs over all the neurons in the layer. This does not necessarily imply that each neuron646

in the layer is individually balanced. Thus neuronal balance for every neuron in a layer implies647

layer balance, but the converse is not true. Independent layer balancing will lead to layer balance.648

Coordinated layer balancing will lead to layer balance, but not necessarily to neuronal balance of649

each neuron in the layer. Layer-wise balancing, independent or tied, can be applied to all the layers650

and in deterministic (e.g. sequential) or stochastic manner. Again the proof given in the next section651

for the basic stochastic algorithm can easily be applied to these cases (see also Appendix B).652

B.7.3 Remarks about Weight Sharing and Convolutional Neural Networks653

Suppose that two connections share the same weight so that we must have: wij = wkl at all times. In654

general, when the balancing algorithm is applied to neuron i or j, the weight wij will change and the655

same change must be applied to wkl. The latter may disrupt the balance of neuron k or l. Furthermore,656

this may not lead to a decrease in the overall value of the regularizer R.657

The case of convolutional networks is somewhat special, since all the incoming weights of the neurons658

sharing the same convolutional kernel are shared. However, in general, the outgoing weights are not659

shared. Furthermore, certain operations like max-pooling are not homogeneous. So if one trains a660

CNN with E alone, or even with E + R, one should not expect any kind of balance to emerge in661

the convolution units. However, all the other BiLU units in the network should become balanced by662

the same argument used for gradient descent above. The balancing algorithm applied to individual663

neurons, or the independent layer balancing algorithm, will not balance individual neurons sharing664

the same convolution kernel. The only balancing algorithm that could lead to some convolution layer665

balance, but not to individual neuronal balance, is the coordinated layer balancing, where the same λ666

is used for all the neurons in the same convolution layer, provided that their activation functions are667

BiLU functions.668

We can now study the convergence properties of balancing algorithms.669

B.8 Convergence of Balancing Algorithms670

We now consider the basic stochastic balancing algorithm, where BiLU neurons are iteratively and671

stochastically balanced. It is essential to note that balancing a neuron j may break the balance of672

another neuron i to which j is connected. Thus convergence of iterated balancing is not obvious.673
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There are three key questions to be addressed for the basic stochastic algorithm, as well as all the674

other balancing variations. First, does the value of the regularizer converges to a finite value? Second,675

do the weights themselves converge to fixed finite values representing a balanced state for the entire676

network? And third, if the weights converge, do they always converge to the same values, irrespective677

of the order in which the units are being balanced? In other words, given an initial state W for the678

network, is there a unique corresponding balanced state, with the same input-output functionalities?679

B.8.1 Notation and Key Questions680

For simplicity, we use a continuous time notation. After a certain time t each neuron has been681

balanced a certain number of times. While the balancing operations are not commutative as balancing682

operations, they are commutative as scaling operations. Thus we can reorder the scaling operations683

and group them neuron by neuron so that, for instance, neuron i has been scaled by the sequence of684

scaling operations:685

Sλ∗
1
(i)Sλ∗

2
(i) . . . Sλ∗

nit
(i) = SΛi(t)(i) (34)

where nit corresponds to the count of the last update of neuron i prior to time t, and:686

Λi(t) =
∏

1≤n≤nit

λ∗
n(i) (35)

For the input and output units, we can consider that their balancing coefficients λ∗ are always equal687

to 1 (at all times) and therefore Λi(t) = 1 for any visible unit i.688

Thus, we first want to know if R converges. Second, we want to know if the weights converge. This689

question can be split into two sub-questions: (1) Do the balancing factors λ∗
n(i) converge to a limit as690

time goes to infinity. Even if the λ∗
n(i)’s converge to a limit, this does not imply that the weights of691

the network converge to a limit. After a time t, the weight wij(t) between neuron j and neuron i has692

the value wijΛi(t)/Λj(t), where wij = wij(0) is the value of the weight at the start of the stochastic693

balancing algorithm. Thus: (2) Do the quantities Λi(t) converge to finite values, different from 0?694

And third, if the weights converge to finite values different from 0, are these values unique or not, i.e.695

do they depend on the details of the stochastic updates or not? These questions are answered by the696

following main theorem..697

B.8.2 Convergence of the Basic Stochastic Balancing Algorithm to a Unique Optimum698

Theorem B.34. (Convergence of Stochastic Balancing) Consider a network of BiLU neurons with an699

error function E(W ) = E(W ) +R(W ) where R satisfies the conditions of Theorem B.22 including700

all Lp (p > 0). Let W denote the initial weights. When the neuronal stochastic balancing algorithm is701

applied throughout the network so that every neuron is visited from time to time, then E(W ) remains702

unchanged but R(W ) must converge to some finite value that is less or equal to the initial value,703

strictly less if the initial weights are not balanced. In addition, for every neuron i, λ∗
i (t) → 1 and704

Λi(t) → Λi as t → ∞, where Λi is finite and Λi > 0 for every i. As a result, the weights themselves705

must converge to a limit W ′ which is globally balanced, with E(W ) = E(W ′) and R(W ) ≥ R(W ′),706

and with equality if only if W is already balanced. Finally, W ′ is unique as it corresponds to the707

solution of a strictly convex optimization problem in the variables Lij = log(Λi/Λj) with linear708

constraints of the form
∑

π Lij = 0 along any path π joining an input unit to an output unit and along709

any directed cycle (for recurrent networks). Stochastic balancing projects to stochastic trajectories in710

the linear manifold that run from the origin to the unique optimal configuration.711

Proof. Each individual balancing operation leaves E(W ) unchanged because the BiLU neurons are712

homogeneous. Furthermore, each balancing operation reduces the regularization error R(W ), or713

leaves it unchanged. Since the regularizer is lower-bounded by zero, the value of the regularizer must714

approach a limit as the stochastic updates are being applied.715

For the second question, when neuron i is balanced at some step, we know that the regularizer R716

decreases by:717
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∆R =

(( ∑
w∈IN(i)

|w|p
)1/2 − ( ∑

w∈OUT (i)

|w|p
)1/2)2

(36)

If the convergence were to occur in a finite number of steps, then the coefficients λ∗
i (t) must become718

equal and constant to 1 and the result is obvious. So we can focus on the case where the convergence719

does not occur in a finite number of steps (indeed this is the main scenario, as we shall see at the end720

of the proof). Since ∆R → 0, we must have:721 ∑
w∈IN(i)

|w|p →
∑

w∈OUT (i)

|w|p (37)

But from the expression for λ∗ (Equation 21), this implies that for every i, λ∗
n(i) → 1 as time722

increases (n → ∞). This alone is not sufficient to prove that Λi(t) converges for every i as t → ∞.723

However, it is easy to see that Λi(t) cannot contain a sub-sequence that approaches 0 or ∞ (Figure724

15). Furthermore, not only ∆R converges to 0, but the series
∑

∆R is convergent. This shows725

that, for every i, ∆i(t) must converge to a finite, non-zero value ∆i. Therefore all the weights must726

converge to fixed values given by wij(0)Λi/Λj .727

ȿ1(t)=1 ȿ2(t) ȿ3(t) ȿ4(t) ȿ5(t)=1
ȿ2(t)/ȿ1(t) ȿ3(t)/ȿ2(t) ȿ4(t)/ȿ3(t) ȿ5(t)/ȿ4(t)

Input Unit Output Unit

Figure 15: A path with three hidden BiLU units connecting one input unit to one output unit. During
the application of the stochastic balancing algorithm, at time t each unit i has a cumulative scaling
factor Λi(t), and each directed edge from unit j to unit i has a scaling factor Mij(t) = Λi(t)/Λj(t).
The λi(t) must remain within a finite closed interval away from 0 and infinity. To see this, imagine for
instance that there is a subsequence of Λ3(t) that approaches 0. Then there must be a corresponding
subsequence of Λ4(t) that approaches 0, or else the contribution of the weight w43Λ4(t)/Λ3(t) to
the regularizer would go to infinity. But then, as we reach the output layer, the contribution of the
last weight w54Λ5(t)/Λ4(t) to the regularizer goes to infinity because Λ5(t) is fixed to 1 and cannot
compensate for the small values of Λ4(t). And similarly, if there is a subsequence of Λ3(t) going to
infinity, we obtain a contradiction by propagating its effect towards the input layer.

Finally, we prove that given an initial set of weights W , the final balanced state is unique and728

independent of the order of the balancing operations. The coefficients Λi corresponding to a globally729

balanced state must be solutions of the following optimization problem:730

min
Λ

R(Λ) =
∑
ij

|Λi

Λj
wij |p (38)

under the simple constraints: Λi > 0 for all the BiLU hidden units, and Λi = 1 for all the visible (input731

and output) units. In this form, the problem is not convex. Introducing new variables Mj = 1/Λj732

is not sufficient to render the problem convex. Using variables Mij = Λi/Λj is better, but still733

problematic for 0 < p ≤ 1. However, let us instead introduce the new variables Lij = log(Λi/Λj).734

These are well defined since we know that Λi/Λj > 0. The objective now becomes:735

minR(L) =
∑
ij

|eLijwij |p =
∑
ij

epLij |wij |p (39)

This objective is strictly convex in the variables Lij , as a sum of strictly convex functions (exponen-736

tials). However, to show that it is a convex optimization problem we need to study the constraints737
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Λ1 Λ2 Λ3 Λ4 Λ5Λ2/Λ1 Λ3/Λ2 Λ4/Λ3 Λ5/Λ4

Input Unit Output Unit

Figure 16: A path with five units. After the stochastic balancing algorithm has converged, each unit i
has a scaling factor Λi, and each directed edge from unit j to unit i has a scaling factor Mij = Λi/Λj .
The products of the Mij’s along the path is given by: Λ2

Λ1

Λ3

Λ2

Λ4

Λ3

Λ5

Λ4
= Λ5

Λ1
. Accordingly, if we sum the

variables Lij = logMij along the directed path, we get L21 + L32 + L43 + L54 = logΛ5 − log Λ1.
In particular, if unit 1 is an input unit and unit 5 is an output unit, we must have Λ1 = Λ5 = 1 and
thus: L21 + L32 + L43 + L54 = 0. Likewise, in the case of a directed cycle where unit 1 and unit 5
are the same, we must have: L21 + L32 + L43 + L54 + L15 = 0.

Λ1

Λ6

Λ2 Λ3 Λ4

Λ7

Λ5

Λ2/Λ1

Λ3/Λ2 Λ4/Λ3

Λ7/Λ4

Λ6/Λ5

Λ7/Λ6

Figure 17: Two hidden units (1 and 7) connected by two different directed paths 1-2-3-4-7 and
1-5-6-7 in a BiLU network. Each unit i has a scaling factor Λi, and each directed edge from unit
j to unit i has a scaling factor Mij = Λi/Λj . The products of the Mij’s along each path is equal
to: Λ2

Λ1

Λ3

Λ2

Λ4

Λ3

Λ7

Λ4
= Λ5

Λ1

Λ6

Λ5

Λ7

Λ6
= Λ7

Λ1
. Therefore the variables Lij = logMij must satisfy the linear

equation: L21 + L32 + L43 + L74 = L51 + L65 + L76 =log Λ7 − log Λ1.

on the variables Lij . In particular, from the set of Λi’s it is easy to construct a unique set of Lij .738

However what about the converse?739

Definition B.35. A set of real numbers Lij , one per connection of a given neural architecture, is740

self-consistent if and only if there is a unique corresponding set of numbers Λi > 0 (one per unit)741

such that: Λi = 1 for all visible units and Lij = logΛi/Λj for every directed connection from a unit742

j to a unit i.743

Remark B.36. This definition depends on the graph of connections, but not on the original values744

of the synaptic weights. Every balanced state is associated with a self-consistent set of Lij , but not745

every self-consistent set of Lij is associated with a balanced state.746

Proposition B.37. A set Lij associated with a neural architecture is self-consistent if and only if747 ∑
π Lij = 0 where π is any directed path connecting an input unit to an output unit or any directed748

cycle (for recurrent networks).749

Remark B.38. Thus the constraints associated with being a self-consistent configuration of Lij’ s750

are all linear. This resulting linear manifold L depends only on the architecture, i.e., the graph of751

connections, but not on the actual weight values. The strictly convex function R(Lij) depends on752

the actual weights W . Different sets of weights W produce different convex functions over the same753

linear manifold. If E denotes the total number of connections, then obviously dimL ≤ E. In order754

to infer all the Λi, there must exist at least one constrained path going through each node i. Thus, in755

a layered feedforward network, the dimension of L is given by: dimL = E −M , where here M756

denotes the size of the largest layer.757
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Figure 18: Consider two paths α+ β and γ + δ from the input layer to the output layer going through
the same unit i. Let us assume that the first path assigns a multiplier Λi to unit i and the second path
assigns a multiplier Λ′

i to the same unit. By assumption we must have:
∑

α Lij +
∑

β Lij = 0 for
the first path, and

∑
γ Lij +

∑
δ Lij = 0. But α+ δ and γ + β are also paths from the input layer

to the output layer and therefore:
∑

α Lij +
∑

δ Lij = 0 and
∑

γ Lij +
∑

β Lij = 0. As a result,∑
α Lij = logΛi =

∑
γ Lij = Λ′

i. Therefore the assignment of the multiplier Λi must be consistent
across different paths going through unit i.

Remark B.39. One could coalesce all the input units and all output units into a single unit, in which758

case a path from an input unit to and output unit becomes also a directed cycle. In this representation,759

the constraints are that the sum of the Lij must be zero along any directed cycle. In general, it is not760

necessary to write a constraint for every path from input units to output units. It is sufficient to select761

a representative set of paths such that every unit appears in at least one path.762

Proof. If we look at any directed path π from unit i to unit j, it is easy to see that we must have:763

∑
π

Lkl = logΛi − log Λj (40)

This is illustrated in Figures 16 and 17. Thus along any directed path that connects any input unit764

to any output unit, we must have
∑

π Lij = 0. In addition, for recurrent neural networks, if π is a765

directed cycle we must also have:
∑

π Lij = 0. Thus in short we only need to add linear constraints766

of the form:
∑

π Lij = 0. Any unit is situated on a path from an input unit to an output unit. Along767

that path, it is easy to assign a value Λi to each unit by simple propagation starting from the input unit768

which has a multiplier equal to 1. When the propagation terminates in the output unit, it terminates769

consistently because the output unit has a multiplier equal to 1 and, by assumption, the sum of770

the multipliers along the path must be zero. So we can derive scaling values Λi from the variables771

Lij . Finally, we need to show that there are no clashes, i.e. that it is not possible for two different772

propagation paths to assign different multiplier values to the same unit i. The reason for this is773

illustrated in Figure 18.774

We can now complete the proof Theorem B.34. Given a neural network of BiLUs with a set of775

weights W , we can consider the problem of minimizing the regularizer R(Lij over the self-admissible776

configuration Lij . For any p > 0, the Lp regularizer is strictly convex and the space of self-admissible777

configurations is linear and hence convex. Thus this is a strictly convex optimization problem that has778

a unique solution (Figure 19). Note that the minimization is carried over self-consistent configurations,779

which in general are not associated with balanced states. However, the configuration of the weights780

associated with the optimum set of Lij (point A in Figure 19) must be balanced. To see this, imagine781

24



C

B
A

Figure 19: The problem of minimizing the strictly convex regularizer R(Lij) =
∑

ij e
pLij |wij |p

(p > 0), over the linear (hence convex) manifold of self-consistent configurations defined by the
linear constraints of the form

∑
π Lij = 0, where π runs over input-output paths. The regularizer

function depends on the weights. The linear manifold depends only on the architecture, i.e., the graph
of connections. This is a strictly convex optimization problem with a unique solution associated with
the point A. At A the corresponding weights must be balanced, or else a self-consistent configuration
of lower cost could be found by balancing any non-balanced neuron. Finally, any other self-consistent
configuration B cannot correspond to a balanced state of the network, since there must exist balancing
moves that further reduce the regularizer cost (see main text). Stochastic balancing produces random
paths from the origin, where Lij= logMij = 0, to the unique optimum point A.

that one of the BiLU units–unit i in the network is not balanced. Then we can balance it using a782

multiplier λ∗
i and replace Λi by Λ′

i = Λiλ
∗. It is easy to check that the new configuration including Λ′

i783

is self-consistent. Thus, by balancing unit i, we are able to reach a new self-consistent configuration784

with a lower value of R which contradicts the fact that we are at the global minimum of the strictly785

convex optimization problem.786

We know that the stochastic balancing algorithm always converges to a balanced state. We need to787

show that it cannot converge to any other balanced state, and in fact that the global optimum is the788

only balanced state. By contradiction, suppose it converges to a different balanced state associated789

with the coordinates (LB
ij) (point B in Figure 19). Because of the self-consistency, this point is also790

associated with a unique set of (ΛB
i ) coordinates. The cost function is continuous and differentiable791

in both the Lij’s and the Λi’s coordinates. If we look at the negative gradient of the regularizer, it792

is non-zero and therefore it must have at least one non-zero component ∂R/∂Λi along one of the793

Λi coordinates. This implies that by scaling the corresponding unit i in the network, the regularizer794

can be further reduced, and by balancing unit i the balancing algorithm will reach a new point (C in795

Figure 19) with lower regularizer cost. This contradicts the assumption that B was associated with796

a balanced stated. Thus, given an initial set of weights W , the stochastic balancing algorithm must797

always converge to the same and unique optimal balanced state W ∗ associated with the self-consistent798

point A. A particular stochastic schedule corresponds to a random path within the linear manifold799

from the origin (at time zero all the multipliers are equal to 1, and therefore for any i and any j:800

Mij = 1 and Lij = 0) to the unique optimum point A.801

Remark B.40. From the proof, it is clear that the same result holds also for any deterministic balancing802

schedule, as well as for tied and non-tied subset balancing, e.g., for layer-wise balancing and tied803
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Figure 20: SGD applied to E alone, in general, does not converge to a balanced state, but sGD
applied to E + R converges to a balanced state. (A-C) Simulations use a deep fully connected
autoencoder trained on the MNIST dataset. (D-F) Simulations use a deep locally connected network
trained on the CIFAR10 dataset. (A,D) Regularization leads to neural balance. (B,E) The training
loss decreases and converges during training (these panels are not meant for assessing the quality of
learning when using a regularizer). (C,F) Using weight regularization decreases the norm of weights.
(A-F) Shaded areas correspond to one s.t.d around the mean (in some cases the s.t.d. is small and the
shaded area is not visible).

layer-wise balancing. In the Appendix, we provide an analytical solution for the case of tied layer-wise804

balancing in a layered feed-forward network.805

Remark B.41. The same convergence to the unique global optimum is observed if each neuron, when806

stochastically visited, is partially balanced (or favorably scaled) rather than fully balanced, i.e., it is807

scaled with a factor that reduces R but not necessarily minimizes R. Stochastic balancing can also be808

viewed as a form of EM algorithm where the E and M steps can be taken fully or partially.809

B.8.3 Convergence to a Unique Optimum for BiPU Stochastic Balancing810

We have seen that a generalized form of scaling and balancing can be defined for more general811

units than BiLUs, in particular for BiPUs. Thus now we consider a network of units with activations812

functions f satisfying the relationship: f(λx) = λcf(x) (note that this includes BiLU units for813

c = 1). We even allow c to vary from unit to unit.814

It is easy to see that most of the analyses above done for BiLU units apply to this generalization. In815

particular, if we apply stocahstic generalized balancing, in the limit the positive multipliers of each816

connection wij must satisfy:817

Mij = Λi/Λ
cj
j (41)

As above, we can define a new set of variables Lij = logMij and, for any p > 0, the regularizer818

R(L) =
∑

ij e
pLij |wij |p is strictly convex. What is different, however, is the set of constraints on819

the variables Lij . These are the constraints that allow one to compute the variables Λi uniquely from820

the variables Lij (or, equivalently, the variables Mij). This is addressed by the following theorem.821

Theorem B.42. Under the same conditions of Theorem B.34, but using activation functions that822

satisfy for each unit i the relationship f(λx) = λcif(x), the corresponding stochastic generalized823

balancing algorithm converges to the unique minimum of a strictly convex optimization problem in824

the variables Lij . The strictly convex objective function is given by R(L) =
∑

ij e
pLij |wij |p. The825

constraints are linear and of the form:826
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Figure 21: Even if the starting state is balanced, SGD does not preserve the balance unless
the learning rate is infinitely small. (A-C) Simulations use a deep fully connected autoencoder
trained on the MNIST dataset. (D-F) Simulations use deep locally connected network trained on the
CIFAR10 dataset. (A-F) The initial weights are balanced using the stochastic balancing algorithm.
Then the network is trained by SGD. (A,D) When the learning rate (lr) is relatively large, without
regularization, the initial balance of the network is rapidly disrupted. (B,E) The training loss decreases
and converges during training (these panels are not meant for assessing the quality of learning when
using a regularizer). (C,F) Using weight regularization decreases the norm of the weights. (A-F)
Shaded areas correspond to one s.t.d around the mean (in some cases the s.t.d. is small and the shaded
area is not visible).

∑
i∈π

(
n∏

k=i

ck

)
Lii−1 = 0 (42)

for each path π from an input unit to an output unit, going sequentially through the units 0, 1, . . . , n,827

where 0 corresponds to the input unit, and n corresponds to the output unit of the path. The set of828

paths in the constraints must cover all the units in the network.829

Proof. Let us assume that there is a consistent set of multipliers Λ0, . . . ,Λn associated with the830

coefficients Lii−1 = logMii−1 along the path π, with Λ0 = Λn = 1. Since Mii−1 = Λi/Λ
ci−1

i−1 , we831

can derive the multipliers Λi iteratively by propagating information from the input unit to the output832

unit, in the form:833

Λi = Mii−1Λ
ci−1

i−1 or log Λi = Lii−1 + ci−1 log Λi−1 (43)

Using the boundary conditions Λ0 = Λn = 1 gives the formula in Theorem B.42. The same834

arguments given for BiLU units can be used to complete the proof.835

Remark B.43. Note that if all the units have the same exponent c associated with the scaling of their836

activation functions, then the linear constraints have the simplified form:837

∑
i∈π

cn+1−iLii−1 = 0 (44)
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Universal Approximation Properties of BiLU Neurons838

Here we show that any continuous real-valued function defined over a compact set of the Euclidean839

space can be approximated to any degree of precision by a network of BiLU neurons with a single840

hidden layer. As in the case of the similar proof given in Baldi [2021] using linear threshold gates in841

the hidden layer, it is enough to prove the theorem for a continuous function f : 0, 1 → R.842

Theorem B.44. (Universal Approximation Properties of BiLU Neurons) Let f be any continuous843

function from [0, 1] to R and ϵ > 0. Let gλ be the ReLU activation function with slope λ ∈ Rs. Then844

there exists a feedforward network with a single hidden layer of neurons with ReLU activations of the845

form gλ and a single output linear neuron, i.e., with BiLU activation equal to the identity function,846

capable of approximating f everywhere within ϵ (sup norm).847

Proof. To be clear, gλ(x) = 0 for x < 0 and gλ(x) = λx for 0 ≤ x. Since f is continuous over a848

compact set, it is uniformly continuous. Thus there exists α > 0 such that for any x1 and x2 in the849

[0, 1] interval:850

|x2 − x1| < α =⇒ |f(x2)− f(x1)| < ϵ (45)
Let N be an integer such that 1 < Nα, and let us slice the interval [0, 1] into N consecutive slices of851

width h = 1/N , so that within each slice the function f cannot jump by more than ϵ. Let us connect852

the input unit to all the hidden units with a weight equal to 1. Let us have N hidden units numbered853

1, . . . , N with biases equal to 0, 1/N, 2/N, ...., N1/N respectively and activation function of the854

form gλk
. It is essential that different units be allowed to have different slopes λk. The input unit855

is connected to all the hidden units and all the weights on these connections are equal to 1. Thus856

when x is in the k-th slice, (k − 1)/N ≤ x < k/N , all the units from k + 1 to N have an output857

equal to 0, and all the units from 1 to k have an output determined by the corresponding slopes. All858

the hidden units are connected to the output unit with weights β1, . . . , βN , and β0 is the bias of the859

output unit. We want the output unit to be linear. In order for the ϵ approximation to be satisfied,860

it is sufficient if in the (k − 1)/N ≤ x < k/N interval, the output is equal to the line joining the861

point f((k − 1)/N) to the point f(k/N). In other words, if x ∈ [(k − 1)/N, k/N), then we want862

the output of the network to be:863

β0 +

k∑
i=1

βiλi(x− (i− 1)h) =

f(
k − 1

N
) +

f( k
N )− f(k−1

N )

h
(x− (k − 1)h)

(46)

By equating the y-intercept and slope of the lines on the left-hand side and the righ- hand side of864

Equation 46, we can solve for the weights β’s and the slopes λ’s.865

As in the case of the similar proof using linear threshold functions in the hidden layer (see Baldi866

[2021],) this proof can easily be adapted to continuous functions defined over a compact set of Rn,867

even with a finite number of finite discontinuities, and into Rm.868

Analytical Solution for the Unique Global Balanced State869

Here we directly prove the convergence of stochastic balancing to a unique final balanced state, and870

derive the equations for the balanced state, in the special case of tied layer balancing (as opposed to871

single neuron balancing). The Proof and the resulting equations are also valid for stochastic balancing872

(one neuron at a time) in a layered architecture comprising a single neuron per layer. Let us call tied873

layer scaling the operation by which all the incoming weights to a given layer of BiLU neurons are874

multiplied by λ > 0 and all the outgoing weights of the layer are multiplied by 1/λ, again leaving the875

training error unchanged. Let us call layer balancing the particular scaling operation corresponding876

to the value of λ that minimizes the contribution of the layer to the L2 (or any other Lp) regularizer877

vaue. This optimal value of λ∗ results in layer-wise balance equations: the sum of the squares of all878

the incoming weights of the layer must be equal to the sum of the squares of all the outgoing weights879

of the layer in the L2 case, and similarly in all LP cases.880
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Theorem B.45. Assume that tied layer balancing is applied iteratively and stochastically to the881

layers of a layered feedforward network of BiLU neurons. As long as all the layers are visited882

periodically, this procedure will always converge to the same unique set of weights, which will satisfy883

the layer-balance equations at all layers, irrespective of the details of the schedule. Furthermore, the884

balance state can be solved analytically.885

Proof. Every time a layer balancing operation is applied, the training error remains the same, and the886

L2 (or any other Lp) regularization error decreases or stays the same. Since the regularization error887

is always positive, it must converge to a certain value. Using the same arguments as in the proof of888

Theorem B.34, the weights must also converge to a stable configuration, and since the configuration889

is stable all its layers must satisfy the layer-wise balance equation. The key remaining question is890

why is this configuration unique and can we solve it analytically? Let A1, A2, . . . AN denote the891

matrices of connections between the layers of the network. Let Λ1,Λ2, . . . ,ΛN−1 be N − 1 strictly892

positive multipliers, representing the limits of the products of the corresponding λ∗
i associated with893

each balancing step at layer i, as in the proof of Theorem B.34. In this notation, layer 0 is the input894

layer and layer N is the output layer (with Λ0 = 1 and ΛN = 1).895

After converging, each matrix Ai becomes the matrix Λi/Λi−1Ai = MiAi for i = 1 . . . N , with896

Mi = λi/Λi−1. The multipliers Mi must minimize the regularizer while satisfying M1 . . .MN = 1897

to ensure that the training error remains unchanged. In other words, to find the values of the Mi’s we898

must minimize the Lagrangian:899

L(M1, . . . ,MN ) =

N∑
i=1

||MiAi||2 + µ(1−
N∏
i=1

Mi) (47)

written for the L2 case in terms of the Frobenius norm, but the analysis is similar in the general Lp900

case. From this, we get the critical equations:901

∂L
∂Mi

= 2Mi||Ai||2 − µM1 . . .Mi−1Mi+1 . . .MN = 0

for i = 1, . . . , N and

N∏
i=1

Mi = 1

(48)

As a resut, for every i:902

2Mi||Ai||2 −
µ

Mi
= 0 or µ = 2M2

i ||Ai||2 (49)

Thus each Mi > 0 can be expressed in a unique way as a function of the Lagrangian multiplier µ as:903

Mi = (µ/2||Ai||2)1/2. By writing again that the product of the Miis equal to 1, we finally get:904

µN = 2N
N∏
i=1

||Ai||2 or µ = 2

N∏
i=1

||Ai||2/N (50)

Thus we can solve for Mi:905

Mi =
µ

2||Ai||2
=

∏N
i=1 ||Ai||2/N

||Ai||2
for i = 1, . . . , N (51)

Thus, in short, we obtain a unique closed-form expression for each Mi. From there, we infer the906

unique and final state of the weights, where A∗
i = MiAi = ΛiAl/Λl−1. Note that each Mi depends907

on all the other Mj’s, again showcasing how the local balancing algorithm leads to a unique global908

solution.909
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