
ComplexWorld: A Large Language Model-based Interactive Fiction Learning
Environment for Text-based Reinforcement Learning Agents

Shreyas Basavatia1 ∗ , Shivam Ratnakar2 , Keerthiram Murugesan3

1Georgia Institute of Technology , 2IBM Consulting , 3IBM Research
sbasavatia3@gatech.edu, shirat22@in.ibm.com, keerthiram.murugesan@ibm.com

Abstract
Interactive fiction games have emerged as an im-
portant vehicle to improve the generalization and
reasoning capabilities of language-based reinforce-
ment learning (RL) agents. Existing environments
for interactive fiction games are domain-specific
and do not require the RL agents to utilize complex
reasoning (sequences of inter-dependent decision-
making capabilities to complete a task on hand).
In this work, we introduce a benchmark interac-
tive environment, ComplexWorld, for text-based
games that require complex composition of previ-
ously learned skills to reach a goal. These games
require the agent to understand the cause-effect re-
lationship between the intermediary decision taken
towards an overarching goal. We create and test an
environment with 100 complex reasoning games,
generated using an automated framework that uses
large language models (GPT3) and an interactive
fiction game engine (based on Inform7) to provide
the user with the ability to generate more games
under minimal or no human supervision. Exper-
imental results based on both the human partici-
pants and baseline text-based RL agents reveal that
current state-of-the-art text-based RL agents can-
not use previously learned skills in new situations
involving complex reasoning at the level humans
can. These results enforce ComplexWorld’s poten-
tial to serve as a sandbox environment for further
research with complex reasoning.

1 Introduction
Interactive fiction games such as Zork can be utilized as an
important test-bed to improve the generalization and com-
plex reasoning capabilities of text-based reinforcement learn-
ing (RL) agents [Hausknecht et al., 2020; Jansen, 2022]. In
these games, both the observed state of the game and the ac-
tions taken are in natural language. To play these games, the
agents (or human players) need to understand the observed
text from the environment and take relevant action toward

∗Work done at Pelham Memorial High School when the first au-
thor was a high school student.

Figure 1: Example text-only agent play through of cooking pasta
game. Players must use the boil skill at the correct time to be suc-
cessful.

the goal. These games encourage agents to utilize reasoning
skills to understand the underlying state of the game. Then
agents take actions to interact with the environment as de-
picted in 1. In order to be successful, players must use previ-
ously learned skills with new objects and situations and com-
pose these skills to complete an overarching goal. Current en-
vironments of interactive fiction games suffer from two major

sbasavatia3@gatech.edu
shirat22@in.ibm.com
keerthiram.murugesan@ibm.com

problems. First, environments such as TextWorld Common-
sense have sacrificed game complexity for a breadth of simple
reasoning games based on one-hop relationships between en-
tities (e.g., apple → refrigerator) [Murugesan et al., 2021a].
This results in creating agents that do not develop or utilize
complex skills involving complex reasoning (from the envi-
ronment or the external knowledge graphs). Second, environ-
ments like ScienceWorld are domain-specific so agents that
play these environments may perform well while conducting
specific tasks like completing science experiments but lack
generalized skills to apply them to other situations [Wang et
al., 2022].

Therefore, the purpose of this work is to address the limita-
tions of previous environments. First, as developing an envi-
ronment of interactive fiction games is a time-intensive man-
ual process, we develop the ComplexWorld Game Generator
(CWGG) that utilizes large language models (GPT-3 [Brown
et al., 2020b]) and an integrated interactive fiction game en-
gine (Inform7 [Nelson, 2006]) to easily produce games in any
domain. Second, we develop a novel text-based interactive
environment using the CWGG, ComplexWorld, with 100 in-
teractive fiction games that emphasize the need for complex
reasoning skills in training text-based RL agents. This novel
game-generation method can easily be used by users to cre-
ate their own games and be adapted for future applications to
build challenging RL agents in various domains. The games
in ComplexWorld require agents to complete an overarching
goal using a specific sequence of actions. For example, while
cooking pasta, an agent must first gather the ingredients, fill
pot with water, boil the water, and put the pasta in the pot.
These sub-tasks are skills (such as ”fill <container>”, ”put
<object>”, etc) that the agent must learn and compose in the
correct order.

A growing body of work has incorporated the use of ex-
ternal knowledge graphs such as ConceptNet with RL and
language agents to provide relevant information for reason-
ing [Murugesan et al., 2021a; Murugesan et al., 2021b;
Kapanipathi et al., 2020; Wang et al., 2018]. While external
knowledge has been shown to improve agent’s performance,
we find to have little impact on complex reasoning tasks due
to the inadequate retrieval of relevant information from one
or more external knowledge graphs.

2 ComplexWorld
ComplexWorld is an interactive text-based environment that
enables the text-based RL agents to hone their complex rea-
soning skills 1. Unlike in the other text-based environments
such as TextWorld [Barnes et al.,], TextWorld Common-
sense (TWC) [Murugesan et al., 2021a], Jericho [Hausknecht
et al., 2020], ScienceWorld [Wang et al., 2022], Complex-
World utilizes the compositional skill generation capability
of the large language models [Huang et al., 2022] to gener-
ate a text-based game with a specific composition of previ-

1In this work, we define the skills based on the actions (with
intermediate reward) such as ”take <object>”, ”fill <container>”,
”put <object>”, etc. Complex reasoning involves learning primitive
skills and composing the previously learned skills in a correct order
to achieve the final goal.

Figure 2: shows the workflow of the ComplexWorld Game Gener-
ator (CWGG) using large language model (GPT3). When the user
enters a specific game idea such as “Cooking pasta” into the pro-
gram, the prompt generation module creates a prompt for the large
language model with natural language instructions and example out-
puts (k-shot prompt). We feed the generated prompt to LLM of
choice (GPT-3). We parse the output from LLM and extract the
game-specific information which includes the necessary tasks, ob-
jects, and custom actions in a particular game. The information is
then written in a JSON file. Optionally, at this stage, the user can
either make changes to the JSON based on what they want in the
game or approve the JSON file as-is. Using the JSON file, we auto-
matically generate an Inform7 engine-based game for a given game
idea.

ously learned reasoning skills. Current environments of in-
teractive fiction games such as TWC, ScienceWorld are often
domain-specific, where as, off-shelf games generated using
TextWorld environment does’t require agents to utilize com-
plex reasoning skills. Environments such as Jericho are typ-
ically not customizable and lack the ability to evaluate the
text-based agent for a specific set of skills. Table 1 shows
comparison of the features in the different interactive fiction
learning environments.

To address the above issues, we create and present the
ComplexWorld Game Generator (CWGG) which takes a
game idea from the user and builds a interactive fiction game
using the GPT-3 language model [Brown et al., 2020a]. We
design a method that procedurally generates interactive fic-
tion games with complex reasoning. We initiate each game
with the necessary objects that the agent needs and agents
must collect those objects and use them to cook, clean, build,

Cooking Pasta:
1. Open cabinet
2. Take pot
3. Open fridge
4. Take pot
5. Turn on sink
6. Fill pot with water
7. Turn on stove
8. Boil water in pot
9. Cook pasta with stove

Objects required:
1. Pot; location - in the cabinet; type - container; Properties -

portable
2. Pasta; Location - in the fridge; Type - food; Properties -

cookable

Actions applied: open, take, fill
Custom actions:

1. Boil water in pot; Prerequisites - Pot is full, stove is turned
on; Entities required - pot, water, stove; Effects - The water
is boiled

2. Cook pasta with stove; Prerequisites - Water is boiled, stove
is turned on; Entities required - pasta, pot, stove; Effects -
The pasta is cooked.

Generate a sequence of 8 actions to complete the objective. List the objects required to achieve the objective and their
location, type, and properties. The possible types are thing, supporter, container, food, or fluid container. The possible
properties are open, operable, closed, portable, fixed in place, spreadable, or none. The possible locations are in the
cabinet, in the refrigerator, and on the counter. Then list the standard and custom actions applied to those objects. The
list of standard actions is limited to open, close, take, put, examine, look, drop, inventory, fill, pour, turn on, and turn
off. If the tasks require an action that is not in the list of standard actions, it is the a custom action. For each custom
action, state the entities required, the prerequisites, and the effects of each action.
Example of 9 tasks for making a cake:

1. Open fridge
2. Take batter
3. Open cabinet
4. Take pan
5. Put butter in the pan
6. Turn on oven
7. Open oven
8. Put pan into the ove
9. Bake the batter with the oven

Objects required:
1. Pan; Location - in the cabinet; Type - supporter; Properties - none
2. Batter ; Location - in the refrigerator; Type - food; Properties - none

Actions applied: open, take, put, turn on
Custom Actions:

1. Bake the batter with the oven; Prerequisites - batter is in pan, pan is in oven, oven is turned on; Entities
required - batter, oven; Effects - there is a cake

A B

Figure 3: (A) GPT-3 input prompt for cooking games with one action example. The actual prompt contains four action examples. (B) GPT-3
output for cooking pasta game idea. GPT-3 reliably outputs accurate and necessary game information very similar to the input.

Cooking Pasta

Open cabinet

Open fridgeTurn on sink Turn on stove

Take pasta

Take pot

Boil water in pot

Drop pot

Turn off stove

Turn off sink

Cook pasta with stove Drop pasta

Figure 4: Composition of skills needed to complete the game ”Cooking Pasta” as Flow diagram. A line between two skills represent that one
skill needs to be executed before executing the other one (E.g., Open cabinet −→ Take pot). A box with multiple skills represent that skills
within the box can be executed in any order (E.g., Boil water in pot ∥ Take pasta).

or complete the high-level task. In order to be successful,
agents must understand the properties, location, and affor-
dances of objects in addition to the specific sequence of ac-
tions needed to accomplish the task. Using the CWGG, we
built an environment of 100 complex reasoning games for
training and evaluating the text-based RL agents with com-
plex reasoning skills. The proposed game generator CWGG
allows the users to build their own complex reasoning games
with minimal human supervision.

2.1 Constructing CWGG
Inform7 is an interactive fiction programming language that
allows users to create interactive fiction games using natu-
ral language instructions [Nelson and others, 2013]. Previous
text-based environments such as TextWorld, Jericho, Science-
World, etc use Inform7 (in the backend) to generate a handful
of text-based games manually that required agents to explore

the environment and take a sequence of actions to complete a
goal such as cooking a pasta. Based on our observation from
these environments, we find that the game generation can be
modularized into four parts: setup, object creation, custom
action, and reward assignment:

1. Setup - defines basic properties about the game such as
the room, any external libraries, and custom entity types.

2. Object Creation - creates in-game entities such as bread
or jelly. Each entity is placed in its proper location like
the refrigerator or cabinet and assigned properties such
as portable, open, or closed.

3. Custom actions - defines actions not native to Inform7.
Each custom action checks for the pre-conditions and
then executes the action by initiating the relevant state
changes, and returning the proper observations to the
agent.

Environment Features TextWorld TWC Jericho ScienceWorld ComplexWorld
Customizable Games ✓ ✗ ✗ ✗ ✓
Automatic Game Generation ✗ ✗ ✗ ✗ ✓
Domain Independent ✓ ✗ ✗ ✗ ✓
Reasoning ✗ ✓ ✓ ✓ ✓
Compositional Skill Learning ✗ ✗ ✓ ✓ ✓

Table 1: Comparison of the features in the current interactive fiction learning environments for text-based reinforcement learning environ-
ments.

4. Rewards - assigns reward value for gathering the neces-
sary entities and completing custom actions to achieve
the goal. Once all the rewards are collected for each
game, the game ends.

To automate game generation, we follow the four steps se-
quentially as a part of the CWGG to generate the game in In-
form7 code. Figure 2 shows an overview of CWGG. When a
user feeds a game idea to the CWGG, we prepare a prompt us-
ing natural language instruction and example game metadata
as shown in Figure 3(a), with information about the setup,
objects, custom actions, and rewards required for the game
idea. We input this prompt to a large language model (GPT3)
which outputs the requested information as shown in Figure
3(b).

We extract the information from GPT-3 using Python sim-
ple regular expression rules by first splitting the output into
three sections: task sequence (ex. Open cabinet, take pot),
objects (ex. Pot), and actions (ex. Fill pot with water). We
add the task sequence to the list of admissible actions the
player could execute within the game. We store the objects
internally with a type, a location, a name, and a set of prop-
erties. We further split the actions section into default actions
and custom actions which are actions native and non-native
to inform7 respectively. Similar to the objects, we store each
custom action internally with a name, a declaration, a defini-
tion, a set of constraints, a set of prerequisites, and a set of
post-requisites.

We write the information from the GPT-3 output into a
JSON file as shown in Figure 5. The objects, actions, and
tasks from the GPT-3 output correspond to the entities, cus-
tom actions, and verbs sections of the JSON file respectively.
We provide an option for the user to update or change game
information in the JSON file. If the user approves the game
metadata in the JSON file, we write the Inform7 code and
compile based on the JSON file into a completed complex
reasoning game. We compile this code with the Glulx 2 inter-
preter for interactive fiction games.

2.2 Generating Games
In order to generate games that require composing previously
learned skills, we take inspiration from household chores,
cooking, and maintenance tasks. We generate 100 game ideas
and use the CWGG to generate a set of 100 complex rea-
soning games. We choose the game ideas carefully for the
learning agent to utilize similar skills (ex. baking, mixing,
spreading, using a hammer, etc) in new situations therefore

2https://en.wikipedia.org/wiki/Glulx

forcing the agent to generalize skills and compose them with
other skills. For example, while cooking pasta, an agent must
learn how to boil water which is a skill that can be applied for
a related game idea ”brewing tea”.

LLMs such as GPT-3 are prone to making factual and
grammatical errors, in addition to violating the specified for-
mat. We check for any errors in the generated game(s) using
a Game Validator, which uses depth first search (DFS) to ex-
plore all the possible trajectories in the game. To correct for
minor errors and inconsistencies in each game, information
from GPT-3 can also be optionally verified by the human au-
thors in the JSON file produced by the CWGG. We found
that, in cases when the created game has errors, restarting
the game generation a few times usually results in a playable
game.

2.3 Validating ComplexWorld
In table 1, we compare the features of ComplexWorld with
previous environments of interactive fiction games such as
Jericho, TWC, ScienceWorld, etc. We consider the following
dimensions for comparison: customizability, automatic game
generation, domain-specific games, reasoning and composi-
tional skill learning. Both TextWorld and ComplexWorld en-
vironments support customizable game generation based on
the user specifications and independent of any specific do-
main knowledge. The majority of the environments in this
table demand that agents use reasoning and compositional
skills in order to perform better. TWC, for instance, exem-
plifies single-hop commonsense reasoning, whereas Jericho,
ScienceWorld, and ComplexWorld anticipate multi-hop rea-
soning by composing the skills learned by the agent in the
past.

Game-specific Statistics
Min. # Actions 7.36 ± 2.53
Avg. Rewards across games 4.08 ± 1.57
Num. Skills per game 2 ± 1

In the table above, we show the metrics for ComplexWorld
such as the average number of actions available per step, av-
erage rewards across the 100 games, and average number of
skills needed to complete each game. CW games have mul-
tiple sub-tasks which indicate that agents must utilize at least
2 skills (on average) for each game in the correct order. For
example, as shown in Figure 4, one skill involves gathering
the ingredients which must be done before the second skill
of cooking pasta is executed. The minimum number of ac-
tions indicates that agents must take approximately 7 actions

https://en.wikipedia.org/wiki/Glulx

{"libraries" : [
 {"name": "measured liquid",
 "author": "Emily Short"},
 { "name": "modern conveniences",
 "author": "Emily Short"}],
"modules" : ["scoring"],
"room" : { "name": "home kitchen",
 "description": ""},
"custom entities" : ["Food is a kind of thing. Food is usually edible. Food can be raw or cooked. Food is usually raw."],
"entities" : [{"name": "pot",
 "type": "container",
 "properties": ["portable", "open"],
 "location": "in the cabinet"},
 { "name": "pasta",
 "type": "food",
 "properties": "",
 "location": "in the refrigerator"},
 {"name": "sauce",
 "type": "food",
 "properties": "",
 "location": "in the refrigerator"}],
"scoring" : [
 {"condition": "taking the pot for the first time",
 "increment": "1"},
 {"condition": "taking the pasta for the first time",
 "increment": "1"},
 {"condition": "taking the sauce for the first time",
 "increment": "1"}],
"actions" : [{"name": "",
 "declaration": { "command": "cook [something] with [something]",
 "alias": "cooking it with",
 "applicable_to": "one carried thing and one thing"},
 "prerequisites": [],
 "constraints": [{"condition": "the noun is not a food",
 "prompt": "You can't cook that."},
 { "condition": "the second noun is not a stove",
 "prompt": "You can't cook that."}],
 "definition": { "tasks": ["increase score by 1"],
 "prompt": "You cooked the [noun] with the [second noun]." },
 "postrequisties": [] }],
"end_game" : {
 "condition": "4",
 "task": "end the story finally",
 "tasks": ["look", "inventory", "open cabinet", "take pot", “drop pot”, “open fridge”, “take pasta”, “drop pasta”, “turn on
sink”, “turn off sink”, “fill pot with water”, “turn on stove”, “turn off stove”, “boil water in pot”, “cook pasta with stove”]}}

Figure 5: Example JSON file produced for cooking pasta game idea. The libraries, modules, and room sections were part of the setup, the
custom entities and entities sections correspond to object creation, the actions correspond to the custom actions, and the scoring and end game
correspond to the rewards sections of each game. The entities section describes names, types, and properties of entities present in the game.
The actions section defines custom actions including their declaration, alias, and constraints not part of Inform7 by default. The end-game
section defines the maximum score and the list of admissible actions that the user can take.

Figure 6: Training curves depicting the scores (left) and number of moves (right) of text-based reinforcement learning agents.

on average to complete each game, though some of these ac-
tions do not necessarily have to be completed in order (ex.
the agent can ”turn on stove” before ”fill pot with water” and
vice versa).

Games in TWC only require agents to gather objects and
place them in their commonsense locations. These actions
can often be completed in any order whereas ComplexWorld
games, such as cooking pasta, require agents to gather objects
and use other related skills in a specific sequence to achieve
the final goal.

Human Participants
Humans are considered to have exemplary compositional rea-
soning skills so comparing their performance to agent perfor-
mance is valuable to validate ComplexWorld’s difficulty and
effectiveness as a benchmark. After receiving school-level
IRB approval from Pelham Memorial High School and in-
formed consent from each of the 48 human participants, we
asked the participants to play five randomly assigned com-
plex reasoning games via iplayif.com, an online interactive
fiction player. Players received the goal of the game and the
list of admissible actions. We collected the number of steps
that each player took and the score received for each game
via Google form. 3

3 Text-based Reinforcement Learning Agents
for ComplexWorld

3.1 Modifying TextWorld Gym for ComplexWorld
OpenAI Gym is a general reinforcement learning framework
that acts as an interface between RL agents and Inform7-
based ComplexWorld game engine [Brockman et al., 2016].
Gym connects environments with agents by using a monitor
to keep track of every step, state of the game, the final score of
agents, and the sample complexity or the amount of time an
agent takes to learn. Most default environments in Gym sup-
port a continuous or discrete action space although interac-
tive fiction games require combinatorial action spaces in nat-
ural language [Hausknecht et al., 2020]. The TextWorld Gym
customized the OpenAI Gym for interactive fiction games. In

3This IRB-approved study was done using high school students,
and we obtained informed consent from all participants. No personal
information was collected as a part of this study.

this work, we repurpose the custom Gym environment cre-
ated for TextWorld environment with Inform7 object and ac-
tion types.

TextWorld’s Gym environment only supports TextWorld-
generated games which includes a Glulx compiled game file
and a TextWorld-generated JSON file with game metadata de-
fined in proprietary TextWorld classes. This restricted our
ability to create games with objects and actions previously
undefined in TextWorld environment. These objects and ac-
tions must be defined according to TextWorld’s grammar and
logic rules. This is a time consuming process and is prone to
many errors. The goal of the ComplexWorld Game Generator
is to allow users to automate the game creation using LLM,
and most importantly, create games without learning a new
programming language or familiarizing themselves with any
grammar rules.

To get rid of these restrictions, an entirely new wrapper was
created which acted as an interface between the CW game en-
gine and TextWorld Gym environment. This wrapper ensures
that the user to freely define any object or action type and
the environment works with any Glulx compiled game file
without dependence on the TextWorld-generated metadata to
track the state of objects throughout the game. The wrap-
per does this by parsing the observation state returned by CW
game engine after every step to generate certain data-points
like admissible commands, current score, last action, number
of steps taken and inventory required by the TextWorld Gym
environment.

4 Experiments
In this section, we evaluate the proposed ComplexWorld en-
vironment using the state-of-the-art text-based reinforcement
learning agents.

4.1 Training RL Agents
The ComplexWorld environment includes games that require
complex reasoning skills. This means that, in order to suc-
cessfully finish a game, an agent needs to take certain actions
in a particular order. The order of actions taken decides the
future states of the entities involved in the game. We trained
six state of the art baseline agents on the CW game set and
evaluated their ability to learn the sequential relationship be-
tween actions and objects.

iplayif.com

Baseline Agent Mean Normalized Score Mean Moves Taken
LSTM-A2C 0.222 ± 0.063 47.105 ± 1.876
LSTM-A2C+ 0.237 ± 0.063 48.631 ± 0.886
DRRN 0.198 ± 0.065 47.035 ± 2.365
MRC-A2C 0.407 ± 0.077 43.473 ± 3.308
TWC-A2C 0.296 ± 0.079 44.122 ± 3.224
KG-A2C 0.536 ± 0.060 44.245 ± 3.001
Human 1.000 ± 0.000 9.640 ± 5.620

Table 2: Performance of Baseline agents on a set of 25 unseen ComplexWorld games after training on 75 ComplexWorld games over 100
episodes.

4.2 RL Agents in ComplexWorld
We evaluate six baseline agents in the ComplexWorld envi-
ronment using 100 complex reasoning games. We consider
text-based agents that have access only to the current observa-
tion of the game and commonsense-based agents that have ac-
cess to the current observation and external knowledge from
ConceptNet [Speer et al., 2017]. ConceptNet is an external
knowledge graph that includes information about entities and
their relationships (e.g., apple → refrigerator). To combine
external knowledge with the knowledge-aware agent, we fol-
low the methodology used by [Murugesan et al., 2021a]. The
text-only agent, LSTM-A2C uses the currently observed text
[Narasimhan et al., 2015]. The past observation agent, MRC-
A2C uses the past observation text to guide the current state
of the game [Guo et al., 2020]. Similarly, LSTM-A2C+ con-
catenates both the current and past observation texts. The
commonsense agent, TWC-A2C uses the current observation
and ConceptNet [Murugesan et al., 2021a]. The graph agent,
KG-A2C uses a knowledge graph of the game environment
generated from the parsing of the observation states [Am-
manabrolu and Hausknecht,].
Dataset for Training and Testing The CW game set of 100
was segregated into a 75-25 train-test split. We generate 3
such train-test splits for 3 random runs.
Methodology The agents were trained for 100 episodes on
75 games, with a batch size of 1. The maximum number of
steps allowed for an agent for completing the game was 50.
The training curves shown in Figure 6 were generated after
averaging over the results from 3 random runs. The data in
Table 2 was generated after testing the performance of trained
agents on the set of 25 test games.

4.3 Results
In the human experiments, all the participants were able to
complete the games under 8 − 9 steps by taking the right se-
quence of actions. Human participants often took close to
the minimum number of actions needed to accomplish each
game. In Figure 6, we can see that there was a convergence
in the training curve of all the agents near 100th episode. The
normalized scores are close to 0.75 for all of them (except the
random agent which randomly selects an action). The mean
number of steps taken by all the agents was almost 40. But,
when it comes to solving unseen games, most agents struggle
to move beyond a normalized score of 0.3 with the exception
of KG-A2C and MRC-A2C (by taking around 45 steps). We

can see that even the number of steps taken during training by
the agents is close to 40 compared to 8− 9 steps taken by hu-
mans. This shows the reasoning complexity of the Complex-
World games and its potential in fostering the development of
agents with complex reasoning skills.

Figure 7: Knowledge graph constructed by KG-A2C agent for a
game where the goal is to set the dining table.

In addition, the knowledge-aware agents did not perform
much better than the simple agents indicating that knowl-
edge about the properties of entities was not always helpful to
the agents. Figure 7 shows the knowledge graph constructed
by the KG-A2C agent for a sample game (Set Table) during
training. This figure depicts the relationships between enti-
ties and attention weights learned by the agent for this game.
Even though this learned information can be used by agent
to solve similar games, perhaps, information about sequential
decision making such as that found in ATOMIC may better
equip agents to reason better [Sap et al., 2019].

5 Conclusion
We created an environment of interactive fiction games called
ComplexWorld that requires agents to utilize sequential de-
cision making with complex reasoning over the modality of
text. Our novel approach to use the GPT-3 language model to
automatically generate these games can be used to create ad-
ditional complex reasoning games or adapted to build games
for new domains with minimal human intervention.

Limitations
Human participants were volunteers from Pelham Memorial
High School that agreed to participate in this study. This
may have introduced a bias into the human participant data
since all participants were high school educated, from one
geographic region, between the ages of 15 and 18, and volun-
teers. Many of these participants complete homework assign-
ments and assessments often which may make their reason-
ing skills better than potential participants outside of school.
In the future, testing human participants from various geo-
graphic locations, age groups, and levels of education may
reduce bias. The CWGG currently requires human interven-
tion and/or the Game Validator to build functioning games.
We will continue to work to build an end-to-end version of
the CWGG, that can take a game idea and turn it into an inter-
active fiction game without human intervention. This would
speed up development time so a larger environment of com-
plex reasoning games can be created.

Large language models such as ChatGPT have been devel-
oped recently with the ability to interact with users in a man-
ner conversationally similar to the interactions found in in-
teractive fiction games. From our experimentation, ChatGPT
struggles to keep track of the states of all in-game objects and
the pre-conditions necessary to use those actions (ex. Chat-
GPT does not always require the player to turn on the stove
before using it) as well as Inform7 based games. In addition,
it suffers from small factual errors and is hard to reproduce
the exact same result, through this could also be seen as a
benefit. Despite these challenges exploring the use of models
such as ChatGPT to interact with agents shows promise in the
future. Pre-trained large language models have also not been
tested with ComplexWorld which is a potential direction in
the future.

References
[Ammanabrolu and Hausknecht,] Prithviraj Ammanabrolu

and Matthew Hausknecht. Graph constrained reinforce-
ment learning for natural language action spaces. In Inter-
national Conference on Learning Representations.

[Barnes et al.,] Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud Adada,
Wendy Tay, and Adam Trischler. Textworld: A learn-
ing environment for text-based games. Computer Games,
page 41.

[Brockman et al., 2016] Greg Brockman, Vicki Cheung,
Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016.

[Brown et al., 2020a] Tom Brown, Benjamin Mann, Nick
Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, Sandhini Agarwal, ..., Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learn-
ers. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
can, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901. Curran
Associates, Inc., 2020.

[Brown et al., 2020b] Tom B. Brown, Benjamin Mann, Nick
Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Win-
ter, Christopher Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-
shot learners, 2020.

[Guo et al., 2020] Xiaoxiao Guo, Mo Yu, Yupeng Gao,
Chuang Gan, Murray Campbell, and Shiyu Chang. In-
teractive fiction game playing as multi-paragraph reading
comprehension with reinforcement learning. In Proceed-
ings of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 7755–7765,
2020.

[Hausknecht et al., 2020] Matthew Hausknecht, Prithviraj
Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan.
Interactive fiction games: A colossal adventure. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7903–7910, 2020.

[Huang et al., 2022] Wenlong Huang, Pieter Abbeel,
Deepak Pathak, and Igor Mordatch. Language models
as zero-shot planners: Extracting actionable knowledge
for embodied agents. In International Conference on
Machine Learning, pages 9118–9147. PMLR, 2022.

[Jansen, 2022] Peter Jansen. A systematic survey of text
worlds as embodied natural language environments. In
Proceedings of the 3rd Wordplay: When Language Meets
Games Workshop (Wordplay 2022), pages 1–15, Seattle,
United States, July 2022. Association for Computational
Linguistics.

[Kapanipathi et al., 2020] Pavan Kapanipathi, Veronika
Thost, Siva Sankalp Patel, Spencer Whitehead, Ibrahim
Abdelaziz, Avinash Balakrishnan, Maria Chang, Kshitij
Fadnis, Chulaka Gunasekara, Bassem Makni, Nicholas
Mattei, Kartik Talamadupula, and Achille Fokoue. In-
fusing knowledge into the textual entailment task using
graph convolutional networks. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(05):8074–8081,
Apr. 2020.

[Murugesan et al., 2021a] Keerthiram Murugesan, Mattia
Atzeni, Pavan Kapanipathi, Pushkar Shukla, Sadhana Ku-
maravel, Gerald Tesauro, Kartik Talamadupula, Mrinmaya
Sachan, and Murray Campbell. Text-based rl agents with
commonsense knowledge: New challenges, environments
and baselines. In AAAI, pages 9018–9027, 2021.

[Murugesan et al., 2021b] Keerthiram Murugesan, Mattia
Atzeni, Pavan Kapanipathi, Kartik Talamadupula, Mrin-
maya Sachan, and Murray Campbell. Efficient text-based
reinforcement learning by jointly leveraging state and
commonsense graph representations. In Proceedings of the
59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on

Natural Language Processing, volume 2, pages 719–725.
Association for Computational Linguistics, 2021.

[Narasimhan et al., 2015] Karthik Narasimhan, Tejas Kulka-
rni, and Regina Barzilay. Language understanding for text-
based games using deep reinforcement learning. In Pro-
ceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1–11, 2015.

[Nelson and others, 2013] Graham Nelson et al. Inform 7,
2013.

[Nelson, 2006] Graham Nelson. Inform7, 2006.
[Sap et al., 2019] Maarten Sap, Ronan Le Bras, Emily All-

away, Chandra Bhagavatula, Nicholas Lourie, Hannah
Rashkin, Brendan Roof, Noah A Smith, and Yejin Choi.
Atomic: An atlas of machine commonsense for if-then rea-
soning. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 3027–3035, 2019.

[Speer et al., 2017] Robyn Speer, Joshua Chin, and Cather-
ine Havasi. Conceptnet 5.5: An open multilingual graph
of general knowledge. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 31, 2017.

[Wang et al., 2018] Xiaoyan Wang, Pavan Kapanipathi,
Ryan Musa, Mo Yu, Kartik Talamadupula, Ibrahim Ab-
delaziz, Maria Chang, Achille Fokoue, Bassem Makni,
Nicholas Mattei, and Michael Witbrock. Improving nat-
ural language inference using external knowledge in the
science questions domain, 2018.

[Wang et al., 2022] Ruoyao Wang, Peter Jansen, Marc-
Alexandre Côté, and Prithviraj Ammanabrolu. Science-
world: Is your agent smarter than a 5th grader? arXiv
preprint arXiv:2203.07540, 2022.

	Introduction
	ComplexWorld
	Constructing CWGG
	Generating Games
	Validating ComplexWorld
	Human Participants

	Text-based Reinforcement Learning Agents for ComplexWorld
	Modifying TextWorld Gym for ComplexWorld

	Experiments
	Training RL Agents
	RL Agents in ComplexWorld
	Results

	Conclusion

