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ABSTRACT

Training large language models (LLMs) with online sampled data can help off-
policy preference optimization approaches like DPO learn better. Recent methods
such as Statistical Rejection Sampling Optimization (RSO) have emerged as at-
tractive alternatives to online Reinforcement Learning from Human Feedback
(RLHF), offering improvements in stability and scalability. Although RSO has
shown promising results by using rejection sampling to obtain preference data from
the estimated optimal target policy, it faces computational inefficiencies due to the
high rejection rates inherent in its sampling process. To address these limitations,
we introduce Importance Sampling Optimization (ISO), a novel approach that
achieves the benefits of sampling from the optimal policy distribution while signifi-
cantly improving sample efficiency. ISO employs importance sampling to correct
the distribution mismatch between the supervised fine-tuned (SFT) policy and
the target optimal policy, enabling efficient use of all generated samples without
rejection. Through extensive experiments across diverse tasks and models, we
demonstrate that ISO achieves comparable or superior performance to RSO while
requiring substantially fewer samples from the SFT policy. Reduces sampling
overhead by up to 75% while maintaining or improving win rates against both
DPO and RSO baselines. Additionally, we show that ISO naturally extends to other
preference optimization methods, providing a general framework for improving
sample efficiency in preference learning.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have pushed the boundaries of downstream
performance, enabling unprecedented capabilities across a wide variety of tasks, including reasoning,
summarization, and dialogue systems (Achiam et al., 2023; Touvron et al., 2023; Google, 2023;
Anthropic, 2024; Guo et al., 2025). A key factor in their success has been alignment, the process of
steering model behavior to be more helpful and harmless. Reinforcement Learning from Human Feed-
back (RLHF) stands out as a canonical approach for aligning LLMs with human preferences, enjoying
widespread adoption for improving supervised fine-tuned (SFT) models (Ouyang et al., 2022; Stien-
non et al., 2020; Gao et al., 2024). However, the classical online RLHF framework is computationally
expensive and involves intricate training pipelines, including reward modeling and policy train-
ing (Yuan et al., 2023; Dong et al., 2024; Liu et al., 2023). To circumvent these complexities, simpler
offline methods have emerged, such as Direct Preference Optimization (DPO) (Rafailov et al., 2024)
and Sequence Likelihood Calibration (SLiC) (Zhao et al., 2023), achieving strong performance by
directly optimizing a policy on a static, pre-collected preference dataset without explicit RL training.

While offline methods like DPO are resource-efficient, they rely on a fixed dataset, which may not
adequately represent the distribution of the model being trained. A key innovation to address this is
the use of online alignment, where synthetic preference data is generated directly from the policy
as it undergoes training (Abdin et al., 2024; Setlur et al., 2024). This online approach ensures the
training distribution remains close to the current policy, mitigating distributional discrepancies and
leading to improved generation quality and training stability. Recent studies have consistently shown
that such online methods can considerably outperform purely offline approaches, establishing them
as a more potent paradigm for LLM alignment(Tang et al., 2024a; Tajwar et al., 2024).
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Figure 1: An overview of Importance Sampling Optimization (ISO). We sample preference pairs
from the current policy πθ, which deviates from the optimal target policy π∗. Then use importance
weighting to adjust the DPO loss for each pair, thereby correcting the distributional mismatch and
improving optimization.

However, applying online data to existing frameworks introduces a new challenge. Methods like
DPO are designed to learn an optimal policy, π∗, but the online data is necessarily sampled from the
current, non-optimal policy, πθ. This creates a fundamental distribution mismatch. To bridge this
gap, RSO(Liu et al., 2023) was recently proposed. RSO attempts to correct this mismatch by using a
reward model to implement rejection sampling. It generates candidate responses from the current
policy πθ and then probabilistically accepts or rejects them to create a new dataset that more closely
approximates samples from the target optimal policy, π∗.

Although RSO demonstrates the promise of correcting the online data distribution, its reliance on
rejection sampling is a significant bottleneck. The process can be highly inefficient, discarding a
large fraction of the generated samples, especially when the current policy is far from the optimal one.
This wastefulness translates directly into increased computational cost and slower training cycles.
This inefficiency highlights the need for an approach that can retain the benefits of online distribution
correction without the high cost of rejection sampling. A powerful and well-established technique for
correcting distribution shifts without discarding data is importance sampling.

Inspired by this, we introduce Importance Sampling Optimization (ISO), a novel online alignment
framework that replaces inefficient rejection sampling with principled importance sampling as shown
in Figure 1. ISO corrects the distributional mismatch between the current sampling policy (πθ) and
the target optimal policy (π∗) by re-weighting the loss for each preference pair. By assigning an
“importance weight” to each sample, ISO can effectively leverage all generated data, eliminating the
computational waste inherent in RSO while still optimizing towards the true underlying preference
distribution. Our contributions are:

1. We propose ISO, a new online alignment algorithm that uses importance sampling to create
a more sample-efficient and computationally-efficient alternative to RSO.

2. We derive the specific formulation for the importance weights, allowing for a seamless
integration into the DPO loss function to correct for the online distribution shift. We also
introduce a signed margin score to increase the weight of more informative preference pairs,
which mitigates the issue that sampled response pairs tend to have a low margin.

3. Through extensive experiments, we demonstrate that ISO consistently matches or exceeds
the performance of existing alignment methods, including RSO and offline DPO, while
requiring significantly less computational overhead.

2 BACKGROUND

Our work builds upon existing methods for aligning LLMs with human preferences. This section first
discusses the reward model training using the human preference datasets in Section 2.1. We then
discuss the preference optimization algorithms in Section 2.2, and the online improvement of the
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preference learning in Section 2.3. This future motivates RSO to refine the sample distribution, which
is discussed in Section 2.4.

2.1 REWARD MODELING

Pairwise Reward Model In our pipeline, we use a pairwise reward model to serve as a proxy for
human preferences. We train a sequence-to-sequence model, ρψ (specifically, a Flan-T5-XXL), to
predict which of two responses is preferred for a given prompt x. The model takes a formatted input
containing the prompt and both responses (y1, y2) and outputs logits for "A" (preferring y1) and "B"
(preferring y2). From these logits, we can estimate the preference probability:

P̂ (y1 ≻ y2|x) = σ(logitA− logitB), (1)

where σ is the sigmoid function. To mitigate potential positional bias, the training data is augmented
by swapping the positions of y1 and y2.

While this model is inherently pairwise, we can induce a pointwise reward score, rψ(x, y), which
is necessary for methods like RSO. This is done by comparing a given response y against a fixed
baseline response yb, whose reward is assumed to be zero. The score is then calculated as:

rψ(x, y) = logitA− logitB where y1 = y, y2 = yb.

In practice, we use a random response from the SFT policy as the baseline yb.

2.2 PREFERENCE OPTIMIZATION FOR LLM ALIGNMENT

The standard paradigm for aligning LLMs with human values has been RLHF. The RLHF process
typically involves three main steps: 1) collecting a dataset of human preferences between pairs of
model responses, 2) training a separate reward model (RM) to predict which responses humans would
prefer, and 3) fine-tuning the LLM policy using reinforcement learning (e.g., PPO) to maximize
the score from the RM(Ouyang et al., 2022). While effective, the RLHF pipeline is known to be
computationally expensive and often suffers from training instability

DPO was introduced as a more stable and efficient alternative that bypasses the need for an explicit
reward model and the complexities of reinforcement learning. We use the DPO framework to align
the policy πθ with the generated preference data Dp(Rafailov et al., 2024). DPO established a direct
mapping from preference probabilities to an optimal policy, reframing the alignment task as a simple
classification problem on preference pairs. The standard DPO loss is derived from the Bradley-Terry
model and is formulated as a negative log-likelihood loss:

LDPO (πθ|πsft) = E(x,yw,yl)∼Dp

[
− log σ

(
β log

πθ (yw|x)
πsft (yw|x)

− β log
πθ (yl|x)
πsft (yl|x)

)]
, (2)

where σ is the sigmoid function. In addition to this sigmoid loss, recent work like SLiC (Zhao et al.,
2023) also uses a normalized hinge loss variant:

LDPO (πθ|πsft) = E(x,yw,yl)∼Dp

[
max

(
0, δ − β log

πθ (yw|x)
πsft (yw|x)

+ β log
πθ (yl|x)
πsft (yl|x)

)]
, (3)

where β is the DPO temperature and δ is the hinge margin, typically set to 1. These objectives
effectively increase the relative probability of the preferred response yw over the dispreferred response
yl. To make training computationally feasible, Low-Rank Adaptation (LoRA) (Hu et al., 2022) can
be employed, which drastically reduces the number of trainable parameters by updating low-rank
adapter matrices instead of the full model weights.

2.3 ONLINE PREFERENCE LEARNING

While DPO simplifies the alignment process, the standard offline approach relies on a static, pre-
collected dataset of preferences. This creates a fundamental challenge known as distribution shift(Li
et al., 2025; Guo et al., 2024). As the policy πθ is updated during training, its output distribution

3
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diverges from the one that generated the static dataset, making the training data increasingly "off-
policy" and less relevant to the model’s current capabilities and failure modes. This mismatch can
lead to suboptimal performance and training instability.

To address these limitations, online preference learning frameworks have been proposed(Xiong
et al., 2023; Guo et al., 2024; Dong et al., 2024). These methods integrate data generation into the
training loop, ensuring that the model is continuously learning from feedback on its own most recent
outputs. Our work builds upon a multi-stage pipeline for aligning LLMs using such online preference
data.

Supervised Fine-tuning (SFT) The alignment process begins with a pre-trained LLM, which is
fine-tuned on a high-quality, instruction-following dataset Dsft = {(x, ychosen)}. This produces the
SFT model, πsft, by minimizing the standard negative log-likelihood loss:

Lsft(θ) = −E(x,ychosen)∼Dsft [log πθ(ychosen|x)] . (4)

The resulting πsft serves as both the initial policy for alignment and as a reference policy during
preference optimization to prevent divergence from the learned distribution.

Online Preference Data Generation To mitigate the distribution mismatch inherent in static,
offline datasets, online methods generate preference data iteratively. In each iteration, a set of
K candidate responses {y1, . . . , yK} is sampled from the current policy πθ for a given prompt x.
These responses are then ranked using the pairwise reward model ρψ to create a preference dataset
Dp = {(x, yw, yl)}, where yw is preferred over yl. We adopt the "first-round-rank" strategy from Liu
et al. (2023), where all candidate pairs are ranked to form the final dataset.

2.4 STATISTICAL REJECTION SAMPLING OPTIMIZATION (RSO)

Statistical Rejection Sampling Optimization (RSO) (Liu et al., 2023) refines the online data generation
process to better approximate the optimal policy π⋆. Instead of using all sampled candidates, RSO
uses rejection sampling to filter them. It accepts a candidate yi sampled from πθ with a probability
proportional to exp(rψ(x, yi)/β), where rψ is the pointwise reward and β is a temperature parameter.
This filtering step aims to create a dataset that more closely follows the distribution of the target
optimal policy. While effective, this process can be highly sample-inefficient, as many candidates
may be rejected and discarded.

3 METHOD

In this section, we present ISO for efficient online alignment of language models. We first formulate
the distribution mismatch problem when sampling from the current policy rather than the optimal
policy (Section 3.1). We then derive importance weights to correct this mismatch, introducing a
signed margin score to prioritize informative preference pairs (Section 3.2). Next, we integrate these
weights into the preference optimization loss (Section 3.3) and describe ISO’s implementation as a
plug-and-play module for existing pipelines (Section 3.4). We include the detailed derivation in the
Appendix A.1.

3.1 STATISTICAL FORMULATION

While RSO (Liu et al., 2023) uses rejection sampling to draw samples from this optimal policy, this
approach leads to high rejection rates and computational inefficiency. Instead, we propose to correct
for the distribution mismatch between πsft and π⋆ using importance sampling.

The core challenge lies in estimating expectations under π⋆ when we can only sample from πsft. For
any function f(x, y), this expectation can be written as:

Ey ∼ π⋆[f(x, y)] = Ey ∼ πsft [w(x, y)f(x, y)] (5)

where w(x, y) = π⋆(y|x)
πsft(y|x) is the importance weight.
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3.2 IMPORTANCE SAMPLING FOR PREFERENCE OPTIMIZATION

The derivation of importance weights begins with the optimal policy for a single response, which can
be expressed as:

w(x, y) =
1

Z(x)
exp

(
1

γ
r(x, y)

)
(6)

where r(x, y) is the reward for response y to prompt x, and Z(x) is the partition function over all
possible responses. γ is the ISO temperature hyperparameter that controls the importance weight
distribution. It should be decided by how much we trust the reward model. The more accurate and
robust the reward model is, the smaller the value of γ should be. We show

For preference pairs (yw, yl) consisting of a winning and losing response, we must consider their
joint distribution. Assuming the responses are sampled independently conditioned on the prompt
x, the unnormalized pair-wise importance weight is initially computed based on the sum of their
rewards:

w̃base(x, yw, yl) = exp

(
1

γ
(r(x, yw) + r(x, yl))

)
(7)

However, not all preference pairs are equally informative. A pair where the reward margin (r(x, yw)−
r(x, yl)) is large and positive is more consistent with the learned reward function than a pair where
the margin is small or negative. To incorporate this, we introduce a modulating factor based on the
Bradley-Terry model, which represents the probability of yw being preferred over yl:

P (yw ≻ yl|x) = σ(r(x, yw)− r(x, yl))

where σ(·) is the sigmoid function. By centering this probability around 0.5, we design a signed
margin score (σ(r(x, yw)− r(x, yl))− 0.5) which is positive when rw > rl and approaches zero
when the rewards are nearly equal. This score down-weights pairs with a low reward margin, reducing
their impact on the overall objective. Our final unnormalized weight, w̃, is the product of the base
weight and this margin score:

w̃(x, yw, yl) = w̃base(x, yw, yl) · (σ(r(x, yw)− r(x, yl))− 0.5) (8)

To handle the partition function and ensure numerical stability, we normalize these weights within
each prompt’s set of preference pairs:

w(x, yw, yl) =
w̃(x, yw, yl)∑

(y′w,y
′
l)
w̃(x, y′w, y

′
l)

(9)

This normalization ensures that the weights for all preference pairs originating from the same prompt
sum to one, effectively removing the dependency on the partition function Z(x).

3.3 LOSS FUNCTION WITH IMPORTANCE WEIGHTS

We modify the sigmoid loss function to incorporate importance weights:

LISO(θ|πsft) = E(x,yw,yl)∼πsft

[
−w(x, yw, yl) log σ

(
β log

πθ(yw|x)
πsft(yw|x)

− β log
πθ(yl|x)
πsft(yl|x)

)]
(10)

where the normalized importance weights w(x, yw, yl) correct for the distribution mismatch between
πsft and π⋆, and β controls the margin scaling. We can also incorporate the importance weight into
the hinge-norm loss following the same pattern.

3.4 INTEGRATION INTO PREFERENCE LEARNING PIPELINES

ISO is designed as a plug-and-play module that seamlessly integrates into existing online preference
optimization pipelines. The method only requires computing importance weights from reward values
and applying them as sample-level multipliers during policy updates, making it compatible with any
DPO-based framework without architectural modifications. Algorithm 1 presents the complete ISO
training procedure, where highlighted lines show the key ISO-specific implementations: importance
weight computation (line 8) and per-prompt normalization (line 12).
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Algorithm 1 Importance Sampling Optimization (ISO)

Require: Initial policy πθ0 = πsft, reward model rϕ, prompts X , iterations T
Ensure: Aligned policy πθT

1: for t = 0 to T − 1 do
2: Dt ← ∅ ▷ Initialize online dataset
3: for each prompt x ∈ X do
4: Sample K responses: {yk}Kk=1 ∼ πθt(·|x)
5: Compute rewards: {rk}Kk=1 where rk = rϕ(x, y

k)
6: Construct pairs: Px = {(yi, yj) : ri > rj}
7: for each pair (yw, yl) ∈ Px do

8: w̃ ← exp
(

1
γ (rw + rl)

)
· (σ(rw − rl)− 0.5)

9: Dt ← Dt ∪ {(x, yw, yl, w̃)}
10: end for
11: end for
12: Normalize weights: wi ← w̃i/

∑
j w̃j for all samples with same x

13: Update policy: θt+1 ← argminθ LISO(θ;Dt, {wi})
14: end for
15: return πθT

Compatibility. ISO’s importance weighting mechanism is loss-agnostic and can be applied to various
preference optimization objectives beyond DPO, including IPO, SLiC, and other alignment methods.
The only requirement is access to reward scores, which are typically already computed in online
preference learning pipelines. This out-of-the-box design allows ISO to enhance sample efficiency
without modifying the underlying optimization algorithm or model architecture, users simply replace
the standard loss with the weighted version wi · L(·).

4 EXPERIMENTS

We conduct comprehensive experiments to evaluate ISO’s performance across multiple models and
datasets, comparing it against other methods. Our evaluation focuses on three key aspects: response
quality, sample efficiency, and robustness across different training configurations.

4.1 EXPERIMENT SETUP

Golden Reward Model To provide an unbiased and robust assessment of the different alignment
methods, we employ a powerful, held-out reward model as a “golden” evaluator. We fine-tune
a Gemma-2-27B model, initialized from the Skywork/Skywork-Reward-Gemma-2-27B-v0.2
checkpoint, on our target preference dataset. This model is trained as a pointwise scorer, reval(x, y),
using a standard negative log-likelihood loss based on the Bradley-Terry model. This objective trains
the model to predict a scalar score for a given response such that the difference in scores between
two responses accurately reflects the human preference probability. Crucially, this evaluation model
is completely independent of the training process; it is never used to generate preference labels or
provide rewards during the alignment of any of the policies, including our proposed ISO method
and all baselines. This separation ensures a fair and objective comparison, where performance is
measured by a consistent and powerful judge.

Models and Datasets We evaluate ISO on three model families: GPT-2 (Radford et al., 2019),
Gemma-2 (Team et al., 2024), and Qwen2.5 (Qwen et al., 2024). Our experiments utilize two standard
alignment benchmarks: Reddit TL;DR (Stiennon et al., 2020) and UltraFeedback (Cui et al., 2023),
both widely adopted in the alignment literature (Yuan et al., 2024; Jian et al., 2025; Liu et al., 2024;
Dong et al., 2024). We maintain the original train-test splits, with all results reported on held-out test
sets. Both reward model training and preference optimization use only training data.
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Table 1: Compare different methods on the Reddit TL;DR and Ultrafeedback dataset. The number
of samples used in the preference learning is 16. The RSO is required to rollout 64 samples from
the SFT policy. The Direct and ISO are required to rollout 16 samples. Win rates against responses
generated from the corresponding SFT policy are reported, evaluated using the proxy reward model.
We show both the average win rate evaluated using the proxy and the golden reward in the last two
columns. We find that our ISO method consistently achieves a higher win rate compared to the
baseline methods on both criteria of proxy reward and golden reward. Full golden reward win rates
for individual models are provided in Table 3 in the appendix.

Iteration Method Gemma2 GPT2 Qwen2.5 Average Win Rate

2B 9B Large Medium 1.5B 3B Proxy Golden

# 1

Reddit TL;DR

Direct 86.99 92.54 55.25 48.86 73.99 79.86 72.92 57.51
RSO 91.08 88.63 53.27 49.44 78.00 82.60 73.84 57.20
ISO (ours) 93.28 94.76 54.74 48.81 82.40 87.94 76.99 59.29

Ultrafeedback

Direct 80.77 85.07 52.49 49.72 71.62 79.74 69.90 54.96
RSO 80.14 84.84 50.73 49.02 67.55 78.08 68.39 52.67
ISO (ours) 85.62 90.52 52.09 50.03 77.50 84.74 73.42 56.01

# 2

Reddit TL;DR

Direct 94.01 94.84 60.01 49.71 84.60 91.04 79.04 58.35
RSO 93.87 91.86 57.54 50.01 88.61 91.80 78.95 57.49
ISO (ours) 95.16 96.28 59.49 49.95 91.50 94.66 81.17 59.15

Ultrafeedback

Direct 89.47 89.74 55.25 49.80 83.36 90.65 76.38 52.19
RSO 90.25 87.03 52.74 49.87 82.05 86.80 74.79 51.07
ISO (ours) 95.05 92.33 55.56 49.17 86.48 93.77 78.73 54.38

Evaluation Metrics Following Liu et al. (2023), we report win rates against SFT-generated re-
sponses. For each test prompt, we generate responses from both πsft and the current policy πθ, then
evaluate them using both proxy and golden reward models. The win rate represents the proportion of
πθ responses that achieve higher rewards than their πsft counterparts.

We include the detailed training configuration in the Appendix A.3.

4.2 RESULTS AND ANALYSIS

ISO vs. Other Approaches Table 1 compares three sampling approaches at fixed preference-
learning budgets: Direct (uniform weighting of on-policy samples), RSO (rejection sampling from
optimal distribution), and ISO (importance sampling from optimal distribution). ISO achieves the
strongest average performance under both proxy and golden reward evaluation, while requiring only
25% of RSO’s computational budget for sample generation. The Direct method, equivalent to ISO
with γ → ∞ and no margin scoring, uniformly weights all samples. While all methods optimize
toward the proxy reward (resulting in higher proxy win rates), ISO demonstrates superior robustness
by maintaining strong golden reward performance compared to both RSO and Direct approaches.
This indicates ISO’s ability to balance proxy optimization with genuine response quality.

Scaling with Sample Size Table 2 demonstrates ISO’s performance across different sampling
budgets. The # of samples column indicates responses generated from πθ (or πsft in round one).
Proxy win rates improve monotonically with increased sampling, validating our theoretical prediction
that larger sample sizes reduce importance sampling variance, thereby enhancing preference learning
quality. In practice, we find that 16 rollouts provide an excellent efficiency-quality trade-off for
resource-constrained settings. This scaling behavior demonstrates ISO’s flexibility in adapting to
different computational budgets.

7
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Table 2: Compare different sampling sizes on the Reddit TL;DR and Ultrafeedback dataset using ISO.
The reported metrics are the same as Table 1. We choose the sample size to be 16, which significantly
reduces the rollout and reward evaluation computation cost and maintains a reasonable generalization
performance on the golden reward. Full golden reward win rates for individual models are provided
in Table 4 in the appendix. Results for iteration 2 are provided in Table 5 in the appendix.

Number of Samples Gemma2 GPT2 Qwen2.5 Average Win Rate

2B 9B Large Medium 1.5B 3B Proxy Golden

Reddit TL;DR

8 88.73 93.77 52.43 48.67 72.07 78.08 72.29 58.38
16 93.28 94.76 54.74 48.81 82.40 87.94 76.99 59.29
32 89.68 89.69 60.69 49.90 82.10 93.13 77.53 60.60
64 85.90 86.53 69.86 50.83 86.42 89.68 78.20 58.67

Ultrafeedback

8 79.54 82.25 52.04 48.62 71.02 77.65 68.52 54.77
16 85.62 90.52 52.09 50.03 77.50 84.74 73.42 56.01
32 89.47 87.25 53.34 50.20 82.48 88.96 75.28 55.70
64 91.68 86.65 57.82 50.40 86.58 87.18 76.72 54.37
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Figure 2: Performance analysis of ISO. (a) Win rates versus LoRA rank for different methods
(iteration 1, Ultrafeedback dataset). ISO consistently outperforms baselines across all LoRA ranks,
while RSO shows degradation at lower ranks. (b) Effect of the ISO temperature parameter γ on win
rates on the Ultrafeedback dataset with Qwen2.5 3B policy model. Smaller γ values (indicating
higher trust in the reward model) yield better performance with the proxy reward model, while the
golden reward model shows more stability across γ values. (c) Distribution of importance weights
wbase across different γ values, showing how smaller γ produces more concentrated weights while
larger γ leads to more uniform weighting. The wbase before multiplying the signed margin score is
shown for better visualization.

LoRA Integration Figure 2a shows ISO’s performance with parameter-efficient fine-tuning via
LoRA (Hu et al., 2022). We increase the learning rate to 5e-5 (standard practice for LoRA) and
reduce β to 0.05 to account for LoRA’s structural regularization. ISO consistently outperforms
baselines across all LoRA ranks, with performance improving monotonically as rank increases.

Effect of γ in ISO Figure 2b examines the effect of γ used in Equation 7. We test three different γ
settings and find that γ = 3 achieves the best performance on both proxy and golden reward metrics.
This parameter controls the distribution of importance weights, with lower values indicating higher
trust in the reward model. Figure 2c visualizes the corresponding importance weight distributions for
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these three γ settings. High γ produces near-uniform weights across samples, making the distribution
closer to the original on-policy distribution (equivalent to the Direct setting). Low γ downweights
most samples, creating a density peak near 0, with only a few samples receiving very high weights
near 1. The optimal setting of γ = 3 strikes a balance between these extremes.

5 RELATED WORK

RLHF and preference optimization Reinforcement Learning from Human Feedback (RLHF)
has emerged as a canonical approach for aligning Large Language Models (LLMs) with human
preferences (Ouyang et al., 2022; Stiennon et al., 2020; Gao et al., 2024). The classical RLHF frame-
work, initially developed by Christiano et al. (2017) and later popularized in models like InstructGPT
(Ouyang et al., 2022), Claude (Bai et al., 2022), and LLaMA-2 (Touvron et al., 2023), typically
involves three phases: supervised fine-tuning, reward model training, and policy optimization using
algorithms like Proximal Policy Optimization (PPO). Despite its effectiveness, RLHF with PPO
presents significant challenges, including training instability (Choshen et al., 2019), sensitivity to im-
plementation details (Engstrom et al., 2020), and high computational requirements (Yuan et al., 2023).
To address these limitations, offline preference optimization methods such as Sequence Likelihood
Calibration (SLiC) (Zhao et al., 2023) and Direct Preference Optimization (DPO) (Rafailov et al.,
2024) have been proposed, offering improved stability and efficiency by directly optimizing language
models on preference data without requiring separate reward modeling. Further developments include
IPO (Azar et al., 2023), KTO (Ethayarajh et al., 2024), ARM (Pang et al., 2024), and GPO (Tang
et al., 2024b). While efficient, these offline methods typically operate on preference datasets collected
from other models, potentially leading to distribution mismatch. Recent research demonstrates
that online iterative variants of these algorithms significantly outperform their offline counterparts
(Xiong et al., 2023; Guo et al., 2024; Xu et al., 2023; Tajwar et al., 2024; Dong et al., 2024), with
Statistical Rejection Sampling Optimization (RSO) (Liu et al., 2023) addressing this limitation by
implementing rejection sampling to generate preference pairs from an approximation of the optimal
policy distribution.

Importance Sampling Importance sampling is a fundamental statistical technique for estimating
properties of a target distribution using samples from a different behavioral distribution (Levine et al.,
2020). In the context of reinforcement learning, importance sampling has been extensively used for
off-policy evaluation (Thomas et al., 2015; Thomas & Brunskill, 2016), where the goal is to estimate
the performance of a target policy using data collected from a behavioral policy by correcting the
distribution with importance weights wP/Q(x) = p(x)/q(x) (Levine et al., 2020). These importance
weights serve as a correction mechanism that enables accurate estimation despite the distribution
mismatch between the sampling and target distributions. Jiang et al. (2025) uses importance weighting
to identify and filter out self-generated samples with high distribution shift extent in language model
self-improvement. PILAF (Feng et al., 2025) sample response pair that aligns preference learning
with maximizing the underlying reward. DFT (Wu et al., 2025) rewriting SFT gradient as policy
gradient via importance sampling. IW-DPO (Lodkaew et al., 2025) uses importance weighting to
address deployment distribution shifts between training and test environments by reweighting a fixed
offline preference dataset based on a small validation set from the target distribution. Our approach
differs from previous works by addressing the distribution mismatch between the current policy and
the theoretical optimal policy defined by the reward model, enabling more efficient utilization of all
online generated samples.

6 CONCLUSION

The proposed ISO method refines the distribution of online sampled data from the SFT policy. It is
designed to fit the MLE of DPO loss with the data distribution of the optimal policy. It offers better
sample efficiency than other alternatives like rejection sampling. We show its effectiveness across
different preference learning datasets and different scales of models. Future work can utilize ISO’s
efficient distribution correction mechanism in non-preference online RL methods on tasks such as
reasoning, coding, and multi-turn interaction, where the ability to leverage all generated samples
while accurately targeting the optimal policy could yield significant improvements.
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