
Robust Driving Policy Learning with
Guided Meta Reinforcement Learning

Kanghoon Lee1,∗, Jiachen Li2,∗, David Isele3, Jinkyoo Park1, Kikuo Fujimura3, Mykel J. Kochenderfer4

Abstract—Although deep reinforcement learning (DRL) has
shown promising results for autonomous navigation in in-
teractive traffic scenarios, existing work typically adopts a
fixed behavior policy to control social vehicles in the training
environment. This may cause the learned driving policy to
overfit the environment, making it difficult to interact well
with vehicles with different, unseen behaviors. In this work, we
introduce an efficient method to train diverse driving policies
for social vehicles as a single meta-policy. By randomizing the
interaction-based reward functions of social vehicles, we can
generate diverse objectives and efficiently train the meta-policy
through guiding policies that achieve specific objectives. We
further propose a training strategy to enhance the robustness
of the ego vehicle’s driving policy using the environment where
social vehicles are controlled by the learned meta-policy. Our
method successfully learns an ego driving policy that generalizes
well to unseen situations with out-of-distribution (OOD) social
agents’ behaviors in a challenging uncontrolled T-intersection
scenario. (Note: This paper was previously published as part of
the Intelligent Transportation Systems Conference (ITSC) 2023
conference proceedings.)

I. INTRODUCTION

Deep reinforcement learning has been a powerful tool
for solving sequential decision making problems and has
been applied in various domains, such as game playing
[1], robotics [2], and autonomous driving [3], [4]. DRL is
characterized by its ability to handle high dimensional inputs
due to the powerful representational capabilities of deep
neural networks [5], [6], making it a strong tool for decision
making in complex environments with intensive multi-agent
interactions. However, DRL requires a large amount of data
obtained by interacting with the environments to achieve
satisfactory results. In addition, the learned policy is prone
to performing poorly in out-of-distribution scenarios.

An open challenge in DRL for autonomous driving is to
improve the robustness of the learned driving policies of
autonomous vehicles (i.e., ego agents) to the variations in the
driving policies of human-driven vehicles (i.e., social agents).
In real-world settings, autonomous vehicles may be exposed
to driving behaviors that are not necessarily similar to those
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Aggressive Conservative

Fig. 1. Social agents (i.e., green vehicles) exhibit different behaviors
based on their preferences or internal characteristics in an uncontrolled T-
intersection scenario, while the left-turn ego agent (i.e., blue vehicle) needs
to react appropriately to their behaviors.

they have seen during training. Existing methods for training
DRL policies involve social agents whose policies are well-
defined by the simulator. This is not ideal because simulated
policies are fixed and not diverse, implying that the learned
ego agent’s policy tends to overfit the simulated behaviors
of social agents. The challenge lies in finding a systematic
way to generate new and diverse policies for social agents
that could represent human-like behaviors to enhance the
robustness of ego policies. We propose to train social agents’
policies near the ego agent in the DRL training process with
their own reward functions that involve a term that encourages
cooperative or adversarial behaviors to the ego agent. The
resulting social agents’ policies are intended to imitate human
drivers’ behaviors while also challenging the ego agent.

Another crucial component in DRL for autonomous driving
is to accurately capture the internal preferences of other
interactive agents, which could encapsulate their intents or
driving traits. This is especially effective when the ego agent
needs to negotiate the right of way with surrounding agents.
Capturing this internal preference is helpful for allowing
the ego agent to make the most informed decisions. Prior
work uses binary ground truth labels such as conservative or
aggressive to describe the agent behaviors [3] and evaluates
the proposed method in a driving simulator. However, this
approach is difficult to be deployed in a real-world setting
since it is difficult to obtain the ground truth labels in practice.
We use a variational auto-encoder (VAE) with a recurrent
neural network (RNN) to encode behavior patterns in an
unsupervised manner, which is similar to [7]. However, our
VAE model is trained on a larger dataset that includes RL-
based social vehicles.

The main contributions of the paper are as follows:
• We propose a guided meta reinforcement learning

method to generate diverse social behaviors, which in-
cludes training RL policies with different objectives as



guiding policies and using them to improve the diversity
of behaviors generated by the meta-RL policy.

• We further propose to improve the robustness of the
learned ego policy in a multi-agent reinforcement learn-
ing (MARL) framework by training the ego agent in
environments with diverse social agents who have indi-
vidual reward functions with a cooperative or adversarial
component to encourage different levels of aggressive-
ness.

• We validate that the learned meta-policy generates
behaviors associated with various objectives, and the
learned ego driving policy achieves more robust per-
formance in OOD situations than baseline methods in
a challenging T-intersection scenario.

II. PROBLEM FORMULATION

In an uncontrolled T-intersection scenario, as depicted
in Fig. 1, multiple vehicles on a two-lane roadway are
driving horizontally and one ego vehicle on a vertical road
is trying to merge into the upper lane. In this situation, the
primary objective for each vehicle is to reach its destination
while minimizing the risk of collision. We formulate the
uncontrolled T-intersection scenario as a Partially Observable
Stochastic Game (POSG, [8]) representing the discrete-time
stochastic control process. In this work, the POSG is defined
as a (I,S,O,A,R, T ) tuple.

1) Agent: I is the set of agent indices. We define an
individual vehicle as a decision-making agent. Each agent
is indexed with i ∈ I = IE ∪ IS , where IE = {0} is the
index set of ego vehicle that is trying to merge into the upper
road and IS = {1, . . . , n} is the index set of social vehicles
that drive horizontally.

2) State: S is the set of states. The physical state of
each agent xi ∈ R4 is composed of its position and speed.
Additionally, the social agents have a preference level βi ∈ R
that regulates the degree of aggressiveness with respect to the
ego agent. The global state s ∈ S is defined as

s =
[
x0, (x1, β1), (x2, β2), . . . , (xn, βn)

]
. (1)

3) Observation: O = O0 × O1 × · · · × On is the set
of joint observations of all agents. In real-world scenarios,
it is not realistic to directly observe the internal preference
of surrounding vehicles. Therefore, the ego agent can only
observe the physical state of each agent and infer their
internal preference using an inference model. However, to
simplify the environment, we assume that the social agents
can access the true global state, which includes internal
preference.

oi =

{
[x0, x1, . . . , xn] if i ∈ IE ,

[x0, (x1, β1), . . . , (xn, βn)] if i ∈ IS .
(2)

4) Action: A = A0 × A1 × · · · × An is the set of joint
action space of all agents. Action space, Ai is defined by a set
of candidate speeds, represented by Ai = {0.0, 0.5, 3.0}m/s
for i ∈ I. The action of each agent controls the desired speed
of its own low-level controller.

5) Reward: R : S × A → RN is the reward for each
agent. The base reward ri for each vehicle is designed to
encourage the learning agent to navigate the intersection with
maximum speed and minimum collision risk, which is defined
as

ri(s, a) =


rgoal if s ∈ Si

goal,

rfail if s ∈ Si
fail,

rspeed × ∥vi∥ otherwise,

(3)

where Si
goal is a state set indicating success cases where agent

i has reached its goal, while Si
fail is a state set indicating

failure cases where a collision happens or the vehicle goes
off the road. vi represents the speed of agent i.

The ego agent uses its base reward as a final reward
denoted by Ri. However, social agents use a final reward
which is defined as the sum of its own base reward and a
base reward of ego weighted by its preference:

Ri(s, a) =

{
r0(s, a) if i ∈ IE ,

ri(s, a) + βir0(s, a) if i ∈ IS ,
(4)

where βi denotes the preference of agent i. We can ma-
nipulate the level of aggressiveness in the policy objective
by modifying the preference using this reward design. For
instance, a negative β value will encourage minimizing the
reward of the ego vehicle, preventing it from making a
left turn. A positive β value will encourage maximizing
the reward of the ego vehicle, which encourages the social
vehicles to yield.

6) Transition: T : S × A → S is a function that
determines the next state given the current state and action.
The transition model of the simulation operates with a time
interval ∆t of 0.1s. Each social vehicle is assigned a sequence
of straight waypoints that leads to the end of the road, while
the ego vehicle has a sequence of straight waypoints initially
followed by curved waypoints when merging into the upper
road. The speeds of all vehicles are updated using low-
level controllers and actions that follow the waypoints. The
position of each vehicle is deterministically updated based
on their previous positions (pxt , p

y
t ) and speeds (vxt , v

y
t ) as

follows:

pxt+1 = pxt + vxt ·∆t, (5)
pyt+1 = pyt + vyt ·∆t. (6)

III. METHOD

We aim to train an ego agent that can effectively interact
with a diverse group of social agents and generalize to unseen
situations. The objective of the ego agent is formulated as

π∗
E = argmax

πE∈ΠE

∑
πS∈ΠS

Est,at

[ ∞∑
t=0

γtR(st, at)

]
, (7)

where πE and πS represent the policies for the ego and
social agent, respectively. Similarly, ΠE and ΠS represent the
feasible policy sets for the ego and social agent, respectively.
γ represents the discount factor. The initial state s0 is sampled
from the initial state distribution ρ(·). At each time step t,
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Fig. 2. A diagram of the proposed training framework for social driving meta-policy and robust ego driving policy. The orange and blue boxes represent
the social and ego agents’ policies, respectively. The orange and blue lines indicate the setting of the training environment for a certain type of agent. (1)
Specifically, the ego agent’s policy is initially trained with IDM-based social vehicles as its training environment. (2) Then, the guiding policies with a
limited preference set are trained, (3) followed by training a meta-policy on a broader preference set. (4) Finally, the ego agent’s policy is trained in the
environment that involves social vehicles with both the meta-RL policy and the IDM policy.

the action at is sampled using the policies for both the ego
and social agents, and the next state st is sampled using the
transition function based on the previous state and action. The
proposed method consists of two major steps. The first step is
to learn diverse RL policies of social agents using the reward
functions designed to emphasize interactions with the ego
agent, which is achieved by our proposed meta-RL method
effectively. The second step is to learn an ego agent’s policy
that identifies the internal preference of each social agent
based on their past behavior and makes decisions accordingly.
The overall training process is illustrated in Fig. 2.

A. Training a Social Driving Meta-Policy

While the reward design described in Eq. (4) provides
flexibility in defining various objectives, we found that train-
ing a policy directly on the complete continuous spectrum
of preferences fails to yield rational aggressive behaviors.
To address the issue, we propose a two-stage meta-policy
learning method, which enables the learned social agents’
policy to generate diverse behaviors with a wide range of
preferences.

In the first stage, in order to train a guiding policy
πS,β(a|o) that corresponds to a specific preference β, the
objective of guiding policy for β is written as

π∗
S,β = argmax

πS∈ΠS

Est,at

[
T∑

t=0

γtRi
t(st, at)

]

= argmax
πS∈ΠS

Est,at

[
T∑

t=0

γt(rit(st, at) + βr0t (st, at))

]
.

(8)

We train multiple guiding policies based on a limited set
of preferences B̄ = {β̄1, . . . , β̄m} using a model-free RL
algorithm, PPO [9], resulting in a total of m guiding policies
π∗
S,β̄1 , . . . , π

∗
S,β̄m .

In the second stage, we train a meta-policy πS(a|o, β)
that can generalize the behavior according to its preference.
Unlike the first stage where the policy is trained on a limited
set of preferences, the meta-policy is trained on a broader
range of preference sets B = {β | βmin ≤ β ≤ βmax}.

Learning a meta-policy that can simultaneously handle a wide
range of preferences is challenging. To achieve this goal, we
propose to apply regularization techniques to the meta-policy
to mimic the behaviors of the guiding policies for the pre-
trained preferences. This approach enables the meta-policy
to learn behaviors with new preferences efficiently while
retaining the ability to perform well with the preferences for
guiding policies. The regularization for guiding policies is

Lreg(θ) =
∑
β̄∈B̄

1
(
|β̄ − β| ≤ d

)
DKL

(
π∗
S,β̄(·|o)∥πS(·|o, β)

)
,

(9)
where d denotes the guide distance. When preferences are
sampled from a continuous space, as opposed to a discrete
space in the first stage, it becomes infeasible to sample
preferences within a limited preference set B̄. Therefore,
if the sampled preference β is sufficiently close to any
preference β̄ ∈ B̄, we encourage the meta-policy πS to mimic
the guiding policy π∗

S,β̄
as a regularization strategy.

Finally, the parameter of meta-policy is updated using a
weighted sum of the PPO loss and the regularization loss in
Eq. (9), which is written as

L(θ) = LPPO(θ) + wregLreg(θ), (10)

where wreg denotes the weight for the regularization loss.
To facilitate the learning of the social policy, a rational

ego vehicle’s behavior is necessary. Since designing the ego
behavior based on pre-defined rules can be challenging and
may not generalize well, we adopt an RL-based ego driving
policy, π(B)

E , obtained by the method in [7]. This RL-based
policy has demonstrated effective interactions with social
vehicles controlled by the Intelligent Driver Model (IDM)
[10].

B. Training a Robust Ego Driving Policy

In this section, we present our approach to enhance the
robustness of the ego agent’s policy to interact with various
types of social vehicles. Existing methods [3], [7] employed
an IDM-based policy for social vehicles in the training envi-
ronment and evaluated the performance using the same one.
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Fig. 3. The policy and value network architectures for the social agents (left) and the ego agent (right).

Although these methods have shown successful interactions
with IDM-based social vehicles, we have observed limitations
in the ability of the ego agent’s policy to interact with unseen
social behavior policies. To address this issue, we incorporate
both the social vehicles used in existing methods and the RL-
based social vehicles learned in Section III-A in the training
environment for ego policy learning. This mixed environment
aims to enhance the adaptability and performance of the ego
agent in scenarios with diverse social driving behaviors.

The ego agent should navigate the intersection efficiently
and minimize the risk of collision with the social vehicles. To
achieve this goal, it is necessary to understand the internal
preferences of the social vehicles, which indicate to what
extent they are willing to yield to the ego agent. The internal
preferences can be inferred by analyzing the past trajectories
of the vehicles. However, relying solely on the reward signal
to extract the internal preferences requires a substantial num-
ber of training samples. To address the issue, we adopt an un-
supervised learning approach for social vehicles introduced in
[7], which employs a GNN-GRU structure that can effectively
process spatio-temporal data. The internal preference of each
social vehicle can be appropriately extracted by an auxiliary
task which is to reconstruct the historical trajectories.

The ego agent enhances its policy by concatenating the
latent features obtained from the inference network with the
observations of each vehicle. Unlike the social agent, which
exhibits diverse objectives ranging from aggressiveness to
conservatism, the ego agent has a single objective that does
not necessitate a meta-policy. The value and policy functions
of the ego agent are updated using the PPO algorithm, similar
to the social agents. Training an inference network together
with the policy and value networks can lead to unstable
training, as the output of the inference network is fed into
the input of the other networks. Therefore, we pre-train the
inference network and subsequently train the policy and value
networks using the pre-trained inference network, following
a widely used approach in representation learning for RL.

C. Network Architecture for Ego and Social Agents

The architecture for the policy and value network of social
agents is described in Fig. 3. We construct the observation of
each agent as a graph where the nodes represent the surround-
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Fig. 4. KL-divergence between the meta-policy and guiding policies for
social vehicles. The comparison is conducted with an interval of 0.5.

ing vehicles, including the agent itself, and the edges are
formed by connections originating from all other vehicles to
the agent. For the ego agent, the node feature of surrounding
vehicles is formed by concatenating the physical state and
the latent feature derived from the historical trajectory. For
social agents, the node feature of surrounding vehicles is
formed by concatenating the physical state and the preference
as described in Eq. (2). The preference of the ego agent
is padded with zeros to maintain the same size. Next, we
use a GNN to extract essential features from the constructed
graph. These extracted features are then fed into a GRU
network. Subsequently, the hidden features obtained through
this process are passed through two MLP networks to obtain
policy and value, respectively. The hidden feature of the
social meta-policy includes an extra concatenation of its own
preference value, while the ego policy solely concatenates
its own embedding and information. We maintain the same
structure for the ego agent as described by Liu et al. [7] to
evaluate the effectiveness of our training framework. Since
we need to train several guiding policies simultaneously, we
adopt a strategy to share the GNN and GRU networks among
the guiding policies and separate the final MLP networks for
higher training efficiency.

IV. EXPERIMENTS

A. Simulation and Training Settings

We train the social policies in two stages and train the
ego agent’s policy using 10M samples. The learning rate for
the PPO algorithm is set to 10−4 with a linear decay. In the
first stage, the guiding policies are trained with a preference
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set of B̄ = {−1, 0, . . . ,+3}. In the second stage, the meta-
policy uses a preference as a real value ranging from −1
to 3. When the social vehicle is generated, the preference
value is uniformly sampled from the preference set in both
stages. We set the guide distance d of the social meta-policy
to 0.1 and the weight for the regularization loss wreg to 0.01.
Consequently, there was a 20% probability that a sample
from the social policy was guided. To train the ego policy,
we randomly select IDM or RL social policies to control
social vehicles with an equal probability to generate training
scenarios.

B. Validation of Social Driving Meta-Policy

In this subsection, we evaluate the ability of our proposed
meta-RL method to generate behaviors according to diverse
preferences. We compare our proposed method with the
non-regularized meta-policy. First, we assess the similarity
between the meta-policy and the guiding policies under
various preferences to verify whether the meta-policy exhibits
rational behavior even without explicit guidance. Specifically,
we estimate the KL divergence of the policy distribution for
each preference DKL(π

∗
S,β(· | o)||πS(· | o, β)) with 100K

samples. Fig. 4 illustrates the KL divergence between the
meta-policy and guiding policy for various preferences. The
bold values indicate preferences that were not employed
during the training of the meta-policy. The results indicate
that using guiding policies leads the meta-policy to align
its policy distribution with guiding policies. However, with-
out the guided training strategy, the meta-policy exhibits
an increasing deviation from the guiding policies as the
preference value decreases, which implies that the meta-
policy without guided training fails to generate the desired

aggressive behaviors.
Fig. 5 illustrates the performance of the meta-policy across

a wide range of preference settings, showing their ability
to improve the rewards. We collect 3M samples for each
method to evaluate the performance. It demonstrates that
our proposed method with guiding policies achieves better
performance than the ablation method, especially in cases
with aggressive preferences. The difference between the
meta-policies trained with and without guiding policies is
particularly significant during interactions with the ego agent.
When the ego agent attempts to merge into the upper lane,
the behavior of the social agent exhibits variability due to
different preferences. Fig. 6 shows the actions taken by
the meta-policy corresponding to different preferences. The
meta-policy learned with guiding policies exhibits a rational
behavior by prioritizing passing when the preference value is
low and yielding when the preference value is high. However,
the meta-policy without guiding generates behaviors that are
inconsistent with preferences.

C. Cross-Evaluation of Ego Driving Policy

We evaluate the robustness of the ego policy based on its
interactions with various types of social vehicles. We design
the test scenarios to focus on challenging situations which
involve diverse driving styles, presenting realistic driving
scenarios for the ego agent. In different testing scenarios,
the social vehicles are controlled by the following policies.
• IDM: An IDM-based social policy used in baseline meth-

ods, characterized by aggressive and conservative behav-
iors.

• Meta-RL: A social policy designed to generalize across
various preferences, trained using the proposed method.

• Meta-RL-w/o-g: A social meta-policy designed to gener-
alize across various preferences, trained without guiding
policies. It is an ablation method of Meta-RL.

• A2C-U{-1,3}: A set of social policies tailored for specific
preferences, covering a range of preferences using a dif-
ferent RL algorithm A2C [11]. The preference values are
sampled from the set {−1,+0, . . . ,+3}.

• Meta-RL-U(-3,3): A meta-RL social policy where the
preference of each social vehicle is sampled from -3 to
3. It generates more challenging scenarios than Meta-RL.

• A2C-U{-3,3}: An A2C-based social policy where the
preference is uniformly sampled from {−3,−2, . . . ,+3}.
It generates more challenging scenarios than A2C-U{-1,3}.
We compare the performance of the ego agent’s policy

trained with the following methods.
• Ma et al. [3]: An ego policy trained with IDM social policy.
• Liu et al. [7]: An ego policy trained with IDM social

policy.
• Ours-w/o-g: An ego policy trained with IDM and Meta-

RL-w/o-g social policies.
• Ours: An ego policy trained with IDM and Meta-RL social

policies.
Fig. 7 shows the decision making performance of the ego

agent’s policy in various testing environments. The bar charts
show the collision, timeout, and success rates. Scenarios with
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red texts indicate out-of-distribution (OOD) scenarios that are
not included during the training process of the corresponding
ego policy. The method of Ma et al. [3] shows significantly
higher collision and timeout rates among baseline methods.
The reason is that their method classifies social vehicles into
only two classes (i.e., conservative/aggressive), which cannot
well capture the diversity of social behaviors. The method
of Liu et al. [7] achieves better performance when inter-
acting with IDM-based social vehicles due to the flexibility
in encoding social behaviors. However, it exhibits a high
collision rate with RL-based social vehicles, which indicates
that training only with the IDM social policy can result in
overfitting certain social behaviors. The ego policy of our
ablation method (Ours-w/o-g) exhibits strong compatibility
with the social vehicles encountered during training but
demonstrates poor performance in OOD scenarios. The ego
policy of our method (Ours) interacts well with both the IDM
and meta-RL social vehicles used for training. Moreover,
the ego policy demonstrates better performance in interacting
with social vehicles with OOD policies, which implies that
the guided social meta-policy enhances the robustness of the
ego policy. Fig. 8 provides the visualization of a challenging
OOD testing scenario where our method makes a successful
left turn in the T-intersection while the baseline method
causes a collision.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we present a novel training strategy to
enhance the robustness of RL-based autonomous driving by

generating diverse social behaviors in training environments.
We propose a guided meta reinforcement learning method to
enable the generation of a variety of reasonable behaviors
for social agents effectively. The meta-RL policy achieves
effective action generation over a wide range of internal
preferences that indicate the degree of aggressiveness. The
ego agent’s policy trained with the social meta-policy exhibits
a remarkable level of robustness to OOD scenarios where
social vehicles have unseen behavior styles. In future work,
we aim to ensure safety by incorporating safe RL and
generalizing the traffic scenarios by leveraging real-world
datasets.
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APPENDIX A
RELATED WORK

A. RL-Based Autonomous Driving

Extensive research has been conducted on the intelligent
navigation of autonomous vehicles through uncontrolled in-
tersections. Existing approaches model the problem as a
partially observable Markov decision process (POMDP) to
account for the limited observability of the autonomous
agent [12]–[14]. For instance, Bai et al. [15] employ an
unparameterized belief tracker, while Song et al. [16] use a
hidden Markov model to capture driver movement intentions.
However, the best-known algorithms for solving POMDPs
are computationally expensive. Deep reinforcement learning
methods have been effective in autonomous driving. Isele
et al. [4] apply deep Q-learning to navigate intersections
with occluded vehicles. Ma et al. [3] employ graph neural
networks and latent state inference to tackle the challenge
of navigating through a T-intersection scenario. Liu et al.
[7] extract an appropriate latent state from trajectory history
without relying on the true latent state for the same scenario.
Different from existing works, we specifically focus on the
situations where the behavior policy of surrounding vehicles
deviates from the training situations.

B. Diverse Policy Learning

Various studies have demonstrated the benefits of learning
a collection of diverse policies across different aspects. The
challenge of efficient exploration of RL problems is addressed
by employing diverse different policies [17]–[20]. Mysore
et al. [21] introduce the concept of updating a single actor
using multiple critics, each focusing on different objectives,
to enable the incorporation of diverse behaviors. Tang et al.
[22] and Strouse et al. [23] use a diverse set of training
partners as an environment to train agents in the context
of MARL, enabling them to collaborate effectively with
unknown agents.

Several techniques have been explored to generate a diverse
policy set. The first approach is through reward randomiza-
tion, where the weight of the reward component is random-
ized, leading to each policy being trained using a distinct
reward function [21], [22], [24]. The second line of work
uses distance metrics, such as the Kullback-Leibler (KL)
divergence or mean squared error (MSE) loss, to quantify
the dissimilarity between policy distributions, thereby dis-
tinguishing their behaviors [18], [19], [25]. The third line
of work maximizes the diversity of the entire policy set
by using a metric that quantifies the diversity of the set
[20], [26]. While these methods are effective in generating a
diverse policy set, they come with the drawback of requiring



substantial computational resources. This is due to the need
to train a model for each policy, which becomes increasingly
demanding as the number of policies increases. In this work,
we present an effective meta-policy learning framework that
is capable of generalizing diverse objectives derived from
randomized reward functions.

C. Robust Autonomous Driving

Some prior work tries to improve the robustness of driving
policy by applying adversarial attacks. Chen et al. [24]
employs adversarial agents to evaluate the robustness of
autonomous driving models. Ding et al. [27] present a method
that incorporates domain knowledge to generate adversarial
scenarios, thereby improving the robustness of autonomous
driving systems. Sharif and Marijan [28] first identify failure
states in autonomous driving agents by training adversarial
driving agents, then retrain their autonomous agents with the
adversarial inputs. However, the generated behaviors of these
adversarial agents are often unrealistic or even unreasonable
in real-world settings. Kontes et al. [29] utilizes domain
randomization for robust policy transfer from simulation
to the real world. In this work, we use a diverse set of
learned social agents’ behaviors by randomizing their reward
functions to improve the robustness of the ego driving policy.


