
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Mechanism Design for Large Language Models
Anonymous Author(s)

ABSTRACT
We investigate auction mechanisms to support the emerging format

of AI-generated content. We in particular study how to aggregate

several LLMs in an incentive compatible manner. In this problem,

the preferences of each agent over stochastically generated contents

are described/encoded as an LLM. A key motivation is to design an

auction format for AI-generated ad creatives to combine inputs from

different advertisers. We argue that this problem, while generally

falling under the umbrella of mechanism design, has several unique

features.We propose a general formalism—the token auctionmodel—

for studying this problem. A key feature of this model is that it acts

on a token-by-token basis and lets LLM agents influence generated

contents through single dimensional bids.

We first explore a robust auction design approach, in which all we

assume is that agent preferences entail partial orders over outcome

distributions. We formulate two natural incentive properties, and

show that these are equivalent to a monotonicity condition on

distribution aggregation. We also show that for such aggregation

functions, it is possible to design a second-price auction, despite the

absence of bidder valuation functions. We then move to designing

concrete aggregation functions by focusing on specific valuation

forms based on KL-divergence, a commonly used loss function in

LLM. The welfare-maximizing aggregation rules turn out to be the

weighted (log-space) convex combination of the target distributions

from all participants. We conclude with experimental results in

support of the token auction formulation.

ACM Reference Format:
Anonymous Author(s). 2024. Mechanism Design for Large LanguageModels.

In Proceedings of ACM Conference (Conference’17).ACM, New York, NY, USA,

12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In the current web ecosystem, auctions are the primary mechanism

used to decide which ads (and commercial content more broadly)

are displayed to users [10, 19]. In those, advertisers bid for the right

to have their creatives displayed to the user along with organic

contents. Many of the web formats such as text, banners, video,

apps, ... have their own subtleties which led to the development

of new auction tools to handle them. Our goal in this paper is to

investigate auction mechanisms to support the emerging format

of AI-generated content. More specifically, we explore the use of

auctions as a tool for influencing the output of large language

models (LLMs) [e.g., 6].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

We consider a situation where a certain space in the web (be a

webpage, an UI element of an AI-chatbot, the dialog of a certain

character in a video or a game ...) is clearly marked as commercial

content and different advertisers can bid to influence the content in

that space. Each advertiser has an LLM that can generate content

for that space and is willing to pay a certain amount of money

for the right to have their content displayed. A simple design is

to collect bids from advertisers and let the highest bidder choose

whatever content they wish to publish in that space. While simple,

this design does not exploit the flexibility of LLMs which is to

combine different concepts in a creative way.

Consider this example. In the first we ask an LLM to produce dif-

ferent ads for the fictitious Stingray resort and the equally fictitious

Maui Airlines:

• “Experience the magic of Hawaii at Stingray Resort, where

stunning views, luxurious accommodations, and endless ac-

tivities await. Book your stay today and create unforgettable

memories in the heart of paradise.”

• “Fly to Hawaii with Maui Airlines and experience the beauty

of the Aloha State. We offer affordable flights to all the major

islands, so you can start your Hawaiian vacation sooner. Book

your flight today and let the island spirit take over!”

For that use case, however, the LLM is flexible enough to produce a

joint ad for both:

• “Fly to paradise with Maui Airlines and experience the magic

of Hawaii at Stingray Resort. Stunning views, luxurious ac-

commodations, and endless activities await. Book your dream

vacation today and create unforgettable memories.”

One can envision an auction mechanismwhere both Stingray resort

and Maui airlines can submit both LLMs as well as bids, and this

will determine their prominence in the final outcome.
1

1.1 Unique Challenges
LLMs [1, 6, 18] are a new technology with new and unconventional

aspects, many of which have direct implications to auction design

(e.g., how preferences are represented/expressed). Our goal is to

identify some of the key challenges and take a first step in designing

mechanisms to address them.

Modelling and Expressing Preferences: Auction theory typi-

cally models preferences via value functions that assign a value

to each outcome. LLMs, however, are generative models which do

not attribute values to each example, but instead succinctly encode

preferences over outcomes in a stateless neural network model that

predicts continuation probabilities.

Necessity of Randomization: LLMs crucially rely on random-

ization. When forced to output deterministically, LLMs typically

have a worse performance than if they are allowed to sample from

1
While our main focus is to create ad creatives that merge content from different

advertisers, auction mechanisms for merging LLM outputs could be used in other

contexts.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

a distribution. Therefore, an auction that aggregates LLM outputs

must also output distributions.

Technical Alignment: Auction solutions should be technically

aligned with current LLM technology. They should only use in-

formation available from current models and should be easy to

integrate in the system. Ideally the allocation and payments should

be obtained from simple manipulations of the LLM outputs.

Computational Efficiency: LLM models are expensive to query,

so the auction computation should not add too much overhead.

In particular, auctions should not increase the number of calls to

inference the models beyond the minimum necessary.

1.2 Our Contributions
The Token Auction Model. Our first contribution is a formalism

(“The Token Auction Model”) for studying this problem. Tokens

are the units making up sentences and paragraphs.
2
Examples of

tokens include (sub-)words, symbols, numbers, and special tokens

indicating the beginning and ending of the text. In particular, any

piece of text (potentially incomplete) can be represented as an array

of tokens, and any array of tokens also encodes a piece of text.

One salient feature of the state-of-the-art LLMs is that they are

stateless, i.e., they maintain no internal memory or state. Instead,

they simply map a prefix string to a distribution over the next token.

The output is then created in an autoregressive manner. Given an

input prompt, the output is generated by repeatedly feeding the

current sequence of tokens into the LLM, sampling a continuation

token, and appending it to the sequence of tokens.

The token auction we propose also operates on a token-by-token

basis, and serves to aggregate several LLMs to generate a joint

output. We assume the designer has access to algorithmic LLM

agents represented by their respective text generation functions

(the functions that map a sequence of tokens to a distribution over

the next token). In addition, we allow each LLM agent to submit a

single dimensional bid. The auction output will be an aggregated

distribution together with a payment rule.

This approach may appear counterintuitive at first since an ad-

vertiser cares about the generated final text, not the specific choice

of words. This seems to suggest a dynamic planning of the gener-

ated token sequence. However, existing LLMs do not reason about

full pieces of text, nor do they plan ahead; instead, their preferences

are expressed as desired distributions over merely the next token.

In other terms, we can think of an LLM as a succinct distillation of

an agent’s complex combinatorial preferences over sequences of

tokens into a generative token-by-token model.
3

The problem of aggregating LLMs forces the designer to under-

stand the preferences of the agents away from the distilled LLM.

This appears to be a very difficult problem. Specifically, we believe

it is implausible or at least impractical to assume an individual

agent can meaningfully manipulate the distribution over tokens at

any given stage, to direct the produced text to a more preferred one.

Our auction formulation seeks to strike a balance: By truthfully

2
More generally, one can consider tokens forming parts of images [14, 25] and

videos [17]. For the purpose of this paper, we will stick with text generation.

3
See our discussion in Section 4, and Propositions 4.1 and 4.3 for additional support

for the stateless approach.

revealing the LLM to the designer, the agent gives the auction mech-

anism a hint as to what their preferred distribution is. The bids, in

turn, can be used to tradeoff between agents, and in particular help

the designer determine their relative weights.

Simple and Robust Token Auctions. Motivated by the very

challenging problem ofmodelling the agents’ preferences for nearby

generative models, we aim to design robust token auctions. We seek

auctions that provide desirable incentive properties, while imposing

minimal assumptions on the agents’ preferences over distributions.

Specifically, we investigate a model where agents’ preferences

entail partial orders over distributions. We formulate two desirable

incentive properties, which we consider minimal requirements:

• Paymentmonotonicity: Given two different bids for the same

agent, a final distribution is closer to the desired distribution

if and only if the payment is higher.

• Consistent aggregation: If for two different bids of the same

agent, the final distribution is closer to the preferred distri-

bution for some bids of the other agents, then it should be

so for all bids of the other agents.

We show that any mechanism with these two properties is strate-

gically equivalent to a mechanism that satisfies a monotonicity

requirement on the distribution aggregation function.

We then investigate whether it is possible to equip such dis-

tribution aggregation functions with payment rules that satisfy

additional incentive properties. Specifically, we investigate whether

such aggregation rules admit an analogue of the second-price pay-

ment rule. In the single-item second-price (or Vickrey) auction [20],

the payment corresponds to the critical bid where an agent tran-

sitions from losing to winning. To port this notion to our setting,

we show that any monotone aggregation rule can be written as a

distribution over deterministic allocations from bids to tokens such

that there is a critical bid where the allocation transitions from a

less preferred to a more preferred token. Such a critical bid becomes

then a natural candidate for a payment rule.

A natural analogue of the second-price auction is obtained for a

model that only relies on ordinal preferences. The resulting class of

auctions is applicable whenever the agent valuations are compatible

with the partial order, and provides robust incentives for all of these.

Designing Aggregation Functions.We then move to designing

concrete aggregation functions. Our approach is to define welfare

objectives inspired by LLM training, and to derive optimal distribu-

tion aggregation functions for these welfare notions.

We focus on specific valuation forms based on KL-divergence, a

commonly used loss function in LLM. We specifically discuss two

natural welfare notions, and show that the corresponding welfare-

maximizing aggregation rules are the weighted (log-space) convex

combination of the target distributions from all participants.

The linear and log-linear aggregation rules we identify have dif-

ferent pros and cons. Both share the advantage that they are welfare

maximizing for the respective welfare notions. The linear rule un-

like the log-linear rule is also monotone, and therefore compatible

with the robust incentives approach.

Demonstration. We conclude with experiments to support our

token auction formulation, obtained by prompt-tuning of a pub-

licly available LLM. We consider a two-advertiser example and the

linear and log-linear aggregation rules identified to be optimal for

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Mechanism Design for Large Language Models Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

corresponding welfare notions. We show how the combined output

varies as a function of 𝜆 = 𝑏1/(𝑏1+𝑏2) , where 𝑏1 and 𝑏2 are the adver-

tisers’ bids. Both approaches lead to meaningful and interpretable

text, and smoothly transition from one to another advertiser, with

a joint ad produced for intermediate values of 𝜆.

Additional Related Work. Additional related directions include

LLM fine-tuning [2, 3, 12, 21], in-context learning [6, 22, 23], mech-

anism design for public projects [9, 13], and robust mechanism

design [4, 5, 8, 15]. See Appendix A for a more detailed discussion.

2 PRELIMINARIES
In this section, we first provide an abstraction of typical generative

models. For concreteness we adopt a terminology that suits the im-

portant LLM use case where the creative is text. We then introduce

the basic formalism of the mechanism design problem we study.

2.1 Abstraction of Large Language Models
Large language models (LLMs) [1, 6, 18] can be abstracted as func-

tions mapping from a partial sentence to the distribution of the

next token that extends the partial sentence.

Formally, let𝑇 be the set of tokens and Δ(𝑇) be the set of distribu-
tions over𝑇 . Let𝑇 ∗ = 𝑇 ∪𝑇 2 ∪ · · · ∪𝑇𝐾 denote the set of sequences

of tokens, where 𝐾 is the maximum sequence length that the LLM

can handle. Each LLM is modeled as a function 𝑓 : 𝑇 ∗ → Δ(𝑇) that
maps any sequence of tokens to a distribution over the next token.

Autoregressive Text Generation. A prompt is an initial set of to-

kens 𝑠0 ∈ 𝑇 ∗
provided with instructions of what text to generate.

An LLM produces a text in response to the prompt by sampling a

token 𝜏1 ∼ 𝑓 (𝑠0) and constructing 𝑠1 = 𝑠0 ⊕ 𝜏1 (where ⊕ is the oper-

ation to append a token to an array). We then repeat the process of

𝜏𝑘 ∼ 𝑓 (𝑠𝑘) and 𝑠𝑘+1
= 𝑠𝑘 ⊕ 𝜏𝑘 until a special end-of-sentence token

is sampled. If at some point the sequence of tokens becomes too

long (larger than 𝐾) we trim 𝑠𝑘+1
to its length-𝐾 suffix.

We remark that LLMs are stateless by design: They keep no

internal memory (other than the sequence of tokens produced so

far) and each token is sampled independently.

Training of LLMs. An LLM 𝑓 is parameterized by a neural net-

work structure 𝑀 and a set of weights𝑊 . The weights are often

obtained by three stages of optimization (see first three rows in

Table 1). The initial stage is very computationally intensive but task

independent. Subsequent stages are less costly and their goal is

to adapt the general purposed model obtained in the first stage to

more specific tasks. In each of the stages, we minimize a different

loss function over a different dataset. The details of the training

process are not particularly relevant for our discussion, but we

add a more detailed discussion in Section 4.1. We will note, how-

ever, that some of the mechanisms we discuss for combining the

inputs of different LLMs resemble the functional form used in the

reinforcement learning and fine-tuning steps.

2.2 Token Auctions for LLMs
We now formalize the mechanism design problem of combining

the outputs of different LLM-represented algorithmic agents. As

discussed in the introduction, we will design an auction to act on

the token-by-token generation stage. Our goal is to keep the auction

technically aligned with the state-of-the-art LLM systems.

Robust Modeling of LLM Agents’ Preferences. One major chal-

lenge in designing mechanisms for LLM agents is that they are

represented as distributions, and it is generally difficult to com-

pare LLM agents’ “utilities” among distributions. To illustrate, sup-

pose an LLM agent’s preferred distribution over two tokens is

𝑝 = (0.6, 0.4), and consider two possible generated distribution

outcomes: 𝑞1 = (0.5, 0.5) and 𝑞2 = (0.8, 0.2). Between 𝑞1 and 𝑞2,

it is unclear which one this LLM agent would prefer since while

𝑞2 appears more distant from 𝑝 than 𝑞1, it has a higher probability

on the first token which appears more preferably by the LLM’s

distribution 𝑝 .

Despite this incomparability between 𝑞1 and 𝑞2, it does ap-

pear “obvious” that 𝑞2 would be less preferred by the LLM than

𝑞3 = (0.7, 0.3). This is because 𝑞3 deviates from 𝑝 along the same

directions as 𝑞2 for each entry (i.e., both increase or both decrease),

but deviates less in terms of the absolute value of deviation.

The above observation illustrates that while it is difficult tomodel

LLM agents’ complete preferences over all the generated distribu-

tions, it seems plausible to assume a certain partial order over the

distributions. This motivates us to consider robust modeling of LLM

agents’ preferences, with the following notion of obvious preference.

Definition 2.1 (Obvious Preferences over Distributions). Consider

any LLM agent 𝑖 with preferred distribution 𝑝𝑖 , and any two ag-

gregation distribution 𝑞, 𝑞′ ∈ Δ(𝑇). We say 𝑞 is (weakly) obviously

preferred over 𝑞′ by agent 𝑖 — or formally, 𝑞 ⪰𝑖 𝑞′ — if

∀𝑡 ∈ 𝑇, |𝑞(𝑡) − 𝑝𝑖 (𝑡) | ≤ |𝑞′ (𝑡) − 𝑝𝑖 (𝑡) | (1)

and (𝑞(𝑡) − 𝑝𝑖 (𝑡)) (𝑞′ (𝑡) − 𝑝𝑖 (𝑡)) ≥ 0. (2)

Moreover, if 𝑞 ≠ 𝑞′, 𝑞 is strictly preferred over 𝑞′ by 𝑖 , i.e., 𝑞 ≻𝑖 𝑞′.

In other words, 𝑞 is preferred by 𝑖 over 𝑞′ when (1) the devia-

tion of 𝑞 from 𝑝𝑖 is smaller than the deviation of 𝑞′ from 𝑝𝑖 for

every entry; and (2) these deviations are along the same direction

for every entry. Note that Definition 2.1 only specified a partial

ordering among aggregated distributions. Thus it is possible that

two distributions are not comparable, i.e., 𝑞 ⪰̸𝑖 𝑞
′
and 𝑞′ ⪰̸𝑖 𝑞.

Token Auctions. Our goal is to design simple, practical auction

mechanisms that work well under minimal assumptions about the

agents’ private preferences. Specifically, we seek to design token auc-

tion mechanisms M = ⟨𝑞, 𝑧⟩, where 𝑞 is a distribution aggregation

function and 𝑧 is a payment function. A token auction mechanism

operates on a token-by-token basis, and lets 𝑛 algorithmic LLM

agents influence the output distribution and payments through

scalar bids. We denote the vector of bids by 𝒃 = (𝑏1, . . . , 𝑏𝑛) ∈ R𝑛+.
We assume that the initial prompt 𝑠0 ∈ 𝑇 ∗

, and the text aggregation

functions 𝑓1, . . . , 𝑓𝑛 of the 𝑛 LLM agents are publicly known.

Distribution Aggregation Function. This is the first ingredient to

a token auction mechanism. A distribution aggregation function 𝑞

takes as input a vector of bids 𝒃 ∈ R𝑛+ and𝑛 distributions 𝒑 ∈ Δ(𝑇)𝑛
and maps these to a distribution over tokens:

aggregation function: 𝑞 : R𝑛+ × Δ(𝑇)𝑛 → Δ(𝑇) .
For fixed bids, a distribution aggregation function can be used

in the same way as a text aggregation function. Namely, starting

from the initial prompt 𝑠0 ∈ 𝑇 ∗
, we can repeatedly sample 𝜏𝑘 from

distribution 𝑞𝑘 = 𝑞((𝑏1, . . . , 𝑏𝑛), (𝑓1 (𝑠𝑘−1
), . . . , 𝑓𝑛 (𝑠𝑘−1

))) for each
𝑘 ≥ 1 to generate 𝑠𝑘 = 𝑠𝑘−1

⊕ 𝜏𝑘 . Note the alignment with LLMs,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Training/Learning stages Data Cost Goal

Pre-training [1, 6] General texts from web, books, etc Very high A common baseline shared across downstream tasks

Instruction fine-tuning [21] Task specific data Medium Optimize the behavior for specific tasks

RLHF [12] Human evaluations Medium Security control, reducing harmful behavior, etc

In-context few-shot learning Carefully designed prompts as inputs Very low Effectively influence the behavior in real-time

Table 1: Common training stages of LLMs.

which already produce the distributions 𝑓𝑖 (𝑠𝑘−1
) for 𝑖 ∈ [𝑛]. No

additional calls to the LLMs are needed.

Payment Function. In addition to the distribution aggregation

function, we seek to design payment functions. Here, we want to

operate on a token-by-token-basis and seek a stage independent

design. Formally, for each agent 𝑖 , we aim to define a

pricing function: 𝜁𝑖 : R𝑛+ × Δ(𝑇)𝑛 ×𝑇 → R,

with the interpretation that for bids 𝒃 ∈ R𝑛+, distributions 𝒑 ∈
Δ(𝑇)𝑛 , and token 𝑡 ∼ 𝑞(𝒃,𝒑), the payment from agent 𝑖 is 𝜁𝑖 (𝒃,𝒑, 𝑡).
These pricing functions naturally lead to expected payments by

taking expectations over tokens. Namely, for each agent 𝑖 , we define

payment function: 𝑧𝑖 : R𝑛+ × Δ(𝑇)𝑛 → R,

as the function that takes as input a vector of bids 𝒃 ∈ R𝑛+ and distri-

butions𝒑 ∈ Δ(𝑇)𝑛 , andmaps these to 𝑧𝑖 (𝒃,𝒑) = E𝑡∼𝑞 (𝒃,𝒑) [𝜁𝑖 (𝒃,𝒑, 𝑡)].

Discussion. We believe that token auctions and our assumptions

offer the right level of abstraction for reasoning about the strategic

aspects of aggregating LLMs. This is because it seems impractical

(if not impossible) to fully express an agent’s preferences over all

possible generated creatives. The most plausible way to do so at the

current state of the art is perhaps to represent each agent as an LLM.

Indeed, by design, current LLMs naturally distill agent preferences

over texts to stateless distributions over tokens. Therefore, if agents’

are represented as LLMs, it seems natural to auction tokens based

on agents’ token preferences expressed by the LLMs.

At the same time, the detailed functioning of LLMs remains

rather opaque, and it seems implausible that agents could meaning-

fully misreport the outcome distributions of their LLMs in order to

achieve a more desirable aggregated output.

Our auction formulation offers a middle ground. We assume the

designer has access to the LLMs, but let the agents influence the

aggregation process through a single dimensional bid.

3 INCENTIVES IN TOKEN AUCTIONS
In this section, we examine the strategic properties of token auc-

tions. Our goal is robust incentive properties that rely on as few

assumptions about the agents’ preferences as possible. We first

formulate two natural properties that any reasonable mechanism

should satisfy, and show that they are equivalent to a monotonic-

ity requirement on the distribution aggregation function. We then

show that for any such monotone distribution aggregation function,

it is possible to define a natural second-price payment rule.

3.1 Desirable Incentive Properties
We begin by formulating two conditions that any reasonable to-

ken auction mechanisms should satisfy. The first is a monotonicity

condition on the payment function. It requires that agents’ pay

increases if and only if they obtain obviously better distributions.

Definition 3.1 (Payment Monotonicity). Mechanism M = ⟨𝑞, 𝑧⟩
satisfies payment monotonicity, if for all 𝒑, 𝒃−𝑖 and 𝑏𝑖 ≥ 𝑏′𝑖 we have
𝑧𝑖 (𝑏𝑖 , 𝒃−𝑖 ,𝒑) ≥ 𝑧𝑖 (𝑏′𝑖 , 𝒃−𝑖 ,𝒑) ⇐⇒ 𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) ⪰𝑖 𝑞(𝑏′𝑖 , 𝒃−𝑖 ,𝒑).
It is a natural incentive constraint because if the payment func-

tion is not monotone, then bidders will naturally manipulate their

bids in order to induce better distribution with lower payment.

The second incentive constraint is about the consistency of the

aggregation function. Intuitively, whenever two bids lead to two

aggregated distributions with an obvious order, this order should

be consistent in the sense that it is not affected by others’ bids.

Definition 3.2 (Consistent Aggregation). The distribution aggre-

gation function 𝑞(𝒃,𝒑) is said to be consistent if it admits consistent

ordering across all 𝒃−𝑖 . Formally, if 𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) ⪰𝑖 𝑞(𝑏′𝑖 , 𝒃−𝑖 ,𝒑)
for some 𝒃−𝑖 , then for all 𝒃′−𝑖 , 𝑞(𝑏𝑖 , 𝒃

′
−𝑖 ,𝒑) ⪰𝑖 𝑞(𝑏

′
𝑖
, 𝒃′−𝑖 ,𝒑).

Similar to payment monotonicity, this requirement of consistent

aggregation is imposed to avoid bidders’ concerns that the same

bid can lead to obviously better or worse distributions, depending

on the opponents’ bids. Notably, this constraints only apply to the

bids 𝑏𝑖 , 𝑏
′
𝑖
such that 𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) ⪰𝑖 𝑞(𝑏′𝑖 , 𝒃−𝑖 ,𝒑) for some 𝒃−𝑖 . If

𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) and 𝑞(𝑏′𝑖 , 𝒃−𝑖 ,𝒑) are not comparable, then they just

remain not comparable under different 𝒃′−𝑖 .
These two properties are quite common in the mechanism design

literature. For instance, in single-time auction design, allocation

consistency is a necessary condition for incentive compatible mech-

anisms [11], and it also induces a monotone payment function.

3.2 Monotone Aggregation Functions
Next we show a “revelation principle” type of result, stating that if

one is interested in mechanisms satisfying the desirable incentive

properties stated above (Definition 3.1 and Definition 3.2), then

one can without loss of generality focus on monotone aggregation

functions as captured in the following definition.

Definition 3.3 (Monotone Aggregation Function). The distribution

aggregation function 𝑞(𝒃,𝒑) is called monotone if any higher bid

from any agent 𝑖 leads to an obviously more preferred aggregated

distribution for 𝑖 . Formally, for all 𝒑, 𝒃−𝑖 and 𝑏𝑖 ≥ 𝑏′𝑖 :
𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) ⪰𝑖 𝑞(𝑏′𝑖 , 𝒃−𝑖 ,𝒑) .

We are now ready to state our main finding in this subsection

with the following definition of strategic equivalence between two

mechanisms M and
˜M. In words, the aggregated distribution and

all agents’ payments will be the same under mechanismM and
˜M

after each agent 𝑖 applies some strategy mapping 𝜋𝑖 . Formally,

Definition 3.4 (Strategic Equivalence). Any twomechanismsM =

⟨𝑞, 𝑧⟩ and ˜M = ⟨𝑞, 𝑧⟩ are strategically equivalent if there exists a

profile 𝜋 of strategy mappings with a bijection 𝜋𝑖 : R+ → R+ for

every agent 𝑖 (i.e., 𝜋 (𝒃) = (𝜋1 (𝑏1), . . . , 𝜋𝑛 (𝑏𝑛))), such that ∀𝒃 ∈
R𝑛+,𝒑 ∈ Δ(𝑇)𝑛, 𝑞(𝒃,𝒑) = 𝑞(𝜋 (𝒃),𝒑) and 𝑧 (𝒃,𝒑) = 𝑧 (𝜋 (𝒃),𝒑).

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Mechanism Design for Large Language Models Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Theorem 3.5 (Revelation Principle). Any mechanism M =

⟨𝑞, 𝑧⟩ with a consistent distribution aggregation function 𝑞 and a

monotone payment function 𝑧 is strategically equivalent to a mech-

anism
˜M = ⟨𝑞, 𝑧⟩ which has a monotone distribution aggregation

function 𝑞 and a monotone payment function 𝑧.

Remark. Theorem 3.5 can be viewed as a revelation principle in the

sense that it simplifies the design choice of aggregation functions. The

monotone aggregation functions are a strict subset of consistent aggre-

gation functions since monotonicity directly implies a total order over

possible aggregated distributions 𝑄 (𝒃−𝑖 ,𝒑) = {𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) : 𝑏𝑖 ∈
R+}, with the order naturally determined by the real-numbers’ order

on 𝑖’s bid 𝑏𝑖 and thus this order will be consistent across different 𝒃−𝑖
and𝒑. In this sense, one might think that consistency —which does not

impose any restriction at all whenever 𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) and 𝑞(𝑏′𝑖 , 𝒃−𝑖 ,𝒑)
are not comparable — might be a significantly weaker requirement on

aggregation functions than monotonicity which requires a total and

consistent order. Theorem 3.5 shows that this is not the case — they

are essentially the same as long as the natural incentive requirement

of payment monotonicity is also imposed.

The proof of Theorem 3.5 hinges on the following two lemmas,

Lemma 3.7 and Lemma 3.6. Together these two lemmas imply the

existence of a strategy mapping, under which the resulting aggre-

gation function becomes monotone. The proof of the theorem is

completed by applying the same mapping to the payment function,

and noting that this ensures payment monotonicity. We defer the

formal proofs of these results to Appendix B.

Lemma 3.6. Consider any consistent distribution aggregation func-

tion 𝑞. Suppose ⪰𝑖 defines a total order over aggregations𝑄 (𝒃−𝑖 ,𝒑) =
{𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) : 𝑏𝑖 ∈ R+} induced by agent 𝑖’s bid for any fixed 𝒃−𝑖
and 𝒑, then there exist a profile 𝜋 of strategy mappings such that

𝑞(𝒃,𝒑) = 𝑞(𝜋 (𝒃),𝒑) is a monotone aggregation function.

Lemma 3.7. For any distribution aggregation function 𝑞, there

exists a payment function 𝑧 such that mechanism M = ⟨𝑞, 𝑧⟩ is
payment-monotone if and only if ⪰𝑖 establishes a total order over

𝑄 (𝒃−𝑖 ,𝒑) = {𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) : 𝑏𝑖 ∈ R+} for any fixed 𝒃−𝑖 and 𝒑.

We conclude this subsection by giving two natural examples used

in today’s machine learning practice: an example of a monotone

aggregation function, and a non-monotone one.

Example 3.8 (Linear Aggregation). Consider 𝑞KL (𝒃,𝒑) defined as

𝑞KL = 1

𝐵

∑
𝑖∈[𝑛] 𝑏𝑖 · 𝑝𝑖 , where 𝐵 =

∑
𝑖∈[𝑛] 𝑏𝑖 .

It is easy to verify that this is a monotone aggregation function.

Example 3.9 (Log-linear Aggregation). Consider the aggregation

function 𝑞KL (𝒃,𝒑) defined by the following equations:

∀𝑡 ∈ 𝑇, ln𝑞KL (𝑡) = 1

𝐵

∑
𝑖∈[𝑛] 𝑏𝑖 · ln𝑝𝑖 (𝑡) −𝐶,

where 𝐵 =
∑
𝑖∈[𝑛] 𝑏𝑖 and 𝐶 = ln

∑
𝑡 ∈𝑇 𝑒

1

𝐵

∑
𝑖∈ [𝑛] 𝑏𝑖 ·ln𝑝𝑖 (𝑡)

.

The following two-agent example shows that 𝑞KL is not mono-

tone: 𝑝1 = (.5, .4, .1) and 𝑝2 = (.5, .1, .4). When 𝑏1 = 𝑏2, 𝑞KL =

(
√
.25,

√
.04,

√
.04)/.9 = (5/9, 2/9, 2/9). Fix 𝑏2 = 1, either 𝑏1 → 0 or

𝑏1 → ∞, 𝑞KL (𝑡1) = .5 < 5/9. Hence 𝑞KL must not be monotone.

3.3 Second Price Payment Rules
Next we explore whether for monotone aggregation functions we

can create a pricing rule with a “second-price” semantic inspired

by the Vickrey auction notion of “minimum-bid-to-win”. In the

Vickrey auction, the payment corresponds to the critical bid where

an agent transitions from losing to winning. To port this notion

to our setting, we will show in Theorem 3.12 that any monotone

aggregation rule can be written as a distribution over deterministic

allocations from bids to tokens such that there is a critical bid where

the allocation transitions from a less preferred to a more preferred

token. Such a critical bid becomes then a natural candidate for the

payment. We will show that besides being payment monotone it has

other desirable properties, such as a Myerson-like characterization

[11] in terms of the total variation distance between the preferred

distribution and the outcome. To define our payment rule, we first

discuss the notion of stable sampling.

3.3.1 Stable Sampling. We analyze a monotone distribution ag-

gregation function 𝑞(𝒃,𝒑) from the perspective of a single agent

where the distributions 𝒑 and the bids of other agents 𝒃−𝑖 are fixed.
To simplify the notation, we refer to 𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) as 𝑞(𝑏𝑖).

We define an implementation of 𝑞(·) as a function 𝜎 that maps

𝑏𝑖 and an exogenous random variable 𝑟 ∼ R (independent of 𝒃 and

𝒑) to a token 𝑡 ∈ 𝑇 . When 𝑟 is fixed, 𝜎 is fully deterministic. We

say that 𝜎 : R+ × R → 𝑇 is a valid implementation of 𝑞(·) if:
Pr𝑟∼𝑅 [𝜎 (𝑏𝑖 , 𝑟) = 𝑡] = 𝑞𝑡 (𝑏𝑖),∀𝑡 ∈ 𝑇 .

Next we define what it means for an implementation to be a

stable sampling. It is useful to split the token set𝑇 into𝑇+ = {𝑡 ∈ 𝑇 :

𝑞𝑡 (0) ≤ (𝑝𝑖)𝑡 } and 𝑇− = {𝑡 ∈ 𝑇 : 𝑞𝑡 (0) > (𝑝𝑖)𝑡 } corresponding to
undersampled (𝑇+) and oversampled (𝑇−) tokens. The monotonicity

of aggregation function𝑞 is equivalent to themonotonicity of𝑞𝑡 (𝑏𝑖)
as formalized in the following lemma (proof in Appendix C).

Lemma 3.10. A distribution aggregation function 𝑞 is monotone,

if and only if for every agent 𝑖 and 𝑏𝑖 ∈ R+,
(1) ∀𝑡 ∈ 𝑇+, 𝑞𝑡 (𝑏𝑖) ≤ (𝑝𝑖)𝑡 and 𝑞𝑡 weakly increases;

(2) ∀𝑡 ∈ 𝑇− , 𝑞𝑡 (𝑏𝑖) ≥ (𝑝𝑖)𝑡 and 𝑞𝑡 weakly decreases.

We can now define the key notion of stable sampling, and state

and prove our main result in this subsection.

Definition 3.11 (Stable Sampling). Let 𝑞𝑖 (𝑏𝑖) be an aggregation

function obtained by fixing 𝒃−𝑖 and 𝒑, and let 𝑇+ and 𝑇− be the

sets of undersampled and oversampled tokens for agent 𝑖 . Then we

say that an implementation 𝜎 is stable with respect to aggregation

function 𝑞 if for any 𝑟 ∈ R there are two tokens𝑢𝑟 ∈ 𝑇+ and 𝑜𝑟 ∈ 𝑇−
and a threshold 𝜃𝑟 ∈ R+ ∪ {∞} such that:

𝜎 (𝑏𝑖 , 𝑟) = 𝑜𝑟 , if 𝑏𝑖 < 𝜃𝑟 ; and 𝜎 (𝑏𝑖 , 𝑟) = 𝑢𝑟 , if 𝑏𝑖 ≥ 𝜃𝑟 .
Here is an example of stable sampling for a single undersampled

token 𝑢 and a single overampled token 𝑜 . Sample 𝑟 uniformly in

[0, 1]. If 𝑞𝑜 (𝑏𝑖) < 𝑟 assign 𝑜 ; assign 𝑢 otherwise. Note that this

implementation is: (i) deterministic for fixed 𝑟 ; (ii) monotone in the

bid; (iii) matches the probabilities of 𝑞 in expectation. The following

theorem generalizes this to any number of tokens.

Theorem 3.12. Given a monotone distribution aggregation func-

tion 𝑞 then for any agent 𝑖 and fixed 𝒃−𝑖 and 𝒑 there always exists a

stable implementation 𝜎 of 𝑞.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Proof. Given an aggregation 𝑞(𝑏𝑖) we construct a stable sam-

pling procedure 𝜎 . Let 𝑄+ (𝑏𝑖) and 𝑄− (𝑏𝑖) be the probability of

sampling tokens from 𝑇+ and 𝑇− :

𝑄+ (𝑏𝑖) =
∑
𝑡 ∈𝑇+ 𝑞𝑡 (𝑏𝑖), 𝑄− (𝑏𝑖) =

∑
𝑡 ∈𝑇− 𝑞𝑡 (𝑏𝑖).

Both are monotone as 𝑞 is monotone (by Lemma 3.10). Reparameter-

ize functions 𝑞𝑡 (𝑏𝑖) in the range 𝐼 = [𝑄+ (0), 𝑄+ (∞)] by defining:
4

𝑞𝑡 (𝑥) = 𝑞𝑡 (𝑄−1

+ (𝑥)),∀𝑡 ∈ 𝑇, 𝑥 ∈ 𝐼 .
Since 𝑞𝑡 (𝑥) is monotone, by Lebesgue’s Differentiation Theorem,

it is differentiable almost everywhere on 𝐼 . We observe that:∑
𝑡 ∈𝑇+ 𝑞𝑡 (𝑥) = 𝑄+ (𝑄−1

+ (𝑥)) = 𝑥, ∑𝑡 ∈𝑇− 𝑞𝑡 (𝑥) = 𝑄− (𝑄−1

+ (𝑥)) = 1−𝑥 .
Then 𝑞′𝑡 (𝑥) for 𝑡 ∈ 𝑇+ forms a probability distribution over 𝑇+.
Similarly −𝑞′𝑡 (𝑥) for 𝑡 ∈ 𝑇− forms a probability distribution over

𝑇− . Define 𝜅+ (𝑥), 𝜅− (𝑥) ∈ Δ(𝑇) as 𝜅+𝑡 (𝑥) = 𝑞′𝑡 (𝑥) for 𝑡 ∈ 𝑇+, and
zero otherwise and 𝜅−𝑡 (𝑥) = −𝑞′𝑡 (𝑥) for 𝑡 ∈ 𝑇− and zero otherwise.

We also define the vector𝑞+, 𝑞− ∈ Δ(𝑇) such that𝑞+𝑡 = 𝑞𝑡 (0)/𝑄+ (0)
for 𝑡 ∈ 𝑇+ and zero for 𝑡 ∈ 𝑇− . Similarly: 𝑞−𝑡 = 𝑞𝑡 (∞)/𝑄+ (∞) for
𝑡 ∈ 𝑇 −

and zero otherwise.

Finally, we define a deterministic function

Sampler : Δ(𝑇) × [0, 1] → 𝑇

that takes a probability vector 𝑝 ∈ Δ(𝑇) and 𝑟 ∈ [0, 1] and outputs

an index 𝑡 ∈ 𝑇 such that

∑
𝑗<𝑡 𝑝 𝑗 < 𝑟 ≤

∑
𝑗≤𝑡 𝑝 𝑗 .

Now, we are ready to define the stable sampling procedure. Let

R be the uniform distribution over [0, 1]2
. Given 𝑟 = (𝑟𝐴, 𝑟𝐵) ∼ R

we define the output 𝑡 = 𝜎 (𝑏𝑖 , 𝑟) as follows:
(1) if 𝑟𝐴 ≤ 𝑄+ (0), 𝑡 = Sampler(𝑞+, 𝑟𝐵) ∈ 𝑇+;
(2) if 𝑄+ (0) < 𝑟𝐴 ≤ 𝑄+ (𝑏𝑖), 𝑡 = Sampler(𝜅+ (𝑟𝐴), 𝑟𝐵) ∈ 𝑇+;
(3) if 𝑄+ (𝑏𝑖) < 𝑟𝐴 ≤ 𝑄+ (∞), 𝑡 = Sampler(𝜅− (𝑟𝐴), 𝑟𝐵) ∈ 𝑇− ;
(4) if 𝑄+ (∞) < 𝑟𝐴 , 𝑡 = Sampler(𝑞−, 𝑟𝐵) ∈ 𝑇− .
Since 𝜎 (𝑏𝑖 , 𝑟) is deterministic, for any fixed 𝑟 , either the output

can not be influenced by the bid (𝑟𝐴 < 𝑄+ (0) or 𝑟𝐴 > 𝑄+ (∞)) or
it can only cause the output to shift from an oversampled token

Sampler(𝜅− (𝑟𝐴), 𝑟𝐵) to an undersampled token Sampler(𝜅+ (𝑟𝐴), 𝑟𝐵).
We now argue that tokens are sampled with the correct proba-

bilities. For 𝑡 ∈ 𝑇+, the total probability of getting sampled is:∫ 𝑄+ (0)
0

𝑞+𝑡 d𝑟𝐴 +
∫ 𝑄+ (𝑏)
𝑄+ (0) 𝑞′𝑡 (𝑟𝐴)d𝑟𝐴 = 𝑞𝑡 (0) + 𝑞𝑡 (𝑄+ (𝑏)) − 𝑞𝑡 (𝑄+ (0))
= 𝑞𝑡 (0) + 𝑞𝑡 (𝑏) − 𝑞𝑡 (0) = 𝑞𝑡 (𝑏).

Similarly for tokens in 𝑇− , the probabily of being sampled is:∫ 𝑄+ (∞)
𝑄+ (𝑏) −𝑞′𝑡 (𝑟𝐴)d𝑟𝐴 +

∫
1

𝑄+ (∞) 𝑞
−
𝑡 d𝑟𝐴

= 𝑞𝑡 (𝑄+ (𝑏)) − 𝑞𝑡 (𝑄+ (∞)) + 𝑞𝑡 (∞) = 𝑞𝑡 (𝑏) − 𝑞𝑡 (∞) + 𝑞𝑡 (∞) = 𝑞𝑡 (𝑏) .
This completes the proof. □

3.3.2 Second Price via Stable Sampling. A stable implementation

of a monotone aggregation rule suggests a natural pricing rule: For

any given randomness 𝑟 , if the oversampled token 𝑜𝑟 is sampled,

the agent pays zero as it is the same token that would have been

sampled if their bid was zero. If the agent’s bid was high enough

to move from the oversampled to the undersampled token 𝑢𝑟 , then

the agent pays the critical bid 𝜃𝑟 .

4
Here𝑄−1

+ (𝑥) refers to a generalized inverse (or the quantile function [7]) so that it

is properly defined even when𝑄+ (𝑥) is discontinuous.

It has the property that the payment is proportional to the extent

to which it shifts the distribution 𝑞(𝑏𝑖) towards the desired distribu-
tion 𝑝𝑖 . Interestingly, the expected payment does not depend on the

actual implementation chosen. Moreover, the expected payment

corresponds to the standard Myersonian payment formula where

the distribution is replaced by the total variation distance between

the agent’s preferred distribution 𝑝𝑖 and the implemented distribu-

tion 𝑞(𝑏𝑖). We again omit the terms 𝒃−𝑖 ,𝒑 since they are fixed in

each context. If a token 𝑡 ∈ 𝑇− is sampled, the payment is naturally

𝜁𝑖 (𝑏𝑖 , 𝑡) = 0. For a token 𝑡 ∈ 𝑇+ we have:

𝜁𝑖 (𝑏𝑖 , 𝑡)𝑞𝑡 (𝑏𝑖) = E𝑟 [𝜃𝑟 · 1{𝜎 (𝑏𝑖 , 𝑟) = 𝑡}]

=E𝑟
∫ 𝑏𝑖
0

1{𝜎 (𝑏𝑖 , 𝑟) = 𝑡} − 1{𝜎 (𝑏′, 𝑟) = 𝑡}d𝑏′ =
∫ 𝑏𝑖
0
𝑞𝑡 (𝑏𝑖) − 𝑞𝑡 (𝑏′)d𝑏′ .

Hence:

𝑧𝑖 (𝑏𝑖) =
∑
𝑡 𝜁𝑖 (𝑏𝑖 , 𝑡)𝑞𝑡 (𝑏𝑖) =

∫ 𝑏𝑖
0

∑
𝑡 ∈𝑇+ 𝑞𝑡 (𝑏𝑖) −

∑
𝑡 ∈𝑇+ 𝑞𝑡 (𝑏

′)d𝑏′

= 1

2

∫ 𝑏𝑖
0

∥𝑞(𝑏𝑖) − 𝑝𝑖 ∥1 − ∥𝑞(𝑏′) − 𝑝𝑖 ∥1d𝑏′ .

Counterfactuals. The practical advantage of a stable sampling

implementation coupled with a second price rule is to offer adver-

tisers a description where it is clear that they only pay if they can

improve the outcome. Moreover, advertisers can more easily eval-

uate counterfactuals with a fixed 𝑟 , where they can only produce

one of two outcomes on each token that can easily be compared.

Universally Stable Sampling. We chose to define stable sampling

as a single-agent algorithm with fixed 𝒃−𝑖 . One may define a uni-

versal stable implementation as 𝜎univ : R𝑛 × R → 𝑇 such that

∀𝒃 ∈ R𝑛+, 𝑡 ∈ 𝑇, Pr𝑟∼𝑅 [𝜎univ (𝒃, 𝑟) = 𝑡] = 𝑞𝑡 ,

and for any 𝑖 and 𝒃−𝑖 , 𝜎univ (·, 𝒃−𝑖 , 𝑟) is stable. In Appendix D, we

provide counter-examples where such 𝜎univ do not always exist.

4 DESIGN OF AGGREGATION FUNCTIONS
In the previous section, we discussed payment schemes and incen-

tive properties assuming we have an aggregation function. Here

we investigate the design of aggregation functions. We adopt two

guiding principles: (1) We first define a welfare function to model

the overall satisfaction of the agents with the final distribution 𝑞,

weighted by their bids 𝑏𝑖 . The welfare function has the form:

Wel(𝒑, 𝒃, 𝑞) = ∑
𝑖 𝑏𝑖𝜌 (𝑝𝑖 , 𝑞),

where 𝜌 : Δ(𝑇) × Δ(𝑇) → R indicates how close the distribution

𝑞 is to the preferred 𝑝𝑖 . (2) The second is to define the closeness

function 𝜌 based on the typical loss functions in LLM training.

4.1 Review of LLM training
So far we assume that an LLM 𝑓 : 𝑇 ∗ → Δ(𝑇) is already trained.

In order to discuss the training process, it is useful to recall that

an LLM is a neural network parameterized by a vector of weights

𝑊 ∈ R𝑁 in a very high dimensional space. To discuss training, it is

useful to think of 𝑓 as a function of both input and weights:

𝑓 : 𝑇 ∗ × R𝑁 → Δ(𝑇) .
We represent the second argument by a superscript𝑊 . Training is

to optimize𝑊 such that 𝑓𝑊 (·) minimizes a certain loss function

over a dataset. A dataset is a sequence of pairs (𝑥𝑖 , 𝑦𝑖) with 𝑥𝑖 ∈ 𝑇 ∗

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Mechanism Design for Large Language Models Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

(input sequence) and 𝑦𝑖 ∈ 𝑇 (label), and a loss function is a function

ℓ : 𝑇 × Δ(𝑇) → R. A network typically seeks to minimize:

min𝑊
∑
𝑖 ℓ (𝑦𝑖 , 𝑓𝑊 (𝑥𝑖)) .

A widely used loss function in the first stage is the KL-divergence:

ℓKL (𝑦, 𝑥) = − ln[𝑓𝑊 (𝑦 |𝑥)]

where we use the notation 𝑓 (𝑦 |𝑥) to represent the probabiliy that

a token 𝑦 ∈ 𝑇 is sampled from 𝑓 (𝑥) ∈ Δ(𝑇).
It is useful to think of this problem in the limit where the size

of the dataset grows to infinity and it can be effectively thought

of as a full-support distribution over 𝑇 ∗ × 𝑇 . In that setting, we

can represent the dataset as a distribution 𝜇 ∈ Δ(𝑇 ∗ × 𝑇) over
input-label pairs (𝑥,𝑦) ∈ 𝑇 ∗ ×𝑇 . We will write 𝜇 (𝑥) = ∑

𝑦 𝜇 (𝑥,𝑦)
to denote the marginal distribution on 𝑥 and 𝜇 (·|𝑥) to denote the
conditional distribution of labels given an input 𝑥 . Then

min

𝑊
L𝜇KL (𝑓

𝑊), L𝜇KL (𝑓) :=
∑
𝑥∈𝑇 ∗𝜇 (𝑥) · 𝐷KL (𝜇 (·|𝑥)∥ 𝑓 (𝑥)), (KL)

where 𝐷KL (𝑝 ∥𝑞) =
∑
𝑡 𝑝 (𝑡) ln

𝑝 (𝑡)
𝑞 (𝑡) is the KL-divergence.

LLMs are typically trained through a successive refinement of

weights:𝑊 pre →𝑊 SFT →𝑊 RL
. In pre-training we compute𝑊 pre

by solving problem (KL) on a generic dataset 𝜇pre via stochastic

gradient descent. In the second stage, we initialize the weights as

𝑊 =𝑊 pre
and run stochastic gradient descent to solve the same

problem (KL) on a more specialized dataset 𝜇SFT. In other words,

we solve the same problem on two different datasets.

The problem in the RLHF stage is different. The dataset only

contains 𝑥 (still represented by 𝜇) and for any 𝑦, we have a function

𝑟 (𝑥,𝑦) giving the reward of mapping 𝑥 to 𝑦. Then𝑊 RL
is obtained

by maximizing reward while minimizing the distance to the func-

tion 𝑓 SFT from previous stages (the PPO algorithm [12, 16]):

max

𝑊
L𝜇,𝑟RL (𝑓

𝑊), (RL)

L𝜇,𝑟RL (𝑓) :=
∑︁
𝑥∈𝑇 ∗

𝜇 (𝑥)
[∑︁
𝑦

𝑟 (𝑥,𝑦) 𝑓 (𝑦 |𝑥) − 𝛽𝐷KL (𝑓 (𝑥)∥ 𝑓 SFT (𝑥))
]
.

KL-divergence and entropy. For the next propositions it is useful

to recall that the entropy of a distribution 𝑝 ∈ Δ(𝑇) is 𝐻 (𝑝) =

−∑
𝑡 ∈𝑇 𝑝 (𝑡) ln𝑝 (𝑡). Given two distributions 𝑝, 𝑞 ∈ Δ(𝑇), the cross

entropy of 𝑞 relative to 𝑝 is 𝐻 (𝑝, 𝑞) = −∑
𝑡 ∈𝑇 𝑝 (𝑡) ln𝑞(𝑡). Hence

we can write 𝐷KL (𝑝 ∥𝑞) = 𝐻 (𝑝, 𝑞) − 𝐻 (𝑝). We will also use Gibbs’

inequality 𝐻 (𝑝) ≤ 𝐻 (𝑝, 𝑞),∀𝑝, 𝑞 ∈ Δ(𝑇).

4.2 KL-inspired aggregation
The first aggregation method will be based on the (KL) program.

When trying to aggregate LLMs 𝑓𝑖 according to bids 𝑏𝑖 , we will de-

sign a function 𝑞 that mimics the outcome of the following thought

experiment. We will imagine that each LLM was obtained by solv-

ing the (KL) on a dataset represented by 𝜇𝑖 , where the marginal over

inputs are the same 𝜇𝑖 (𝑥) = 𝜇 (𝑥),∀𝑖 but potentially differ on the

marginals on the labels 𝜇𝑖 (𝑦 |𝑥). In this thought experiment, we will

combine their LLMs by re-training an LLM on the combined labels

weighted by the bids. In other words, we will solve the problem:

min𝑊 L𝜇KL (𝑓
𝑊), where 𝜇 =

∑
𝑖 𝑏𝑖𝜇𝑖/∑𝑖 𝑏𝑖 . (3)

The next proposition morally says that we can obtain a solution

to the (KL) problem on the aggregated dataset (3) by combining its

solutions on individual datasets. The proof appears in Appendix E.

Proposition 4.1. Consider datasets 𝜇𝑖 such that 𝜇𝑖 (𝑥) = 𝜇 (𝑥),∀𝑖, 𝑥
and let 𝜇 be their weighted average. Let 𝑓𝑖 be the minimizer of L𝜇𝑖KL
and 𝑓 ∗ be the minimizer of L𝜇KL, the loss on the aggregated dataset.

Then 𝑓 ∗ is the solution to:

min𝑓

∑
𝑥 𝜇 (𝑥)

∑
𝑖 𝑏𝑖𝐷KL (𝑓𝑖 (𝑥)∥ 𝑓 (𝑥)). (4)

Proposition 4.1 motivates the following welfare function:

WelKL =
∑
𝑖∈[𝑛] 𝑏𝑖 ·𝜌KL (𝑝𝑖 , 𝑞) = −∑

𝑖∈[𝑛]
∑
𝑡 ∈𝑇 𝑏𝑖 ·𝑝𝑖 (𝑡) · ln

𝑝𝑖 (𝑡)
𝑞 (𝑡) .

Now, we characterize the aggregation function that optimizes

WelKL. The proof in Appendix E uses Gibb’s inequality.

Lemma 4.2. The efficient aggregation function that maximizes

WelKL is the linear combination of 𝑝𝑖 :

∀𝑡 ∈ 𝑇, 𝑞KL (𝑡) =
∑

𝑖 𝑏𝑖 ·𝑝𝑖 (𝑡)/∑𝑖 𝑏𝑖 .

Besides being monotone and aligned with how LLMs are trained,

this aggregation function has the advantage that in order to sample

a token from it, we only need to call a single LLM. We can choose

an index 𝑖 proportionally to the bids and then sample a token from

the 𝑖-th LLM. To compute second price payments, however, we still

need to query the LLMs for all agents.

4.3 RL-inspired aggregation
Now consider a different thought experiment where all agents use

the same pre-trained and fine-tuned model of weights𝑊 SFT
but

each one uses a different reward function 𝑟𝑖 (𝑥,𝑦) for RLHF. We

combine their LLMs by solving the (RL) problem on the combined

reward functions weighted by the bids. We will solve the problem:

max𝑊 L𝜇,𝑟RL (𝑓
𝑊), 𝑟 =

∑
𝑖 𝑏𝑖𝑟𝑖/∑𝑖 𝑏𝑖 .

Analogously to Proposition 4.1, we show that we can obtain the

solution to the aggregated problem by combining the solutions on

each dataset. We defer the proof of Proposition 4.3 to Appendix E.

Proposition 4.3. Consider datasets 𝜇, 𝑟𝑖 and let 𝑓
SFT

be the solu-

tion of program (KL) with data 𝜇. If 𝑓𝑖 is the maximizer of L𝜇,𝑟𝑖RL , let

𝑓 ∗ be the maximizer of L𝜇,𝑟RL where 𝑟 is the weighted average of the

reward functions, then 𝑓 ∗ is the function minimizing:

min𝑓

∑
𝑥 𝜇 (𝑥)

∑
𝑖 𝑏𝑖𝐷KL (𝑓 (𝑥)∥ 𝑓𝑖 (𝑥)). (5)

Similar to what we did in the previous subsection, we can also

define a welfare function inspired by Proposition 4.3. Namely:

WelKL =
∑
𝑖∈[𝑛] 𝑏𝑖 · 𝜌KL (𝑞, 𝑝𝑖) = −∑

𝑖∈[𝑛]
∑
𝑡 ∈𝑇 𝑏𝑖 ·𝑞(𝑡) · ln

𝑞 (𝑡)
𝑝𝑖 (𝑡) .

Lemma 4.4. The efficient aggregation function that maximizes

WelKL is the log-linear combination of 𝑝𝑖 :

∀𝑡 ∈ 𝑇, ln𝑞KL (𝑡) = 𝐶 +
∑

𝑖 𝑏𝑖 ln ·𝑝𝑖 (𝑡)∑
𝑖 𝑏𝑖

,

where 𝐶 is a normalization constant such that

∑
𝑡 𝑞KL (𝑡) = 1.

The proof follows directly from the proof of Proposition 4.3.

While not monotone (Example 3.9), the log-linear aggregation

function is a reasonable choice assuming that the agents’ prefer-

ences are aligned with the KL-divergence loss for the RL-stage

training.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

𝜆 Linear aggregation function 𝑞KL Log-linear aggregation function 𝑞KL

1 Alpha Airlines: Your ticket to paradise.

0.75 Alpha Airlines: Fly to Hawaii and experience the beauty of the

islands with aloha.

Beta Resorts: Stay at our resorts and enjoy the best of Hawaii.

Feel the magic of Hawaii with a flight on Alpha Airlines, now
offering 20% off all flights when you book with us today!

0.6 Alpha Airlines flies you to Hawaii, where you can enjoy a week-

long stay at the Beta resort for just $1000.
Experience the magic of Hawaii with a flight on Alpha Airlines,
now offering 20% off all flights when you book with us today!

0.55 Alpha Airlines flies you to Hawaii, where you can enjoy a week-

long stay at the Beta resort.
Escape to the tropical paradise of Hawaii with [Alpha Airlines]!

0.5 Alpha Airlines flies you to Hawaii, where you can enjoy a beau-

tiful sunset on the beach. Stay 3 nights and get the 4th free at the

Beta Resort.

Experience the magic of Hawaii with a stay at the luxurious [Beta
Resort] and a refreshing flight on [Alpha Airlines].

0.45 Fly Alpha Airlines to sunny Hawaii and enjoy the secluded

beaches and private lagoons of the Royal Hawaiian Beta Resort.
Experience the magic of Hawaii with a stay at the luxurious [Beta
Resort] and a special flight offer from [Alpha Airlines].

0.4 Fly Alpha Airlines to sunny Hawaii and enjoy the first-class

treatment that awaits you at Beta Resort, all for one low price.

Experience the magic of Hawaii at the [Beta Resort], where you’ll
feel like you’re in a tropical paradise.

0.25 Experience the magic of Hawaii at the Beta Resort, where the
sun shines brighter and the waves crash louder — book your stay

today with our exclusive 20% off discount!

Experience the magic of Hawaii at the Beta Resort, where you’ll
be pampered like royalty and surrounded by breathtaking beauty.

0 Hawaii’s Beta Resort: a paradise where the sun shines brighter, the waves sing sweeter, and the sand feels softer.

Table 2: Text generation from two aggregation functions with different 𝜆 = 𝑏1/(𝑏1 + 𝑏2).

5 DEMONSTRATION
We implement the aggregation functions proposed in Section 4 and

discuss the examples they produce. Off-the-shelf LLMs respond full

text passages. In our case, we need to peak at the internal states

of LLMs (the probability distributions over tokens) at each token

generation stage. For that reason, we use a custom version of the

[REDACTED FOR BLIND REVIEW] model with a custom inference

method that allows us to access the distributions. The aggregation

functions are implemented inside the inference method.

Starting from the same base model, we customize it for different

agents by prompt-tuning. We start with a based model 𝑓 : 𝑇 ∗ →
Δ(𝑇) and for each agent 𝑖 we come up with a “prompt” 𝑠𝑖

0
∈ 𝑇 ∗

and

now we define for each agent 𝑖 the LLM 𝑓𝑖 : 𝑇 ∗ → Δ(𝑇) as:

𝑓𝑖 (𝑠) = 𝑓 (𝑠𝑖0 ⊕ 𝑠)
Therefore if 𝜏1, . . . , 𝜏𝑘−1

are the first 𝑘 − 1 tokens generated, then

the preferred distribution of agent 𝑖 over the 𝑘-th token is given by:

𝑝𝑖 = 𝑓 (𝑠𝑖0 ⊕ 𝑠 ⊕ 𝜏1 ⊕ · · · ⊕ 𝜏𝑘−1
),

One key advantage of simulating LLM agents with different

prompts is that one does not need to serve multiple LLMs at the

same time, but instead making multiple queries to the served one.

Because of their large sizes, serving multiple LLMs can be very

costly and practically challenging. As one of the key strengths of

LLMs, the flexibility to accomplish various tasks with properly

designed prompts sheds light to the possibility of training one uni-

versal LLM that can, for example, generate different ads according to

agent-specific prompts. That is, the universal advertising LLM, plus

an advertiser-specific prompt, behaves like an advertiser-specific

LLM through the online in-context few-shot learning.

5.1 Setup
The example we show here involves two agents, each of themwould

like to advertise for their brands, “Alpha Airlines” and “Beta Resort”,

regarding a shared topic “Hawaii”. We choose fictitious brands to

avoid the model directly using any existing ads. We use the brand

names “Alpha” and “Beta” that do not have strong meanings on

their own to minimize any potential hallucination, as we are using

a common purposed LLM that is not optimized for our task. Each

agent is given the following prompt:

“You are an expert of writing texts that naturally

combines two ads together. Your choice of words

and sentences is full of artistic flair.

Write a one-sentence ad for .”

Agent 𝐴 uses “a flight to Hawaii using [Alpha Airlines]” to fill

the blank, while agent 𝐵 uses “a vacation in Hawaii at the [Beta
Resort]”. The first two sentences in the prompt aim to improve

the quality of the ad generation through assigning roles (see, for

example, [24]).

Two bids as one parameter. Since in both the linear aggregation

rule 𝑞KL and the log-linear aggregation rule 𝑞KL, there is only one

degree of freedom, we parameterize the response by 𝜆 = 𝑏1/(𝑏1+𝑏2).

5.2 Results
The results are listed in Table 2, where from top to bottom, the

value of 𝜆 decreases from 1 to 0. As we can see for both aggregation

functions, the generated texts roughly follow the pattern of “only

Alpha Airlines” → “both Alpha Airlines and Beta Resort” → “only

Beta Resort” when 𝜆 goes from 1 to 0. This is expected, as 𝜆 going

from 1 to 0 corresponds to 𝑏2 increasing from 0 to ∞ with 𝑏1 fixed

(or 𝑏1 decreasing from ∞ to 0 with 𝑏2 fixed). The thresholds of

pattern changes are 0.75 and 0.4 for the linear aggregation, and 0.5

and 0.45 for the log-linear aggregation.

We emphasize that the examples are generated with a general

purposed LLM, and it is reasonable to believe that the performance

can be improved with proper fine-tuning for specific tasks.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Mechanism Design for Large Language Models Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,

Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,

et al. 2023. PaLM 2 Technical Report. CoRR abs/2305.10403 (2023). https:

//doi.org/10.48550/arXiv.2305.10403

[2] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova

DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. 2022.

Training a helpful and harmless assistant with reinforcement learning from

human feedback. CoRR abs/2204.05862 (2022). https://doi.org/10.48550/arXiv.

2204.05862

[3] Michiel Bakker, Martin Chadwick, Hannah Sheahan, Michael Tessler, Lucy

Campbell-Gillingham, Jan Balaguer, Nat McAleese, Amelia Glaese, John

Aslanides, Matt Botvinick, et al. 2022. Fine-tuning language models to find

agreement among humans with diverse preferences. In NeurIPS 2022. 38176–

38189.

[4] Dirk Bergemann and Stephen Morris. 2005. Robust mechanism design. Econo-

metrica (2005), 1771–1813.

[5] Dirk Bergemann and Stephen Morris. 2012. Robust mechanism design: The role of

private information and higher order beliefs. Vol. 2. World Scientific.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. NeurIPS 2020, 1877–

1901.

[7] Jeremy Bulow and John Roberts. 1989. The simple economics of optimal auctions.

Journal of Political Economy 97, 5 (1989), 1060–1090.

[8] Gabriel Carroll. 2015. Robustness and linear contracts. American Economic

Review 105, 2 (2015), 536–563.

[9] Shaddin Dughmi. 2011. A truthful randomized mechanism for combinatorial

public projects via convex optimization. In EC 2011. 263–272.

[10] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. 2007. Internet

Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars

Worth of Keywords. American Economic Review 97(1) (2007), 242–259.

[11] Roger B Myerson. 1981. Optimal auction design. Mathematics of Operations

Research 6, 1 (1981), 58–73.

[12] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.

Training languagemodels to follow instructions with human feedback. InNeurIPS

2022. 27730–27744.

[13] Christos Papadimitriou, Michael Schapira, and Yaron Singer. 2008. On the

hardness of being truthful. In FOCS 2008. 250–259.

[14] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Rad-

ford, Mark Chen, and Ilya Sutskever. 2021. Zero-shot text-to-image generation.

In ICML 2021. 8821–8831.

[15] Tim Roughgarden and Inbal Talgam-Cohen. 2016. Optimal and robust mecha-

nism design with interdependent values. ACM Transactions on Economics and

Computation 4 (3) (2016), 1–34.

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

http://arxiv.org/abs/1707.06347

[17] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid.

2019. Videobert: A joint model for video and language representation learning.

In ICCV 2019. 7464–7473.

[18] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kul-

shreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.

2022. LaMDA: Language Models for Dialog Applications. CoRR abs/2201.08239

(2022). https://arxiv.org/abs/2201.08239

[19] Hal R. Varian. 2007. Position auctions. International Journal of Industrial Organi-

zation 25 (6) (2007), 1163–1178.

[20] William Vickrey. 1961. Counterspeculation, auctions, and competitive sealed

tenders. The Journal of Finance 16, 1 (1961), 8–37.

[21] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian

Lester, Nan Du, AndrewMDai, and Quoc V Le. 2021. Finetuned LanguageModels

are Zero-Shot Learners. In International Conference on Learning Representations.

[22] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei

Xia, Ed Chi, Quoc V Le, and Denny Zhou. 2022. Chain-of-Thought Prompting

Elicits Reasoning in Large Language Models. In NeurIPS 2022. 24824–24837.

[23] Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun

Chen, Hanxiao Liu, Da Huang, Denny Zhou, et al. 2023. Larger language models

do in-context learning differently. CoRR abs/2303.03846 (2023). https://doi.org/

10.48550/arXiv.2303.03846

[24] Ning Wu, Ming Gong, Linjun Shou, Shining Liang, and Daxin Jiang. 2023. Large

language models are diverse role-players for summarization evaluation. arXiv

preprint arXiv:2303.15078 (2023).

[25] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang,

Vijay Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. 2022. Scal-

ing Autoregressive Models for Content-Rich Text-to-Image Generation. Trans-

actions on Machine Learning Research (2022).

A ADDITIONAL RELATEDWORK
To the best of our knowledge, the exact research question and our

approaches in this work have not been studied previously. How-

ever, our work is indeed connected to a few lines of research. The

most relevant to us is perhaps the recent growing literature on fine-

tuning LLMs, with the reinforcement learning fromhuman feedback

(RLHF) as a representative approach [2, 3, 12, 21]. At a high level,

fine-tuning and RLHF seek to align a generally pre-trained LLM

with certain desirable behaviors. This is in spirit analogous to our

goal of designing LLMs to better align with a group of agents’ over-

all preferences. However, our research challenges and methods are

both different from fine-tuning. Specifically, fine-tuning refines the

underlying model’s parameters whereas our approach is one-layer

up and directly aggregates the output distributions from multiple

models. The main challenge we address is the potential incentive

misalignment while eliciting LLM agents’ preferences, whereas

human labelers or other models that generate reward feedback for

RLHF are assumed to be genuine and do not misrepresent their own

preferences. In-context learning [6, 22, 23] is similar to us in the

sense that they also do not change themodel parameters. They influ-

ence token distributions by conditioning on better-generated prefix

contexts, whereas our approach directly aggregates distributions

from multiple LLM agents.

Another related line of research is the celebrated field of mecha-

nism design (MD), particularly for the choice of a “public project”

[9, 13] (which is the output of the designed LLM in our situation)

that maximizes a certain welfare function. Similar to these type of

design problem, a core challenge in our problem is to elicit truthful

preferences from unknown agents. However, the design problem in

our case is fundamentally different —we choose a high-dimensional

distribution from an R𝑇 space with only partial knowledge about

agents’ preferences whereas previous MD for public project typi-

cally pick a choice from a discrete (often exponentially large) set

with clear agent valuation functions [9, 13]. From this perspective,

our work also bear some similarity to the rich literature of robust

mechanism design. Most of robust MD literature still assume ex-

istence of value functions with uncertainty modeled by Bayesian

beliefs or in a max-min sense [4, 5, 8, 15]. However, assuming such

a valuation function over tokens or their distributions does not

appear realistic in creatives generation, thus our model is more

similar to a worst-case style consideration during which we only

assume partial yet “obvious” preferences.

B OMITTED PROOFS FROM SECTION 3.2
Proof of Lemma 3.6

Proof. Since the distribution aggregation function 𝑞 is consis-

tent, we can define a partial order ⪰𝑖,𝒑 over R+ implied by the order

over 𝑄 (𝒃−𝑖 ,𝒑) (assumed by the lemma) such that,

∀𝑏𝑖 , 𝑏′𝑖 ∈ R+, 𝑏𝑖 ⪰𝑖,𝒑 𝑏
′
𝑖 ⇐⇒ 𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) ⪰𝑖 𝑞(𝑏′𝑖 , 𝒃−𝑖 ,𝒑) .

By assumption of the lemma, ⪰𝑖 establishes a total order over
𝑄 (𝒃−𝑖 ,𝒑). We argue that this implies that ⪰𝑖,𝒑 will be a total order

overR+. Concretely, for every pair𝑏𝑖 , 𝑏′𝑖 ∈ R+ wehave𝑞(𝑏𝑖), 𝑞(𝑏
′
𝑖
) ∈

𝑄 (𝒃−𝑖 ,𝒑). So either 𝑞(𝑏𝑖) ⪰𝑖 𝑞(𝑏′𝑖) or 𝑞(𝑏
′
𝑖
) ⪰𝑖 𝑞(𝑏𝑖), due to the

lemma’s assumption of total order over𝑄 (𝒃−𝑖 ,𝒑). Hence every pair
9

https://doi.org/10.48550/arXiv.2305.10403
https://doi.org/10.48550/arXiv.2305.10403
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2201.08239
https://doi.org/10.48550/arXiv.2303.03846
https://doi.org/10.48550/arXiv.2303.03846

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

𝑏𝑖 , 𝑏
′
𝑖
∈ R+ has an order under ⪰𝑖,𝒑 , so it must be a total order over

R+.
Consequently, there exists a bijection ⟨𝑓𝑖,𝒑, 𝑓 −1

𝑖,𝒑 ⟩ betweenR+ and
R+ such that,

∀𝑏𝑖 , 𝑏′𝑖 ∈ R+, 𝑏𝑖 ⪰𝑖,𝒑 𝑏
′
𝑖 ⇐⇒ 𝑓𝑖,𝒑 (𝑏𝑖) ≥ 𝑓𝑖,𝒑 (𝑏′𝑖) .

Letting𝜋𝑖 (𝑏) = 𝑓 −1

𝑖,𝒑 (𝑏), we have that𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) = 𝑞(𝜋𝑖 (𝑏𝑖), 𝒃−𝑖 ,𝒑)
is a monotone distribution aggregation function for agent 𝑖 . Apply-

ing the same argument and relabeling procedure for every 𝑖 from 1

to 𝑛, we completed the proof. □

Proof of Lemma 3.7
Proof. We first prove the “only if” (“=⇒”) direction. That is,

suppose M = ⟨𝑞, 𝑧⟩ is payment-monotone, then it must imply a

total order over 𝑄 (𝒃−𝑖 ,𝒑) = {𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) : 𝑏𝑖 ∈ R} for any fixed

𝒃−𝑖 and 𝒑.
Fix any 𝒃−𝑖 and 𝒑. For any 𝑞, 𝑞′ ∈ 𝑄 (𝒃−𝑖 ,𝒑) = {𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) :

𝑏𝑖 ∈ R} such that 𝑞 = 𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑), 𝑞′ = 𝑞(𝑏′
𝑖
, 𝒃−𝑖 ,𝒑). Let 𝑧𝑖 =

𝑧𝑖 (𝑏𝑖 , 𝒃−𝑖 ,𝒑) and 𝑧′𝑖 = 𝑧𝑖 (𝑏
′
𝑖
, 𝒃−𝑖 ,𝒑) be the corresponding payment

given byM. Without loss of generality, suppose 𝑧𝑖 ≥ 𝑧′𝑖 . Then by

payment-monotonicity of the mechanismM, we have 𝑞 ⪰𝑖 𝑞′. In
other words, ⪰𝑖 establishes a total order over 𝑄 .

Next we show the “if” (“⇐=”) direction. That is, given a total order

over 𝑄 (𝒃−𝑖 ,𝒑) = {𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) : 𝑏𝑖 ∈ R} for any fixed 𝒃−𝑖 and
𝒑, we can construct a payment rule 𝑧 such that M = ⟨𝑞, 𝑧⟩ is

payment-monotone.

Fix any 𝒃−𝑖 and 𝒑. For any 𝑞, 𝑞′ ∈ 𝑄 (𝒃−𝑖 ,𝒑), since ⪰𝑖 estab-
lishes a total order over 𝑄 (𝒃−𝑖 ,𝒑), we must have either 𝑞 ⪰𝑖 𝑞′
or 𝑞′ ⪰𝑖 𝑞. Without loss of generality, suppose 𝑞 ⪰𝑖 𝑞′. Since ⪰𝑖
establishes a total order over 𝑄 (𝒃−𝑖 ,𝒑), which is isomorphic to

a subset of R+ by definition of 𝑄 , this implies the existence of a

bijection 𝑓𝑖,𝒃−𝑖 ,𝒑 between𝑄 (𝒃−𝑖 ,𝒑) and some subset of R such that

∀𝑞, 𝑞′ ∈ 𝑄 (𝒃−𝑖 ,𝒑),

𝑞 ⪰𝑖 𝑞′ ⇐⇒ 𝑓𝑖,𝒃−𝑖 ,𝒑 (𝑞) ≥ 𝑓𝑖,𝒃−𝑖 ,𝒑 (𝑞
′),

where “≥” here is in the standard order of real numbers. Letting

𝑧𝑖 (𝒃,𝒑) = 𝑓𝑖,𝒃−𝑖 ,𝒑 (𝑞(𝒃,𝒑)), we obtain a payment-monotone mech-

anism ⟨𝑞, 𝑧⟩. □

Proof of Theorem 3.5
Proof. Applying Lemma 3.7, we know that the payment mono-

tonicity ofM implies a total order over 𝑄 (𝒃−𝑖 ,𝒑). Then applying

Lemma 3.6, we know that there exists a bijection 𝜋𝑖 : R+ → R+ for

each 𝑖 such that 𝑞 — defined via 𝑞(𝒃,𝒑) = 𝑞(𝜋 (𝒃),𝒑) for 𝒃 ∈ R𝑛+
and 𝒑 ∈ Δ(𝑇)𝑛 — is a monotone aggregation function.

Now let us further define 𝑧 (𝒃,𝒑) = 𝑧 (𝜋 (𝒃),𝒑) for each 𝒃 ∈ 𝑅𝑛+
and 𝒑 ∈ Δ(𝑇)𝑛 . Since 𝜋 is a bijection, M = ⟨𝑞, 𝑧⟩ and ˜M = ⟨𝑞, 𝑧⟩
are strategically equivalent by definition.

It remains to show that the mechanism
˜M = ⟨𝑞, 𝑧⟩ is payment-

monotone. We know that the orignial mechanismM = ⟨𝑞, 𝑧⟩ sat-
isfies payment monotonicity, meaning that for each 𝒑, 𝒃−𝑖 , and
𝑏𝑖 ≥ 𝑏′𝑖 ,

𝑧𝑖 (𝑏𝑖 , 𝒃−𝑖 ,𝒑) ≥ 𝑧𝑖 (𝑏′𝑖 , 𝒃−𝑖 ,𝒑) ⇐⇒ 𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) ⪰𝑖 𝑞(𝑏′𝑖 , 𝒃−𝑖 ,𝒑) .

But then, with 𝒃 = (𝑏𝑖 , 𝒃−𝑖) and 𝒃′ = (𝑏′
𝑖
, 𝒃−𝑖), we also have

𝑧𝑖 (𝒃,𝒑) = 𝑧𝑖 (𝜋 (𝒃),𝒑) ≥ 𝑧𝑖 (𝜋 (𝒃′)) = 𝑧𝑖 (𝒃′,𝒑)
⇐⇒ 𝑞(𝒃, 𝑝) = 𝑞(𝜋 (𝒃),𝒑) ⪰𝑖 𝑞(𝜋 (𝒃′),𝒑) = 𝑞(𝒃′,𝒑),

so the pair 𝑞, 𝑧 satisfies payment monotonicity as needed. □

C OMITTED PROOFS FROM SECTION 3.3
Proof of Lemma 3.10

Proof. We first prove the “only if” (“=⇒”) direction. Suppose 𝑞

is a monotone distribution aggregation function. By Definition 3.3,

for any agent 𝑖 and 𝑏′
𝑖
≥ 𝑏𝑖 ≥ 0, we have

𝑞(𝑏′𝑖 , 𝒃−𝑖 ,𝒑) ⪰𝑖 𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑) ⪰𝑖 𝑞(0, 𝒃−𝑖 ,𝒑) .
For any undersampled token 𝑡 ∈ 𝑇+, because 𝑞𝑡 (0, 𝒃−𝑖 ,𝒑) ≤ (𝑝𝑖)𝑡 ,
then by Definition 2.1, we have

𝑞𝑡 (𝑏𝑖 , 𝒃−𝑖 ,𝒑), 𝑞𝑡 (𝑏′𝑖 , 𝒃−𝑖 ,𝒑) ∈ [𝑞𝑡 (0, 𝒃−𝑖 ,𝒑), (𝑝𝑖)𝑡] .
Hence by 𝑞(𝑏′

𝑖
, 𝒃−𝑖 ,𝒑) ⪰𝑖 𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑), we have

𝑞𝑡 (𝑏′𝑖 , 𝒃−𝑖 ,𝒑) ≥ 𝑞𝑡 (𝑏𝑖 , 𝒃−𝑖 ,𝒑),
namely, 𝑞𝑡 (𝑏𝑖 , 𝒃−𝑖 ,𝒑) weakly increases with 𝑏𝑖 and never goes

above (𝑝𝑖)𝑡 .
Similarly, we can prove that for any oversampled token 𝑡 ∈ 𝑇− ,

𝑞𝑡 (𝑏𝑖 , 𝒃−𝑖 ,𝒑) weakly decreases with 𝑏𝑖 and never goes below (𝑝𝑖)𝑡 .
Then we prove the “if” (“⇐=”) direction. Consider any 𝑏′

𝑖
≥

𝑏𝑖 . For any undersampled token 𝑡 ∈ 𝑇+, as 𝑞𝑡 (𝑏𝑖 , 𝒃−𝑖 ,𝒑) ≤ (𝑝𝑖)𝑡
weakly increases with 𝑏𝑖 , we have

𝑞𝑡 (𝑏𝑖 , 𝒃−𝑖 ,𝒑) ≤ 𝑞𝑡 (𝑏′𝑖 , 𝒃−𝑖 ,𝒑) ≤ (𝑝𝑖)𝑡 .
Similarly, we have for any oversampled token 𝑡 ∈ 𝑇− ,

𝑞𝑡 (𝑏𝑖 , 𝒃−𝑖 ,𝒑) ≥ 𝑞𝑡 (𝑏′𝑖 , 𝒃−𝑖 ,𝒑) ≥ (𝑝𝑖)𝑡 .
Then by Definition 2.1,

𝑞(𝑏′𝑖 , 𝒃−𝑖 ,𝒑) ⪰𝑖 𝑞(𝑏𝑖 , 𝒃−𝑖 ,𝒑),
which then implies the monotonicity of 𝑞. □

D UNIVERSALLY STABLE SAMPLING
Example D.1 (Counterexample 4-token). Consider two agents

{1, 2} and 4 tokens {𝑡1, 𝑡2, 𝑡3, 𝑡4}. Assume that both agents have

the same preferred distribution 𝑝1 = 𝑝2 = (0, 0, .5, .5) and the

allocation function is such that if both agents bid zero the allocation

is (.5, .5, 0, 0). Hence both both agents have the same set of favored

tokens 𝑇+ = {𝑡3, 𝑡4} and less favored tokens 𝑇− = {𝑡1, 𝑡2}. The
aggregation function 𝑞(𝑏1, 𝑏2, 𝑝1, 𝑝2) is given by the following table:

𝑏1 = 0 𝑏1 = 1

𝑏2 = 0 𝑞00 = (.5, .5, 0, 0) 𝑞10 = (0, .5, .5, 0)
𝑏2 = 1 𝑞01 = (.5, 0, .5, 0) 𝑞11 = (0, 0, .5, .5)

One can verify that the aggregation function is monotone: When

either of the agents increase the bid from 0 to 1, exactly 1/2 of the

probability mass moves from 𝑇− = {𝑡1, 𝑡2} to 𝑇+ = {𝑡3, 𝑡4}.
Now we show that there does not exist a universally stable sam-

pling algorithm that implements this aggregation function. Suppose

there exist one,𝜎 , let 𝑟𝐴 = {𝑟 |𝜎 (𝑞00, 𝑟) = 𝑡1} and 𝑟𝐵 = {𝑟 |𝜎 (𝑞00, 𝑟) =
𝑡2}. Because 𝜎 is stable for bidder 1, when bidder 1 increases bid,

the probability mass only transfers from 𝑇− to 𝑇+.
10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Mechanism Design for Large Language Models Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

In this case, when the bid profile (𝑏1, 𝑏2) moves from (0, 0) to
(1, 0), we must have

𝜎 (𝑞10, 𝑟) =
{
𝑡3, 𝑟 ∈ 𝑟𝐴
𝑡2, 𝑟 ∈ 𝑟𝐵

.

Further apply the same argument when (𝑏1, 𝑏2) moves from (1, 0)
to (1, 1), we have

𝜎 (𝑞11, 𝑟) =
{
𝑡3, 𝑟 ∈ 𝑟𝐴
𝑡4, 𝑟 ∈ 𝑟𝐵

.

However, if we consider (𝑏1, 𝑏2) moves along the path (0, 0) →
(0, 1) → (1, 1), we should have

𝜎 (𝑞01, 𝑟) =
{
𝑡1, 𝑟 ∈ 𝑟𝐴
𝑡3, 𝑟 ∈ 𝑟𝐵

, 𝜎 (𝑞11, 𝑟) =
{
𝑡4, 𝑟 ∈ 𝑟𝐴
𝑡3, 𝑟 ∈ 𝑟𝐵

.

We end up with a contradiction on the value of 𝜎 (𝑞11, 𝑟) while
moving from (0, 0) to (1, 1) along two different paths.

Example D.2 (Counterexample 3-token). Consider two agents

{1, 2} and 3 tokens {𝑡1, 𝑡2, 𝑡3}, where the agents have different sets of
favored (less favored) tokens. In particular, 𝑇 +

1
= {𝑡1, 𝑡3},𝑇 −

1
= {𝑡2}

and 𝑇 +
2
= {𝑡3},𝑇 −

2
= {𝑡1, 𝑡2}. The aggregation function is given by

the following table:

𝑏1 = 0 𝑏1 = 1

𝑏2 = 0 𝑞00 = (.5, .5, 0) 𝑞10 = (.5, 0, .5)
𝑏2 = 1 𝑞01 = (0, .5, .5) 𝑞11 = (.5, 0, .5)

One can verify that the aggregation function is monotone: When

𝑏1 increases from 0 to 1, exactly 1/2 of the probability mass moves

from 𝑡2 to 𝑡3 (when 𝑏2 = 0) or 𝑡1 (when 𝑏2 = 1). When 𝑏2 increases

from 0 to 1, either 1/2 of the probability mass moves from 𝑡1 to 𝑡3
(when 𝑏1 = 0) or no move (when 𝑏1 = 1).

Similarly, suppose that there exists a universally stable sampling

algorithm 𝜎 that implements 𝑞. Let 𝑟𝐴 = {𝑟 |𝜎 (𝑞00, 𝑟) = 𝑡1} and
𝑟𝐵 = {𝑟 |𝜎 (𝑞00, 𝑟) = 𝑡2}.

Following the same argument in Example D.1, consider the bid

profile (𝑏1, 𝑏2) moves along the path (0, 0) → (1, 0) → (1, 1), we
must have

𝜎 (𝑞10, 𝑟) = 𝜎 (𝑞11, 𝑟) =
{
𝑡1, 𝑟 ∈ 𝑟𝐴
𝑡3, 𝑟 ∈ 𝑟𝐵

.

However, consider the bid profile (𝑏1, 𝑏2) moves along the path

(0, 0) → (1, 0) → (1, 1), we must have

𝜎 (𝑞01, 𝑟) =
{
𝑡3, 𝑟 ∈ 𝑟𝐴
𝑡2, 𝑟 ∈ 𝑟𝐵

, 𝜎 (𝑞11, 𝑟) =
{
𝑡3, 𝑟 ∈ 𝑟𝐴
𝑡1, 𝑟 ∈ 𝑟𝐵

.

We end up with a contradiction on the value of 𝜎 (𝑞11, 𝑟).

E OMITTED PROOFS FROM SECTION 4
Proof of Proposition 4.1

Proof of Proposition 4.1. We prove the theorem by showing

that the loss L𝜇KL and the loss in equation (4) differ by a constant

and hence have the same minimizer. For 𝐵 =
∑
𝑖 𝑏𝑖 and a fixed 𝑥

we will show that:

𝐵 · 𝐷KL (
∑
𝑖
𝑏𝑖
𝐵
𝜇𝑖 (·|𝑥)∥ 𝑓𝑊 (𝑥)) − ∑

𝑖 𝑏𝑖𝐷KL (𝑓𝑖 (𝑥)∥ 𝑓𝑊 (𝑥)) = const.

For notation simplicity, we omit the parameters 𝑥 and𝑊 when it

is clear from the context and write

∑
𝑖 𝑏𝑖 𝑓𝑖 (𝑥)/𝐵 = ¯𝑓 (𝑥). Below we

treat any term that doesn’t depend on 𝑓 as a constant:∑︁
𝑖

𝑏𝑖𝐷KL (𝑓𝑖 ∥ 𝑓) =
∑︁
𝑖

𝑏𝑖𝐻 (𝑓𝑖) −
∑︁
𝑦

𝑏𝑖 𝑓𝑖 (𝑦 |𝑥) ln 𝑓 (𝑦 |𝑥)

= −𝐵
∑︁
𝑦

∑
𝑖 𝑏𝑖 𝑓𝑖 (𝑦 |𝑥)

𝐵
· ln 𝑓 (𝑦 |𝑥) +

∑︁
𝑖

𝑏𝑖𝐻 (𝑓𝑖)

= −𝐵 · 𝐻 (¯𝑓 , 𝑓) +
∑︁
𝑖

𝑏𝑖𝐻 (𝑓𝑖)

= 𝐵 · 𝐷KL (¯𝑓 ∥ 𝑓) − 𝐵 · 𝐻 (¯𝑓) +
∑︁
𝑖

𝑏𝑖𝐻 (𝑓𝑖)

= 𝐵 · 𝐷KL (¯𝑓 ∥ 𝑓) − const.

To complete the proof, observe that if 𝑓𝑖 is the unconstrained mini-

mizer of L𝜇𝑖KL (𝑓) we must have 𝑓𝑖 (𝑦 |𝑥) = 𝜇𝑖 (𝑦 |𝑥). □

Proof of Lemma 4.2
Proof of Lemma 4.2. Let 𝐵 =

∑
𝑖 𝑏𝑖 and consider𝑊KL:

𝑊KL = −
∑︁
𝑖∈[𝑛]

𝑏𝑖 · (𝐻 (𝑝𝑖 , 𝑞) − 𝐻 (𝑝𝑖))

=
∑︁
𝑖∈[𝑛]

𝑏𝑖 · 𝐻 (𝑝𝑖) +
∑︁
𝑖∈[𝑛]

𝑏𝑖 ·
∑︁
𝑡 ∈[𝑇]

𝑝𝑖 (𝑡) ln𝑞(𝑡)

=
∑︁
𝑖∈[𝑛]

𝑏𝑖 · 𝐻 (𝑝𝑖) +
∑︁
𝑡 ∈[𝑇]

ln𝑞(𝑡)
∑︁
𝑖∈[𝑛]

𝑏𝑖 · 𝑝𝑖 (𝑡)

=
∑︁
𝑖∈[𝑛]

𝑏𝑖 · 𝐻 (𝑝𝑖) + 𝐵 ·
∑︁
𝑡 ∈[𝑇]

∑
𝑖∈[𝑛] 𝑏𝑖 · 𝑝𝑖 (𝑡)

𝐵
ln𝑞(𝑡)

=
∑︁
𝑖∈[𝑛]

𝑏𝑖 · 𝐻 (𝑝𝑖) − 𝐵 · 𝐻 (𝑞KL, 𝑞)

By Gibbs’ inequality, the cross entropy 𝐻 (𝑞KL, 𝑞) is minimized if

and only if 𝑞 = 𝑞KL. Hence this is also the maximizer of𝑊KL. □

Proof of Proposition 4.3
Proof. For a fixed 𝑥 , 𝑓 ∗ (𝑦 |𝑥) can be obtained by solving:

max

𝑓 (· |𝑥)

∑︁
𝑦

𝑓 (𝑦 |𝑥)𝑟 (𝑥,𝑦) − 𝛽𝐷KL (𝑓 (𝑥)∥ 𝑓 SFT (𝑥))

s.t.

∑︁
𝑦

𝑓 (𝑦 |𝑥) = 1 and 𝑓 (𝑦 |𝑥) ≥ 0.

By the standard KKT conditions, the solution has the form:

𝑓 ∗ (𝑦 |𝑥) = 𝑓 SFT (𝑦 |𝑥)𝑒𝑟 (𝑥,𝑦)/𝛽𝐶𝑥 .

where 𝐶𝑥 is a normalization constant to ensure

∑
𝑦 𝑓

∗ (𝑦 |𝑥) = 1.

For the same reason, we have that:

𝑓𝑖 (𝑦 |𝑥) = 𝑓 SFT (𝑦 |𝑥)𝑒𝑟𝑖 (𝑥,𝑦)/𝛽𝐶𝑖,𝑥 .

If 𝑓 ◦ is the function minimizing problem (5), then we can apply

KKT conditions to obtain:

𝑓 ◦ (𝑦 |𝑥) = exp

(
1

𝐵

∑︁
𝑖

𝑏𝑖 ln 𝑓𝑖 (𝑦 |𝑥)
)
·𝐶′
𝑥

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

for normalization constants 𝐶′
𝑥 and 𝐵 =

∑
𝑖 𝑏𝑖 . Replacing the for-

mula for 𝑓𝑖 (𝑥) from the previous line, we obtain that:

𝑓 ◦ (𝑦 |𝑥) = exp

(
1

𝐵

∑︁
𝑖

𝑏𝑖

(
𝑟𝑖 (𝑥,𝑦)/𝛽 + ln 𝑓 SFT (𝑦 |𝑥)

))
·𝐶′′
𝑥

= exp

(
𝑟 (𝑥,𝑦)/𝛽 + ln 𝑓 SFT (𝑦 |𝑥)

)
·𝐶′′
𝑥 = 𝑓 ∗ (𝑦 |𝑥).

This completes the proof. □

12

	Abstract
	1 Introduction
	1.1 Unique Challenges
	1.2 Our Contributions

	2 Preliminaries
	2.1 Abstraction of Large Language Models
	2.2 Token Auctions for LLMs

	3 Incentives in Token Auctions
	3.1 Desirable Incentive Properties
	3.2 Monotone Aggregation Functions
	3.3 Second Price Payment Rules

	4 Design of Aggregation Functions
	4.1 Review of LLM training
	4.2 KL-inspired aggregation
	4.3 RL-inspired aggregation

	5 Demonstration
	5.1 Setup
	5.2 Results

	References
	A Additional Related Work
	B Omitted Proofs from Section 3.2
	C Omitted Proofs from Section 3.3
	D Universally Stable Sampling
	E Omitted Proofs from Section 4

