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Abstract

Continual learning requires the model to learn multiple tasks in a sequential order.
To perform continual learning, the model must possess the abilities to maintain
performance on old tasks (stability) and adapt itself to learn new tasks (plasticity).
Task-agnostic problem in continual learning is a challenging problem, in which
task identities are not available in the inference stage and hence the model must
learn to distinguish all the classes in all the tasks. In task-agnostic problem,
the model needs to learn two new objectives for learning a new task, including
distinguishing new classes from old classes and distinguishing between different
new classes. For task-agnostic problem, replay-based methods are commonly
used. These methods update the model with both saved old samples and new
samples for continual learning. Most existing replay-based methods mix the two
objectives in task-agnostic problem together, inhibiting the models from achieving
a good trade-off between stability and plasticity. In this paper, we propose a simple
yet effective method, called loss decoupling (LODE), for task-agnostic continual
learning. LODE separates the two objectives for the new task by decoupling the
loss of the new task. As a result, LODE can assign different weights for different
objectives, which provides a way to obtain a better trade-off between stability and
plasticity than those methods with coupled loss. Experiments show that LODE can
outperform existing state-of-the-art replay-based methods on multiple continual
learning datasets.

1 Introduction

Continual learning requires the model to learn multiple tasks in a sequential order [31]. However,
neural network models suffer from a phenomenon called catastrophic forgetting (CF) [12], in which
the performance of the network on the old tasks degrades significantly after it learns a new task. To
address this challenge and enable continual learning, the model must possess the abilities to maintain
performance on old tasks (stability) and adapt itself to learn new tasks (plasticity). Nevertheless, an
excess of stability or plasticity can interfere with the other [39], and hence the model needs to make a
trade-off between stability and plasticity [39, 31].

There exist two different kinds of problems, task-agnostic problem and task-aware problem, in
continual learning. Task-agnostic problem [39] in continual learning is a challenging problem, in
which task identities are not available in the inference stage and hence the model must learn to
distinguish all the classes in all the tasks. In contrast, task-aware problem [28] in continual learning
enables the model to get task identities in the inference stage. Therefore, the model for task-aware
problem only needs to distinguish the classes belonging to the same task. The difference between
task-agnostic problem and task-aware problem [28, 29] shows that the model in task-agnostic problem
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Figure 1: (a) shows two different learning objectives for learning the new task. The left side of (b)
shows the trade-off between stability and plasticity in most existing methods, which mix different
learning objectives. The right side of (b) shows that our method separates the learning of a new task
into two objectives and hence separately considers the trade-off between stability and plasticity for
these two learning objectives. y-axis in (b) represents the model’s abilities, including plasticity and
stability.

needs to learn two objectives for learning a new task, including distinguishing new classes from old
classes (called new/old class distinction) and distinguishing between different new classes (called
new class distinction). Figure 1 (a) illustrates these two learning objectives.

Many methods have been proposed for continual learning, including regularization-based methods [45,
20, 2], expansion-based methods [34, 18, 23] and replay-based methods [3, 10, 4]. For task-agnostic
problem, replay-based methods are commonly used. These methods use a memory buffer to maintain
a small portion of samples from the old classes. When learning a new task, the model retrieves old
samples from memory and updates the parameters with both new and old samples. As illustrated in
Figure 1 (b) from the methodological perspective, most existing continual learning methods [9, 7, 43]
mix the two objectives in task-agnostic problem together (discussed later in Section 3.1). But these
two learning objectives may cause different degrees of forgetting in continual learning and thus
different trade-off strategies between stability and plasticity are required for these two learning
objectives. More specifically, if a new learning objective leads to more forgetting, a good continual
learner should pay more attention to the model’s stability. On the contrary, if a new learning objective
leads to less forgetting, a good continual learner should pay more attention to the model’s plasticity
for this objective. However, when the model mixes different learning objectives together, adjusting
one of the learning objectives may influence others, inhibiting the model from achieving a good
trade-off between stability and plasticity.

In this paper, we propose a simple yet effective method, called loss decoupling (LODE), for task-
agnostic continual learning. The main contributions of this paper are listed as follows:

• By deeply analyzing the impacts of new/old class distinction and new class distinction,
we find that these two learning objectives cause different degrees of forgetting. Therefore,
mixing these two objectives together is detrimental for the model to make a good trade-off
between stability and plasticity.

• LODE separates the two objectives for the new task by decoupling the loss of the new task.
As a result, LODE can assign different weights for different objectives, which provides a
way to obtain a better trade-off between stability and plasticity than those methods with
coupled loss.

• Experiments show that LODE can outperform existing state-of-the-art replay-based methods
on multiple continual learning datasets.

2 Related Work

Continual learning can be offline or online. In offline continual learning setting [17, 32, 44, 24],
the model receives the entire dataset of a new task and updates its parameters multiple times over
this dataset. In online continual learning setting [11, 4, 10], the data from each task is sequentially
concatenated as a non-stationary data stream and each data of each task can only appear once in the
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data stream. Hence, the model can only receive a mini-batch of samples from the data stream at a
time and update its parameters based on this mini-batch.

Different types of methods have been proposed for continual learning, including regularization-based
methods [45, 20, 2], expansion-based methods [34, 18, 23] and replay-based methods [3, 10, 4]. For
task-agnostic problem, replay-based methods are commonly used. Some replay-based methods [40,
42] achieve replay by learning a generative model for generating old samples. However, learning
a good generative model is challenging in some settings, like online continual learning [13]. Some
replay-based methods like experience replay (ER) [9] maintain a memory buffer to save old samples
and replay them with new samples. Some methods combine experience replay with knowledge
distillation [15]. Specifically, these methods store either a old model [43] or the outputs of the old
models [7]. Some methods [25] like experience replay with asymmetric cross entropy (ER-ACE) [8]
improve ER by changing the loss of the new task so that the model can avoid large representation drift.
Some methods like error-sensitive modulation experience replay (ERMER) [36] and complementary
learning system experience replay (CLS-ER) [5] use an extra set of model’s parameters to aggregate
the knowledge of different tasks. Other methods try to search for valuable samples [3] or optimize the
distribution of the memory [19, 41] to overcome forgetting. However, all these methods mix two new
learning objectives in Figure 1 (a), inhibiting the models from achieving a good trade-off between
stability and plasticity.

3 Methodology

In this section, we first formulate the problem in continual learning. Then, we deeply analyze the
problem of mixing different learning objectives together in existing methods. After that, we propose
our method called loss decoupling (LODE), which can be used in both offline and online continual
learning settings. Finally, we discuss the relation between LODE and existing methods.

3.1 Problem Formulation

Continual learning requires the model to learn from multiple tasks in a sequential order. We use
Dt = {xt

i, y
t
i}Nt to denote the dataset of the t-th task, where xt

i denotes an input sample and yti
denotes its label. Nt denotes the number of samples for task t. The total number of tasks is denoted
by T . When the model learns a new task, the model can obtain limited or no data from the old
tasks, potentially leading to catastrophic forgetting. In this work, we consider a challenging continual
learning problem called task-agnostic problem, in which task identities are not available in the
inference stage. In the task-agnostic problem, when the model learns on a new task t, some new
classes are presented to the model. The model must possess the abilities to maintain performance on
old classes (stability) and adapt itself to learn new classes (plasticity).

Replay-based methods [16, 7] maintain a memory bufferM with limited size to store a small portion
of old samples. When receiving a mini-batch of new samples Bt from a new task t, the model
retrieves a mini-batch of samples BM fromM and replays them with the new samples Bt to achieve
a trade-off between stability and plasticity. The losses used in most existing replay-based methods
can be written as follows:

L =
1

|Bt|

|Bt|∑
i=1

Lnew(fΘ(xt
i), y

t
i) +

1

|BM|

|BM|∑
i=1

Lrep(fΘ(xMi ), yMi ). (1)

Here, Lnew is the loss for the new task and is mainly for the plasticity of the model. In contrast, Lrep

is the replay loss and is mainly for the stability of the model. We follow most existing works [7, 43]
and assume that Lnew is a cross-entropy loss. Lrep usually varies for different methods. For
example, Lrep can be a cross-entropy loss [3, 9] or a combination of cross-entropy and regularization
losses [7, 5, 36]. Based on Figure 1 (a), we can find that Lnew is not only related to new/old class
distinction, but also related to new class distinction in the task-agnostic problem. Hence, existing
methods with the loss in (1) mix the two different learning objectives (new/old class distinction and
new class distinction) together.

Note that there exists a type of replay-based methods [43, 17, 14, 38] directly sampling training
data from Dt ∪M, which makes their losses can not be written in the form shown in (1). In some
challenging continual learning settings like online continual learning setting, the model cannot access
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Figure 2: (a) and (b) show the variation of the first task’s accuracy on different datasets. (c) and (d)
show the distribution of different losses over different datasets before learning the second task. Here,
the frequency corresponding to each loss value represents the number of samples with this loss value.

the entire dataset of a new task. At this time, it is impossible for the model to sample from Dt ∪M.
On the contrary, loss in (1) can be adapted to online continual learning by sampling Bt from the data
stream S and sampling BM fromM separately. Hence, in this work, we focus on the methods whose
loss function has the form in (1). In Section 4 and Appendix, we also compare our method with the
methods that sample training data from Dt ∪M.

3.2 Analyzing Learning Objectives by Decoupling Loss

When learning the t-th task, we assume there are m old classes, which are denoted as Co =
{1, 2, ...,m}. We also assume there are n new classes, which are denoted as Cn = {m + 1,m +
2, ...,m+ n}. Then, for a given new sample (x, y) where y ∈ Cn, we can compute its loss Lnew as

Lnew(fΘ(x), y) = `ce(fΘ(x), y) = −log
(

exp(oy)∑m+n
i=1 exp(oi)

)
. (2)

Here, `ce(·) denotes the cross-entropy loss. [o1, o2, ..., om, om+1, ..., om+n] denotes the logits out-
puted by fΘ(x). We decouple the loss Lnew(fΘ(x), y) according to the two learning objectives in
Figure 1 (a):

Lnew(fΘ(x), y) =− log

(
exp(oy)∑m+n

i=m+1 exp(oi)

)
− log

(∑m+n
i=m+1 exp(oi)∑m+n
i=1 exp(oi)

)
(3)

=`ce(fΘ(x), y; Cn) + `n(fΘ(x)).

Here, we use `ce(·; Cn) to denote the cross-entropy loss restricted to new classes Cn. Obviously,
`ce(fΘ(x), y; Cn) is related to new class distinction. `n(fΘ(x)) is related to new/old class distinction.
Note that both `ce(fΘ(x), y; Cn) and `n(fΘ(x)) are for the plasticity of the model and may cause
catastrophic forgetting. Furthermore, loss `ce(fΘ(x), y; Cn) and loss `n(fΘ(x)) have the same
weight in (1) due to the coupling property.

We use experience replay (ER) [9], which is one of the most popular replay-based methods and can
be expressed in the form of (1), to evaluate the impact of `ce(·; Cn) and `n(·). Specifically, we first let
the model learn on the first task through valina stochastic gradient descent [21]. Then, before learning
the subsequent tasks, we remove one of the two losses in (3) from ER and analyze the forgetting of
the first task. The experiments are conducted on two datasets Seq-CIFAR10 and Seq-CIFAR100,
which will be introduced in Section 4. The experimental settings also follow the descriptions in
Section 4.1. Figure 2 (a) and Figure 2 (b) show the accuracy of the first task when the model learns
subsequent tasks. Here, ‘Remove `ce(·; Cn)’ means that we remove `ce(·; Cn) from (1) after learning
the first task. ‘Remove `n(·)’ means that we remove `n(·) from (1) after learning the first task. The
results show that removing `n(·) results in less forgetting of the first task than removing `ce(·; Cn).
In other words, `n(·) leads to more forgetting than `ce(·; Cn).
It is intuitively reasonable that `n(·) leads to more forgetting than `ce(·; Cn). First, since replay-based
methods usually keep limited samples in memory, when the model learns a new task, it has access
to much fewer samples from the old classes than from the new classes. Therefore, utilizing loss
`n(·) to learn to distinguish between new classes and old classes introduces a risk of biasing the
model towards the new classes, potentially leading to serious catastrophic forgetting. In contrast, loss
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`ce(·; Cn) is independent of the old classes, thereby avoiding introducing a risk of biasing the model
towards the new classes. Second, in Figure 2 (c) and Figure 2 (d), we also show the value of the losses
`ce(·; Cn) and `n(·) before using ER to learn task 2. We can find that the value of `n(·) is larger than
the value of `ce(·; Cn) on both Seq-CIFAR10 and Seq-CIFAR100. This finding is consistent with
existing works [8, 36], which suggest that larger losses for the new task may result in larger feature
drift, leading to more forgetting. In Appendix, we also provide the TSNE visualizations when either
`n(·) or `ce(·; Cn) is removed, further confirming that `n(·) leads to more forgetting than `ce(·; Cn).
Since `n(·) leads to more forgetting than `ce(·; Cn), treating these two losses equally is not reasonable.
In particular, based on the above analysis, we can find that a good continual learner should assign a
larger weight to `ce(·; Cn) and a smaller weight to `n(·). However, loss in (1) fails to achieve this
goal due to the coupling property.

3.3 Loss Decoupling for Continual Learning

Section 3.2 has demonstrated the impact of different learning objectives on the model’s forgetting
and the issue of the coupling property in existing replay-based methods. To address this issue, we
propose a new method called loss decoupling (LODE), which removes the coupling property present
in existing methods.

Specifically, our LODE uses the following loss to perform continual learning:

L =
1

|Bt|

|Bt|∑
i=1

(
β1`ce(fΘ(xt

i), y
t
i ; Cn) + β2`n(fΘ(xt

i), y
t
i)
)
+

1

|BM|

|BM|∑
i=1

Lrep(fΘ(xMi ), yMi ).

(4)

Here, β1 and β2 are two coefficients that control the weight of the two different learning objectives.
The finding in Section 3.2 shows that LODE should set β2 to be smaller than β1, to make the model
achieve a better trade-off between stability and plasticity than existing methods usually with coupled
loss. Furthermore, since `n(·) is for new/old class distinction, LODE sets β2 proportional to the
ratio |Cn||Co| to make the model not bias toward old or new classes. In contrast, since `ce(·; Cn) is only
related to the new classes, LODE sets β1 to be a constant value. More specifically, LODE sets β1 and
β2 as

β1 = C, β2 = ρ
|Cn|
|Co|

. (5)

Here, C and ρ are two hyperparameters. Note that when the number of tasks increases, the number
of old classes also increases. In particular, when the number of old tasks is large, the number of old
classes |Co| is usually much larger than the number of new classes |Cn|. At this time, β2 is much
smaller than β1. Setting β2 to be as large as β1, or setting β1 to be as small as β2 fails to make
the model achieve a good trade-off between stability and plasticity, which will be verified in the
experiment.

Note that we do not specify the form of Lrep in (4). Therefore, our method can be combined with
many replay-based methods with form (1) and improve these methods. Here, we give some examples
which combine LODE with different state-of-the-art continual learning methods.

Combining LODE with ER and DER++ Both experience replay (ER) [9] and dark experience
replay++ (DER++) [7] can be written in the form of (1). Therefore, the combinations of our LODE
with these two methods are direct. Specifically, given a new batch of samples Bt, the model compute
`ce(·; Cn) and `n(·) according to (3). Then, the model computes Lrep with the old samples BM
through the specific formulation in ER or DER++. Finally, the model can get the loss (4).

Combining LODE with ESMER A recent method called error sensitive modulation experience
replay (ESMER) [36] suggests that the model should learn more from smaller losses to avoid large
feature drift. The loss in ESMER is slightly different from the loss in (1). Specifically, ESMER
assigns different weights to different new samples in Bt according to their loss values. Although
the loss in ESMER is slightly different from the loss in (1), it still mixes the two different learning
objectives together. Therefore, we can combine ESMER with our LODE through a similar form
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Algorithm 1 Loss Decoupling (LODE) for Continual Learning
1: Input: a sequence of tasks with datasets {D1, ...,DT }, a neural network model fΘ(·).
2: Output: a learned neural network model fΘ(·).
3: while Get a mini-batch of samples Bt from a task t do
4: Sample a mini-batch BM from memoryM;
5: Specify the weights for the two different learning objectives by (5);
6: Get the losses for learning objective through (3);
7: Compute the final loss through (4).
8: Perform backward propagation and update the model fΘ(·) through SGD;
9: Update memoryM with Bt through some memory update methods;

10: end while

to (4). The decoupled loss for ESMER can be written as follows:

L =
1

|Bt|

|Bt|∑
i=1

wi

(
β1`ce(fΘ(xt

i), y
t
i ; Cn) + β2`n(fΘ(xt

i), y
t
i)
)
+

1

|BM|

|BM|∑
i=1

Lrep(fΘ(xMi ), yMi ).

(6)

Here, wi is the weight assigned to new sample i in ESMER. We can find that the loss in (6) not
only modulates weights for different new samples but also modulates weights for the two different
learning objectives.

Algorithm 1 gives the whole learning process of LODE.

3.4 Relation with Existing Methods

The loss in many existing methods has the coupling property like the loss in (1). However, some
methods, from the perspective of this work, use the losses that show a certain degree of decoupling
property. For example, the loss in ER-ACE [8] can be written as

L =
1

|Bt|

|Bt|∑
i=1

Lce(fΘ(xt
i), y

t
i ; Cn) +

1

|BM|

|BM|∑
i=1

Lrep(fΘ(xMi ), yMi ). (7)

It can be seen from (7) that this method removes the term `n(·) from (3) and only retains `ce(·; Cn).
In particular, loss in (7) is a special case of the loss in (4). More specifically, we can get the loss in (7)
by setting β1 = 1 and β2 = 0 in (4). SSIL [1] has a similar form to that in (7) but uses a different
Lrep compared to ER-ACE. Due to the lack of `n(·), the loss in (7) can only leverage the new classes’
samples kept in memory to learn the objective of new/old class distinction. In experiments, we will
show that setting β2 = 0 in (4) performs worse than setting β2 6= 0 in (4).

Some existing methods also incorporate the idea of separating objectives in continual learning.
However, these methods are primarily designed for task-aware problem. For instance, bilevel
memory system with knowledge projection (BMKP) [37] requires the task identities to choose the
corresponding knowledge representations during testing, making it unsuitable in the task-agnostic
problem. Space decoupling (SD) [46] does not explicitly mention that it only considers task-aware
problem, but its experiments completely follow some task-aware methods [35, 26], indicating its
focus on task-aware problem.

4 Experiments

4.1 Experimental Settings

Datasets We use three popular datasets for evaluation, including Seq-CIFAR10 [3], Seq-
CIFAR100 [10], and Seq-TinyImageNet [22]. Seq-CIFAR10 consists of 5 disjoint tasks with each
task having 2 classes and 10k training samples. Seq-CIFAR100 consists of 5 disjoint tasks with each
task having 20 classes and 10k training samples. Seq-TinyImageNet consists of 10 disjoint tasks with
each task having 20 classes and 10k training samples. The statistics of different datasets are given in
Appendix. All the experiments are for the task-agnostic problem.
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Table 1: Classification results which are averaged across 5 runs.

Keeping Seq-CIFAR10 Seq-CIFAR100 Seq-TinyImageNetExtra Model

no joint 91.86±0.26 70.10±0.60 59.82±0.31

finetune 19.65±0.03 17.41±0.09 8.13±0.04

Buffer Size 500 5120 500 5120 500 5120

no

SCR [27] 57.95±1.57 82.47±0.44 23.06±0.22 45.02±0.67 8.37±0.26 18.20±0.48

PCR [25] 65.74±3.29 82.58±0.42 28.38±0.46 52.51±1.61 11.88±1.61 26.39±1.64

MIR [3] 63.93±0.39 83.73±0.97 27.80±0.52 53.73±0.82 11.22±0.43 30.60±0.40

ER-ACE [8] 68.45±1.78 83.49±0.40 40.67±0.06 58.56±0.91 17.73±0.56 37.99±0.17

ER [9] 61.78±0.72 83.64±0.95 27.69±0.58 53.86±0.57 10.36±0.11 27.54±0.30

LODE (ER) 68.87±0.71 83.73±0.48 41.52±1.22 58.59±0.48 17.77±1.03 38.34±0.04

DER++ [7] 73.29±0.96 85.66±0.14 42.08±1.71 62.73±0.58 19.28±0.61 39.72±0.47

LODE (DER++) 75.45±0.90 85.78±0.40 46.31±1.01 64.00±0.48 21.15±0.68 40.31±0.03

yes

CLS-ER [5] 70.73±0.54 85.73±0.29 51.21±0.84 60.17±0.38 29.44±1.66 45.66±0.47

TAMiL [6] 74.25±0.31 84.82±1.77 50.62±0.23 63.77±0.43 27.83±0.41 43.00±0.56

iCaRL [33] 61.60±2.03 72.01±0.62 49.59±0.95 54.23±0.28 20.01±0.50 30.34±0.18

BIC [43] 52.63±2.46 79.98±1.49 37.06±0.60 60.43±0.61 29.82±0.88 37.60±0.23

SSIL [1] 64.31±0.89 71.72±1.47 41.61±0.37 57.53±0.52 16.80±0.71 40.06±0.58

ESMER [36] 71.48±0.98 79.19±0.68 52.37±0.87 63.99±0.13 30.97±1.12 44.07±0.52

LODE (ESMER) 74.53±0.95 85.34±0.41 55.06±0.35 65.69±0.33 32.15±0.17 46.40±0.46

Baselines We compare our method with many state-of-the-art replay-based continual learning
methods, including incremental classifier and representation learning (iCaRL) [33], bias correc-
tion (BIC) [43], separated softmax for incremental learning (SSIL) [1], experience replay (ER) [9],
maximally interfere retrieval (MIR) [3], dark experience replay++ (DER++) [7], supervised con-
trastive replay (SCR) [27], proxy-based contrastive replay (PCR) [25], experience replay with
asymmetric cross entropy (ER-ACE) [8], error sensitive modulating experience replay (ESMER) [36],
complementary learning system experience replay (CLS-ER) [5], and task-specific attention modules
in lifelong learning (TAMiL) [6]. For CLS-ER, we follow the existing method [6] and implement it
with a single exponential moving average model. We also include two methods without continual
learning, joint and finetune, in the comparison. Here, joint denotes the method which learns all the
tasks jointly while finetune denotes the method which learns all the tasks sequentially without any
memory. The accuracy of joint can be treated as the accuracy upper-bound and the accuracy of
finetune can be treated as the accuracy lower-bound. Among the methods we mentioned above, some
methods only maintain a single learning model to perform continual learning, while others require an
extra model in memory for knowledge integration or distillation. Since keeping more models requires
more memory, and memory cost is an important metric in continual learning [30], we group different
methods by whether keeping extra model (refer to Table 1) to make a more fair comparison.

Architecture and Training Details We follow existing continual learning works [7, 6] and use
standard ResNet18 as the neural network architecture in all the experiments unless otherwise stated.
The experiments are built on top of the mammoth [7] continual learning repository in PyTorch like
many existing works [7, 6]. We use stochastic gradient descent (SGD) to optimize the parameters.
The batch size and replay size are set to 32 to follow the existing continual learning works [7, 6].
We also follow existing methods [7, 5] to set memory as 500 and 5120 for all the datasets. The
hyperparameters are selected through a small validation set. For the experiments of all the methods
on all the datasets, we apply random crops and horizontal flips to both newly coming samples and
buffered (saved) samples like existing works [7, 5]. For each of our experiments, we report the
average and standard deviation of the mean test accuracy of all the tasks across 5 runs with different
seeds. More details of training and hyperparameters for different methods are given in Appendix.

4.2 Experimental Results

4.2.1 Accuracy

Table 1 shows the results of different methods on different datasets. Here, ‘Keeping Extra Model’
represents whether a method needs to keep an extra model for continual learning, as described
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Figure 3: (a) and (b) show the variation of the accuracy for different methods on Seq-CIFAR10 and
Seq-CIFAR100. (c) and (d) show the variation of accuracy on Seq-CIFAR100 with different number
of tasks.
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Figure 4: (a) and (b) show the variation of the accuracy for different ρ. (c) and (d) show the variation
of the accuracy for different C.

in Section 4.1. We combine our LODE with ER, DER++ and ESMER, which can be written
in the form of (1). We use LODE (ER), LODE (DER++) and LODE (ESMER) to denote them,
respectively. Our experimental results confirm that the integration of our LODE method improves
the performance of each combined method. For example, when compared to DER++ with buffer
size 500, LODE (DER++) exhibits a 2.16% improvement on Seq-CIFAR10, a 4.23% improvement
on Seq-CIFAR100 and a 1.87% improvement on Seq-TinyImageNet. Notably, LODE (DER++)
achieves the best performance on Seq-CIFAR10. LODE (ESMER) achieves the best performance on
Seq-CIFAR100 and Seq-TinyImageNet.

Figure 3 (a) and Figure 3 (b) show the variation of accuracy on Seq-CIFAR10 and Seq-CIFAR100
after the learning of each task. As we can see, LODE improves DER++ and ESMER at the end of
each task. Figure 3 (c) and Figure 3 (d) show the results on Seq-CIFAR100 with different numbers of
tasks. When there are 4 tasks in Seq-CIFAR100, each task consists of 25 exclusive classes. Similarly,
when there are 10 tasks in Seq-CIFAR100, each task consists of 10 exclusive classes. As we can see,
when the number of tasks varies, LODE still gives improvements on different methods. In Appendix,
we show the results of more methods on Seq-CIFAR100 with different numbers of tasks.

4.2.2 Hyperparameter Analysis

We analyze the hyperparameters in LODE. We choose LODE (DER++) and LODE (ESMER) to
analyze hyperparameters, as they represent the best performance of methods that retain or do not
retain an extra model for continual learning, respectively.

We first vary the value of ρ in (5) to show its impact on the performance of the model. Figure 4 (a)
and Figure 4 (b) give the analysis on Seq-CIFAR10 and Seq-CIFAR100. Note that when ρ = 0,
β2 = 0 and the weight of `n(·) in (4) is always zero. At this time, the loss in (4) degenerates to the
loss in (7) and the model fails to get satisfactory performance. When the value of ρ increases, β2 also
increases and the performance of the model first increases and then decreases. This phenomenon is
intuitively reasonable since a larger weight for `n(·) leads to more forgetting and thus influences the
overall model performance.

We also vary the value of C in (5) to show its impact on the performance of the model. Figure 4 (c)
and Figure 4 (d) show the results of varying C on Seq-CIFAR10 and Seq-CIFAR100, respectively.
We can find that the performance of the model decreases significantly when C is close to zero. In
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Table 2: Ablation study on Seq-CIFAR10 and Seq-CIFAR100.

LODE (DER++) LODE (ESMER)

Seq-CIFAR10 Seq-CIFAR100 Seq-CIFAR10 Seq-CIFAR100

β1 = C, β2 = ρ |Cn||Co| (Ours) 75.45±0.90 46.31±1.01 74.53±0.95 55.06±0.35

β1 = β2 = ρ |Cn||Co| 71.18±0.80 37.49±1.79 73.41±0.40 45.64±0.87

β1 = β2 = C 73.80±0.72 42.08±1.71 73.08±0.81 52.37±0.87

β1 = ρ |Cn||Co| , β2 = C 73.19±0.15 40.79±0.12 72.38±0.24 51.86±0.35

Table 3: Classification results which are averaged across 5 runs in the online continual learning
setting.

Keeping Seq-CIFAR10 Seq-CIFAR100 Seq-TinyImageNetExtra Model

no

SCR [27] 69.49±3.02 36.09±0.82 20.04±1.24

PCR [25] 73.28±1.83 34.89±0.67 23.84±0.60

ER-ACE [8] 69.17±1.64 35.24±0.51 23.42±0.34

MIR [3] 71.10±1.59 35.08±1.32 20.64±1.17

ER [9] 67.93±2.04 34.40±1.13 21.14±0.72

LODE (ER) 69.63±1.41 36.91±1.38 24.31±0.82

DER++ [7] 72.30±0.99 34.72±1.51 20.40±1.02

LODE (DER++) 74.00±0.08 37.82±1.16 25.30±1.80

particular, the model gets the best performance when the value of C is between 1 and 5. Since ρ and
C are highly different when the model achieves the best performance, decoupling the loss through (3)
is necessary for continual learning.

4.2.3 Ablation Study

We change the value of β1 and β2 to show the effectiveness of setting β1 and β2 through (5). We
first set the value of β1 = β2 in (4) to remove the decoupling property. There are two possibilities
to set β1 = β2. The first possibility is to set β1 = β2 = C and the second possibility is to set
β1 = β2 = ρ |Cn||Co| . Table 2 shows the results of these two possibilities, which are significantly inferior
to our method. This means that separating the two different objectives by decoupling the loss of the
new task is necessary for the model to achieve good performance. In Table 2, we also show the result
of a variant by exchanging the value of β1 and β2, which means β1 = ρ |Cn||Co| and β2 = C. We can
find that the performance of this variant is still significantly inferior to our method.

4.2.4 Online Continual Learning

We also perform experiment for the online continual learning setting [3, 10] where the datasets of
different tasks are concatenated to a non-stationary data stream. Since online continual learning is
more challenging than offline continual learning, existing methods [11] usually use larger memory
in online continual learning, especially for challenging datasets such as Seq-CIFAR100 and Seq-
TinyImageNet. Hence, we set the memory size to 5120 for all the datasets. To follow existing online
continual learning methods [3, 10], the experimental settings we use here are different from those
introduced in Section 4.1. These settings are introduced in Appendix.

Table 3 shows the results of different methods. We exclude those methods that have been imple-
mented only in offline continual learning or those that have demonstrated lower performance in
online continual learning in previous works [8, 25]. Similar to that in the offline continual learning
setting, we can find that the integration of our LODE method also significantly improves the overall
accuracy of each combined method. For example, when compared with DER++, LODE (DER++)
exhibits a 1.70% improvement on Seq-CIFAR10, a 3.1% improvement on Seq-CIFAR100 and a
4.9% improvement on Seq-TinyImageNet.
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5 Conclusion

In this work, we propose a new method called loss decoupling (LODE) for continual learning.
Different from most existing replay-based methods which mixes the two different learning objectives
together to learn the new task, LODE separates the two learning objectives for the new task by
decoupling the loss of the new task. Experiments show that LODE can achieve a better trade-off
between stability and plasticity than other baselines, and thus outperform other state-of-the-art replay-
based methods across multiple datasets. Future work will extend LODE to other continual learning
problem like task-aware problem and study the effectiveness of LODE for other types of tasks.
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A Statistics of Different Continual Learning Datasets

We give detailed statistics on datasets in this section. Specifically, Table 4 shows the detailed infor-
mation of three datasets, including Seq-CIFAR10, Seq-CIFAR100, and Seq-TinyImageNet. These
datasets are constructed by one of the following datasets: CIFAR10, CIFAR100 or TinyImageNet.
For each task, 5% of the training samples are divided into a validation set.

Table 4: Statistics on three datasets

Seq-CIFAR10 Seq-CIFAR100 Seq-TinyImageNet

Task Number 5 5 10
Input Size 3× 32× 32 3× 32× 32 3× 64× 64

Classes per Task 5 20 20
Training Samples 10000 10000 10000
Testing Samples 1000 1000 1000

B More Experimental Details

B.1 Hyperparameters

Table 5 provides the hyperparameters for different methods, which will be used for comparison. ρ is
selected among four different values [0.01, 0.05, 0.1, 0.2] through the validation sets we split from
the training sets. We do not carefully select hyperparameter C but set it as 1 for all the experiments
to reduce the reliance of the model on hyperparameters.

It is important to note that both DER++ and ESMER have their own specific hyperparameters
that may affect the performance of the model. To ensure a fair comparison, we maintain the
specific hyperparameters of each method consistent when combined with our LODE, except for the
exponential decay hyperparameter α in ESMER. This means that we use the same hyperparameters
settings as the original implementation when evaluating our combined models. For the exponential
decay hyperparameter α in ESMER, we find that setting it to the same value as ESMER (0.999)
makes the model too conservative to learn the new task in LODE (ESMER). Therefore, we set it
to 0.998 in order to make the model not so conservative. Furthermore, we follow the mammoth
continual learning repository [7] to set the specific hyperparameters in each method or get them by
the validation sets we split from the training sets.

Table 5: List of hyperparameters for different methods

Split-CIFAR10 Split-CIFAR100 Split-TinyImageNet

Methods Buffer C ρ C ρ C ρ

LODE (ER) 500 1 0.1 1 0.01 1 0.05
5120 1 0.1 1 0.05 1 0.05

LODE (DER++) 500 1 0.05 1 0.1 1 0.1
5120 1 0.1 1 0.2 1 0.1

LODE (ESMER) 500 1 0.1 1 0.05 1 0.05
5120 1 0.1 1 0.2 1 0.1

The learning rate is determined by a grid-search. Specifically, the open-source code of the existing
work DER [7] has conducted a grid-search to determine hyperparameters, including the learning rate,
for a wide range of baselines. Since our experimental setting follows this work, the hyperparameters,
including the learning rate, are kept consistent with the code of this work. For the baselines that are
not included in the code of DER but follow the experimental settings of DER, we follow their open-
source code to set the hyperparameters, such as learning rate and epoch, which are also determined by
grid-search. For the methods not following the experimental setting of DER, we conduct a grid-search
on validation datasets to determine the hyperparameters, including the learning rate. When combining
our LODE with other methods, we keep the learning rate consistent with the original methods.
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Table 6: Variation of the first task’s accuracy on Seq-CIFAR100.
After Task 1 After Task 2 After Task 3 After Task 4 After Task 5

Remove `ce(·; Cn) 87.40±0.22 54.28±3.41 56.18±4.08 50.77±2.57 43.92±0.87

Remove `n(·) 87.40±0.22 82.38±0.89 63.27±0.75 54.18±0.68 48.50±0.95

Table 7: Results of combining with other methods.

Seq-CIFAR100

PASS [47] 47.45±0.37

LODE (PASS) 50.49±0.22

B.2 Experimental Setting in Online Continual Learning

Datasets We use three popular datasets for evaluation, including Seq-CIFAR10 [3], Seq-
CIFAR100 [10], and Seq-TinyImageNet [22]. We follow existing online continual learning methods to
partition tasks across different datasets for the purpose of evaluation. Specifically, Seq-CIFAR10 con-
sists of 5 disjoint tasks with each task having 2 classes and 10k training samples. Seq-CIFAR100 con-
sists of 20 disjoint tasks with each task having 5 classes and 2.5k training samples. Seq-TinyImageNet
consists of 20 disjoint tasks with each task having 10 classes and 5k training samples. All the experi-
ments are for the task-agnostic problem.

Training Details For all the datasets, we use reduced-ResNet18 as our model architecture, which
has been commonly used in prior online continual learning methods [8, 41]. Reduced-ResNet18 is
a variant of the original ResNet18 that has fewer channel sizes, and fewer filters overall. We use
stochastic gradient descent (SGD) to update the model for all the methods. We set memory sizes
M=5120 for all the datasets. Like the existing online continual learning works [8, 3], the replay size
|BM| is the same as the mini-batch size |Bt| (fixed to 10). Data augmentation is the same as that
in offline continual learning. Specifically, we use data augmentation such as random cropping and
random rotation for both new mini-batch Bt and old mini-batch BM.

C More Experimental Results

C.1 Combine with More Methods

LODE can be applied in an exemplar-free setting. We apply our LODE to a popular exemplar-free
continual learning method called prototype augmentation and self-supervision (PASS) [47], which is
designed for task-agnostic problems and utilizes a cross-entropy loss for learning new tasks. Table 6
shows the variation of the accuracy for the first task during the learning of subsequent tasks. We can
find that removing `n(·) makes the model suffer from less forgetting than removing `ce(·; Cn). Table 7
shows the final results of PASS and LODE (PASS). We can find that LODE (PASS) outperforms
PASS on Seq-CIFAR100.

C.2 TSNE Visualization

We present the TSNE visualization in Figure 5, which shows the learned representations of different
models on Seq-CIFAR10. As we can see, removing loss `n(·) makes the representation of the old
classes overlap less than removing loss `ce(·; Cn). Therefore, removing loss `n(·) makes the model
suffer from less forgetting than removing loss `ce(·; Cn). We will add this figure in the final version
of our paper. Thanks for the suggestion.

C.3 Plasticity of the Model

We also add a graph in Figure 6, which shows the accuracy of each new task during the training of
Seq-CIFAR10. As we can see, removing either loss `ce(·; Cn) or loss `n(·) decreases the model’s
plasticity and leads to lower performance on the new task. Hence, both of these two losses are
necessary for the learning of a new task.
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(a) TSNE visualization
of removing `ce(·; Cn)
after learning task 3.

(b) TSNE visualization
of removing `n(·) after
learning task 3.

(c) TSNE visualization
of removing `ce(·; Cn)
after learning task 4.

(d) TSNE visualization
of removing `n(·) after
learning task 4.

Figure 5: TSNE visualization
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Figure 6: (a) and (b) show the variation of the new task’s accuracy on different datasets.

C.4 More Comparison

Table 8 presents the results of different methods on Seq-CIFAR100 with varying numbers of tasks.
Here, the memory size is set as 500 for all the methods. As we can see, when the number of tasks
varies, LODE still gives improvements on different methods. Furthermore, LODE (ESMER) still
gets the best performance among all the methods.

Table 9 gives the results of additional methods that directly sample samples from Dt ∪M. Some
methods like BIC and iCaRL, which directly sample samples fromDt∪M, have been compared with
our methods in the main text. Since all these methods keep an extra model in memory for distillation,
we compare them with LODE (ESMER). As we can see, our method still gets the best performance.
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Figure 7: (a) and (b) show the variation of the first task’s accuracy on different datasets. (c) and (d)
show the distribution of different losses over different datasets before learning the second task. Here,
the frequency corresponding to each loss value represents the number of samples with this loss value.

C.5 More Analysis by Decoupling Loss

We also use dark experience replay++ (DER++) [7] to evaluate the impact of `ce(·; Cn) and `n(·).
Figure 7 gives the results. The results are similar to that in ER. Specifically, removing `n(·) results
in less forgetting of the first task than removing `ce(·; Cn). In other words, `n(·) leads to more
forgetting than `ce(·; Cn). Furthermore, the value of `n(·) is larger than the value of `ce(·; Cn) on
both Seq-CIFAR10 and Seq-CIFAR100.
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Table 8: Results on Seq-CIFAR100 with different numbers of tasks. The memory size is set to 500.

Keeping
T = 4 T = 10Extra Model

no

PCR [25] 30.96±0.56 19.88±2.29

MIR [3] 30.44±0.65 22.01±0.68

ER-ACE [8] 45.71±0.59 36.95±0.86

ER [9] 30.72±0.27 20.45±1.38

LODE (ER) 45.60±0.24 37.32±0.74

DER++ [7] 43.68±0.86 36.30±0.85

LODE (DER++) 48.95±0.77 38.61±1.23

yes

CLS-ER [5] 54.82±1.26 43.05±0.64

TAMiL [6] 53.42±0.29 42.52±1.31

iCaRL [33] 50.97±1.04 42.25±0.62

BIC [43] 40.75±0.77 20.71±0.65

SSIL [1] 39.39±0.36 33.06±0.86

ESMER [36] 55.97±1.22 45.54±0.87

LODE (ESMER) 57.92±0.30 46.37±0.39

Table 9: Results of more methods on Seq-CIFAR100 and Seq-TinyImageNet with memory size 500.
Seq-CIFAR100 Seq-TinyImageNet

iCaRL [33] 49.59±0.95 20.01±0.50

BIC [43] 37.06±0.60 29.82±0.88

SSIL [1] 41.61±0.37 16.80±0.71

PODNet [14] 45.95±0.45 26.10±1.71

UCIR [17] 47.56±0.43 26.22±0.84

LODE (ESMER) 55.06±0.35 32.15±0.17

17


	Introduction
	Related Work
	Methodology
	Problem Formulation
	Analyzing Learning Objectives by Decoupling Loss
	Loss Decoupling for Continual Learning
	Relation with Existing Methods
	Experiments
	Experimental Settings
	Experimental Results
	Accuracy
	Hyperparameter Analysis
	Ablation Study
	Online Continual Learning


	Conclusion
	Statistics of Different Continual Learning Datasets
	More Experimental Details
	Hyperparameters
	Experimental Setting in Online Continual Learning

	More Experimental Results
	Combine with More Methods
	TSNE Visualization
	Plasticity of the Model
	More Comparison
	More Analysis by Decoupling Loss




