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Abstract
We introduce the task of Audible Action Temporal
Localization, which aims to identify the spatio-
temporal coordinates of audible movements. Un-
like conventional tasks such as action recognition
and temporal action localization, which broadly
analyze video content, our task focuses on the dis-
tinct kinematic dynamics of audible actions. It is
based on the premise that key actions are driven by
inflectional movements; for example, collisions
that produce sound often involve abrupt changes
in motion. To capture this, we propose TA2Net,
a novel architecture that estimates inflectional
flow using the second derivative of motion to de-
termine collision timings without relying on audio
input. TA2Net also integrates a self-supervised
spatial localization strategy during training, com-
bining contrastive learning with spatial analy-
sis. This dual design improves temporal local-
ization accuracy and simultaneously identifies
sound sources within video frames. To support
this task, we introduce a new benchmark dataset,
Audible623, derived from Kinetics and UCF101
by removing non-essential vocalization subsets.
Extensive experiments confirm the effectiveness
of our approach on Audible623 and show strong
generalizability to other domains, such as repeti-
tive counting and sound source localization. Code
and dataset are available at https://github.
com/WenlongWan01/Audible623.

1. Introduction
Videos have become an integral part of daily life on so-
cial media platforms, especially on popular video-sharing
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Figure 1: We propose a novel task aimed at temporally lo-
calizing audible actions in videos. This task is crucial for
automating the dubbing of actions, such as jumping and col-
lisions, in silent videos, and for facilitating the re-dubbing
of sounds in video editing. Our method, TA2Net, em-
ploys inflectional flow as a foundational prior, establishing
a promising benchmark for this task.

services like YouTube and TikTok. In particular, movies
and television dramas often require dubbing, traditionally
a labor-intensive process where professionals meticulously
identify precise moments for audio insertion. This process
is especially demanding for audible actions, such as the
sounds of punches in boxing or weapon clashes. We argue
that computers can autonomously mark these audible ac-
tions, significantly enhancing the efficiency of video clip
dubbing, diverging from traditional manual line dubbing, as
shown in Fig. 1.

Techniques specifically designed for video clip dubbing ap-
plications, particularly for detecting the precise temporal
location of audible actions within a video, remain largely un-
explored. The closest related fields within computer vision
are video action recognition and temporal action localiza-
tion. Current methods in action recognition (Girdhar et al.,
2022; Huang et al., 2017; Lin et al., 2019a; Alwassel et al.,
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Figure 2: Instead of invisible audible actions (left), our
study targets ‘visible audible actions’ (right part), where
the correlation between visual movements and their asso-
ciated sounds enables resolution through computer vision
techniques. our research focuses on the computationally
tractable challenges in audible actions.

2020; Feichtenhofer, 2020; Xu et al., 2020b; Bertasius et al.,
2021; Ryali et al., 2023) excel at identifying different types
of actions within a video. However, they primarily focus
on the semantic aspects of actions rather than their specific
kinematic characteristics. This emphasis leads to an over-
sight of the internal variations within actions, which are
crucial for identifying and differentiating audible moments.
On the other hand, video temporal action localization meth-
ods (Lin et al., 2018; 2019b; Xu et al., 2020a; Lin et al.,
2021; Xia et al., 2022; Zhang et al., 2022; Cheng & Berta-
sius, 2022; Shao et al., 2023) are effective at discerning the
temporal boundaries between actions, but they often fail to
capture the essential spatiotemporal dynamics of specific
motion frames that are critical for detecting audible actions.
Audible actions are fine-grained moments within the entire
action process, making them more challenging to localize
compared to coarse-grained action boundaries.

In this paper, we present the new task of audible action
temporal localization, aimed at predicting the frame-level
positions of visible audible actions (see Fig. 2 for clearer def-
inition). Central to our approach is the principle that visible
audible actions, especially those involving collision sounds,
are characterized by inflectional movements, such as abrupt
changes during collisions. In response, we design TA2Net,
which explores kinematic analysis to develop an inflectional
flow estimation method, leveraging the second derivative
of displacement to detect changes in motion indicative of
collisions, thereby enabling the model to identify sound po-
sitions without audio input. Additionally, we incorporate a
self-supervised spatial localization strategy into our training
process, enhancing the model’s temporal representations
through spatial domain analysis. This strategy employs
spatial weight information to guide contrastive learning
across both inter-video and intra-video contexts, with the
side-output indicating the location of audible actions. To
overcome the absence of precise labels for audible actions
in existing datasets, we created a dataset called Audible623,
comprising 623 videos with collision sound actions from
Kinetics (Kay et al., 2017), UCF101 (Soomro et al., 2012),
and YouTube, with audible actions marked at the frame

level and an average of 250 frames per video. We have ex-
tensively compared our method against existing techniques
using our Audible623 dataset, where it demonstrated supe-
rior performance. Moreover, leveraging inflectional flow as
an early indicator of motion change has proven essential for
identifying periodic movements. Our model’s effectiveness
extends beyond the proposed task, as evidenced by its per-
formance in traditional tasks such as repetitive counting in
the UCFRep (Zhang et al., 2020) and CountixAV (Zhang
et al., 2021) datasets. These results highlight the robustness
and versatility of our framework.

In summary, our main contributions are fourfold:

• We present a new task of the audible action tempo-
ral localization and establish the first dedicated dataset,
Audible623, specifically designed for this purpose.

• We tailor an inflectional flow estimation method grounded
in the second derivative of the position-time image, aimed
at enriching kinematic data with details on object state
changes to mimic audible actions.

• We propose a novel auxiliary training method featur-
ing self-supervised spatial localization, which utilizes
acquired spatial information to boost the network’s repre-
sentational skills, additionally identifying collision spatial
locations as a secondary output.

• We showcase the method’s superior ability to temporally
localize audible actions and its extensive applicability to
other tasks, such as conventional repetitive action count-
ing and sound source localization.

2. Related Work
Temporal Action Analysis is a crucial area in video under-
standing, focusing on the recognition, localization, and anal-
ysis of actions over time. Temporal action localization aims
to identify the categories and localize the timing boundaries
of action instances. Methods (Xu et al., 2017; Chao et al.,
2018; Lin et al., 2018; 2019b; Xu et al., 2020a; Lin et al.,
2021; Xia et al., 2022) first generate potential action propos-
als and then use a classifier to predict the action category.
Other methods (Lin et al., 2017a; Liu & Wang, 2020; Tiru-
pattur et al., 2021; Zhang et al., 2022; Cheng & Bertasius,
2022; Shao et al., 2023; Huang et al., 2024) achieve local-
ization directly through an end-to-end manner. Zhang et
al. (Zhang et al., 2022) propose a transformer-based method
to classify moments in videos. Shao et al. (Shao et al., 2023)
measure the action sensitivity to address the discrepant in-
formation of each frame. These methods focus on localizing
the entire process of an action. In contrast, our approach
focuses on identifying the precise timing point of audible
actions within the action process. To be specific, the differ-
ence between the two tasks is that one focuses on event-level
localization, while the other concentrates on accurate key
frame identification. Action Counting is another aspect of
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temporal action analysis, which quantify the frequency of
specific actions in videos. Existing methods (Karvounas
et al., 2019; Hu et al., 2022; Dwibedi et al., 2020; Zhang
et al., 2020; 2021) estimate action counts by analyzing the
periodicity and period lengths of actions. Hu et al. (Hu et al.,
2022) suggest applying a transformer to encode multi-scale
temporal correlation and further utilize a density map as
representation to learn action period. Although the periodic-
ity of actions is effective for analyzing the action process,
it falls short in distinguishing the frame-level differences
within actions.

Sound Source Localization (Zhao et al., 2018; Qian et al.,
2020; Chen et al., 2021; Fedorishin et al., 2023; Oya et al.,
2020; Lin et al., 2023) aims to identify the spatial location
of the sound source in a video by analyzing the audio signal.
Qian et al. (Qian et al., 2020) propose a two-stage audio-
visual learning framework that performs cross modal feature
alignment in a rough to fine manner. Chen et al. (Chen et al.,
2021) use an automatic background mining technique with
differentiable thresholds to incorporate regions with low
correlation with a given sound into a negative set for com-
parative learning. Fedorishin et al. (Fedorishin et al., 2023)
model the optical flow in videos as a prior to better assist in
locating sound sources, and utilized cross attention to form
stronger audio-visual correlations to achieve visual sound
source localization. Here we propose an auxiliary training
method that leverages spatial information and produces a
source localization map as a side-output.

3. Audible Actions Dataset
Data Collection. As none of the existing video action
datasets match the requirement of the proposed audible ac-
tion temporal localization task, we need to collect an audible
actions video dataset for training and evaluating our method.
Initially, we gather videos from YouTube and existing ac-
tion video datasets, including Kinetics (Kay et al., 2017) and
UCF101 (Soomro et al., 2012), which cover a wide range of
categories. Despite these datasets contain numerous videos,
many do not include audible actions, and some actions lack
a clear timing definition. To address this, we filter the videos
and select those containing audible actions, such as drum-
ming, tennis, and hammer throwing. The collected video
should include at least one collision event, as we focus on
detecting the timing of visual collisions. Several examples
from our dataset are illustrated in Fig. 3.

Dataset Annotation. To meet the requirement of frame-
level detection accuracy, annotations on video frames are
crucial. Some datasets, such as THUMOS14 (Idrees et al.,
2017) and ActivityNet (Caba Heilbron et al., 2015), provide
annotation for the start/end times of actions. However, sim-
ply considering the midpoint is unsuitable for non-linear
actions, and other motion descriptors are unreliable, neces-

Figure 3: Examples from our Audible623 dataset. All
videos include at least one visible audible action.

Table 1: Statistics comparison between our Audible623 and
existing temporal action localization datasets (Idrees et al.,
2017; Caba Heilbron et al., 2015) and repetitive counting
dataset (Zhang et al., 2020).

Audible623 THUMOS14 ActivityNet UCFRep

# of Videos 623 413 19,994 526
# of Actions 6,262 6,316 23,064 1,276

Average Duration(s) 9.2 4.3 49.2 8.2
Audible Actions ✓ × × ×

Key Frame Labeling ✓ × × ×

sitating human annotations. Since we do not use any audio
for training and inference, human volunteers are invited to
watch each video entirely and inspect the content frame by
frame. Initially, volunteers are asked to determine whether
the video contains at least one audible action. If a video
couldn’t be visually determined for the temporal location of
audible frames, it is excluded. Volunteers are then tasked
with labeling the frames for each audible action, and the
annotations of all audible action frames are converted into
keyframe labels, indicating whether a frame corresponds to
an audible action.

Dataset Statistics. After collecting and annotating the ac-
tion videos, we obtain a total of 623 videos and allocate
497 videos for training and 126 videos for evaluation. The
videos in our dataset have durations ranging from 2.3 to
30.7 seconds, with an average duration of 9.2 seconds. On
average, each video consists of 250 frames. Tab. 1 offers a
statistical comparison between our dataset and commonly
used datasets in temporal action localization. Our dataset
furnishes precise keyframe annotations, a feature absent in
existing datasets yet crucial for the task of audible action
temporal localization.

4. Method
Problem Formulation. Given a silent video containing
audible actions, our goal is to figure out the moment when
audible action occurs. Furthermore, we propose a more
challenging setting that aims to determine the moment at
the frame level, i.e., whether each frame contains action that
can generate sound. This contributes to achieving audio-
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Figure 4: Overview of TA2Net. Our model leverages the novel inflectional flow as the supplementary of kinematics prior
(e.g., motion) to identify the occurrence of audible actions. We first conduct the kinematics analysis to calculate the proposed
inflectional flow as one of the kinematics priors under the sound-from-collision assumption. Then a cross-kinematics
aggregation module is introduced to pop-up motion and velocity inflection information from the contexture features of the
original image. To further model motion and velocity inflection in the spatial dimension, we propose a self-supervised spatial
auxiliary training strategy to localize the motion of the object, both at inter-video level (contrastive loss) and intra-video
level (smoothness loss). We then learn classification probabilities Oi which indicate frames containing audible actions.

visual consistency. Concretely, given a video sequence
I :=

{
It ∈ RH×W×3 | t = 1, 2, . . . , T

}
with length T , our

task is to estimate probabilities for classifying frames into
sound frames class and no-sound frames class, represented
as O :=

{
Ot ∈ [0, 1]2 | t = 1, 2, . . . , T

}
.

Network Design. The overview of our model is illustrated
in Fig. 4. Our fundamental assumption posits that audible ac-
tions, specifically collisions, are typically induced by sudden
changes in the forces acting upon an object, which manifest
as inflections in velocity. Additionally, these collisions are
the primary sources of sound. According to this, we delve
into the velocity inflection and motion in both temporal and
spatial prospective. For temporal modeling, we propose the
concept of ‘inflectional flow’ to signify sudden changes in
velocity of an object, enhancing traditional kinematic analy-
sis by serving as a motion prior. This is complemented by
the integration of backbone encoders and a cross-kinematic
aggregation module, which together are designed to extract
motion-guided contextual features. For spatial modeling,
we introduce a self-supervised auxiliary training strategy,
constraining the prediction of audible actions through both
inter- and intra-video view.

4.1. Timing Audible Actions with Inflectional Flow

Based on our sound-from-collision assumption, detected
sudden velocity changes can be important indicating factors

for identifying audible frames. Considering previous ac-
tion recognition methods (Lin et al., 2019a; Feichtenhofer,
2020; Ryali et al., 2023) has not fully explored the potential
inflection of velocity from motion, we propose to further
complete traditional kinetic analysis (i.e., only motion flow)
by introducing the novel inflectional flow, motivated by (Xu
et al., 2021).

Inflectional Flow. We consider the video as a sequence of
the object’s position over time, that is, a 2D-position-time
graph (i.e., x-t graph, where x is the 2D position vector).
According to the laws of kinematics, we can get the corre-
sponding velocity-time graph (v-t graph) by taking the first
order derivative:

v(t) =
dx

dt
. (1)

Furthermore, the acceleration-time graph (a-t graph) is
given by the second order derivative:

a(t) =
d2x

dt2
. (2)

According to Newton’s First Law, the abrupt application
of an external force, manifesting as a sudden change in
acceleration, alters an object’s state of motion. This con-
cept underpins our analysis, as the acceleration function
a(t) yields critical insights into audible actions. Therefore,
we characterize the velocity inflection point, represented
by a(t), as the ‘inflectional flow’. We then integrate the
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Frame Ii−1 Frame Ii Frame Ii+1
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Figure 5: Visualization of the motion and inflectional flow.
The kinematic analysis gives crucial action prior according
to motion flow estimated by optical flow. The light part of
ai−1 illustrates the momentary change in the direction of
motion.

inflectional flow, denoted as at := a(t), with the motion
flow, vt := v(t), serving as a novel kinematic prior for our
model.

In practical, we utilize optical flow to measure v(t) under
the assumption that the time interval between two adjacent
frames in a video is tiny enough. And we adopt the differen-
tial operation on v(t) to obtain a(t). Given three adjacent
frames (Ii−1, Ii, Ii+1) of a video, we initially compute
the forward optical flow (i.e., Ii−1 to Ii, and Ii to Ii+1)
as motion flow (v+i−1, v+i ) using a pre-trained optical flow
estimation network. Then the inflectional flow is given by:

a+i−1 = v+i − v+i−1. (3)

We define the v+i−1 and a+i−1 as the kinematics prior. Sim-
ilarly, we can also obtain the backward kinematics prior,
including v−i , v−i+1, and a−i . The visualization of motion
and inflectional flow is showed in Fig. 5.

We introduce three separate encoders (EX , EM , and EC)
with same structure to extract the context feature of the
original frames, motion flow, and inflectional flow respec-
tively. Each of these three encoders has the same structure,
consisting of the first four layers of ResNet50 (He et al.,
2016). Specifically, we feed the input tuple in forward
direction (Ii, v

+
i , a

+
i ) into the three encoders and obtain

corresponding feature (fi,m
+
i , c

+
i ). And the motion and

velocity inflection features in backward direction (m−
i and

c−i ) can also be calculated given input (v−i , a
−
i ) similarly.

We further construct the bidirectional motion feature mi and
velocity inflection feature ci by the following concatenation
operation:

mi = Concat(m−
i ,m

+
i ), ci = Concat(c−i , c

+
i ). (4)

Note that we trim the input sequence at the beginning and
the end to ensure that every Ii has corresponding kinematics
features (i.e., mi and ci).

Cross-Kinematics Aggregation. To better leverage the
guidance from the kinematics prior, we introduce the Cross-
Kinematics Aggregation module, which aims to pop-up
motion and velocity inflection information from image con-
text feature. Specifically, given the tuple consists of image
feature and kinematics features (fi,mi, ci) , we first project
them into (Kf(i), Qm(i), Qc(i)) respectively using a linear
layer. Then we calculate the relevance maps as:

Amf(i) =
Qm(i)(Kf(i))

T

√
d

,Acf(i) =
Qc(i)(Kf(i))

T

√
d

, (5)

where Amf(i) and Acf(i) denote the attention ma-
trix (Vaswani, 2017) for image-to-motion and image-to-
inflection respectively. The spatial attention is formulated
as:

hm(i) = Vf(i)softmax(Amf(i)),

hc(i) = Vf(i)softmax(Acf(i)),
(6)

where hm(i) and hc(i) is the cross-kinematics feature of
image-to-motion and image-to-inflection respectively, and
Vf(i) is obtained by applying linear layer on fi.

Finally, we concatenate the three features (fi, hm(i), and
hc(i)) to the cross-kinematics feature, denoted as Fi.

4.2. Self-supervised Spatial Auxiliary Training

In addition to modeling velocity inflection through temporal
dimension, we reconsider it in spatial dimension. Here, we
adopt a self-supervised auxiliary training strategy, consider-
ing data labelling for the spatial location of audible action is
time-consuming and difficult. Specifically, we enhance the
discrimination ability of our model on the motion flow in
the spatial dimension by conducting contrastive learning in
motion and non-motion areas. On the other hand, we also
observe that the motion state changes are continuous, thus a
smoothing loss is introduced for constraining.

Spatial Localization of Motion. In previous temporal ac-
tion localization methods (Zhang et al., 2022; Shao et al.,
2023), they do not consider explicitly learning the spatial
motion of the objects. Therefore, we suggest introduc-
ing spatial motion localization as an auxiliary training task
which aims to reconstruct the motion of object. This strategy
can effectively boost the network to distinguish the most dis-
criminative area of object motion for better locating frames
with potential audible actions.

Since reconstructing the precise motion of the object is
challenging and unnecessary, instead of learning object seg-
mentation mask, we relax the constraint by turning to learn
a discriminative map, where the motion region is activated
with higher probability. In detail, given k cross-kinematics
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aggregated features {Fj | j = 1, 2, . . . , k}, the correspond-
ing discriminative maps {Dj | j = 1, 2, . . . , k} through a
3 × 3 convolution layer, a batch normalization layer, and
Sigmoid operation. Here, these k frames are not necessarily
from the same video.

Inter-Video Contrastive Learning. We further conduct the
contrastive learning on the motion-area (high-probability
region) and non-motion area (low-probability region) on the
discriminative map. We first mask the cross-kinematics ag-
gregated feature Fj by both motion region and non-motion
region given by Dj separately, formulated as:

Fm
j = Dj ⊗ Fj , F

n
j = (1−Dj)⊗ Fj , (7)

where ⊗ is the Hadamard product. Fm
j and Fn

j denote the
motion region activated and non-motion region activated
aggregated features respectively. Given Fm := {Fm

p | p =
1, 2, . . . , k} and Fn := {Fn

q | q = 1, 2, . . . , k}, the ob-
jective of negative contrast (motion region and non-motion
region) is given by:

Lnc = − 1

k2

k∑
p=1

k∑
q=1

log(1− ⟨Fm
p , Fn

q ⟩), (8)

where ⟨Fm
p , Fn

q ⟩ =
Fm

p ·Fn
q

∥Fm
p ∥∥Fn

q ∥ . Furthermore, the positive
contrast objective is formulated as:

Lpc(F ) = − 1

k(k − 1)

k∑
p=1

k∑
q=1

11[p ̸=q]wp,q log(⟨Fp, Fq⟩),

(9)
where 11[p ̸=q] is 1 for p ̸= q and otherwise 0, and F can
be either Fm or Fn. wp,q represents weights to penalize
positive region pairs with less cosine similarity given by
ranking, formulated as:

wp,q = exp(−α · rank(⟨Fp, Fq⟩)), (10)

where α is a hyper-parameter for smoothness controlling
and rank(⟨Fp, Fq⟩) represents the rank (Xie et al., 2022)
of ⟨Fp, Fq⟩ among all the cosine similarity pair of Fm or
Fn.

The above equations define the objectives for motion to
motion region (Lm

pc := Lpc(F
m)) and non-motion to non-

motion region (Ln
pc := Lpc(F

n)). Finally, the total con-
trastive loss Lcont. is:

Lcont. = Lnc + Lm
pc + Ln

pc. (11)

Intra-Video Smoothing Constraint. Notably, the actions
in video are typically continuous. Therefore, we refine the
localization results to ensure that there are no significant
changes in the located regions between consecutive frames,

ensuring accurate localization. We further propose an intra-
video temporal regularization loss:

Ltemp. =
∑

i
∥Di+2 +Di − 2Di+1∥2, (12)

where i is the index of a frame from the same video.

The result is feed back to the audible action prediction part
and train as a supervised way. Therefore, we can re-detect
the action frame by separated action regions.

4.3. Spatio-Temporal Fusion

Upon obtaining the aggregated features {Fj | j =
1, 2, . . . , k} and motion region activated features {Fm

j |
j = 1, 2, . . . , k}, we utilize a 3D convolution to encode the
temporal and spatial motion information. To extract more
detailed information on audible actions, inspired by (Hu
et al., 2022), we channel the outputs of 3D convolution into
a transformer network equipped with self-attention modules.
This setup facilitates the integration of spatiotemporal fea-
tures, effectively pinpointing potential instances of audible
actions within the video. Then we forward them through a
fully connected layer to produce the final output Oi.

4.4. Objective Function

For the frame-wise prediction results in the temporal do-
main, we conduct supervised training using cross-entropy
loss and focal loss (Lin et al., 2017b) as follows:

Laction = λceLce + λfocalLfocal, (13)

where λce and λfocal are weighting parameters for loss
terms, which are set to 1 and 0.1, respectively. It is notewor-
thy that we employ a soft label technique based on Gaussian
augmentation to calculate the Lce.

In summary, the total loss for our TA2Net is a weighted
sum of three losses:

Ltotal = λactionLaction + λcont.Lcont. + λtemp.Ltemp.,
(14)

where λaction, λcont. and λtemp. are weighting parameters
for corresponding loss terms, which are set to 1, 0.01 and
0.002, respectively.

5. Experiment
Implementation Details. We encode kinematic information
using a pre-trained ResNet50 (He et al., 2016), mapping it
to 256 dimensions in the cross-kinematics module. During
training, we randomly sample 64 frames per video, resizing
them to 112 × 112 pixels. The model is trained using the
Adam optimizer (Kingma & Ba, 2015) with a learning rate
of 5e-6, a batch size of 4, and 20k iterations. For inference,
we segment the video continuously with a step size of 64,
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padding the final segment if it is shorter than 64 frames.
For optical flow extraction, we employ GMFlow (Xu et al.,
2023) due to solid empirical performance and a good trade-
off between accuracy and efficiency. We implement our
method on PyTorch with CUDA, version 1.13. All exper-
iments were conducted on a single NVIDIA A800 GPU
with 80GB of memory, under Ubuntu 20.04 as the operating
system. For model training, we trained the proposed method
for 200 epochs, which took approximately 4 hours.

Metrics. We introduce five metrics to evaluate the per-
formance of audible action temporal localization: Recall,
Precision, F1, Number Match Error (NME), and Position
Match Error (PME). Recall measures the method’s ability to
detect all audible action frames, while Precision evaluates
the proportion of accurate predictions among all predicted
frames. The F1 score balances precision and recall to pro-
vide an overall performance measure. For quantitative and
temporal accuracy, NME quantifies the difference between
predicted and ground truth audible action frame counts, and
PME assesses temporal accuracy, allowing a detection time
gap of up to 2 frames from the ground truth. Addition-
ally, for counting evaluation, we use mean absolute error
(MAE) and off-by-one accuracy (OBO) following the ap-
proach in (Dwibedi et al., 2020; Hu et al., 2022). MAE
measures the absolute discrepancy between predicted and
ground truth counts, normalized by the ground truth, while
OBO indicates the proportion of correctly counted instances
within one count of the ground truth. Further details are
provided in the appendix.

5.1. Comparisons with Existing Methods

In this section, we employ several methods for both qual-
itative and quantitative comparison with our proposed ap-
proach. To the best of our knowledge, there is currently no
work directly aligning with our setting. Hence, we select
eleven methods of four types for comparison based on their
relevance to the audible action temporal localization task,
including temporal action localization (BMN (Lin et al.,
2019b), ActionFormer (Zhang et al., 2022) and TriDet (Shi
et al., 2023)), repetitive action counting (RepNet (Dwibedi
et al., 2020) and TransRAC (Hu et al., 2022)), video/action
recognition (TimeSformer (Girdhar et al., 2022), X3D (Lin
et al., 2019a), Omnivore (Feichtenhofer, 2020), TSM (Berta-
sius et al., 2021) and Hiera (Ryali et al., 2023)), and anomaly
detection (STG-NF (Hirschorn & Avidan, 2023)). For
a fair comparison, we load the corresponding pretrained
model (if available) and fine-tuned for the same epochs on
Audible623 dataset. All compared methods are trained with
the same supervision using our key frame annotations. More
details can be found in the appendix.

Quantitative Comparison. We first compare our method
with above eleven methods quantitatively. As shown in

Table 2: Quantitative comparison with associated methods
on Audible623 dataset.

Methods Recall↑ Precision↑ F1 ↑ NME↓ PME↓
BMN 0.417 0.486 0.413 9.327 0.951

ActionFormer 0.323 0.357 0.294 14.663 1.162
TriDet 0.459 0.338 0.328 11.378 1.306

RepNet 0.377 0.428 0.362 10.319 1.100
TransRAC 0.569 0.614 0.553 12.176 0.988

Omnivore 0.410 0.368 0.330 19.454 1.256
TSM 0.314 0.372 0.303 12.160 1.153
X3D 0.426 0.435 0.392 10.370 1.039

TimeSformer 0.470 0.455 0.405 16.101 1.172
Hiera 0.562 0.436 0.424 20.748 1.265

STG-NF 0.679 0.229 0.342 - -

Ours 0.648 0.656 0.616 3.462 0.744

Table 3: Counting performance on UCFRep and CountixAV
datasets. Top-2 results are marked in bold and underlined.
Our method has not been trained on any counting dataset.

Method UCFRep CountixAV
MAE↓ OBO↑ MAE↓ OBO↑

RepNet 0.915 0.074 0.749 0.231
TransRAC 0.594 0.222 0.686 0.255

X3d 1.245 0.037 0.876 0.192
TimeSformer 0.832 0.0 1.551 0.185

Hiera 0.791 0.152 3.648 0.231
Ours 0.588 0.185 0.549 0.346

Tab. 2, the related methods of temporal action localiza-
tion (Lin et al., 2019b; Zhang et al., 2022; Shi et al., 2023)
perform bad quality, as they are designed for action recog-
nition and localization in long videos. Repetitive action
counting methods (Dwibedi et al., 2020; Hu et al., 2022)
perform well in classification metrics. However, they excel
in predicting the information of a single action sequence
rather than the instantaneous action of collision. Conse-
quently, they can only recognize the approximate position
of the action and cannot accurately locate it, leading to
suboptimal performance in NME. The metrics for video
recognition methods, especially those represented by Hi-
era (Ryali et al., 2023) are low. This can be attributed to
the limitation of these methods to the utilization of long
time sequence action content and their lack of sensitivity to
frame-level features. Concerning the video anomaly detec-
tion method STG-NF (Hirschorn & Avidan, 2023), while
the human keypoint sequence effectively represents actions,
it struggles to discern action changes at the moment of col-
lision. Notably, we do not report NME and PME metrics,
as they are unfair for snippet level detection. Thanks to the
inflectional flow estimation method and the self-supervised
spatial auxiliary training strategy proposed in our approach,
our method outperforms existing methods in four key met-
rics, demonstrating its superiority. Our network effectively
utilizes temporal kinematic information in action videos,
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Figure 6: Qualitative comparison of the visualization of
temporal predictions on Audible623 dataset. The first row
shows several frames of the input videos, and the second
row shows the visualization of temporal probabilities (Oi).

combining it with spatial motion information to achieve
superior results.

Generalization to Counting Task. We demonstrate that the
proposed inflectional flow can effectively generalize to repet-
itive counting tasks. Without any fine-tuning, we directly
compared our method to established counting techniques,
including RepNet (Dwibedi et al., 2020) and TransRAC (Hu
et al., 2022), on the audible action part of repetitive count-
ing datasets. As shown in Tab. 3, our approach set new
benchmarks, ranking (1st, 2nd) on UCFRep and (1st, 1st)
on CountixAV, despite not being trained for repetitive count-
ing. It’s important to highlight that RepNet and TransRAC
are specifically designed and trained for repetitive counting
tasks. The success of our model’s zero-shot predictions un-
derscores the effectiveness of modeling inflectional flows at
both temporal and spatial levels. This capability allows for
precise identification of keyframes in repetitive actions, such
as pinpointing the exact moment of collision in repeated
tapping actions, which is crucial for accurate counting.

Qualitative Comparison. We also conduct a quali-
tative comparison with seven methods, including Rep-
Net (Dwibedi et al., 2020), TransRAC (Hu et al., 2022),
ActionFormer (Zhang et al., 2022), TriDet (Shi et al., 2023),
TimeSformer (Bertasius et al., 2021), X3D (Feichtenhofer,
2020) and Hiera (Ryali et al., 2023). The visualization of
the comparative results of temporal localization is shown in
Fig. 6. We observe that Hiera fails in the first case, while
RepNet mispredicts many actions. ActionFormer and TriDet
tend to over-detect audible frames. Although X3D and Tran-
sRAC exhibit good prediction accuracy, they can only iden-

Table 4: Ablation results on TA2Net.

Video Motion Infle. Aggr. Lcont. Ltemp. Recall↑ Prec.↑ F1 ↑ NME↓ PME↓

✓ 0.496 0.395 0.406 5.992 1.021
✓ ✓ 0.600 0.500 0.501 5.748 0.898
✓ ✓ ✓ 0.609 0.578 0.561 4.420 0.781
✓ ✓ ✓ ✓ 0.640 0.597 0.587 3.773 0.806
✓ ✓ ✓ ✓ ✓ 0.638 0.632 0.601 3.731 0.756
✓ ✓ ✓ ✓ ✓ ✓ 0.648 0.656 0.616 3.462 0.744

tify the approximate range of actions. This limitation arises
because their designs focus solely on the duration of actions,
resulting in the identification of adjacent frames as audible
actions as well. Unlike all the competitors, our method
achieves the highest accuracy, which is attributed to the
spatial and temporal guidance of kinematics prior obtained
through inflectional flow estimation and self-supervised spa-
tial auxiliary training. And we have a fine-grained timing
prediction for all the audible actions. More comparisons
can be found in appendix.

5.2. Ablation Studies

Inflectional Flow Estimation Module. To evaluate the
impact of the motion and inflectional flow estimation com-
ponents, we tested a scenario where prior motion (Motion)
and velocity inflection (Infle.) information were excluded,
and then progressively integrated this kinematic data. As
shown in the first three rows of Tab. 4, the baseline model,
which relies only on appearance and temporal information
from the video frames, performs the worst among all ablated
models. Incorporating motion and velocity inflection data
separately improves classification performance by better
capturing motion changes. Notably, combining both motion
and velocity inflection yields the best results. In contin-
uous motion videos, where adjacent frames often change
minimally, this component helps focus on frame-to-frame
discrepancies, effectively capturing key actions in audible
action sequences.

Cross-kinematics Aggregation Module. We also evaluated
the cross-kinematics aggregation module (Aggr.). Here,
we directly connected the visual and kinematic features
extracted by the encoder to predict sound moments. As
shown in the fourth row of Tab. 4, this module enhances
performance by focusing on key content features through
motion and velocity inflection, effectively capturing audible
behaviors in the video.

Auxiliary Training Strategy with Localization. To as-
sess the effectiveness of our auxiliary training strategy,
we analyzed the contributions of inter-video contrastive
loss (Lcont.) and intra-video temporal regularization loss
(Ltemp.). As shown in the last two rows of Tab. 4, both
strategies significantly improve prediction accuracy, partic-
ularly precision. Inter-video contrastive learning enhances
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Figure 7: Visualization of spatial localization results on
Audible623 (row 1-2) and AVE (Tian et al., 2018) (row 3-
4) datasets. Our method shows effective spatial localization
on the AVE dataset without specific training.

the detection of motion state changes by emphasizing spatial
positional information, while intra-video constraints help
smooth spatial localization, maintaining motion continuity.

5.3. Applications

In this section, we demonstrate the versatility of our method
in various applications, including spatial localization and
non-audible action analysis.

Motion Spatial Localization. Our proposed auxiliary train-
ing strategy effectively discriminates movement areas, as
shown in Fig. 7. The spatial localization maps, produced
as a side output of our model on the Audible623 and AVE
datasets (Tian et al., 2018), demonstrate the effectiveness of
this strategy in inferring the spatial position of motion within
videos containing audible actions. Notably, our method was
not trained on the AVE dataset, which highlights the excel-
lent generalization ability of the proposed approach.

Beyond Audible Actions. Moreover, we highlight that
inflectional flow extends beyond audible actions. As shown
in Fig. 8, it performs robustly in non-audible actions as well,
demonstrating its versatility across various types of motion
analysis. Inflectional flow provides a detailed perspective
on state changes within actions, capturing subtle transitions
and variations throughout sequences, making it a valuable
tool for comprehensive temporal action analysis.

6. Conclusion
In this paper, we introduce the task of audible action tempo-
ral localization to solve the problem of dubbing silent videos
with visible actions and further propose its dedicated dataset

Frame Ii−1 Frame Ii Frame Ii+1

Motion flow vi−1 Motion flow vi Inflectional flow ai−1

Figure 8: Inflectional flow for non-audible actions. By
modeling visual motion dynamics, it can also captures subtle
motion transitions across frames and flow fields, enabling
robust temporal analysis.

(Audible623) and a strong baseline method (TA2Net). Our
TA2Net utilizes kinematic analysis for inflectional flow es-
timation, identifying potential sound-producing events. We
further enhance this with a self-supervised spatial localiza-
tion strategy, applying motion analysis at both inter- and
intra-video levels. Experimental results demonstrate our
model’s excellence in temporal localization of audible ac-
tions and its adaptability to other tasks, such as repetitive
action counting and sound source localization.

Limitation. Our approach leverages optical flow to esti-
mate the motion flow for further calculating inflectional
flow. Therefore, the accuracy of optical flow prediction will
affect the prediction quality of the final model. For those
challenging video cases like large viewing angle changes,
the inaccurate optical estimation will further affect the pre-
diction quality of our model. In the future, we will explore
more robust motion flow estimation methods.
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A. More details of dataset
We provide the action categories of videos in the proposed Audible623 dataset in Fig. 9. It should be noted that although
Audible623 provides action category annotations, the category information is not used during training or evaluation. The
Audible623 dataset comprises 14 categories of audible action videos and 64% of videos have a duration over 10 seconds.

We use two datasets, UCFRep (Zhang et al., 2020) and CountixAV (Zhang et al., 2021), to conduct experiments on
repetitive counting tasks. The UCFRep (Zhang et al., 2020) dataset comprises 526 action videos from 23 categories sourced
from the UCF101 (Soomro et al., 2012) dataset, each video is annotated with the intervals of repetitive actions. The
CountixAV (Zhang et al., 2021) dataset consists of 1,863 repetitive action videos (some videos have become unavailable)
from the Countix (Dwibedi et al., 2020) dataset by filtering out videos with unclear sound or background noise. Then the
videos are labeled with the count of repetitive actions. Note that we use these videos with sounds removed as input.

Furthermore, we apply AVE (Tian et al., 2018) dataset for the visualization of spatial localization results. AVE (Tian et al.,
2018) comprises 4,143 videos of visual events and the corresponding audio, covering 28 action categories. Each category
includes at least 60 videos.

Figure 9: The distribution of videos in different categories of Audible623 dataset.

B. Metrics
We utilize five metrics to evaluate our proposed Audible Action Temporal Localization task, including Recall, Precision, F1,
Number Match Error (NME), and Position Match Error (PME). These metrics are formulated as follows:

NME =
1

N

N∑
i=1

|ci − cGT
i |, (15)

PME =
1

N

N∑
i=1

(
1

mi

mi∑
j=1

|lj − lGT
j |), (16)

where N and mi are the number of videos and matched audible action frames, respectively. ci =
∑Ti

t=1 Ot and cGT
i =∑Ti

t=1 O
GT
t indicate predictions and ground truths (GTs) of the sum of audible actions, respectively. lj and lGT

j are
predictions and GTs of the temporal location of audible action frames, respectively.
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Table 5: Ablation study over the weight of Lcont. and Ltemp..

λcont. λtemp. Recall↑ Prec.↑ F1 ↑ NME↓ PME↓
0 0 0.640 0.597 0.587 3.773 0.806

0.1 0 0.628 0.629 0.591 3.655 0.762
0.01 0 0.638 0.632 0.601 3.731 0.756
0.001 0 0.639 0.614 0.592 4.168 0.756
0.01 0.02 0.636 0.628 0.596 3.932 0.766
0.01 0.0002 0.671 0.620 0.607 3.924 0.792

0 0.002 0.625 0.627 0.587 4.252 0.772
0.1 0.002 0.638 0.617 0.597 3.487 0.754

0.001 0.002 0.667 0.611 0.603 4.622 0.820
0.01 0.002 0.648 0.656 0.616 3.462 0.744

Following the previous repetitive counting work (Dwibedi et al., 2020; Hu et al., 2022), the Off-By-One Error (OBO) and
Mean Absolute Error (MAE) metrics for action counting can be also formulated as:

OBO =
1

N

N∑
i=1

[∣∣ci − cGT
i

∣∣ ≤ 1
]
, (17)

MAE =
1

N

N∑
i=1

∣∣ci − cGT
i

∣∣
cGT
i

. (18)

C. Comparison Methods
The relevant details for all comparison methods are as follows:

Temporal Action Localization. We choose three temporal action localization methods, including BMN (Lin et al., 2019b),
ActionFormer(Zhang et al., 2022) and TriDet (Shi et al., 2023). Specifically, we employ them to frame-level features input
and predict per frame performance. Specifically, for BMN, we use a two-stream network that incorporates both video and
optical flow features as input.

Repetitive Action Counting. We select two state-of-the-art repetitive counting methods for comparison, including
RepNet (Dwibedi et al., 2020) and TransRAC (Hu et al., 2022). These methods predict the number of repeated actions in
the video by aggregating the probabilities of the final output. We adjust the final classifier to ensure it outputs frames with
probabilities greater than a predefined threshold.

Video/Action Recognition. We adopt five state-of-the-art video/action recognition methods, including TimeSformer (Berta-
sius et al., 2021), X3D (Feichtenhofer, 2020), Omnivore (Girdhar et al., 2022), TSM (Lin et al., 2019a) and Hiera (Ryali
et al., 2023), which recognize the categories of actions present in the video, such as shaking hands, hugging, etc. Similarly,
we keep the original feature extraction module unchanged and only adapt the final classifier to make frame-level predictions.

Anomaly Detection. We choose STG-NF (Hirschorn & Avidan, 2023), a video anomaly detection method that solely
utilizes human pose (Sun et al., 2024) to learn spatial and temporal relationships. Specifically, we extract human pose
keypoints for videos in the Audible623 dataset and modify the sliding window to detect the presence of audible actions
within the window.

D. More Ablation Study
We further report the results of the ablation study over the weight of inter-video contrastive loss (Lcont.) and intra-video
temporal regularization loss (Ltemp.) in Tab. 5. The results demonstrate that adding Lcont. and Ltemp. can improve the
performance of our method. However, using only Ltemp. resulted in increased recall but decreased precision, suggesting
that solely maintaining spatial attention unchanged might lead to inaccurate localization.
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Frame Ii−1 Frame Ii Frame Ii+1

Motion flow vi−1 Motion flow vi Inflectional flow ai−1

Figure 10: Visualization of failure case.

E. More Qualitative Comparison
We also present more qualitative comparisons, visualizing temporal predictions on the proposed Audible623 dataset. We
provide video frames and temporal prediction results, conducting a comparison between our method and several existing
approaches (Zhang et al., 2022; Shi et al., 2023; Dwibedi et al., 2020; Hu et al., 2022; Feichtenhofer, 2020; Bertasius et al.,
2021; Ryali et al., 2023; Zheng et al., 2023). These comparisons are illustrated in Fig. 12 and Fig. 13. It is evident from the
visualizations that our method outperforms these approaches.

F. Failure Case
As our method is based on the kinematic analysis for inflectional flow estimation, it relies on the accuracy of inflectional
flow. We illustrate a failure instance in Fig. 10. The perceptible decline in the quality of optical flow estimation stems from
camera viewpoint adjustments. Consequently, this degradation significantly impacts our kinematic analysis, resulting in our
method’s failure to detect audible actions in frame Ii (highlighted by a red circle).

G. Evaluation using Vision Language Model
We also test the performance of a large-scale video understanding model (Video-LLaMA (Zhang et al., 2023)) on the task of
audible action temporal localization. As shown in Fig. 11, despite the special requirements (localizing the exact time frame
of audible actions) made in the prompt, the results indicate that while these large models can broadly describe the actions
occurring in a video, they lack the capability to accurately pinpoint the timing of actions, especially the precise moments of
audible action.
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Figure 11: Applying Video-LLaMA (Zhang et al., 2023) to Temporal Audible Action Localization Task. We found it failed
to accurately localize the exact time frame of audible actions.

H. Demo
We present the visualization of audible action temporal predictions and spatial localization in dynamic form in the
supplementary video. Additionally, we demonstrate some results on video re-dubbing as a key application to fully exploit
our model.
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Figure 12: Visualization of temporal predictions on the Audible623 dataset.
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Figure 13: Visualization of temporal predictions on the Audible623 dataset.
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