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Abstract001

Implicit Discourse Relation Recognition (abbr.,002
IDRR) is a NLP task of classifying argument003
pairs into different types of semantic relations.004
Arguments contain subtexts, some of which005
are beneficial to the perception of semantic006
relations. However, subtexts are connotative.007
The neural IDRR model fails to be aware of008
them without being given pertinent prompts.009
In this paper, we leverage LLaMA to gener-010
ate subtexts for argument pairs, and verify the011
effectiveness of subtext-based IDRR. We con-012
struct an IDRR baseline using the decoder-013
only backbone LLaMA, and enhance it with014
subtext-aware relation reasoning. A confidence-015
diagnosed dual-channel network is used for016
collaboration between in-subtext and out-of-017
subtext IDRR. We experiment on PDTB-2.0018
and PDTB-3.0 for both the main-level and019
secondary-level relation taxonomies. The test020
results show that our approach yields substan-021
tial improvements compared to the baseline,022
and achieves higher F1-scores on both bench-023
marks than the previous decoder-only IDRR024
models. We will make the source codes and025
data publicly available.026

1 Introduction027

IDRR determines the semantic relation between ar-028

guments when the in-between connective is absent029

(Prasad et al., 2008). For example, it outputs the030

relation “Concession” for the arguments Arg1 and031

Arg2 in 1), where the possible connective “how-032

ever” is not given in the source text:033

1) Arg1: The new rate will be payable Feb. 15.034

Arg2: A record date hasn’t been set.035

Relation: Concession036

Encoder-only language models such as RoBERTa037

(Long and Webber, 2022; Wu et al., 2023; Cai038

et al., 2024) and XLNet (Jiang et al., 2024) have039

been used for IDRR, where multi-class relation040

classification is conducted by linear layers with041

Softmax. Meanwhile, both T5 (Jiang et al., 2021; 042

Chan et al., 2023) and the decoder-only Large Lan- 043

guage Mdoels (LLMs) like GPT-3.5 (Chan et al., 044

2024) and GPT-4 (Yung et al., 2024) have also 045

been verified for IDRR, where relations are prop- 046

erly generated conditioned on prompts and/or CoT. 047

Significant improvements are reported in these arts. 048

Subtext hasn’t been considered in the study of 049

IDRR. Though, it is potentially useful for enhanc- 050

ing the IDRR models. A subtext is characterized by 051

the metaphorical meaning hidden in the arguments. 052

For example, the subtext of the two arguments in 1), 053

most probably, is “the rate should be recorded ear- 054

lier though it hasn’t been”. Such a subtext is more 055

explicit or even straight in revealing the Concessive 056

relation. Accordingly, we suggest that subtext can 057

be used as a crucial evidence for enhancing the 058

perception of implicit relation. 059

In this paper, we explore the method of applying 060

subtexts, and systematically investigate the effec- 061

tiveness upon LLM-based generative IDRR. The ef- 062

fort we made is to provide a preliminary study and 063

stimulate innovative researches in subtext-based 064

IDRR enhancement. Specifically, our contributions 065

are summarized as follows: 066

• We first propose a Subtext-based Confidence- 067

diagnosed Dual-channel Network (SCDN) for 068

IDRR. In SCDN, subtext is generated by LLM. 069

Confidence comparison is conducted to recon- 070

cile in-subtext and out-of-subtext IDRR. 071

• We verify the effectiveness of SCDN on the 072

benchmarks PDTB-2.0 and 3.0 (Webber et al., 073

2019) . We report varied influences cased by 074

the settings of prompting, confidence diagno- 075

sis, subtext generation and augmentation. 076

2 Approach 077

Figure 1 shows the architecture of SCDN, which is 078

constructed with three LLMs Mα, Mβ and Mλ. 079
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Figure 1: Architecture of SCDN.

Mα serves to generate the subtext for the given080

arguments. Mβ takes the arguments as input and081

uses them as the only reliance for relation reason-082

ing. Mλ combines the generated subtext and ar-083

guments, and infers the relation according to all of084

them. A probabilistic diagnosis model (diagnoser)085

is used to reconcile the decisions from Mβ and086

Mλ based on confidence estimation.087

2.1 Subtext and Relation Generators088

Our baseline is the generator Mβ which performs089

out-of-subtext IDRR. We prompt it by Question090

Answering (QA). Given the arguments Ȧ and Ä,091

we combine them with a question Qβ of “what is092

the relation between arguments”: Iβ=[{Ȧ,Ä}; Qβ].093

We feed Iβ into Mβ to generate a relation label.094

To fulfill the in-subtext IDRR, we construct a095

subtext generator Mα. Its input is formed by the096

arguments and a prompting question Qα of “what097

is the implicit meaning”: Iα=[{Ȧ,Ä}; Qα]. There098

isn’t any constraint applied to subtext generation099

(i.e., Mα(Iα)) such as the length of subtext. Fur-100

ther, we build the generator Mλ to perform in-101

subtext IDRR. It uses both subtext and arguments102

as input, and combines them with a multi-choice103

question Qλ: Iα=[{Ȧ,Ä}; {S}; Qλ]. The question104

Qλ is designed as “what is the relation between ar-105

guments given subtext”, which allows Mλ to gen-106

erate a relation label in the manner of multi-choice107

QA (Yung et al., 2024) as follows.108

2) Qλ: What is the relation of Ȧ and Ä given S?109

A. Contingency B. Expansion110

C. Temporality D. Comparison111

In our experiments, we uniformly use LLaMA3-112

8B-Instruct (Dubey et al., 2024) to construct the113

generators Mα, Mβ and Mλ. Due to the zero-114

resource situation that there isn’t any ground-truth115

subtext provided in PDTB-2.0 and 3.0, we train the116

subtext generator Mα by teacher-student knowl-117

edge distillation (Hu et al., 2023). GPT-3.5-turbo118

(Brown et al., 2020) is used as the teacher.119

2.2 Confidence Diagnoser 120

It is unavoidable that the subtext-based generator 121

encounters two problems, including 1) arguments 122

inherently don’t contain a subtext, and 2) the gen- 123

erated subtext is unqualified. To relieve the prob- 124

lems, we use a diagnoser to reconcile Mβ and Mλ, 125

where Mβ conducts out-of-subtext IDRR, while 126

Mλ additionally uses subtext for in-subtext IDRR. 127

Assume Mβ and Mλ output the relations Rβ 128

and Rλ respectively. The diagnoser first verifies the 129

reliability of Rλ. Confidence score C is measured 130

for verification. C is an average logistic probability 131

over all the tokens output by Mβ . Each ci ∈ C 132

is the non-normalized probability estimated by the 133

logistic function in the final layer of LLaMA3: 134

C =
∑
ti∈Rβ

logMβ
(ti) (1) 135

On this basis, the diagnoser verifies whether C is 136

larger than the type-specific threshold θ. If larger, 137

the diagnoser determines that Rλ is reliable for out- 138

put, otherwise the prediction Rβ of Mβ is adopted. 139

In our experiments, we provide an exclusive thresh- 140

old for each relation type in the taxonomy of PDTB. 141

They are obtained by empirical observation upon 142

the IDRR performance obtained on the training set. 143

More details of threshold settings and performance 144

curves can be found in Appendix A. 145

3 Experiments 146

3.1 Dataset and Evaluation Metrics 147

We experiment on two versions of discourse rela- 148

tion analysis datasets, including PDTB-2.0 (Prasad 149

et al., 2008) and 3.0 (Webber et al., 2019). We 150

follow the previous work to use sections 0-22 for 151

IDRR, where sections 2-20 are used for training, 152

and sections 0-1 are used as the development set, 153

while 21-22 for testing. Appendix B shows the data 154

statistics in all the datasets. 155

Multi-class Macro-F1 (F1) and accuracy rate 156

(Acc) are used as the evaluation metrics. 157

3.2 Implementation Details 158

We use AdamW optimizer (Loshchilov and Hut- 159

ter, 2019) to optimize LLaMA3. For subtext gen- 160

eration Mα, the learning rate is set to 1e-4. A 161

5-epoch training process is conducted. For the re- 162

lation generators Mβ and Mλ, the learning rates 163

are uniformly set to 5e-5, and the best checkpoint 164

is reached based on F1 within 10 epochs. Both 165
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Method Backbone Model Parameters
PDTB2 PDTB3

F1 Acc F1 Acc

ChatGPT (Chan et al., 2024) GPT-3.5-turbo - 36.11 44.18 - -
PIDRA (Yung et al., 2024) GPT-4 - - - 47.53 52.84
FCL (Long and Webber, 2022) RoBERTa-base 125M 69.60 72.18 70.05 75.31
CP-KD (Wu et al., 2023) RoBERTa-base 125M 68.86 75.43 72.07 77.00
CP-KD (Wu et al., 2023) RoBERTa-large 355M 71.88 76.77 75.52 78.56
SCIDER (Cai et al., 2024) RoBERTa-base 125M 67.00 72.11 - -
OTMT (Jiang et al., 2024) XLNet-large 355M 64.46 72.34 - -
CG-T5 (Jiang et al., 2021) T5-base 223M 57.18 65.54 - -
DiscoPrompt (Chan et al., 2023) T5-base 223M 65.79 71.70 - -
DiscoPrompt (Chan et al., 2023) T5-large 738M 70.84 75.65 - -
IICOT (Lu et al., 2023) Flan-T5-base 248M 65.26 71.13 69.79 73.98
IICOT (Lu et al., 2023) Flan-T5-large 783M 69.23 76.04 73.06 77.46
SCDN (ours) Llama3-8B-Instruct 8.03B 71.14 78.20 73.33 76.93

Table 1: Performance on PDTB 2.0/3.0. Encoder-only PLMs, decoder-only LLMs and T5-based encoder-decoder
models are considered. The best results are separately marked in bold for encoder-only and decoder-only models.

Model
PDTB2 PDTB3

F1 Acc F1 Acc

Out-of-subtext 66.72 73.90 70.71 75.31
In-subtext 70.56 77.82 72.79 76.32
SCDN 71.14 78.20 73.33 76.93

Table 2: Test results in ablation study.

employ a weight decay of 1e-2, a batch size of 1,166

and gradient accumulation over 8 steps. We don’t167

extensively tune the hyperparameters.168

All experiments are performed on a NVIDIA169

A100 GPU. Our model implementations are based170

on PyTorch 1 and the Transformers library2.171

3.3 Main Results172

We compare SCDN to the recently-proposed ad-173

vanced models, including 1) decoder-only Chat-174

GPT (Chan et al., 2024) and PIDRA (Yung et al.,175

2024), 2) encoder-only FCL (Long and Webber,176

2022), CP-KD (Wu et al., 2023), SCIDER (Cai177

et al., 2024), and OTMT (Jiang et al., 2024), as178

well as 3) T5-based CG-T5 (Jiang et al., 2021),179

DiscoPrompt (Chan et al., 2023), and IICOT (Lu180

et al., 2023). The decoder-only models take full181

advantage of prompt engineering for IDRR. The182

encoder-only models are effective in representation183

learning for relation understanding. T5-based mod-184

els combine the advantages. More contributions of185

1https://github.com/pytorch/pytorch
2https://github.com/huggingface/transformers

these arts are summarized in Appendix C. 186

Table 1 shows the comparison results on the test 187

set, where the 4-way relation classification perfor- 188

mance on the main relation taxonomy is reported. 189

It can be observed that our SCDN achieves higher 190

F1-score than both the decoder-only and T5-based 191

IDRR models. However, it still fails to outper- 192

form the encoder-only models. This is partially at- 193

tributed to hallucination of LLaMA3 and off-topic 194

results it generated. 195

Besides, we conduct experiments for the 2nd- 196

level taxonomy, where each main relation type is 197

divided into fine-grained relation senses. For exam- 198

ple, the relation type “Contingency” contains the 199

senses of “Conditionality” and “Causality”. In this 200

experiment, SCDN shows promising performance, 201

which is reported in Appendix D due to page limit. 202

3.4 Ablation Study 203

To provide a direct insight into the influence of sub- 204

texts, we conduct an ablation study. Three IDRR 205

models are considered in it, including 1) out-of- 206

subtext generator Mβ which is separately fine- 207

tuned without using subtexts, 2) in-subtext gen- 208

erator Mλ which additioanlly uses the generated 209

subtexts during fine-tuning, and 3) SCDN which 210

uses both Mβ and Mλ, and reconciles them with 211

the confidence-based diagnoser. 212

Table 2 shows the test results for the main re- 213

lation taxonomy. It proves that the utilization of 214

subtexts yields various levels of improvements. Ap- 215

pendix E provides a case study to show the effect. 216
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Subtext Generation Model F1 Acc

GPT-3.5-turbo 71.55 75.98
LLaMA3 w/o Distill 71.07 75.37
LLaMA3 w/ Distill (Partial) 71.66 76.19
LLaMA3 w/ Distill (Whole) 72.79 76.32

Table 3: Contributions from different subtext generators.

Prompt LLM F1 Acc

P1 GPT-3.5-turbo 35.88 41.79
P2 GPT-3.5-turbo 38.30 42.76
P3 GPT-3.5-turbo 39.24 43.72
P1 GPT-4-turbo 44.84 50.07
P2 GPT-4-turbo 46.29 52.21

Table 4: Reliability of Prompts (on PDTB 3.0).

3.5 Comparison among Subtext Generators217

The qualified subtexts are crucial for SCDN. We in-218

vestigate the subtexts generated by different LLMs,219

and verify their effects by our in-subtext model.220

There are three types of LLMs considered, includ-221

ing 1) GPT-3.5-turbo, 2) LLaMA3-8B-Instruct, 3)222

LLaMA3 which is strengthened by teacher-student223

knowledge distillation. During distillation, the sub-224

texts generated by GPT-3.5-turbo for all training225

data are specified as Guidance Data from teacher.226

We use two different-sized guidance data: Partial227

and Whole. In the “Partial” case, we only adopt228

the guidance data which enables the subtext-based229

relation generator Mλ to output correct results. In230

the ”Whole” case, all the guidance data is used.231

Table 3 shows the performance of in-subtext232

IDRR models on the test set of PDTB 3.0, where233

different subtext generators are used. It can be234

observed that, compared to LLaMA3 (w/o distil-235

lation), GPT-3.5 enables the in-subtext model to236

perform better. Furthermore, no matter whether237

“Partial” or “Whole” guidance data is used, knowl-238

edge distillation causes improvements, and the lat-239

ter case improves the in-subtext model more sub-240

stantially. It is surprising that distillation allows the241

weaker LLaMA3 to be more contributive than its242

teacher GPT-3.5. The possible reason is because243

that LLaMA3 takes the advantage of itself when244

absorbing beneficial experience from GPT-3.5.245

3.6 Prompts for Subtext Generation246

The reliability of subtexts relies heavily on the de-247

sign methods of prompts. For example, if we didn’t248

remind LLMs of the ultimate purpose (i.e., being 249

applied for IDRR), they fail to provide reliable sub- 250

texts. In our experiments, we evaluate different 251

prompts as follows: 252

• P1: It contains Q1 and Q2 (Section 2.1) that 253

ask for subtext generation and IDRR in turn. 254

• P2: It replaces the key words in P1 with their 255

different synonyms, e.g., “subtext” is replaced 256

with “implicit meaning”. 257

• P3: It expands P2 by adding a prefix to Q1, 258

where the prefix is an additional question 259

about “whether there truly is a subtext in the 260

considered argument”. This prompt helps to 261

avoid a forcible subtext generation. 262

Table 4 shows the IDRR performance on the 263

development set when the above prompts are sepa- 264

rately used, where GPT-3.5 and 4.0 are considered 265

during the validation process. It can be observed 266

that both synonym replacement and non-forcible 267

subtext generation yield improvements. Accord- 268

ingly, P2 has been introduced into our SCDN for op- 269

timization. However, P3 fails to be used in SCDN 270

as it actually causes performance degradation. For 271

example, by P3, the in-subtext “Single” generator 272

Mβ obtains a F1-score of 71.7% on the test set 273

of PDTB 3.0, causing a performance reduction of 274

about 1.1% (compared to the “Single” case in Table 275

2). This implies that LLaMA3 in Mβ isn’t able 276

to effectively perform reasoning with a relatively- 277

complex Chain-of-Thought (CoT). Besides, P3 also 278

causes severe performance reduction when it is 279

used in SCDN. This is because that a limited num- 280

ber of subtexts are generated by GPT-3.5 due to 281

the constraint from P3, and thus GPT-to-LLaMA 282

distillation falls into the low-resource scenario. 283

4 Conclusion 284

In this paper, we verify that the utilization of sub- 285

texts helps to strengthen the LLMs-based gener- 286

ative IDRR. Experiments demonstrate that recon- 287

ciliation of in-subtext and out-of-subtext IDRR is 288

effective. We also exhibit that distilling a light- 289

weight LLM-based subtext generator is contribu- 290

tive, when the prompt doesn’t raise a complex CoT. 291

In the future, we will investigate the default sub- 292

text which isn’t implied in the given argument. On 293

the contrary, it derives from common-sense knowl- 294

edge. Accordingly, we will convert binary argu- 295

ments analysis to triplet, where the default subtext 296

is regarded as the third non-negligible argument. 297
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5 Limitations298

This study proves the effectiveness of utilizing sub-299

texts for the enhancement of generative IDRR. Nev-300

ertheless, a deeper analysis upon subtexts is still301

required. Our findings reveal that, in some cases,302

the shareable subtext is implied in one argument303

but irrelevant to the other, where the irrelevant ar-304

gument appears as the noise during detecting the305

subtext. In some other cases, the default subtext306

occurs, which is not implied in any argument but307

derives from the common-sense knowledge. How-308

ever, the subtext generation method in this paper309

cannot deal with these two problems. In the fu-310

ture, we will firstly study the common sense based311

default subtext generation. On this basis, we will312

convert the conventional binary arguments analysis313

to triplet, where the default subtext is used as a sup-314

plementary argument. This work will encounter the315

issues of 1) how to determine whether a pair of ar-316

guments are relevant to some default subtexts, and317

what they are, 2) how to detect and generate default318

subtexts conditioned on common-sense knowledge,319

and 3) how to reconcile the utilization of a triple320

of arguments and assign proper attention to them321

during relation discrimination.322
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Relation PDTB2-Top PDTB3-Top
Comparison 31.06 29.97
Contingency 35.21 33.45
Expansion 31.22 29.83
Temporal 31.11 28.53

Table 5: Optimal thresholds for the main relation types.

A Threshold for Confidence Diagnosis509

We set up a threshold for each relation type in510

the taxonomies of IDRR. For example, there are511

4 thresholds provided for the four main IDRR re-512

lation types (i.e., Expansion, Temporality, Contin-513

gency, and Comparison). The adoption of different514

thresholds is because that the varying token lengths515

of relation labels cause unbalanced ranges of aver-516

age confidence scores.517

Let us consider the relation type T as an exam-518

ple. To seek for the optimal threshold θT for T ,519

we empirically observe the T -oriented IDRR per-520

formance curve obtained when different optional521

values are used as thresholds. Within this empirical522

observation, the IDRR generator Mβ and Mλ is523

used to predict relations and confidence scores for524

all the instances that hold a relation of T in the525

training set. And the accuracy AccT is used as the526

performance metric, which is calculated as follows:527

AccT (θ̌) =
n

|DT |
(2)528

where, θ̌ is an optional threshold which is sequen-529

tially sampled from the range of confidence scores530

in the training set. n is the number of argument531

pairs which are given a positive relation prediction532

by Mβ and Mλ, and |DT | is the number of all533

argument pairs which hold the relation T .534

We adopt the optimal threshold θ by maximum535

likelihood estimation on all optional thresholds:536

θT = argmax
θ̌
T
∈θ̌

all

(AccT (θ̌T )) (3)537

Figure 2 shows the curves of AccT changing538

with different thresholds in PDTB 3.0. We also539

present the specific values of the finally adopted540

thresholds θ in Table 5, 6 and 7, where Table 5541

provides the thresholds for the main relation types542

(labeled as “Top”), while Table 6 and 7 give the543

thresholds for the relation senses in the secondary-544

level taxonomies (labeled as “Second”).545

(a) Comparison

(b) Contingency

(c) Expansion

(d) Temporal

Figure 2: Acc
T

on the training dataset with varying
thresholds. The final selected thresholds are marked
with red dots, which corresponds to the highest Acc

T
.
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Relation PDTB2-Sec
Comparison.Concession 28.10
Comparison.Contrast 29.10
Contingency.Cause 30.79
Contingency.Pragmatic cause 29.05
Expansion.Alternative 31.68
Expansion.Conjunction 28.02
Expansion.Instantiation 30.80
Expansion.List 28.48
Expansion.Restatement 27.56
Temporal.Asynchronous 28.12
Temporal.Synchrony 28.25

Table 6: Thresholds for all relation senses of PDTB 2.0.

Relation PDTB3-Sec
Comparison.Concession 28.01
Comparison.Contrast 30.75
Contingency.Cause 32.01
Contingency.Cause+Belief 29.41
Contingency.Condition 30.89
Contingency.Purpose 30.31
Expansion.Conjunction 27.16
Expansion.Equivalence 28.31
Expansion.Instantiation 30.05
Expansion.Level-of-detail 28.44
Expansion.Manner 29.08
Expansion.Substitution 27.96
Temporal.Asynchronous 28.03
Temporal.Synchronous 29.65

Table 7: Thresholds for all relation senses of PDTB 3.0.

B Statistics of PDTB datasets546

We use the benchmark datasets PDTB-2.0 and 3.0547

in our experiments, and follow the common prac-548

tice (Ji and Eisenstein, 2015) to divide each of them549

into training (Train), validation (Dev) and test sets.550

The statistics in the datasets are shown in Table 8551

and Table 9.552

C Related Work553

Recent research has demonstrated that PLMs out-554

perform traditional machine learning methods for555

the IDRR task. Consequently, many studies have556

explored incorporating novel modules into the557

encoder-only transformer architecture to obtain bet-558

ter representations and extract more comprehen-559

sive features from the input. The new added mod-560

ules includes Conditional Variational AutoEncoder561

(Dou et al., 2021), Graph Convolutional Network562

Relation Train Dev Test
Comparison 1,894 191 146
Contingency 3,281 287 276
Expansion 6,792 651 556
Temporal 665 54 68
Total 12,632 1,183 1,046

Table 8: Data statistics of PDTB 2.0.

Relation Train Dev Test
Comparison 1,830 190 154
Contingency 5,896 579 529
Expansion 7,941 748 643
Temporal 1,418 136 148
Total 17,085 1,653 1,474

Table 9: Data statistics of PDTB 3.0.

(Wu et al., 2022), Gated Recurrent Unit (Wu et al., 563

2022), and attention mechanism (Wu et al., 2022; 564

Xiang et al., 2022a; Jiang et al., 2023). 565

On the other hand, some studies applied new 566

training strategies like contractive learning (Long 567

and Webber, 2022; Jiang et al., 2023; Xu et al., 568

2023; Zeng et al., 2024), knowledge distillation 569

(Wu et al., 2023; Jiang et al., 2024), and extra pre- 570

training (Wang et al., 2023). 571

Notably, Zhou et al. (2022) proposed a prompt- 572

based approach that involves connective prediction 573

and answer mapping. Their work paved the way for 574

better leveraging of connectives, like enhancing the 575

input with predicted connectives (Liu and Strube, 576

2023; Liu et al., 2024), or mapping the answers 577

by connectives directly (Xiang et al., 2022b; Zhou 578

et al., 2022; Wu et al., 2023; Wang et al., 2023; 579

Zeng et al., 2024). Additionally, several studies in- 580

vestigated the potential of multi-level hierarchical 581

information for IDRR. These works explored mod- 582

eling the relationships between labels and fusing 583

the global and local information within the multi- 584

level hierarchical structure(Jiang et al., 2023; Xu 585

et al., 2023; Zhao et al., 2023). 586

However, the potential of generative models 587

and LLMs has been relatively underexplored for 588

IDRR(Chan et al., 2024; Omura et al., 2024; Yung 589

et al., 2024). Therefore, our work aims to address 590

this gap by investigating how to effectively utilize 591

LLMs’ reasoning capabilities and incorporate addi- 592

tional relevant information into the input. 593
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Method Backbone Model
PDTB2-Sec PDTB3-Sec
F1 Acc F1 Acc

ChatGPT (Chan et al., 2024) GPT-3.5-turbo 9.27 15.59 - -
PIDRA (Yung et al., 2024) GPT4 - - 25.77 36.98
FCL (Long and Webber, 2022) RoBERTa-base 49.66 61.69 57.62 64.68
CP-KD (Wu et al., 2023) RoBERTa-base 44.77 64.00 50.12 66.21
CP-KD (Wu et al., 2023) RoBERTa-large 47.78 66.41 52.16 67.84
SCIDER (Cai et al., 2024) RoBERTa-base - 59.62 - -
OTMT (Jiang et al., 2024) XLNet-large - 61.06 - -
CG-T5 (Jiang et al., 2021) T5-base 37.76 - - -
DiscoPrompt (Chan et al., 2023) T5-base 43.68 61.02 - -
DiscoPrompt (Chan et al., 2023) T5-large 49.03 64.58 - -
SCDN (ours) LLaMA3-8B-Instruct 46.38 62.46 55.04 64.35

Table 10: Performance of the secondary level classification on PDTB 2.0/3.0.

D Performance on Relation Senses594

Besides of the relation types in the main-level595

taxonomy of PDTB, we additionally evaluate our596

models upon the secondary-level taxonomy. The597

latter taxonomy consists of the fine-grained rela-598

tion senses. Table 10 shows the Macro F1-scores599

and accuracies of our models, as well as the pre-600

vious work that reported the performance on the601

secondary-level taxonomy.602

It can be found that our SCDN achieves promis-603

ing performance, outperforming the T5-base based604

generative models. Nevertheless, SCDN has an605

obvious performance gap compared to the T5-large606

based DiscoPrompt (Chan et al., 2023). Disco-607

Prompt is a strong IDRR model which learns from608

the reliance between relations and implicit con-609

nectives during training. The implicit connectives610

are informative when being used as guidance dur-611

ing training, which allows T5-large to infer rela-612

tions from additional perspectives. By contrast, we613

didn’t use implicit connectives as guidance when614

fine-tuning SCDN. Besides, as shown in Table 11615

and 12, some relation senses in the secondary-level616

taxonomy are given much less available training617

data than others in PDTB 2.0 and 3.0. More seri-618

ously, some arguments of such relation senses fail619

to be given a subtext by our subtext generator. This620

results in the insufficient training towards these621

relation senses when we fine-tune our in-subtext622

IDRR model and SCDN. And this causes severe623

performance degradation.624

Relation Number
Comparison.Concession 180
Comparison.Contrast 1,566
Contingency.Cause 3,227
Contingency.Pragmatic cause 51
Expansion.Alternative 146
Expansion.Conjunction 2,805
Expansion.Instantiation 1,061
Expansion.List 330
Expansion.Restatement 2,376
Temporal.Asynchronous 517
Temporal.Synchrony 147
Total 12,406

Table 11: Counts of secondary level relation types on
the training set of PDTB 2.0.

E Case Study 625

To qualitatively assess the impact of subtexts on 626

the reasoning ability of LLaMA3 for IDRR, we 627

manually examine the test data as well as predic- 628

tions of the Out-of-subtext and In-subtext models. 629

The out-of-subtext IDRR model Mβ predicts re- 630

lations conditioned only on arguments, while the 631

in-subtext IDRR model Mλ combines subtext and 632

arguments, and uses them as clues for relation rea- 633

soning. The following analysis showcases the ben- 634

efits associated with the use of subtexts: 635

Example 1 636

Argument 1: I personally don’t enjoy see- 637

ing players who I remember vividly from their 638

playing days running about and being gallant 639

about their deficiencies. 640
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Relation Number
Comparison.Concession 1,170
Comparison.Contrast 639
Contingency.Cause 4,483
Contingency.Cause+Belief 157
Contingency.Condition 154
Contingency.Purpose 1,102
Expansion.Conjunction 3,584
Expansion.Equivalence 252
Expansion.Instantiation 1,117
Expansion.Level-of-detail 2,493
Expansion.Manner 191
Expansion.Substitution 278
Temporal.Asynchronous 985
Temporal.Synchronous 433
Total 17,038

Table 12: Counts of secondary level relation types on
the training set of PDTB 3.0.

Argument 2: People should be allowed to641

remember players as they were.642

Subtext: The implicit meaning between the643

arguments is that people should be allowed to644

remember and cherish the memories of play-645

ers from their playing days without seeing646

them participate in activities that may dimin-647

ish their legacy or reputation. It suggests a648

desire to preserve the image and impact of649

these players in the eyes of the public.650

Ground-truth: Expansion651

Ouf-of-subtext model: Comparison652

In-subtext model: Expansion653

Example 2654

Argument 1: For a family with taxable in-655

come of $50,000 to pay the same 28% incre-656

mental tax rate as a family with taxable in-657

come of $250,000.658

Argument 2: The 33% bracket should apply659

to all income over the applicable level, not660

just the 5% rate adjustment amount.661

Subtext: The implicit meaning between these662

arguments is that both are advocating for a663

more progressive tax system where higher-664

income individuals pay a higher percentage665

of their income in taxes. Argument 1 suggests666

that the current tax system is unfair because667

a family with a much lower income is paying668

the same percentage of taxes as a family with669

a much higher income. Argument 2 suggests670

that the tax brackets should be adjusted to671

ensure that higher-income individuals pay a 672

higher tax rate on all of their income, not just 673

the amount above a certain threshold. Both 674

arguments imply that the current tax system is 675

not equitable and needs to be restructured to 676

address income inequality. 677

Ground-truth: Comparison 678

Ouf-of-subtext model: Expansion 679

In-subtext model: Comparison 680

Example 3 681

Argument 1: He believes in what he plays, 682

and he plays superbly. 683

Argument 2: His recent appearance at the 684

Metropolitan Museum, dubbed "A Musical 685

Odyssey," was a case in point. 686

Subtext: The implicit meaning between 687

these arguments is that the musician’s belief 688

in his music is evident in his exceptional 689

performance at the Metropolitan Museum, 690

showcasing his talent and skill as a musician. 691

Ground-truth: Expansion.Instantiation 692

Ouf-of-subtext model: Expan- 693

sion.Restatement 694

In-subtext model: Expansion.Instantiation 695
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