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ABSTRACT

The Pinyin Input Method Engine (IME) is widely used for inputting Chinese
characters, but effectively integrating it with powerful large language models
(LLMs) remains a challenge due to issues such as semantic discontinuity and
inefficient training. This paper presents AttnInput, a novel approach that lever-
ages the strengths of the RWKV language model, specifically its linear compu-
tational complexity and ”infinite” context length, to enhance Pinyin IME. Our
method integrates Pinyin information directly into the internal state of RWKV
through a lightweight side network, effectively addressing the semantic disconti-
nuity issue faced by previous LLM-based IMEs. Furthermore, AttnInput utilizes a
pre-training strategy, significantly reducing training data and computational costs
compared to previous methods. Experimental results demonstrate that AttnInput
achieves state-of-the-art performance on abbreviated Pinyin input, especially as
the Pinyin sequence length increases. This efficient design allows us to scale up
to larger models and incorporate longer contexts, further improving accuracy and
user experience.

Figure 1: Illustration of the inference and training process of pinyin IMEs. The abbreviated pinyin
of the Chinese characters ”我好想吃鸡蛋灌饼”(I really want to eat an egg pancake) shown in the
picture is ”W H X C J D G B”. See Appendix B for detailed information.

1 INTRODUCTION

Pinyin Input Method Engine (IME) allows users to input Chinese characters using a standard key-
board. Pinyin is the official romanization system for Chinese, which represents the pronunciation of
Chinese characters using the Latin alphabet.

The advent of GPT models has spurred research into applying large language models to input method
engines. As illustrated in Figure 1(b), most of the previous research that achieve state-of-the-art
performance like PinyinGPT-Concat (Tan et al., 2022) and GeneInput (Ding et al., 2023) simply
concatenate the context and the pinyin sequence to form the prompt for the language model. How-
ever, inserting pinyin sequences disrupts the semantic flow between the prompt and target text, and

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

poses challenges for effectively leveraging pretrained large language models, as their training ob-
jective primarily focuses on predicting the next token. Furthermore, these models are trained in an
SFT manner, indicating that only a small number of pinyin information in each training sample is
learned, leading to a need for extensive training resources and difficulty in increasing context length.
Our work confirms that concat-based method disrupts semantic consistency and leads to inefficient
training. As illustrated in Figure 1(c), pinyinGPT-embed (Tan et al., 2022) demonstrates superior
training efficiency, however, its performance remains suboptimal due to its inability to fully utilize
the pinyin information in the input during inference.

We explored the direct use of pinyin-constrained beam search outputs from large language models as
candidate word lists, resulting in substantial performance improvement. Nevertheless, this method
abandons pinyin information, which leads to a higher probability of prematurely pruning the correct
answer during the initial stages of beam search, particularly when the target’s prefix tokens are
infrequent. This presents opportunities for further improvement.

Therefore, we propose a novel approach named AttnInput to leverage large language models for
input method engine. It addresses the semantic discontinuity of previous methods by integrating
Pinyin information directly into the RWKV’s internal state through a lightweight side network. This
side network uses ladder side-tuning, attaching to the main model without requiring backpropaga-
tion through it, thus saving computational resources. The model is pre-trained, unlike many pre-
vious approaches which use fine-tuning, leading to more efficient use of training data and lower
computational cost. During inference, the model receives both the context and a sequence of abbre-
viated Pinyin, processing them together to predict the corresponding Chinese characters. The use
of RWKV allows for efficient handling of long contexts and Pinyin sequences. Pinyin-constrained
training and beam search are employed to further improve accuracy by restricting predictions to
characters matching the given Pinyin. AttnInput offers the following advantages:

• To the best of our knowledge, it achieves state-of-the-art performance on abbreviated
pinyin.

• In the training stage, it requires significantly less computational resources and training data
compared to previous work.

• It is based on RWKV6(Peng et al., 2024), a linear attention large language model, which is
more suitable for input method engine due to its ”infinite” context length1 and efficiency in
inference.

2 TASK

The input of pinyin input method includes a sequence of Chinese characters W = {w1, ..., wn}
representing the context and a sequence of abbreviated pinyin P = {p1, ..., pm}. Each abbreviated
pinyin is a single English letter, ranging from a to z. The output is a sequence of Chinese characters
O = {wn+1, ..., wn+m}. The output sequence follows the input sequence semantically, and the
pronunciation corresponds to the abbreviated pinyin.

3 MODELS

In this section, we first introduce standard RWKV6 large language model. The vanilla RWKV6
model exhibits competitive performance compared to existing state-of-the-art models in IME tasks,
even when ignoring pinyin information during inference. Afterward, we will introduce the new
model named AttnInput, which can leverage enriched pinyin information during inference while
maintaining efficient training and inference performance.

1The authors of RWKV6 claim that RWKV6 has ”infinite” context length on https://rwkv.com/ due
to the observed continuous decrease in loss as the context length extends beyond the context length used during
training. However, this does not necessarily imply that RWKV6 outperforms Transformer-based models in
long-text understanding or retrieval tasks.

2

https://rwkv.com/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Architecture of the RWKV6 and proposed model, AttnInput.

3.1 RWKV6

As illustrated in Figure 2(a), we choose RWKV6 as the backbone, which is a RNN with performance
comparable to Transformer-based LMs. The RWKV attention aka Time Mix can be written in a
recurrent manner:

X = vT ⊗ k (1)

S′ = S ⊗ diag(w) +X (2)

y = (X ⊗ diag(u) + S)⊗ r (3)

In which, ⊗ is matrix multiplication operator, S is the internal state that similar to the KVCache in
the Transformer, but has a constant size, r controls forgetting, w controls attention, k and v store
and retrieve information, u is content-dependent bias.

3.2 ATTNINPUT

As illustrated in Figure 2(b), we introduce the new model named AttnInput. We use the RWKV6
model as the backbone model and attach a relatively small side network to the backbone model to
extract the pinyin feature and integrate it with information from the context.

We integrate pinyin feature with context information by mapping the former to a fixed-size vector
through a linear layer and multiplying it with the internal state of the RWKV6 model. The formula
is as follows:
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py = S′ ⊗ pr (4)
In which, py is the pinyin-state mixed information, pr is a vector generated from the pinyin infor-
mation, and S′ is the internal state.

3.3 LADDER SIDE-TUNING

As illustrated in Figure 2(b), we employ ladder side-tuning (Sung et al., 2022) to attach side net-
works for mixing pinyin and context information. This approach avoids backpropagating updated
parameters through the backbone network.

Due to the significantly fewer parameters in the side network compared to the backbone network, it
can save a large amount of computation and memory usage for storing activation values, gradients
and optimizer states. See Appendix A for the detailed cost analysis.

3.4 ENCODING PINYIN SEQUENCE

As illustrated in Figure 1(a), for a certain position i in the pinyin sequence, we select this position and
subsequent pinyin Pi = {pi, ..., pm} as the pinyin information input to the model at this position.
Therefore, there is no information interaction between the pinyin information at different positions in
the input. The output Oi at each position i is only related to the text context Wi = {w1, ..., wn+i−1}
and the pinyin information Pi. This ensures the efficiency of training, as each character’s pinyin
information is trained, while also maintaining consistency in the data input during both training and
inference.

To encode the pinyin sequence, we employ a concatenation operation to combine all pinyin embed-
ding vectors into a unified representation. We pad pinyin sequences with zeros to a fixed length,
which is 16 in our experiments. Sequences exceeding this length are truncated. We tokenize pinyin
sequence by mapping each letter to its position in the alphabet.

3.5 EFFICIENT TRAINING

As illustrated in Figure 1(e), the AttnInput model is trained in a pre-training manner, which is similar
to the one used in the large language models. The pinyin sequences at each position are independent,
with no information interaction between them, to ensure consistency during training and inference.
This method potentially enables the model to leverage pinyin information from a greater proportion
of tokens within the training data.

However, for previous concat-based models like PinyinGPT-Concat and GeneInput, the design that
connects pinyin to the context makes it necessary to train them using the SFT method, as shown
in Figure 1(f). Assuming that the length of the context in the training data is n and the length of
the pinyin is m, with n being much larger than m, only the pinyin information of m tokens will be
learned. This suggests that AttnInput potentially exhibits a n

m times improvement in training data
utilization compared to prior approaches.

3.6 PINYIN-CONSTRAINED TRAINING AND INFERENCE

The model is trained using the Pinyin-Constrained Training (Tan et al., 2022) method. The proba-
bility distribution for the next Chinese characters is calculated solely over Chinese characters that
perfectly match the pinyin. The formula is as follows:

P (wi|w<i,pi) =
exp(g(wi|w<i,pi))∑

w∈Vpi,0
exp(g(wi|w<i,pi))

(5)

where g is the output of the model, pi is the pinyin sequence at position i, Vpi,0 is the set of all
possible Chinese characters that match the abbreviated pinyin sequence pi, and w<i is the context
up to position i.

Since abbreviated pinyin can correspond to multiple Chinese characters, for those models mentioned
in this paper including AttnInput, PinyinGPT-Concat, vanilla RWKV6, and RWKV6-concat-lora,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

we use beam search to generate possible character sequences. Each token is generated in a auto-
regressive manner, and only those Chinese characters that perfectly correspond to the pinyin are
considered, in order to improve accuracy. The detailed formula is presented in 5.

4 EXPERIMENT

4.1 SETTINGS

4.1.1 DATASET

We use SkyPile-150B (Wei et al., 2023) to generate training and evaluation dataset, which is a large-
scale and comprehensive Chinese dataset including 150 billion tokens and 620 gigabytes of text data.
SkyPile-150B is not included in the training datasets of the RWKV6 models. The corresponding
abbreviated pinyin sequences are automatically generated using the public Python library, pypinyin2.

The evaluation data is derived from SkyPile-150B, with pinyin lengths ranging from 1 to 16 and
context lengths of 64 ,512 and 1536. Each evaluation set contains 500 context-pinyin pairs, which
are strictly separated from the training data.

4.1.2 TRAINING

We use RWKV6-1.6B, a pretrained RWKV6 model with 1.6B parameters, as the backbone model,
which is fixed during training. AttnInput have a side network with 500M trainable parameters. The
loss function is cross-entropy loss. The max learning rate is 3e-4. The learning rate is decayed by
cosine annealing with a warmup period of 300 steps. The optimizer is AdamW with a weight decay
of 0.01. The batch size is 8. The context length is 1024. The length of pinyin sequence at each
position is randomly selected from [0, 16]. The model is trained for 40K steps on a single RTX
4090D GPU.

To ensure a fair comparison with previous concat-based methods, we also trained a concat-based
model with RWKV6-1.6B, labeled as RWKV6-concat-lora. This model was fine-tuned with LoRA
(Hu et al., 2021) and includes 500M trainable parameters. The training data is the same as the
AttnInput model.

4.1.3 EVALUATION METRIC

We use the precision at top-K as the evaluation metric, which measures if the ground-truth Chinese
character sequence is among the top-K predicted sequences. K is set to 1, 5, 10, and 15.

4.2 RESULTS

In this section, we will present the results of the proposed models for abbreviated pinyin on
the SkyPile-150B dataset. We compare AttnInput with vanilla RWKV6, PinyinGPT-Concat and
RWKV6-concat-lora. GeneInput is not included as its source code or datasets are not publicly re-
leased and it do not show better performance than PinyinGPT-Concat on abbreviated pinyin. All
outputs are generated by Pinyin-Constrained beam search, with a beam size of 16. When testing
pinyinGPT-concat, we used a context window of size 128, as it was trained on text that does not
exceed 128 tokens. The context lengths of 64, 512, and 1536 represent cases of short text, long text,
and text exceeding the context window, respectively.

Figure 3 demonstrates that the proposed AttnInput model consistently outperforms vanilla RWKV6,
PinyinGPT-Concat and RWKV6-concat-lora across most pinyin and context lengths. Several key
findings emerge from the results.

• We can see that when the length of the pinyin sequence increases, the performance advan-
tage of AttnInput over vanilla RWKV6 becomes increasingly significant, as the proposed
model can leverage more information from the pinyin sequence to generate more accurate
Chinese characters.

2https://pypi.org/project/pypinyin

5

https://pypi.org/project/pypinyin


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Evaluation results of the proposed model. The x-axis represents the length of the pinyin
sequence, and the y-axis represents the Top-K accuracy of the model, with K=1, 5, 10, and 15. The
context lengths for the three rows are 64, 512, and 1536, respectively. Detailed numeric results are
shown in 3.

• All models exhibit decreasing accuracy with increasing pinyin sequence length. This is
attributable to the exponential growth in possible character sequences matching a given
abbreviated pinyin sequence, increasing ambiguity.

• Leveraging longer contexts significantly benefits both AttnInput and the vanilla RWKV6,
likely due to the richer information available in such contexts, including names and lo-
cations challenging to infer from pinyin alone. However, PinyinGPT-Concat, trained on
contexts shorter than 128 tokens, struggles to exploit this additional information effectively.

• AttnInput exhibits strong length extrapolation capabilities, maintaining superior perfor-
mance compared to other models even when the context length exceeds the context win-
dow.

• The observed inferior performance of RWKV6-concat-lora relative to vanilla RWKV6 pro-
vides compelling evidence in support of our proposition that concat-based method disrupts
semantic consistency and leads to inefficient training.

4.3 ANALYSIS AND DISCUSSION

We noticed that AttnInput performs slightly worse than vanilla RWKV6 in Top-1 accuracy. This
phenomenon is also observed in previous works (Tan et al., 2022). Our hypothesis is that the train-
ing procedure led to a slight degradation in the original model’s performance. We analyzed instances
where the vanilla RWKV6 model provided the correct answer, while AttnInput failed to prioritize
the target. Our investigation revealed that in these specific instances, the abbreviated pinyin corre-
sponded to numerous contextually appropriate Chinese character sequences, causing AttnInput to
encounter difficulties in accurately ranking them based on probability. This observation supports
our initial hypothesis.

The performance gains observed in other metrics are hypothesized to be a consequence of AttnInput
boosting the scores of the initial target tokens based on pinyin information. This mechanism effec-
tively prevents the early elimination of potential target sequences during beam search, especially
when the initial tokens are relatively rare.
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Table 1: Case study on abbreviated pinyin

Case Predictions
PinyinGPT

-Concat
vanilla

RWKV6 AttnInput

Context: 1998年 汉城举办的
第二十三届
奥运会

(The 23rd
Olympic
Games

held in Seoul)

后重建并得
到二十四届
奥运会
(After

reconstruction
and getting

the 24th
Olympic Games)

汉城举办的
第二十四届
奥运会

(The 24th
Olympic
Games

held in Seoul)

Target: 汉城举办的第
二十四届奥运会
Pinyin: HCJBDD

ESSJAYH
Translation: The 24th

Olympic Games
held in Seoul

in 1998
Context: 首先，问问目前A股
市场的大多数投资者：你选择
购买股票还是基金？阅读
下面的新闻可能会有帮助。

开源证券
最近发布了
一份报告

(KAIYUAN
Securities
recently
released
a report)

可以在其中
就发布了
一份报告

(A report can
be published

within it)

开源证券
最近发布了
一份报告

(KAIYUAN
Securities
recently
released
a report)

Target: 开源证券最近
发布了一份报告

Pinyin: KYZQZJFBLYFBG
Translation: Firstly, ask most
investors in the current A-share
market: Do you choose to buy
stocks or funds? Reading the

following news may be helpful.
KAIYUAN Securities recently

released a report
Context: 磁性测厚法:适用导磁 材料深度放

大尺寸厚度
(Material depth,
enlarged size,

thickness)

材料上的非
导磁层厚度
(Thickness of
non-magnetic

layer on
material)

材料上的非
导磁层厚度
(Thickness of
non-magnetic

layer on
material)

Target: 材料上的非导磁层厚度
Pinyin: CLSDFDCCHD

Translation: Magnetic thickness
measurement method: applicable
to the thickness of non-magnetic

layers on magnetic materials

4.4 ABLATION STUDY

This section describes an ablation study designed to confirm whether the model learns the inherent
relationship between pinyin and text, as opposed to simply improving its general Chinese language
modeling ability. We use the same model configuration, training setup, and dataset as before, but
replace the pinyin sequences with blank ones to ensure the model does not learn from pinyin infor-
mation.

As shown in Figure 3, although this model performs slightly better than the original, it still signifi-
cantly underperforms compared to AttnInput, especially for longer pinyin sequences, indicating that
AttnInput indeed learns and utilizes the information from the pinyin.

4.5 CASE STUDY

We list three cases in Table 1 to compare outputs produced by PinyinGPT-Concat, vanilla RWKV6,
and AttnInput. In case 1 and 2, the vanilla RWKV6 fails to generate the correct answer due to
the presence of uncommon characters at the beginning, whereas PinyinGPT-Concat and AttnInput
succeed by utilizing pinyin information. In case 1 and 3, PinyinGPT-Concat fails as it lacks the
necessary common-sense knowledge. Notably, in all cases, AttnInput consistently produces the
correct output.
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4.6 LATENCY ANALYSIS

To apply the proposed model to real-world scenarios, we need to analyze its latency. Since the
context only expands at the end during the input process, we cache the internal state to avoid repeated
prefill operations. Therefore, the latency is equal to the time it takes to generate one token multiplied
by the length of the pinyin sequence. We tested the time it takes to generate a token under different
beam size settings on a single RTX 4090D GPU, the results are summarized in Table 2.

Table 2: The time it takes to generate one token under different beam size settings

beam size time (ms)
4 19.06
8 19.00
16 19.53
24 24.06
32 29.08

As we can see, with a beam size of 16, the latency is approximately 20ms. Assuming the user
inputs a pinyin sequence of length 4, the latency would be 80ms, which is practical for real-world
scenarios. The latency can be further optimized by using a smaller model or a faster GPU.

5 RELATED WORKS

5.1 CLASSICAL PINYIN IMES

Pinyin Input Method Engines (IMEs) have been extensively studied for decades, with a focus on
improving accuracy and efficiency. Early methods relied heavily on statistical language models,
such as N-gram models (Chen & Lee, 2000), statistical machine translation (Yang et al., 2012) and
Conditional Random Fields (Xia & Cheung, 2016). These approaches often struggled with data
sparsity and lacked the ability to capture long-range dependencies in language.

5.2 NEURAL PINYIN IMES

Recent years have witnessed the successful application of neural networks to Pinyin IMEs. Long
Short-Term Memory (LSTM) networks (Zhang et al., 2019; Huang & Zhao, 2018) and attention-
based neural networks (Huang et al., 2018) have achieved promising results by modeling sequential
data effectively. However, these models face limitations in capturing long-term dependencies and
parallelization during training.

5.3 LARGE LANGUAGE MODELS FOR PINYIN IMES

The emergence of large language models (LLMs) like GPT has opened up new possibilities for
Pinyin IMEs. Recent work has explored the use of LLMs for generating candidate characters based
on Pinyin input (Tan et al., 2022; Ding et al., 2023). However, directly applying LLMs to Pinyin
IMEs presents challenges, including semantic discontinuity caused by inserting Pinyin sequences
and the need for large amounts of training data and computational resources. Our work differs from
previous works in that we are the first one to fully leverage the power of large language models and
train the models to learn pinyin-context relationships efficiently in a pre-training manner, achieving
state-of-the-art performance with minimal training data and computational resources.

6 CONCLUSION

This paper introduces AttnInput, a novel approach for Pinyin IME that effectively integrates Pinyin
information with a large language model, RWKV, for accurate and efficient Chinese character pre-
diction. By addressing semantic discontinuity and reducing computational overhead, AttnInput
achieves state-of-the-art performance on abbreviated Pinyin input. Moreover, the efficient design of

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

AttnInput allows for scaling up to larger models and incorporating longer contexts, paving the way
for even more accurate and context-aware Pinyin input methods. This work signifies a significant
step towards more powerful and efficient integration of LLMs within IMEs, ultimately improving
user experience.
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A COMPUTING COST

Throught out this section, we denote by N the total number of parameters in the backbone RWKV6
model, M the total number of parameters in the side network, L the number of layers, h the number
of heads and d = 64 the dimension of each head. All models are trained with h = 32, L = 24,
N = 1.6B and M = 500M .

The inference FLOPs for each tokenis approximated as follows:

#(InferFLOPs) = 2(N +M) + 9d2hL (6)

since each matrix requires one multiplication and one addition operation and the rwkv attention
requires 9d2h operations(see 1 2 3 4).

The training FLOPs for each token is approximated as inference FLOPs plus four times the total
number of trainable parameters plus the FLOPs for backpropagating in rwkv attention:

#(TrainFLOPs)L = 2N + 6M + 14d2hL (7)

In Full fine-tuning, all parameters are updated, so the training FLOPs for each token is approximated
as follows:

#(TrainFLOPs)F = 6N + 6M + 21d2hL (8)

1− #(TrainFLOPs)L
#(TrainFLOPs)F

= 0.507 (9)

That is, ladder side-tuning saves 50.7% FLOPs in training compared to full fine-tuning.

B A BRIEF INTRODUCTION TO HANYU PINYIN AND ITS ROLE IN CHINESE
TEXT INPUT

Hanyu Pinyin, or Pinyin, is the standard romanization system for Standard Mandarin Chinese. It
employs the Latin alphabet to represent the sounds of Mandarin, aiding in pronunciation and lan-
guage learning. Importantly, Pinyin is not a replacement for Chinese characters, which are the core
written units conveying meaning in the language.

The relationship between Pinyin and Chinese characters can be summarized as:

• Characters as Semantic Units: Chinese characters are primarily logographic, with each
character representing a morpheme or word and carrying meaning.
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• Pinyin as Phonetic Representation: Pinyin indicates the pronunciation of characters but
does not convey meaning directly.

• Homophony and Context: A single Pinyin spelling can correspond to multiple charac-
ters with different meanings due to homophones (same pronunciation, different meanings).
Context is crucial for disambiguation. For example, the abbreviated pinyin ”JDGB” in Fig-
ure 1 can match multiple Chinese phrases, such as ”鸡蛋灌饼” (egg pancake) and ”见到
过吧” (have you seen it before).

• Tones: Pinyin uses diacritical marks to denote the four main tones in Mandarin, which are
essential for distinguishing meaning.

The advent of computers and mobile devices has made Pinyin indispensable for Chinese text input.
Pinyin input methods allow users to type Pinyin on a standard keyboard and then select the corre-
sponding Chinese characters from a list of suggestions. This technology significantly bridges the
gap between the phonetic representation of Pinyin and the character-based writing system.

C EXPERIMENT RESULTS
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Table 3: The numeric table of 3. To keep the table concise, only the average scores across consecu-
tive sets of four lengths are shown.

Context
Length

Pinyin
Length

Evaluation
Metric

PinyinGPT
-Concat

Attn
Input

Vanilla
RWKV6

RWKV6-
ablation

RWKV6
-concat

-lora

64

1-4

P@1 50.8 64.8 67.8 69.0 56.2
P@5 71.1 83.7 84.9 85.7 76.5
P@10 76.8 88.2 88.5 88.8 82.7
P@15 79.6 90.5 89.8 90.2 85.6

5-8

P@1 35.4 52.9 54.7 56.5 36.5
P@5 52.5 71.8 68.5 69.9 52.1
P@10 57.8 75.8 71.8 73.2 56.9
P@15 60.6 77.5 73.1 74.3 58.9

9-12

P@1 26.4 44.2 41.9 44.2 25.3
P@5 41.8 61.5 55.4 57.4 38.0
P@10 46.2 65.7 57.3 59.4 41.0
P@15 48.2 67.6 58.0 60.2 42.2

13-16

P@1 19.6 38.6 35.8 37.3 17.6
P@5 32.5 54.0 46.3 48.6 25.8
P@10 36.2 57.9 47.6 50.0 27.8
P@15 37.9 59.0 48.1 50.4 28.8

512

1-4

P@1 51.6 69.4 72.2 72.8 62.8
P@5 70.7 85.8 86.7 86.8 80.3
P@10 76.4 89.8 89.6 89.6 85.4
P@15 79.0 91.8 90.9 91.0 87.7

5-8

P@1 32.3 57.2 60.2 61.1 41.0
P@5 48.8 76.5 75.6 76.0 60.0
P@10 55.4 80.8 78.9 79.6 65.0
P@15 58.2 82.7 80.5 80.8 67.1

9-12

P@1 24.3 49.1 49.6 51.4 29.8
P@5 38.4 66.9 63.1 65.3 42.6
P@10 42.8 71.3 65.6 67.7 46.6
P@15 45.5 73.0 66.8 68.7 48.5

13-16

P@1 18.7 45.1 44.6 46.4 22.5
P@5 27.9 61.2 55.8 56.5 32.7
P@10 31.6 64.7 57.1 58.0 35.5
P@15 33.6 66.0 58.0 58.6 36.3

1536

1-4

P@1 44.9 68.6 70.2 70.7 61.2
P@5 65.5 85.2 86.4 86.4 78.0
P@10 72.9 89.1 88.4 88.5 83.4
P@15 76.7 91.1 89.7 89.9 85.7

5-8

P@1 27.2 53.9 56.3 57.4 38.8
P@5 43.7 72.4 72.3 72.1 55.7
P@10 50.0 77.4 75.5 75.2 61.7
P@15 52.9 79.5 76.3 76.0 64.2

9-12

P@1 19.5 44.6 46.2 47.5 27.1
P@5 32.8 62.4 61.1 60.7 42.4
P@10 37.2 67.1 63.8 63.1 44.2
P@15 39.4 69.5 65.1 64.2 45.4

13-16

P@1 13.9 41.8 41.6 43.0 18.5
P@5 25.2 58.4 52.9 53.0 30.8
P@10 29.1 62.5 54.9 54.7 33.4
P@15 30.8 64.2 55.4 55.8 34.3
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