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Abstract

Recent advances in large multimodal models have significantly advanced video
comprehension, yet their performance remains limited in first-person scenarios.
The interactive nature of egocentric videos is critical for applications like embod-
ied intelligence, but introduces complex visual contexts that conventional models
struggle to capture. To bridge this gap, we introduce OpenMMEgo with inno-
vations across three dimensions: data, model, and training strategy. To provide
rich spatiotemporal visual knowledge, we curate a large-scale, high-quality dataset
named OME10M, comprising over 8.2M egocentric video QA pairs synthesized
from Ego4D series. We also establish OMEBench, a comprehensive benchmark
for rigorous egocentric understanding assessment. To alleviate the frequent view-
point shifts inherent in egocentric videos, we implement semantic-aware visual
token compression. Further, a curriculum learning strategy is complemented to
foster stable learning across various data complexities. OpenMMEgo consistently
improves the performance of LMMs on egocentric benchmarks without sacrific-
ing general video understanding performance. Notably, Qwen2.5-VL tuned with
OpenMMEgo substantially outperforms other models of the same size in ego-
centric video understanding. The data, weights and training code will be put at
https://github.com/BeingBeyond/OpenMMEgo.

1 Introduction

Despite advance in Large Multimodal Models, showing promise in interpreting well-captured images
and videos (Liu et al., 2023, 2024a; Bai et al., 2023), their ability to understand first-person scenarios
remains limited (Majumdar et al., 2024; Ye et al., 2025). Unlike third-person recordings, egocentric
videos involve the camera wearer as an active participant, with head movements causing frequent
camera rotations and viewpoint shifts, posing unique visuospatial challenges. Given their applications
in areas like robotics and AR/VR (Yi et al., 2024), empowering LMMs to comprehend first-person
videos is urgently needed.

Due to this reason, egocentric video understanding (Grauman et al., 2024; Xu et al., 2025) has
gained increasing attention in recent years. Nevertheless, existing efforts remain in their early stages,
primarily focusing on specialized tasks like retrieval or grounding (Ye et al., 2025). Some recent
works (Ye et al., 2025) convert data from large-scale egocentric datasets (Song et al., 2023) into
question-answering formats for instruction tuning. Yet, these datasets are typically either inaccessible
or rely on text-only labels of coarse-grained event descriptions. For instance, Lin et al. (2022a);
Pramanick et al. (2023) exploit short-term video segments (merely one second), where follow-ups
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are also constrained by high-level visual-text pairwise supervision. This overlooks the essence of
egocentric scenarios, which demands fine-grained observation to model human activities effectively.

To foster this area, we introduce OpenMMEgo a family of state-of-the-art (SOTA) ego-centric large
multimodal models (EgoLMMs), releasing model weights, training data, and learning details. We
start from devising a meticulous data curation framework, which advances prior counterparts in
two key ways: i) multi-level visual supervision and ii) diverse task types. First, unlike existing
action-centric datasets, we address the scarcity of fine-grained visual cues (e.g., object attributes,
scene context, interactions), generate instructional data with both text and RGB-pixel prompts.
Specifically, we use textual annotations to synthesize events or action-related data for high-level
video semantics. In addition, we extract subtle details (e.g., object motions) from raw frames to offer
dense spatial-temporal details for low-level supervision. Second, We incorporate a wide range of
egocentric tasks — spanning spatiotemporal, descriptive, and deductive reasoning — to maximize
model generalization. Based on this framework, we introduce OME10M, a fine-tuning dataset
comprising: 8.2M egocentric video QA pairs covering diverse scenarios and tasks, and over 1M
general instruction samples sourced from web videos. This in-box dataset is tailored to equip LMMs
with robust egocentric video understanding. Additionally, we include OMEBench, a new challenging
benchmark for evaluating egocentric models on complex perception tasks. OMEBench features 4K
multiple-choice questions derived from 372 hold-out videos, enabling assessment of EgoLMMs.

We train OpenMMEgo using a standard pretraining paradigm, enhanced by an innovative design mo-
tivated by a key observation: first-person videos exhibit rich spatiotemporal dynamics due to frequent
camera shifts. Efficiently capturing these dynamics from dense visual cues is thus crucial. Prior work
shows that visual compression not only reduces computational costs (Kim et al., 2022; Choudhury
et al., 2024), but also improves the efficiency of dynamic feature encoding (Shen et al., 2024; Chen
et al., 2024b; Cheng et al., 2024; Jin et al., 2024). Inspired by this, we propose Dual Semantic-aware
Token Compression to derive a compact egocentric representation, DuaSTC comprises two modules:
1) Spatial-redundant Token Merging (STM), which aggregates frame-level tokens into higher-level
semantic entities, enabling processing in a condensed semantic space; ii) Temporal-irrelevant Token
Pruning (TTP), which preserves only motion-salient and semantically critical tokens in the fast frames
for local motion understanding, drawing from SlowFast principles (Feichtenhofer et al., 2019; Xu
et al., 2024; Huang et al., 2024). TTP mitigates noises from egocentric camera shifts, sharpening
focus on dynamic content.

While token compression enhances our model architecture, a key challenge remains: ensuring training
efficacy given the diverse video durations, task types and difficulty levels in our dataset. To address
this, we further devise a Dual Curriculum Learning Strategy (Bengio et al., 2009; Wang et al.,
2021) with two complementary approaches: i) Offline Data Curriculum. We leverage a pre-trained
LMM as the reference to assess sample difficulty and categorize them into three tiers. Training
progresses from easier to harder examples, allowing gradual adaption egocentric video complexities.
ii) Online Data Dropout. During training, we dynamically filter samples based on forward loss,
excluding the most challenging examples when they exceed the model’s current learning capacity.
This dual strategy prevents overwhelming the model in early training stages while maximizing
learning from appropriate-difficulty samples, improving both efficiency and final performance.

Following this systematic exploration, we conduct extensive evaluations on SOTA video LMMs (Li
et al., 2024a; Bai et al., 2025). Our results show that OpenMMEgo consistently enhances egocentric
comprehension while maintaining general video understanding capabilities. Notably, it elevates
Qwen2.5-VL to achieve new SOTA performance across multiple egocentric benchmarks among
models of comparable scale.

2 Related Works

Large Multimodal Models. Built on Large Language Models (Brown et al., 2020; Ouyang et al.,
2022; Touvron et al., 2023) and advnaced vision encoders (Radford et al., 2021; Zhai et al., 2023),
LMMs (Fu et al., 2024c; Cheng et al., 2024; Wang et al., 2025) have demonstrated remarkable
capabilities in vision-language tasks, driving extensive research. Recent progress focuses on model
architecture design (Alayrac et al., 2022; Li et al., 2023, 2024b; Sun et al., 2023), vision-language
alignment (Zhu et al., 2023; Liu et al., 2023), high-quality instruction data curation (Gu et al., 2024;
Chen et al., 2024a; Wang et al., 2023), and evaluation benchmarks (Fu et al., 2024b; Liu et al., 2024b;
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Figure 1: Illustration of OME10M data curation framework (Left) and examples (Right). The action-
relevant knowledge and visual-relevant information are systematically processed with (Multimodal)
LLMs to synthesize Behavior-Based Egocentric QAs and Vision-Centric Egocentric QAs. OME10M
contains both synthesis QAs and web-sourced general video QAs.

Yue et al., 2024a,b). In contrast to third-person view videos, egocentric recordings face unique
challenges like scarcity of open-source video data or long visual contexts that exceed model limits.
To avoid data scarcity, prior research used synthetic data to train video models (Li et al., 2024a), or
adapted image models for video (Xu et al., 2024). Recently, some studies (Chen et al., 2024b; Jin
et al., 2024) have explored to manage the extended contexts from overwhelming frame counts by
frame sampling techniques (Shen et al., 2024; Ye et al., 2025; Song et al., 2024), efficient frame
representation (Li et al., 2024e), and visual token selection or merging algorithms (Shang et al., 2024;
Shen et al., 2024; Zhang et al., 2025). In this paper, we combine a large-scale, diverse video dataset
with novel strategies for efficient visual token reduction, enabling effective context compression
without sacrificing performance on egocentric scenarios.

Egocentric Video Understanding. This has emerged as a vital research area due to its real-life
application. Early studies like Epic-Kitchens (Damen et al., 2018), Ego4D (Grauman et al., 2022),
and Ego-Exo04D (Grauman et al., 2024) focus on proposing new datasets with an increasing scale.
These datasets consist of laboratory or daily videos recorded by head-mounted cameras, which
provide rich first-person collections through crowd-sourced recordings. For evaluation, question-
answering benchmarks such as EgoSchema (Mangalam et al., 2023), EgoPlan (Chen et al., 2023),
EgoTaskVQA (Jia et al., 2022), QaEgo4D (Biarmann and Waibel, 2022), and OpenEQA (Majumdar
et al., 2024) have been developed alongside specialized models for retrieval and recognition, including
EgoCLIP (Lin et al., 2022a), R-VLM (Xu et al., 2023), and Helping Hands (Zhang et al., 2023).
While MM-Ego (Ye et al., 2025) represents initial work on egocentric LMMs (EgoLMMs), it remains
inaccessible to the public. Our work advances the field through novel data curation, model design,
and training recipes, all of which will be open-sourced to support community research efforts.

3 OME10M Data Curation

To establish a robust training foundation, we develop a data synthesis framework that delivers
multi-level, multi-faceted knowledge specifically designed for egocentric scenarios. Our framework
leverages two primary sources: the Ego4D (Grauman et al., 2022) and Ego-Ex04D (Grauman et al.,
2024) datasets, which collectively provide 4,900 hours of egocentric videos capturing diverse daily
activities (e.g., cooking, cleaning, and repairing), along with brief human annotations describing
the events. In addition, we incorporate Ego4D-GoalStep (Song et al., 2023), which offers goal-
oriented dense annotations for over 400 hours of video. By combining human annotations with visual
information from these videos, we synthesize a comprehensive dataset of 8.2M egocentric video QA
pairs, categorized into two major dimensions: Behavior-based QAs and Vision-centric QAs.

Multi-Level Dataset Design. Our design addresses a critical gap: while most egocentric instruction
tuning datasets rely heavily on high-level human annotations (e.g., actions, goals, events), they
overlook low-level visual grounding — contrasting with training samples for LMMs that focus
on basic perceptual signals like object appearances and spatial configurations. This mismatch in
supervision granularity may contribute to LMM’s inconsistent performance across general and



egocentric video tasks. We posit that that robust egocentric understanding, especially of high-
level behavioral semantics (e.g., human intent, procedural goals), requires anchoring in rich low-
level visual cues. To bridge this gap, we construct a multi-level dataset combining high-level
behavior-based supervision with dense, low-level visual facts, which includes behavior-based QA
pairs (human actions, procedural reasoning) and vision-centric QA pairs (granular visual facts:
objects, surroundings, and motion patterns). As shown in Figure 1, this joint alternative creates a
comprehensive knowledge base. We further augment diversity by incorporating open-source general
video QAs to maintain the performance on general video understanding capabilities.

Visual Details Annotation. Generating detailed visual annotations for egocentric videos presents
unique challenges due to current LMM limitation. While direct annotation using Gemini-1.5-
Pro (Team et al., 2024) is possible, we implement a structured pipeline to enhance reliability and
coherence. (1) Pre-annotation: We first extract core visual facts (objects, environments, fine-grained
motions, perspective shifts) from each clip instead of directly generating QA pairs. (2) Segmented
Processing: To reduce cognitive difficulty, videos are divided into 10-second subclips, each of which
is independently annotated with frames sampled at 1FPS. (3) Multi-step Prompting: For each
subclip, we design egocentric-specific prompts that guide the LMM to output in a structured format:
entities, temporal differences, scene setting, and interaction description. Notably, the prompt not only
specifies the expected output format but also serves as a form of egocentric task decomposition. It
explicitly informs the LMM how each component should be reasoned about and linked: i) tracking
identified entities to perceive temporal changes; ii) distinguishing static background from interactive
elements to infer perspective shifts and camera motion; and iii) aggregating temporal differences
to describe scene layout, body movement, and manipulation details. The reasoning path is directly
embedded in the prompt, making annotation a form of structured visual thought, where each step
builds upon the previous one. This design improves the reliability and coherence of the annotations.
Annotation Examples and the prompt are provided in Appendix B.1.

Egocentric QAs Synthesis. With both human and visual annotations in place, we synthesize large-
scale QA pairs that support multi-level supervision. Videos are segmented into clips of various
lengths (10s, 30s, 1min, 3min, Smin) to cover a spectrum of short- and long-term temporal reasoning.
For behavior-based QA, we use human annotations within each video segment as LLM’s input,
along with prompts covering multiple questioning dimensions, including atomic actions, complex
behaviors, and goal-step inference. A total of 3.5M behavior-based QA pairs are synthesized,
including 0.9M multiple-choice questions, 0.4M detailed video descriptions, and 2.2M open-ended
QA pairs. Similarly, for vision-centric QA, we utilize both human and visual annotations within
each segment to guide the synthesis process. Prompts are designed to target diverse visual reasoning
perspectives, including spatial-temporal reasoning, self-motion analysis, object interaction, and vision-
informed behavioral inference. A total of 4.7M vision-centric QA pairs are synthesized, comprising
1.1M multiple-choice questions, 0.5M detailed video descriptions, and 3.1M open-ended QA pairs.
In addition to these synthesized data, we incorporate 1M general video QA pairs from existing
large-scale sources such as LLaVA-Video-178k (Li et al., 2024a) and ShareGPT4Video (Chen et al.,
2024a), resulting in a final dataset of 9.2M QA pairs, which we name OME10M. To ensure quality, we
perform post-hoc filtering based on the predictive loss from an open-source LMM, removing QA pairs
with excessively high loss values. Further details and QA examples are provided in Appendix B.1.

OMEBench. In addition to training data, we also construct a new benchmark with 372 hold-out
videos. Following a similar way of the training data construction, we synthesize 4,000 multiple-
choice QA data, comprising a behavior-based subset and a vision-centric subset, for OMEBench.
This benchmark, concentrating on both event and visual details, serves as a supplement to existing
egocentric benchmarks and can offer useful feedback for model development.

4 OpenMMEgo

To enhance EgoLMMs’ egocentric comprehension using the rich knowledge provided in OME10M,
we target two critical dimensions: model architecture and training strategy. First, we introduce a dual
semantic-aware token compression to handle complex egocentric contents, reducing computational
costs while preserving essential visual information (Section 4.1). Second, we employ a dual curricu-
lum learning strategy to optimize training stability and effectiveness (Section 4.2). Together, these
innovations pave the way for more robust performance in first-person scenarios.
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Figure 2: Illustration of dual semantic-aware token compression. The token compression modules are
plugged between the vision tower and the LLM. Details of Spatial-redundant Token Merging (STM)
and Temporal-irrelevant Token Pruning (TTP) are shown in the right part.

4.1 Dual Semantic-aware Token Compression

Egocentric videos exhibit shift viewpoint changes that complicate visual perception — even stationary
objects may appear differently across frames. While visual representations vary, the underlying
semantics of objects remain consistent throughout the video. This observation reveals two key
properties. The intra-frame semantic consistency indicates spatial redundancy which can be reduced
to alleviate the comprehension burden. The inter-frame temporal consistency provides valuable hints
against viewpoint changes. In this paper, we leverage these properties through: i) Spatial-redundant
Token Merging (STM) which aggregates tokens representing the identical visual elements into high-
level semantic ones; ii) Temporal-irrelevant Token Pruning (TTP) which eliminates semantically
redundant tokens across frames for efficient temporal modeling. Figure 2 shows the illustration.

Spatial-redundant Token Merging (STM). To reduce redundancy in visual tokens, STM aggregates
tokens representing identical visual elements. This not only reduces computational cost by decreasing
token count, but also enhances temporal reasoning by grouping individual patch tokens into higher-
level semantics to correlate these elements across frames. Unlike conventional token merging methods
that aggregate the most similar pairs between the two sets after bi-partition (Bolya et al., 2023; Lee
et al., 2024; Jin et al., 2024), we exploit the localized nature of visual representations where a specific
element is typically represented by its adjacent tokens. Following this, we design STM, a simple
yet effective approach to merge adjacent visual tokens into flexible patch islands with varying sizes
and shapes. Specifically, STM comprises four steps. i) Edge Construction: Build set £ containing
edges between all pairwise visual tokens that are spatially adjacent. Each edge is weighted by cosine
similarity cos(v;, v;), where v; and v; denotes token features. ii) Edge Pruning: Retain only top-£%
weighted edges to form E*, each of which indicates high semantical similarities between adjacent
tokens. iii) Component Detection: Identify connected components in £* via a union-find algorithm;
iv) Token Fusion: Merge tokens within each component into combined semantic tokens.

Temporal-irrelevant Token Pruning (TTP). Viewpoint shifts in egocentric videos challenges
EgoLMMs to maintain consistent visual understanding across frames. While recognizing cross-frame
concept co-occurrence is crucial for viewpoint movement awareness, rapid viewpoint shifts introduce
distinct visual changes even in adjacent frames, leading to noises that obscure temporal dynamics.
To address this, we propose TTP to simplify the visual context using spatially compressed semantic
tokens. Inspired by SlowFast architectures (Feichtenhofer et al., 2019; Xu et al., 2024; Huang et al.,
2024), we process frames in two pathways: i) Slow pathway which retains all tokens for spatial detail
preservation; ii) Fast pathway which preserves only visual elements that co-occur in slow frames,
demonstrating cross-frame invariance to capture temporal dynamics. As Figure 2 illustrates, we
calculate cosine similarities between semantic tokens from each slow frame and subsequent fast
frames. Tokens exhibiting low semantic similarity are considered view-shift noise, while those with
excessive semantic similarity indicate temporal redundancy. TTP prunes both types of tokens, and



retains only semantic tokens within the [r;%, r, %] similarity percentile range. These remaining
tokens maintains crucial visual dynamics cues while eliminating redundant or noisy information.

The synergistic combination of STM and TTP effectively reduces both redundancy and noise in
video representations. This dual approach yields two benefits: i) significantly lowering computational
demands for long video processing, and ii) enabling the model to better focus on learning meaningful
spatiotemporal relationships between semantic entities.

4.2 Dual Curriculum Learning Strategy

Unlike previous counterparts, our training dataset OME10M features unique challenges due to its
diverse video durations, viewpoint changes, task types and multiple difficulty levels. To address the
complexity, we implement this training strategy based on Bengio et al. (2009) combining both offline
and online approaches to ensure stable and effective model training.

Offline Data Curriculum. We first pre-assess the difficulty of each sample in OME10M, using a
pretrained LMM like Qwen2-VL (Wang et al., 2024) as the reference model. Each sample’s difficulty
is quantized by its forward loss and categorized into three levels easy, medium, and hard, based on
loss percentiles. We train OpenMMEgo through three stages with increasing difficulty, each of which
involves different data recipes. Due to space limitation, more details can be seen in our Appendix A.2.

Online Data Dropout. To further enhance learning efficiency, we introduce this online strategy
that dynamically filters challenging in-batch samples during training. For each forward pass, we
compute per-sample losses and selectively exclude the hardest samples — those with the highest
loss values — from the subsequent backward pass. Formally, given the average batch loss [ and
the loss [; for the i-th sample, the dropout probability is defined as p; = Clip{« - (; — {),0,1}. By
iteratively pruning overly difficult samples, this online strategy ensures the model prioritizes samples
with higher learnability at its current training state, fostering more efficient optimization.

S Experiments

5.1 Experimental Setup

Implementated Details. To evaluate the effectiveness of OpenMMEgo, we apply it to two state-of-
the-art 7B video MLLMs, LLaVA-Video (Zhang et al., 2024b) , and Qwen2.5-VL (Bai et al., 2025),
to train two variants of OpenMMEgo. For visual token compression, we set k£ = 35 for STM and
71 = 35 and rj, = 95 for TTP. To enhance offline difficulty estimation in dual curriculum learning,
we leverage two additional models, LLaVA-0V-7B (Li et al., 2024a) and Qwen2-VL-7B (Wang et al.,
2024), and compute a combined loss from both to derive the final difficulty score for each training
sample. The hyperparameter « for online in-batch data dropout is set to 0.3. In our implementation,
each video is processed as up to 192 frames (resized 384 x 384), with a maximum visual token
context length of N = 13, 440. Following the training framework of LLaVA-Next 2, we train both
variants for 1 epoch with a global batch size of 128 across 128 NVIDIA A800 GPUs.

Baselines. To provide a comprehensive evaluation, we compare our models with a series of state-of-
the-art open-sourced video MLLMs of similar scale. Most relevant is MM-EGO (Ye et al., 2025), an
EgoLLMM built upon LLaVA-OneVision (Li et al., 2024a). Although MM-EGO is not yet publicly
available, we include its reported performance for comparison.

5.2 Main Results

We assess OpenMMEgo from two aspects: i) its effectiveness in enhancing egocentric video under-
standing, and ii) its potential trade-offs in general video understanding capabilities after egocentric
adaptation. To systematically evaluate these aspects, we conduct comprehensive benchmarking
against SOTA and open-sourced video LMMs across representative question-answering tasks.

Egocentric Video Understanding. To thoroughly evaluate improvements on this aspect, we
assess OpenMMEgo on five multiple-choice QA benchmarks focusing on egocentric scenarios. We
use EgoSchema (Mangalam et al., 2023) for comprehensive evaluation, while the validation set

*https://github.com/LLaVA-VL/LLaVA-NeXT



Table 1: Comparisons with state-of-the-art LMMs on egocentric video understanding tasks. We
evaluate accuracy (%) across 5 multiple-choice QA benchmark, with the best results highlighted
in bold. For egocentric-oriented LMMs, we report the performance gap relative to their initialized
LMMs in parentheses, where positive improvement are underlined.

EgoSchema EgoPlan QAEgo4D EgoTaskVQA OMEBench (eh) OMEBench (vis.)

Chat-UniVi (Jin et al., 2024) 45.1 22.1 36.2 354 25.1 23.7
VideoLLaMA?2 (Cheng et al., 2024) 51.7 28.9 474 44.0 31.2 343
VideoChat2 (Li et al., 2024c) 54.4 26.2 43.6 45.2 32.5 35.8
LLaVA-OneVision (Li et al., 2024a) 60.1 324 55.2 53.6 46.7 40.5
Qwen2-VL (Wang et al., 2024) 66.7 39.2 55.4 54.1 48.1 45.3
LLaVA-Video (Zhang et al., 2024b) 57.3 37.5 52.2 50.3 47.5 443
InternVL2.5 (Chen et al., 2024c) 51.5 32.1 51.4 48.5 44.3 40.2
Qwen2.5-VL (Bai et al., 2025) 65.0 45.2 59.4 53.7 55.3 49.4
VideoChat-Flash (Li et al., 2024d) 64.3 40.8 62.4 54.8 57.1 54.5
MM-EGO (Ye et al., 2025) 69.0 (+8.9) - - - - -
OpenMMEgo (LLaVA-Video) 65.8 (+8.5) 46.7 (+9.2) 62.0 (+9.8) 55.4 (+5.1) 64.4 (+15.0) 59.3 (+15.7)
OpenMMEgo (Qwen2.5-VL) 69.3 (+4.3) 50.2 (+5.0) 65.6 (+6.2) 56.2 (+2.5) 65.7 (+10.4) 63.2 (+13.8)

of EgoPlan (Chen et al., 2023) and the closed test set of QAEgo4D (Di and Xie, 2024) specialize
in assessing goal-step reasoning and episodic memory, respectively. To evaluate generalization
across video sources beyond Ego4D, we evaluate on the indirect test set of EgoTaskVQA (Jia
et al., 2022) using LEMMA (Jia et al., 2020) videos. Additionally, our OMEBench provides in-
domain evaluations with two splits: behavior-based QAs (OMEBench .y, y) and vision-centric
QAs (OMEBenchy ), aligned with OME10M’s data synthesis pipeline. We conduct zero-shot
evaluations on all benchmarks except OMEBench. As shown in Table 1, OpenMMEgo significantly
outperforms its base models across all benchmarks, demonstrating the ability to capture egocentric
video knowledge from OME10M and generalize effectively. Notably, The Qwen2.5-VL variant of
our model surpasses all other LMMs of comparable size.

General Video Understanding. We fur-
ther investigate how introducing egocen-
tric video knowledge affects general video
understanding. To this end, we evalu-

Table 2: Comparisons with state-of-the-art LMMs on
general video understanding tasks. We provide accuracy
(%) and best results highlighted in bold as well.

ate OpenMMEgo on the following bench- Video-MME MVBench PerceptionTest
marks: Video-MME (Fu et al., 2024a)
(w/o subscripts), MVBench (Li et al., ~ChacUniVi 40.6 - -
> . " VideoLLaMA?2 47.9 54.6 514
2024c), and PerceptionTest (Patraucean  videoChat2 395 60.4 473
et al., 2023), which measure models’ ca-  LLaVA-OneVision 58.3 56.7 57.1
Tities in vi : _ Qwen2-VL 63.3 67.0 62.3
pablhtles in video perception, reason- " 03 208 P
ing, and related aspects. The results on  nemvi2.s 64.2 7.0 68.2
these benchmarks are presented in Ta-  Qwen2.5-VL 65.1 69.6 70.5
VideoChat-Flash 65.3 74.0 76.2

ble 2. When compared with the base
model before adaptation, OpenMMEgo
N MM-EGO 57.0 (-13) - -

maintains stable performance on general  openMMEgo (LLaVA-Video) 63.4 :0.1) 70.6(:02)  68.1 :02)
benchmarks, with only minor fluctuations ~ OpenMMEgo (Qwen2.5-VL)  65.0 (:0.1) 70.8 (+12) 71.2 (30.7)
— slight drops on MVBench for LLaVA-
Video and on Video-MME for Qwen2.5-
VL, alongside positive gains elsewhere. We attribute this to our well-designed training strategies
based on dual curriculum learning. Notably, MM-EGO, initialized from LLaVA-OneVision, exhibits
a more pronounced performance decline on Video-MME compared to its base model. This contrast
underscores the advantage of OpenMMEgo’s plug-in adaptation, which minimizes interference
with general video understanding. Moreover, OpenMMEgo-Qwen2.5-VL achieves performance
on par with state-of-the-art LMMs. In summary, our work effectively enhances egocentric video
understanding without compromising — sometimes even improving general video comprehension.

Additional Baselines and Benchmarks. To complement the main results, we provide additional
experiments with new baselines and benchmarks in Appendix D.1. The new baselines include



Table 3: The results of ablation experiments on data components and curriculum learning of Open-
MMEgo with OpenMMEgo-Qwen2.5-VL. We report the accuracy (%) of multiple-choice QAs
on 5 egocentric video benchmarks, and the average accuracy (%) on 3 general video benchmarks
(Video-MME, MVBench, and PerceptionTest) is reported under ‘Gen. Ben.’. The performance gap
of each ablation compared to OpenMMEgo-Qwen2.5-VL is shown in parentheses.

EgoSchema  EgoPlan  QAEgo4D EgoTaskVQA OMEBench behy OMEBench vis)  Gen. Ben.

w/o Behavior-Based QAs  66.1 (-3.2)  48.1(-2.1) 64.4 (-1.2) 54.8 (-1.4) 58.6 (-7.1) 59.0 (-4.2) 68.5 (-0.5)
w/o Vision-Centric QAs 66.5(-2.8) 45.1(-5.1) 624(32) 55.4 (-0.8) 59.4 (-6.3) 52.1 (-11.1) 68.3 (-0.7)
w/o General Video QAs 67.6 (-1.7)  49.4(-0.8)  65.0 (-0.6) 55.9(-0.3) 63.6 (-2.1) 60.2 (-3.0) 67.9 (-1.1)
w/0 Online Curriculum 679 (-1.4) 503 (+0.1)  63.6 (-2.0) 54.9 (-1.3) 63.7 (-2.0) 60.1 (-3.1) 68.2 (-0.9)
w/o Offline Curriculum 67.2 (-2.1) 48.7 (-1.5)  64.8 (-0.8) 53.5(-2.7) 60.6 (-5.1) 59.0 (-4.2) 69.3 (+0.3)
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Figure 3: The performance of OpenMMEgo-Qwen2.5-VL on benchmarks across training dataset
scales (left) and token compression variants (right). In the left chart, each colored line corresponds
to the trend of one benchmark. In the right radar chart, we report the performance of OpenMMEgo
variants trained with 1.6M QA pairs sampled from the dataset due to the resource limit.

closed-source and synthetic-data models for fairer comparison on egocentric tasks, while the new
benchmarks cover datasets beyond Ego4D to assess broader generalization.

5.3 Ablation Study

We conduct comprehensive ablation experiments to investigate the impact of each part in OpenM-
MEgo on egocentric video understanding and general video understanding. The ablation experiments
are performed with OpenMMEgo-Qwen2.5-VL, and the results are demonstrated in Table 3 and
Figure 3. We evaluate the performance of each ablation on the same benchmarks as in Section 5.2.

Q1: Whether all of the components in OME10M are essential and effective? The results
in Table 3 show that excluding any sub-dataset leads to a noticeable drop in performance across
the benchmarks, underscoring the significance of all three components in OME10M. Notably, the
removal of vision-centric egocentric QAs results in the most pronounced decline, nearly halving
the improvement observed on the in-domain OMEBench and even yielding performance inferior to
the base model Qwen2.5-VL on EgoPlan. Featured with more vision-centric facts, vision-centric
egocentric QAs may act as a pivotal bridge, assisting models to aggregate fundamental visual elements
into higher-order, behavior-oriented knowledge within the egocentric perspective.

Q2: Whether the LMMs benefit consistently from scaling up the training dataset ? Given that
all the synthesized data originates from the Ego4D dataset family and constitutes a major portion of
OMEI10M, we evaluate the performance of the models trained with different data scales. As shown in
Figure 3, the model exhibits steady performance gains across all benchmarks as the training data scale
increases. Notably, the model does not suffer from overfitting as the data scale grows, which reflects
the effectiveness of the data synthesis. Through a multi-level synthesis framework, OpenMMEgo
provides rich and diverse visual supervision to continuously empower the LMMs.
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Figure 4: Visualization of the token compression process on two video clips with OpenMMEgo-
LLaVA-Video.

Q3: Whether both of the curriculum learning strategies facilitate better data utilization? We
exclude one curriculum strategy at a time and report the performance in Table 3. The results show
that relying on a singular approach leads to a degradation in overall performance, which implies that
the two curriculum learning strategies function complementarily. Thus, the improvements achieved
by OpenMMEgo in egocentric video understanding stem not merely from increased data volume but
from the effective utilization of data diversity and richness.

Q4: Whether the visual token compression modules contribute to performance? We conduct
ablation experiments on the two visual token compression modules in OpenMMEgo. Since different
compression strategies support varying maximum numbers of video frames, we evaluate each
configuration under its maximum allowable frame length, meaning that the comparison is made under
approximately equal total visual token budgets. As shown in Figure 3, introducing the STM module
into the uncompressed model leads to consistent performance gains across benchmarks. Further
adding TTP on top of STM brings additional improvements. However, directly applying TTP without
STM yields mixed results, with 3 of the benchmarks improving and the others declining. As TTP is
designed based on semantic entity grouping, which may not hold in the absence of STM and thus
introduces noise. These findings suggest that blindly increasing the number of input video frames
does not necessarily improve performance. Instead, performance gains arise from selective attention
to critical visual information. In this regard, the combination of STM and TTP proves effective.

We also report additional analyses on model design in Appendix D.2. These include comparisons
with alternative strategies for token compression and curriculum learning, as well as hyperparameter
ablations of key components.

5.4 Token Compression Cost vs. Benefit

We further investigate the computational trade-off of our compression design. To ensure fairness, we
normalize the inference time of Qwen2.5-VL without any compression of OpenMMEgo to 1.0 and
report relative cost for other variants. As shown in Table 4, applying STM or TTP alone moderately
increases the maximum supported frames (from 64 to 106 or 91), with inference time rising to 1.31 x
and 1.19x respectively. When combining STM+TTP, OpenMMEgo processes up to 192 frames,
which is nearly three times the base model, while the inference cost is only 1.47x. This demonstrates
that our joint compression strategy yields a highly favorable cost—benefit tradeoff, enabling longer
egocentric sequences to be handled within practical budgets.

Table 4: Computation overhead and maximum supported frames under different compression settings.
Inference time is normalized to the base model without any compression (w/o STM+TTP), set as 1.0.

Variant Max Frames Normalized Inference Cost
Qwen2.5-VL 64 1.00
Qwen2.5-VL w. TTP 106 1.31
Qwen2.5-VL w. STM 91 1.19
OpenMMEgo (STM+TTP) 192 1.47




3 Q1: Where are the bags and piece of clothing hanging? : Q2: What does the camera-wearer first do after throwing
away an empty plastic bag?
@ OpenMMEgo: The bags and clothing are hanging on the @ OpenMMEgo: The camera-wearer first puts the scissors on
wall above the trash cans. the counter back into the drawer below.

3 Q3: Why does the camera-wearer open the cabinet under the g Q4: Which hand does the camera wearer use to discard the

counter? small piece of spring onion?
Q OPenMMEgo: To retrieve a knife for cutting the spring Q OpenMMEgo: The camera wearer discards the spring onion
onions. piece with the left hand.

Figure 5: QA examples of OpenMMEgo-Qwen2.5-VL on a two-minute egocentric video clip. The
model can answer these questions regarding environmental understanding, temporal reasoning, goal-
step reasoning, and action detail perception.

5.5 Case Study

In this subsection, we pose some specific cases for analysis.

Token Compression Visualization. We visualize the token compression process in OpenMMEgo
on two video clips with OpenMMEgo-LLaVA-Video in Figure 4. In the STM, tokens corresponding
to patches with similar semantics are merged together. In the TTP, tokens related to local motion on
fast frames are retained, such as the tokens related to the hand in the top case. Even in the bottom
case, where there is a significant perspective shift and even noise, TTP still retains some tokens that
can be used for motion understanding, such as the items on the shelf and the blurred checkout counter
by the door. This reflects that the semantic-aware visual token compression module in OpenMMEgo
effectively compresses the visual context across different scenes.

QA Examples of OpenMMEgo. For a better understanding of our model capabilities, we present
examples of generated results from OpenMMEgo-Qwen2.5-VL. As shown in Figure 5, we propose 4
questions over a two-minute egocentric video clip, which is sourced from Ego4D and is not included
in the training data. The questions are designed to examine the model’s abilities in environmental
understanding, temporal reasoning, goal-step reasoning, and action detail perception. Answering
these questions requires capturing basic visual information, perceiving actions from the video,
and performing some reasoning. OpenMMEgo-Qwen2.5-VL can answer these questions well,
demonstrating its capabilities in egocentric video understanding.

6 Conclusion

In this paper, we present OpenMMEgo to enhance LMMs in egocentric video understanding from data,
model, and training aspects. We construct a large-scale dataset, OME10M, containing 8.2M egocentric
video QA pairs synthesized from Ego4D series. We also introduce a benchmark, OMEBench, for
comprehensive evaluation of EgoLMMSs. To alleviate the frequent perspective shifts in egocentric
videos, we implement semantic-aware visual token compression and employ a curriculum learning
approach to foster stable learning across various data complexities. Our experiments on 7B size
LMMs demonstrate that OpenMMEgo significantly improves the performance LMMs on egocentric
benchmarks without sacrificing general video understanding performance. Notably, Qwen-2.5-
VL tuned with OpenMMEgo outperforms other models of the similar size in egocentric video
understanding.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately summarize the paper’s key contribu-
tions across data, model, and training strategy, without overstating the scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical results are involved.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details are clearly included in the paper, and the work will be fully open-
sourced after publication.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: In the abstract.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to the experiments section and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Too many resources are needed to run experiments multiple times.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

18


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The main resources consumption are included in the experiments section.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]
Justification: Not relevant.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Not relevant.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: Not included in the work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All properly cited.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer:
Justification: Document will be provided after publication.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Not relevant.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not relevant.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: Used for article polishing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22


https://neurips.cc/Conferences/2025/LLM

A Implementation Details

A.1 Training Details

We follow the training framework of LLaVA-Next *, using a learning rate of 1e~° and a warmup
ratio of 0.03 throughout the entire instruction tuning process. As for the based models, we use the
version of LLaVA-Video-7B-Qwen2 * and Qwen2.5-VL-7B-Instruct > respectively. The training
process is conducted on 128 x A100 GPUs with the hyperparameters listed in Table 5. With at most
5 QA pairs on the same video clip integrated in one single data point, the whole training process
takes 31 hours for 1 epoch.

Table 5: Training hyperparameters for instruction tuning.

Hyperparameter Value
Global Batch Size 128
Frame Number 192
Input Resolution 384
Learning Rate le™®
Weight Decay 0
Warmup Ratio 0.03
Learning Rate Scheduler cosine
Numerical Precision bfloat16
Epochs 1

Max Sequence Length 32768
Max Visual Context Length 13440

A.2 Curriculum Details

In our offline curriculum learning, we quantify the difficulty of each data via the loss value on capable
LMMs. To refine our dataset, we first exclude data points exhibiting excessively high loss values,
with a threshold set at 3.0 in our implementation. Similarly, for benchmark construction, we select
the 4,000 QA pairs with the highest loss values, constrained to those below 3.0. According to the loss
values, the filtered dataset is divided into three subsets in equal size, easy, medium, and hard. We
then organise the datasets for a three-stage training, with the overall difficulty increasing as the stages
progress. The specific recipe for each stage is presented in Table 6.

Additionally, the distribution of difficulty scores across the three splits of OME10M is depicted in
Figure 6. According to our difficulty metric, all three splits exhibit a long-tail distribution. Notably,
the general video QAs generally exhibit lower difficulty compared to egocentric QAs. Within the
egocentric data, the vision-centric egocentric QAs exhibit relatively lower difficulty, with a more
even distribution across various difficulty levels, in contrast to the behavior-based egocentric QAs.
This distribution pattern suggests that Vision-Centric Egocentric QAs are more amenable to learning,
as they incorporate fundamental visual facts, thereby partially bridging the gap between Egocentric
QA and General Video QA.

Table 6: Data partition for each training stage.

Easy Medium Hard

Stage-1  60% 30% 10%
Stage-2  35% 50% 15%
Stage-3 5% 20% 75%

3https://github.com/LLaVA-VL/LLaVA-NeXT
*https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2
>https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
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Figure 6: Distribution of the difficulty scores for offline curriculum learning over the 3 splits of
OME10M. Dashed lines indicate the tri-quantile points of the difficulty scores used to split the dataset
into easy, medium, and hard subsets.

A.3 Egocentric Benchmarks

In addition to our OMEBench, we also conduct experiments on several open-source egocentric
benchmarks for a thorough evaluation in egocentric video understanding.

EgoSchema. A long-form egocentric video QA benchmark sourced from Ego4D, designed to assess
temporal reasoning over 3-minute clips, with a focus on high-level activity understanding through
multiple-choice questions.

EgoPlan. A goal-oriented benchmark that evaluates planning ability in egocentric contexts by
predicting the next plausible action in a task sequence. We adopt the validation set for evaluation.

QAEgo4D. A egocentric benchmark derived from Ego4D, targeting episodic memory in first-person
videos. Models are required to select concise, factual answers from a fixed vocabulary. We use the
closed-set version of QAEgo4D for evaluation.

EgoTaskQA. A diagnostic benchmark based on the LEMMA dataset, designed to assess goal-directed
reasoning through four types of questions: descriptive, predictive, explanatory, and counterfactual.
We use the indirect test set to increase evaluation difficulty. To enable consistent evaluation, we
convert the open-ended questions into a multiple-choice format by prompting Gemini-1.5-pro to
generate 2—4 distractor options based on the correct answer.

B Dataset Details

B.1 Data Synthesis Framework

In this section, we describe the details of the data synthesis framework. First, we segment the videos
into clips spanning the range of 0-5 minutes, specifically 10s, 30s, Imin, 3min, and Smin. These
clips serve as the QA targets of OME10M. We utilize the Gemini-1.5-pro to generate QA pairs for
the clips in two manners, respectively producing behavior-based QAs and vision-centric QAs.

For behavior-based data synthesis, we provide all the human annotations associated with each
video clip to the Gemini-1.5-pro for QA generation. To enhance the quality of the generated
questions, we predefine several question types, which can be categorized into three main levels: (1)
atomic actions, including action recognition, interactive object grounding, action temporal reasoning,
and action counting; (2) chunked behaviors, where atomic actions are aggregated into descriptive
behavior paragraphs; and (3) goal-step reasoning, encompassing goal analysis, next-step prediction,
and precondition identification. The human annotations relevant to each video clip are iteratively
provided to Gemini-1.5-pro multiple times, prompting separate data synthesis from these distinct
levels. Besides the predefined aspects, we also prompt Gemini-1.5-pro to generate free-form QAs
based on the information. The prompt of behavior-based data synthesis is provided in Figure 7 and
Figure 10.
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For vision-centric data generation, we first segment the original videos with 10-second intervals,
which are then densely annotated with spatial-temporal information relevant to vision-centric analysis.
Specifically, each short clip is frame-extracted at 1 fps, and both the extracted frames and correspond-
ing human annotations are input into Gemini-1.5-pro for vision-centric annotation. In the system
prompt, we include necessary step-by-step reasoning guidance, which covers the following:

1. Analyze the spatial location, shape, color, and size of all objects in each frame.

2. Compare adjacent frames, identifying the changes in the background objects to annotate
the perspective shift between frames. Infer motion information, such as whether the camera
wearer is moving or turning in a specific direction, based on perspective shifts.

3. Describe the scene in detail according to the spatial relationships among the objects.

4. Annotate the action descriptions to specify the interactive objects and their interaction
details.

The prompt used for visual annotation synthesis is provided in Figure 8.

Based on the four-dimension vision annotations at the granularity of 10-second segments, we generate
vision-centric QA data in a similar manner. We also specify several question directions for generating
vision-centric QAs: (1) spatial-temporal reasoning, focusing on object features, object relationships,
and scene descriptions; (2) self-motion analysis, mainly questioning about the motion of the camera
wearer reflected by perspective changes; (3) object interaction, querying the features and details
of the interacting objects; and (4) vision-injected behavior, which incorporates the question types
in behavior-based QAs but requires the model to integrate annotated visual information in the
synthesis QA. The vision-centric annotations, together with corresponding human annotations, are
fed to Gemini-1.5-pro in the same manner as the behavior-based data synthesis. The prompt of
vision-centric data synthesis is provided in Figure 9 and Figure 10.

B.2 OME10M and OMEBench Examples

We provide more examples of the synthesized QA pairs in OME10M. As shown in Figure 11 (Left),
the generated QAs cover a wide range of topics in egocentric videos, including movement analysis,
causal reasoning, environmental understanding, next-step prediction, detailed action description.
Additionally, we also provide examples from OMEBenchtogether with the corresponding answers
from OpenMMEgo-Qwen2.5-VL and Qwen2.5-VL. As shown in Figure 11 (Right), OpenMMEgo-
Qwen2.5-VL is able to answer the questions correctly while Qwen2.5-VL fails to do so. These exam-
ples involve the capability of environmental understanding, action recognition, temporal grounding,
and object motion perception. The outperformance of OpenMMEgo-Qwen2.5-VL over Qwen2.5-
VL in these examples indicates the effectiveness of our method in enhancing the egocentric video
understanding capability of MLLM:s.

C Additional Related Works

Visual Token Merging. Visual token merging has demonstrated significant effectiveness in improving
representation efficiency while reducing computational costs, initially in image-classification tasks.
Key techniques include similarity-based merging (Bolya et al., 2023), learned merge-ratio (Feng and
Zhang, 2023), learned threshold-based merging and pruning (Bonnaerens and Dambre, 2023), decou-
pled embedding modules (Lee and Hong, 2024), and depth-aware spatial token aggregation (Huang
et al., 2025). These approaches have since been extended to video inputs, with innovations such as
learnable spatiotemporal merging (Lee et al., 2024), spatial-temporal token selection (Wang et al.,
2022), and temporal interpolation (Zhang et al., 2024a). Similarly, in large multimodal models
(LMMs), token compression has been adopted to improve inference efficiency and handle long
contexts, including methods based on static pixel token reduction (Zhang et al., 2025), cross-modal
querying reduction (Shen et al., 2024), and hierarchical compression (Li et al., 2024d). Building
on these advances, we propose a method specifically designed for egocentric videos, which present
unique challenges due to dense visual cues and frequent camera motion. We introduce a dual-branch
compression strategy that restricts spatial token merging to adjacent tokens for preserving semantic
entity boundaries, and performs temporal pruning over entity-aligned tokens in a SlowFast-inspired
view to retain motion-salient information.
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/
Input & Task
You are tasked with generating high—quality.[ Question-Answer (QA) pairs J [Multiple—Choice Questions (MCQs) J to evaluate
participants’ understanding of egocentric videos. Instead of raw video input, you are provided human annotations of the atomic
actions are also provided to you. Some marks are used in the narrations: '#C' for the camera wearer, '#not sure' for the
uncertain information, '#summary' for the summary of the narration sequence, '#0O' for other action conductors.
Your task is to generate question-answer pairs that probe the participant’s comprehension of visual, temporal, spatial, causal,
motor, and interactional aspects of egocentric video, based on the human annotations.

Each question must have one correct answer and three plausible distractors. The distractors should be confusing but
incorrect, grounded in elements that appear in the video but do not satisfy the question, or artificial elements that could

reasonably be inferred but are wrong.

Guidelines:

1. Question Scope: You should generate questions about {question_scope}. You should generate appropriate questions in

these angles or their composition.
2. Question-Answer Quality:

The generated questions should vary in complexity and scope.
Across the generated QA pairs, ensure coverage of diverse
question angles within the assigned dimension. Avoid
producing repetitive patterns or overly similar question
formulations. Some questions should target fine-grained
recognition and result in short, factual answers. Others should
require reasoning across multiple behaviors, resulting in
longer, integrative answers. Both short-form and long-form
questions must be present in each generation batch. For the
diversity of questions, only part of the information should be
involved in each QA pair. Though the answers may be long,
the questions should be short and concise to hit the nail on the
head.

(The generated questions should vary in complexity\

and scope. Across the generated MCQs, ensure
coverage of diverse question angles within the
assigned dimension. Avoid producing repetitive
patterns or overly similar question formulations. Some
questions should target fine-grained recognition and
others should require reasoning across multiple
behaviors. For the distractors:

a) Distractors must be plausible in the scene or event.
b) They should differ subtly from the correct answer,
e.g., similar object, wrong time, incorrect goal.

\c) Avoid obviously false or out-of-scope distractors.

3.No Answer Leakage: The answer must not be directly inferable from the question text alone. Avoid phrasing that embeds
hints, reuses descriptive terms from annotations, or overly specifies entities or outcomes. The video must be watched to
answer.

4. Answer Certainty and Grounding: Each question must have an unambiguous correct answer that is fully inferable from
the structured annotations. Do not include speculative or uncertain phrasing in the answers. Avoid terms like “maybe,”
“appears to,” or “possibly.”

5. No Internal Identifiers or Serial Labels: Do not use labels such as “Person A,” “Rope 1,” or “Frame 3” in questions or
answers. Instead, refer to entities using their described attributes (e.g., “the thick red-and-blue rope,” “the hand with pale
skin and slender fingers”), use the scene or the activity to ground the time instead of the specific frames or second numbers,
so that a viewer can ground them visually. Also, the segment information is not provided to the participants, so do not
mention the segment index or time in the question or answer.

Output Format

Provide the output as a JSON string, structured as a Python List and each entry is a Python Dictionary. Do not include a comma
at the end of the last entry.

Example Output: [

[ {“Question": "<question-1>", "Answer": "<answer-1>", "Distractors":
i Wonegi Wonegs "
{"Question": "<question-1>", "Answer": "<answer-1>"}, ["<distractor-1-1>", "<distractor-1-2>", "<distractor-1-3>"]},
. ) oo NS " "o N> "D "
{"Question": "<question-N>", "Answer": "<answer-N>"} { Quésllon : "<question: N> , "Answer": <answer N>", "Distractors":
] ["<distractor-N-1>", "<distractor-N-2>", "<distractor-N-3>"]}

Attention:
1. Output must be pure JSON without any markdown code blocks or other formatting.
2. The output must be valid JSON without any comments. No ellipsis (...) or comments (/) about similar patterns.
\3. If no relevant QA pairs can be generated, simply return the word 'None' in string format. J

Figure 7: The prompt used for behavior-based data synthesis with Gemini-1.5-pro. The texts in
the yellow block are used for open-ended QA synthesis, while the texts in blue blocks are used for
Multiple-Choices Question synthesis. The question_scope is replaced with concrete descriptions
in Figure 10 in the implementation.

D Additional Experiments and Ablations

In this section, we complement the main results with additional experiments: (i) expanded baselines
on egocentric tasks, (ii) new benchmarks beyond Ego4D, (iii) ablations on token compression and
curriculum strategies, (iv) cost—benefit of token compression.
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Table 7: Performance of expanded baselines on egocentric benchmarks. Numbers are the accuracy
(%). The performance gains over Qwen2.5-VL are reported in parentheses.

Method EgoSchema  EgoPlan  QAEgo4D EgoTaskVQA  OMEBench (beh.) OMEBench (vis.)
Gemini-2.0-Flash 71.1 51.5 624 59.2 60.2 62.1
AlanVLM 50.7 27.6 41.8 432 27.3 332
Qwen2.5-VL 65.0 452 594 53.7 553 49.4
VideoChat-Flash 64.3 40.8 62.4 54.8 57.1 54.5
OpenMMEgo (Qwen2.5-VL) 69.3 (+4.3) 50.2 (+5.0)  65.6 (+6.2) 56.2 (+2.5) 65.7 (+10.4) 63.2 (+13.8)

Table 8: Results on new benchmarks. Numbers are accuracy (%) except that EP-100 MIR is mAP
(%).

Method HD-EPIC  OpenEQA  EP-100 MIR
EgoVLP - - 26.0
LaVilLa-L - - 40.0
Gemini-2.0-Flash 38.8 61.5 49.3
AlanVLM 25.7 46.7 23.1
Qwen2.5-VL 342 55.7 42.1
VideoChat-Flash 394 58.1 45.3

OpenMMEgo (Qwen2.5-VL) 42.4 (+82)  60.2 (+4.5) 49.7 (+7.6)

D.1 Expanded Baselines and Benchmarks

Additional Baselines. We introduce two additional baselines to better situate OpenMMEgo among
open and closed models. First, since the Gemini-1.5-Pro API was no longer available at evaluation
time and its scale is much larger than our 7B backbone, we instead report results of Gemini-2.0-Flash.
This model is closer in size to our backbone, and it is reasonable to assume that its training data and
process are highly similar to Gemini-1.5-Pro, making it a suitable closed-source reference. Second,
we include AlanVLM (Suglia et al., 2024), which is trained on synthetic dataset, as a supplementary
baseline for using synthetic egocentric data. Results are shown in Table 7, where OpenMMEgo
consistently improves upon all open baselines, narrowing the gap with Gemini despite being trained
with fewer resources.

Additional Benchmarks. Beyond Ego4D-based suites, we further evaluate OpenMMEgo on several
newly added benchmarks to examine its generalization ability. Specifically, we include results on the
HD-EPIC VQA (Perrett et al., 2025) benchmark, which emphasizes fine-grained egocentric video
question answering, and the open-ended OpenEQA (Majumdar et al., 2024), which tests broader
video-language reasoning in unconstrained settings. In addition, we adapt the EPIC-Kitchens-
100 (Damen et al., 2022) multi-instance retrieval (V' — T) task into a multiple-choice format,
enabling a fairer comparison with video-language models; performance is reported in terms of mAP.
For this retrieval setting, we also report results from EgoVLP (Lin et al., 2022b) and LaViLa-L (Zhao
et al., 2023) as strong references. Together, these benchmarks complement Ego4D tasks by providing
both fine-grained and open-domain evaluation scenarios, thereby offering a more comprehensive
assessment of egocentric video understanding. Table 8 shows that OpenMMEgo achieves consistent
improvements over base LMMs, e.g. +8.2% on HD-EPIC and +7.6% mAP on EP-100, indicating
robustness beyond Ego4D.

D.2 Strategy Ablations

We conduct the additional ablation experiments on the hyperparameter «, k,r;, and rj, to investigate
their influences on OpenMMEgo. We also include the comparison with alternatives to our design
in token compression and curriculum learning. Given the limited computation resources, the Open-
MMEgo variants in this section are all trained with 1.6M pieces of data sampled from the overall
OME10M.

Online Dropout Ablation. The hyperparameter o governs the proportion of units dropped out in
each batch during online learning. This parameter is intended to encourage the model to focus on the
more readily learnable aspects of the current stage during fine-tuning. As the results in the Table 9
indicate, performance suffers when « is either too small or too large. However, values around 0.3
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Table 9: The results of additional ablation experiments on the hyperparameters «, k,r;, and 7, of
OpenMMEgo with OpenMMEgo-Qwen2.5-VL. We report the accuracy (%) of multiple-choice QAs
on 5 egocentric video benchmarks, and the average accuracy (%) on 3 general video benchmarks
(Video-MME, MVBench, and PerceptionTest) is reported under ‘Gen. Ben.’.

EgoSchema EgoPlan QAEgo4D EgoTaskVQA OMEBench (behy OMEBench vis) Gen. Ben.

a=0.05 65.1 47.1 60.4 53.8 57.6 56.9 63.7
a=03 66.5 474 62.6 539 62.1 58.0 68.5
a=0.5 66.7 47.7 61.4 52.8 61.6 58.2 68.1
a=1.0 64.2 45.8 58.6 50.6 51.5 53.2 62.2
k=10 65.1 45.7 61.4 52.8 58.6 553 66.3
k=35 66.5 47.4 62.6 539 62.1 58.0 68.5
k=50 64.7 46.1 60.4 52.6 55.7 57.3 67.8
r = 0,7, =60 59.3 45.1 58.4 47.8 553 54.1 62.3
r = 15,7, =75 65.1 46.1 60.4 51.8 60.7 57.0 67.9
= 35,71, =95 66.5 47.4 62.6 539 62.1 58.0 68.5
r; = 40,7, = 100 63.2 45.1 60.4 50.8 57.3 56.1 63.7

Table 10: Ablation on alternative compression and curriculum strategies. We compare OpenMMEgo
with two alternatives: (i) VTM, a learnable spatiotemporal merging baseline for token compression,
and (ii) a standard short—long curriculum. Numbers are accuracy (%) except that EP-100 MIR is
mAP (%).

Benchmark OpenMMEgo w. VTM  w. short—long
EgoSchema 66.5 65.8 65.3
EgoPlan 47.7 46.3 459
QAEgo4D 62.6 61.8 62.4
EgoTaskVQA 53.9 52.1 53.7
OMEBench (beh.) 62.1 60.4 58.7
OMEBench (vis.) 58.0 55.7 56.2
HD-EPIC 36.1 342 354
OpenEQA 58.4 54.3 53.1
EP-100 MIR (mAP) 46.1 452 45.7

(such as 0.5) have a limited impact on performance. This suggests that online dropout can effectively
improve performance as long as the dropout ratio remains within a reasonable range.

STM Ablation. The hyperparameter k& governs the compression ratio in spatial token compression.
With experiments conducted using the upper limit of input frame count, the results in the Table 9
indicate that both excessively high and low compression ratios lead to performance degradation.
This suggests that aggregating semantic entity information is effective, and a granularity of 35% is a
suitable level for aggregating semantic entities.

TTP Ablation. The hyperparameters r; and r;, are related to the compression ratio in temporal token
compression. The experiments in Section 5.3 have already demonstrated the effectiveness of temporal
compression. Here, we keep the token pruning ratio constant to investigate the impact of different
compositions of high and low pruning similarity on the experiment. As shown in the Table 9, the
model’s performance is relatively sensitive to this parameter. A possible reason is that excessive
pruning of tokens with high similarity will cause semantic loss, while excessive pruning of tokens
with low similarity may lead to loss of temporal information.

Strategy Alternatives. We also test alternatives to our design, including VIM (Lee et al., 2024)
(learnable spatiotemporal merging) for compression and a short—long curriculum. As shown in
Table 10, both underperform our dual strategy: VTM drops entity-awareness and hurts OMEBench,
while short—long yields only minor gains, confirming the effectiveness of our difficulty-aware
curriculum.
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E Additional Visualization on Visual Token Compression

For a better understanding of the visual token compression process in different scenarios, we here
provide more visualization examples of the visual token compression process in OpenMMEgo-
LLaVA-Video. As shown in Figure 12, the videos vary in the distance of the activity area and the
degree of perspective change. Our method effectively compresses the visual tokens in the video while
retaining important semantic information across these different scenarios.

F Limitation Discussion

While OpenMMEgo enhances large multimodal models’ (LMMs) ability to understand egocentric
videos by constructing a large-scale synthetic dataset, this data-driven process implicitly injects
certain reasoning priors into the models. In the context of the recent surge in interest toward reasoning
capabilities, a natural question arises: can these reasoning abilities be further improved through
reinforcement learning (RL), particularly tailored for egocentric scenarios? At present, this direction
remains unexplored in our experiments. Our observation is that the effectiveness of RL in eliciting
reasoning hinges on the model’s ability to produce basic reasoning-oriented outputs as a starting
point. However, current LMMS still exhibit notable limitations in egocentric video reasoning, which
may hinder RL-based enhancement. From this perspective, our dataset serves to equip LMMs with a
foundational capacity for egocentric video understanding, potentially paving the way for future work
that leverages reinforcement learning to induce more advanced, task-specific reasoning abilities.
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Input & Task

You are provided with sequential frames extracted from an ego-centric video, with a consistent time interval of 1 seconds
between adjacent frames. As an aid, some narrations are also provided to you. Some marks are used in the narrations: '#C' for
the camera wearer, '#not sure' for the uncertain information, '#summary' for the summary of the narration sequence, '#0O' for
other action conductors. Your task is to analyze the scene and provide a response in JSON format which depicts the scene sets
and the motion analysis of the scene in the ego-centric video.

Guidelines:
1. Object Identification and Description: Analyze all the frames to identify the objects in the scene and describe them,
including their names, attributes (such as size, color, feature, condition, and any distinguishing characteristics), and
positions. For each object that appears, provide:

<object-entry>: { “Name”: <string>, “Attributes”: <string>, “Position”: <string>}

2. Tracking Adjective Changes: For every pair of adjacent frames, document changes in each object’s attributes and position. If
an object is partially visible or temporarily disappears, infer and describe its motion, including the reasoning. Additionally,
classify each object into one of the following categories:

a) Environmental Background: Stationary elements in the scene whose apparent movement is due to camera motion.

b) Interactive Object: Objects manipulated or used by the camera wearer, often moving closer or into view.

¢) Moving Passerby: Objects or people moving independently of the camera wearer.
For each entity, provide:

<entity-change-entry>: { "Name": <string>, "Change": <string>, "Visibility": <string>, "Type": <string>}

3. Camera Movement Analysis: Infer the camera wearer’s movement from changes in perspective across frames, considering
shifts in various object types. Describe the trajectory, including direction, angle, and speed variations. Deduce possible body
part movements (e.g., head, arms, legs) based on these perspective changes and available narration. For each adjacent frame
pair, provide:

<camera-movement-entry>: {“Perspective”: <string>, "Camera Movement":<string>, "Body Part Movement": <string>}

4. Scene Summary: After processing all frames, synthesize a comprehensive scene summary. Include:
a) A structured spatial description of the environment and object layout, with reference to logical groupings
b) A summary of the camera wearer’s motion across the scene, detailing trajectory and changes in orientation or speed.
¢) A summary of inferred body movements throughout the scene.
For each video clip, provide:
<scene-summary-entry>:{“Scene”: <string>,“Camera Movement”: <string>, "Body Part Movement ":<string>}

5.Interaction Analysis: Describe all interactions between the camera wearer and objects in the environment. Include every
phase of interaction (e.g., approaching the object, manipulating it, relocating it). Clearly describe: object characteristics,
affordance, specific body parts and tools involved, purpose of interaction, detailed motion trajectory (including precise angles,
distances, speed, path curvature, rotation, depth changes, and spatial shifts) For each interaction, provide:
<interaction-entry>: {"Interaction": <string>, "Start Time": <int>,"End Time": <int>, "Description": <string>}

Output Format
A JSON formatted output:

"Entities": [ <object-entry-1>, <object-entry-2>, ... ],
"Adjective Changes": [
"0,1"
"Entity": [<entity-change-entry-1>, <entity-change-entry-2>, ...],
"Camera Movement": <camera-movement-entry>,

}

"1,2": {
"Entity": [<entity-change-entry-1>, <entity-change-entry-2>, ...],
"Camera Movement": <camera-movement-entry>,

}

1,
"Scene Summary": <scene-summary-entry-1>,
"Interactions": [<interaction-entry-1>, <interaction-entry-2>, ...],

}

Key Requirements:

1. Output must be pure JSON without any markdown code blocks or other formatting.

2. All information must be explicitly stated. Take each adjacent frame pair into consideration for motion and spatial analysis.

3. All the descriptions must be detailed and specific, avoiding generic terms.

4. The output must be valid JSON without any comments. Every object's motion must be fully described for each time interval,
\without any omissions or shortcuts. No ellipsis (...) or comments (//) about similar patterns. J

Figure 8: The prompt used for vision annotation with Gemini-1.5-pro.
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- )
Input & Task
You are tasked with generating high-quality[ Question-Answer (QA) pairs J [Multiple-Choice Questions (MCQs) } to evaluate
participants’ understanding of egocentric videos. Instead of raw video input, you are provided with structured descriptions of
each video segment, spanning durations from 10 seconds to several minutes. Each segment is divided into 10-second intervals
and annotated with:
* A detailed list of Entities, including their Names, Attributes (e.g., color, material, size, status), and Positions (relative to
the egocentric view).
*Per-second Adjective Changes for each entity: tracking movement, interaction, rotation, occlusion, and visibility changes.
*Detailed Camera Movement and Body Part Movement per second: covering perspective shifts, self-motion, and
viewpoint adjustments.
* A high-level Scene Summary and Interaction Summary: describing ongoing actions, spatial layout, object interactivity,
and bodily involvement.
As an assistance, some concise human annotations of the atomic actions are also provided to you. Some marks are used in the
narrations: '#C' for the camera wearer, '#not sure' for the uncertain information, '#summary' for the summary of the narration
sequence, '#0O' for other action conductors.
Your task is to generate question-answer pairs that probe the participant’s comprehension of visual, temporal, spatial, causal,
motor, and interactional aspects of egocentric video, based mainly on the annotated visual information and slightly on the
human annotations.
[The concrete visual attributes of the objects and the spatial-temporal relationships between them should be integrateﬂ
in the answers.

Each question must have one correct answer and three plausible distractors. The distractors should be confusing but
incorrect, grounded in visual elements that appear in the video but do not satisfy the question, or artificial elements that
could reasonably be inferred but are wrong.

Guidelines:

1. Question Scope: You should generate questions about {question_scope}. You should generate appropriate questions in
these angles or their composition.

. Question-Answer Quality:

N~

The generated questions should vary in complexity and scope. | [ The generated questions should vary in complexity )

Across the generated QA pairs, ensure coverage of diverse
question angles within the assigned dimension. Avoid
producing repetitive patterns or overly similar question
formulations. Some questions should target fine-grained
visual details and result in short, factual answers. Others
should require reasoning across multiple temporal segments
or entities, resulting in longer, integrative answers. Both
short-form and long-form questions must be present in each
generation batch. For the diversity of questions, only part of
the information should be involved in each QA pair. Though

and scope. Across the generated MCQs, ensure
coverage of diverse question angles within the
assigned dimension. Avoid producing repetitive
patterns or overly similar question formulations. Some
questions should target fine-grained visual details and
others should require reasoning across multiple
temporal segments or entities. For the distractors:

a) Distractors must be plausible in the scene or event.
b) They should differ subtly from the correct answer
in visual facts, e.g., a wrong object, wrong timing,

wrong attribute, or slightly incorrect reasoning.
|_c) Avoid obviously false or out-of-scope distractors.

the answers may be long, the questions should be short and
concise to hit the nail on the head.

J

w

. No Answer Leakage: The answer must not be directly inferable from the question text alone. Avoid phrasing that embeds
hints, reuses descriptive terms from annotations, or overly specifies entities or outcomes. The video must be watched to
answer.

. Answer Certainty and Grounding: Each question must have an unambiguous correct answer that is fully inferable from

the structured annotations. Do not include speculative or uncertain phrasing in the answers. Avoid terms like “maybe,”

“appears to,” or “possibly.”

No Internal Identifiers or Serial Labels: Do not use labels such as “Person A,” “Rope 1,” or “Frame 3” in questions or

answers. Instead, refer to entities using their described attributes (e.g., “the thick red-and-blue rope,” “the hand with pale

skin and slender fingers”), use the scene or the activity to ground the time instead of the specific frames or second numbers,
so that a viewer can ground them visually. Also, the segment information is not provided to the participants, so do not
mention the segment index or time in the question or answer.

-

N

Output Format
Provide the output as a JSON string, structured as a Python List and each entry is a Python Dictionary. Do not include a comma
at the end of the last entry.
Example Output:

l N o X . o W {“Question": "<question-1>", "Answer": "<answer-1>", "Distractors":
{"Question": "<question-1>", "Answer": "<answer-1>"}, ["<distractor-1-1>", "<distractor-1-2>", "<distractor-1-3>"]},
", 3 "on 1 "o M., "
{"Question": "<question-N>", "Answer": "<answer-N>"} {“Question”; "<question-N>", "Answer": "<answer-N>", "Distractors":
I ["<distractor-N-1>", "<distractor-N-2>", "<distractor-N-3>"]}

]

Attention:

1. Output must be pure JSON without any markdown code blocks or other formatting.

2. The output must be valid JSON without any comments. No ellipsis (...) or comments (//) about similar patterns.
\3. If no relevant QA pairs can be generated, simply return the word 'None' in string format.

J

Figure 9: The prompt used for vision-centric data synthesis with Gemini-1.5-pro.The texts in
the yellow block are used for open-ended QA synthesis, while the texts in blue blocks are used for
Multiple-Choices Question synthesis. The question_scope is replaced with concrete descriptions
in Figure 10 in the implementation.
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Atomic Actions, including:

e Action recognition: Identifying specific movements or manipulations mentioned in the narration.
* Interactive object grounding: Determining which objects are involved in a specific action.

* Temporal reasoning: Understanding action durations, sequences, or changes over time.

* Action counting: Inferring how many times an action occurred, or comparing frequencies.

Chunked Behaviors, where atomic actions are grouped into higher-level descriptions. These questions should:
* Aggregate sequences of atomic actions into meaningful behavioral units.

e Ask for interpretations of overall behavior (e.g., preparing tea, cleaning up).

* Compare or contrast different behavior phases or repetitions.

Goal-Step reasoning, including:

¢ Goal analysis: Inferring the likely objective based on behavior.

¢ Next-step prediction: Predicting what should logically happen next to complete the task.

¢ Precondition identification: Determining what must have already occurred for the next step to proceed.

Open Form. Generate unique and creative questions specific to the given egocentric video segment. These questions should go beyond
generic templates and instead target the most distinctive, non-obvious, or surprising aspects observed in the structured annotations.
context-sensitive questions that are specific to the unique content of the narrated video:

* Identifying an unexpected behavior or anomaly occurring in the scene.

*  Spotting subtle or unusual interaction sequences not typical in everyday contexts.

* Reasoning about cause-effect relationships that are unique to this video (e.g., why a certain reaction happened after a minor motion).
e Test story-like comprehension or complex causal chains.

,___________________________________\

/7
: Spatial-Temporal Reasoning. These questions aim to assess understanding of spatial relationships of objects and their evolution over

time. They should probe the participant’s ability to track object positions, relative displacements, and visual transitions, considering both |

local and global temporal contexts. Allowed question angles are as follow: :

« Tracking the spatial movement of a single entity over time |

« Comparing the relative positions of multiple entities across different time points :

« Detecting consistent motion trends, such as convergence, divergence, or rotational drift :

1

1

1

1

1

1

1

\
1

« Inferring whether observed movements are caused by camera motion or object motion

« Identifying spatial transformations or layout shifts of objects and surfaces

« Reasoning about positional symmetry or alignment between objects at different moments
« Any visual reasoning that involves the coupling of temporal change and spatial layout

Self-Motion Understanding. Questions should focus on interpreting self-induced motion patterns, including both intentional actions and:
subtle balance adjustments. Allowed question angles include:

« Detecting changes in body pose (e.g., sitting, standing, leaning, turning)

« Inferring head or torso rotation and the resulting shift in visual perspective

« Analyzing hand movement trajectories in relation to torso/camera motion

« Identifying transitions between static and dynamic bodily states

« Detecting compensatory movements for balance (e.g., shifting weight before or after an action)

« Evaluating how visual stability is maintained or disturbed across time

* Any reasoning involving bodily posture, physical coordination, or proprioception from first-person view

Interactions. These interactions may be tool-based, hand-driven, or involve multi-object manipulation. Allowed question angles include:
* Describing fine-grained manipulation of a specific object (e.g., gripping, rotating, pulling)

« Analyzing two-handed coordination on a single object or across multiple items

« Inferring mechanical or functional changes caused by interaction (e.g., rope tightening, lid opening)

« Identifying when and how objects are combined, detached, or used in sequence

« Detecting interaction phases (initiation, mid-action, completion) and associated feedback

 Recognizing when tool affordances are being utilized or repurposed

* Any inference involving dynamic physical contact or control over objects

Vision-Inferred Behavior. High-level reasoning about intentions, planning, affordances, and goals. These should be grounded in visible
cues and contextual transitions, avoiding speculative or purely textual logic. Allowed question angles include:

« Inferring the goal or purpose of an action based on current visual and physical context.

« Determining whether an object’s properties (e.g., position, material, accessibility) afford a specific action.

« Assessing the sequencing of actions to evaluate goal-directed planning or preparatory behavior.

* Reasoning about behavioral changes in response to visual scene dynamics (e.g., a new object entering view).

« Judging whether a particular behavior has achieved its intended result, using visual evidence.

« Predicting plausible next actions based on ongoing activity and object affordances.

« Connecting current actions to previously observed steps in a longer behavioral chain.

1
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1
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Figure 10: The detailed description of question scopes used in behavior-based data synthesis (top)
and vision-centric data synthesis (bottom).
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Q: Where is the bike located relative to the kitchen counter?
Choices: A. Directly behind the counter.
B. In an adjacent room, visible from the counter.
C. Inthe kitchen, close to the counter.

Q: After removing the lid from the pot, how does the camera wearer move after
the lid from ?

A: After removing the lid, the camera wearer placed it on the counter, then turned
left to pick up parsley from the sink, turned left to look out of the kitchen, and

then turned back to rinse it under the faucet. from: vision-centric split

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
'

D. Not visible in the video.

Q: What action precedes moving the vacuum cleaner around the living room?
A:

Plugging the power cord into the wall socket precedes moving the vacuum
cleaner around the living room.

'
1
1
1
'
1
1
'
1
1
'
'
1
1
'
'
1
'
'
'
)

from: behaviour-based split Q: What does the camera wearer do after drilling the first screw?
Choices: A. Wipes the drilled area.

B. Moves to a different location.

C. Inspects the drill bit.

D. Starts drilling another screw.

Q: Describe the overall setting in the video clip.

A: The scene takes place in a workshop. There’s a wooden workbench cluttered
with tools and materials like a T-wrench, a spray can, a cloth, and a pink bottle.
Many tools are hanging on the wall behind the workbench. A partially visible light
blue bicycle is near the entrance and a dark blue bicycle opposite the workbench.
from: vision-centric split
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! Q: Where does the camera wearer place the empty carton after retrieving the
1 electric pump?

| Choices: A. Back in the car boot.

B. On the ground next to the bicycle.

C. In the car's passenger footwell.

D. On the passenger seat..

Q: Based on the observed actions so far, what is the camera wearer most likely
doing next?

A: After taking out ingredients from the drawer, the person operates the laptop,
likely to look up a recipe or set a timer.

from: behaviour-based split .

Q: How does the gray car appear to move in relation to the camera wearer's car?
hoices: A. Directly overtaken from behind the camera wearer's car.

B. From left to right across the frame.

C. From right to left across the frame.

D. Starts drilling another screw immediately.

a

Q: Describe the hand action of the camera-wearer.
| A: The camera-wearer holds the edge of a beige, corduroy-like fabric with and
._folds the fabric over twice. from: vision-centric split,

Figure 11: Examples from OME10M (Left) and OMEBench (Right). The QA pairs from dual
splits of OME10Mare on the left. Examples from OMEBench and the corresponding answers from
OpenMMEgo-Qwen2.5-VL and Qwen2.5-VL are provided on the right.

Frame 4 Frame 5 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

[]
(a) activity in the near zone, slight perspective shift (b) activity at a moderate distance, obvious perspective shift (c) activity in the far zone, static perspective

Figure 12: Visualization of the visual token compression process of OpenMMEgo-LLaVA-Video.
RAW refers to the original frames from videos. STM and TTP represent the visual tokens after
Spatial-redundant Token Merging and Temporal-irrelevant Token Pruning, respectively.
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