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Abstract

We propose a new dynamic algorithm which transports samples from a reference
distribution to a target distribution in unit time, given access to the target-to-
reference density ratio. Our approach is to seek a sequence of transport maps
that push forward the reference along a path given by a geometric mixture of the
two densities. We take the maps to be simply parameterized, local, sample-driven
optimal transport maps which we identify by approximately solving a root-finding
problem formulated using importance weights. When feature functions for the
maps are taken to be kernels, we obtain a novel interacting particle system from
which we derive finite-particle and mean-field ODEs. In discrete time, we introduce
an adaptive algorithm for simulating this interacting particle system which adjusts
the ODE time steps based on the quality of the transport, automatically uncovering
a good “schedule” for traversing the geometric mixture of densities.

1 Introduction

In this work we consider the problem of sampling via transport: given a target distribution π1 on
Rd and a reference π0 on Rd from which we can sample, our goal is to find T : Rd → Rd such that
T#π0 = π1, i.e., {X(j)

0 }Jj=1 ∼ π0 ⇒ {T (X(j)
0 )}Jj=1 ∼ π1. We assume that π0 and π1 both admit

densities and that we can evaluate the (unnormalized) density ratio1 π1

π0
but do not have samples of π1

with which to train the map or access to gradients (including the score) of π1. The target-to-reference
density ratio is available when the density of π1 is known and π0 is chosen to be some “standard”
reference (e.g., Gaussian), but is also accessible in the Bayesian setting so long as the likelihood
function is known: therein π1 ∝ ℓ π0 for some likelihood ℓ(x) = π(y∗|x), and hence the ratio can be
computed π1

π0
∝ ℓ.

The canonical sampling approach employing a density ratio is importance sampling [30], which trans-
forms an unweighted ensemble of samples of π0 into a weighted ensemble, enabling the estimation
of expectations under π1. Importance sampling is the foundation for sequential Monte Carlo methods
[11], but is frequently plagued by issues of weight degeneracy and ensemble collapse, necessitating
large ensemble sizes [36] or interventions such as resampling [24] and MCMC rejuvenation.

Importance weights can alternately be used as ingredients to build transport maps which, when
applied to samples from π0, yield uniformly weighted approximate samples from π1. This strategy is
employed in the analysis step of the ensemble transform particle filter of [34], wherein importance

1For the remainder of this paper the terms “density” and “ratio” refer to unnormalized quantities unless
otherwise stated.
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weights are used to define the marginals of a discrete optimal transport (OT) problem and the resulting
OT coupling used as a Bayesian prior-to-posterior transformation. While this approach is shown to
be consistent and has the benefit of being nonparametric, the transformation obtained is linear and
transformed samples cannot leave the convex hull of the originals. However, the basic premise of
[34]—using importance weights to define optimal transport problems—is nonetheless the inspiration
for the approach we use here to find local OT maps within a new homotopy method for transport.

In our method we transport samples from π0 to π1 in unit time by applying a sequence of transport
maps that push forward π0 along a discretization of the geometric mixture πt ∝ π1−t

0 πt
1, t ∈ [0, 1].

We obtain the map at each step based on the fact that for ∆t sufficiently small, the sample-driven
OT map [23] which pushes πt to πt+∆t can be well-approximated by a perturbation of the identity
map with a linear combination of gradients of “feature functions.” We identify the coefficients of
this combination by solving a linearized discretization of the Monge–Ampère equations formulated
using importance weights. When the feature functions are chosen to be kernels, this approach gives
rise to a novel interacting particle system with intriguing continuous-time and mean-field limits.
In discrete time, we introduce an adaptive algorithm for realizing this sequence of maps which
adjusts the time increments based on the quality of the approximate transport. In a sense we thus
use local, sample-driven OT as an adaptive time-stepper to propagate samples along the prescribed
(non-optimal) geometric mixture path.

The paper is organized as follows: in Section 2 we review existing approaches to sampling via
transport. In Section 3 we introduce our method, encompassing our adaptation of sample-driven OT
(Section 3.1), algorithmic formulations (Section 3.2), and choice of feature functions (Section 3.3).
We examine the continuous-time and mean-field limits of our algorithm with kernel features in
Section 4 and provide a numerical demonstration in Section 5. We close in Section 6.

2 Background

Sampling via measure transport is an active area of research, with many computational approaches
[28, 22, 31, 42] appearing in recent years. Most practical transport maps are parameterized, and thus
a crucial part of realizing them is selecting an appropriately rich function class within which to search
for the map. Common map approximation classes include polynomials [32, 3], radial basis functions
[39], composed simple transformations [35, 31, 22], neural networks [6, 41, 2], and reproducing
kernel Hilbert spaces [26, 23]. Determining an appropriate basis to represent a transport map can
be challenging, especially when the target and reference distributions are high-dimensional or differ
from each other considerably. For this reason it may be necessary to employ, e.g., adaptive feature
selection algorithms [3] or dimension reduction techniques [38, 9, 7].

As an alternative to searching for a single, potentially highly complex transport map which pushes
the reference π0 directly to the target π1, one can instead prescribe a path of distributions (πt)t∈[0,1]

having the target and reference as endpoints and seek a sequence of maps T1, . . . , TN which push
samples along a discretization of the path, e.g.,

π0
T1−→ π 1

N

T2−→ · · · TN−1−→ πN−1
N

TN−→ π1. (1)

The composed map T = TN ◦TN−1 ◦ · · · ◦T1 thus pushes forward π0 to π1. This approach underlies
flow, diffusion, and bridge techniques for generative modeling, e.g., [10, 23, 25, 27, 45, 1, 37],
wherein access to samples from both π0 and π1 is almost invariably required for training (with
[43, 20] being recent exceptions). In the setting where π1 is known only through its unnormalized
density, there are a number of infinite-time compositional sampling algorithms which have their
grounding as approximate Wasserstein gradient flows or Langevin diffusions, e.g., [26, 17, 18, 8], but
in practice we cannot actually run these iterations for infinite time.

Finite-time samplers of unnormalized densities which employ the homotopy approach (1) frequently
take πt to be the geometric mixture πt ∝ π1−t

0 πt
1 = π0(

π1

π0
)t, t ∈ [0, 1] or a reparameterization

thereof. This mixture may be referred to as the “power posterior” path and appears, for example, in
annealed importance sampling [29, 4] and parallel tempering [19, 15, 40]. In Bayesian computation
this path is sometimes referred to as “tempered likelihood” and has been used as the basis for
algorithms which generate (approximate) posterior samples [33, 21, 13] or posterior densities [12].
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3 Method: time-stepping with local optimal transport

We employ the power posterior in a dynamical approach to sampling, seeking a sequence of maps
T1, . . . , TN that push samples along a discretization of the homotopy

πt ∝ π1−t
0 πt

1 = π0

(
π1

π0

)t
, t ∈ [0, 1] (2)

given only samples {X(j)
0 }Jj=1

i.i.d.∼ π0 and access to the density ratio π1

π0
. As in [34], incremental

importance weights will inform inform our search for the maps T1, . . . , TN . Our high-level approach
is summarized in Algorithm 1, where for simplicity we assume a uniform time-step of ∆t such that
1 = N∆t for some N ∈ N. We will revisit this assumption in Section 3.2.

Algorithm 1 Tempered transport with importance weights

Require: Reference ensemble {X(j)
0 }Jj=1

i.i.d.∼ π0, density ratio π1/π0, timestep ∆t ∈ (0, 1]
1: N ← 1/∆t, t← 0
2: for n = 1, . . . , N do

3: Compute importance weights: w(j)
t =

(
π1
π0

(X
(j)
t ))∆t∑J

i=1(
π1
π0

(X
(i)
t ))∆t

, j ∈ {1, . . . , J}

4: Estimate map Tn : Rd → Rd using the empirical measure
∑J

j=1 w
(j)
t δ

X
(j)
t

such that

Tn#πXt
= πXt+∆t

≈ π0

(
π1

π0

)t+∆t

5: Transport samples: X(j)
t+∆t = Tn(X

(j)
t ), j ∈ {1, . . . , J}

6: t← t+∆t
7: end for

Ensure: {X(j)
1 }Jj=1 ∼ πX1

≈ π1

3.1 Sample-driven optimal transport with importance weights

In this work we take the maps Tn in line 5 of Algorithm 1 to be local, sample-driven optimal transport
maps as formulated by Kuang and Tabak [23]. Their approach, modified for our setting in which
target samples are unavailable, is as follows: at the outset of an iteration of Algorithm 1 we have
samples {X(j)

t }Jj=1 ∼ πt which we would like to push forward to πt+∆t ∝ πt(
π1

π0
)∆t. Given that πt

and πt+∆t both admit densities, there are many maps T : Rd → Rd satisfying T#πt = πt+∆t. The
optimal transport approach [44], which we will approximate in our algorithm, is to seek the map
which minimizes expected transport cost,

min
T#πt=πt+∆t

Eπt
[∥T (Xt)−Xt∥2]. (3)

Owing to the choice of quadratic cost, one can show that the optimal map in (3) is the unique convex
gradient which pushes forward πt to πt+∆t [5]. That is, if we find T = ∇ϕ satisfying T#πt = πt+∆t

with ϕ : Rd → R convex, we have found the optimal transport map. Thus, we can obtain the optimal
transport map by seeking ∇ϕ : Rd → Rd convex such that ∇ϕ#πt = πt+∆t. The push-forward
condition∇ϕ#πt = πt+∆t can be written as a Monge–Ampère PDE [16]

πt+∆t(∇ϕ(x)) det(∇2ϕ(x)) = πt(x),

and interpreted in weak form as∫
Rd

f(∇ϕ(x)) dπt(x) =

∫
Rd

f(y) dπt+∆t(y) ∀f : Rd → R continuous. (4)

In our setting we arguably do not have enough information to find a map T = ∇ϕ which exactly
satisfies T#πt = πt+∆t, so we discretize the weak-form (4) over finitely many continuous feature
functions f1, . . . , fM : Rd → R,∫

Rd

fm(∇ϕ(x)) dπt(x) =

∫
Rd

fm(y) dπt+∆t(y), m = 1, . . . ,M, (5)
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and approximate the expectations on either side using samples from πt and self-normalized importance
weights,

1

J

J∑
j=1

fm(∇ϕ(X(j)
t )) =

J∑
j=1

w
(j)
t fm(X

(j)
t ), w

(j)
t =

(π1

π0
(X

(j)
t ))∆t∑J

i=1(
π1

π0
(X

(i)
t ))∆t

, m = 1, . . . ,M.

(6)
Kuang and Tabak [23] refer to the relationship (6) as sample equivalence and denote it by
{∇ϕ(X(j)

t )}Jj=1 ∼ {w
(j)
t X

(j)
t }Jj=1. Because we have discretized the Monge–Ampère equations (4)

over finite samples and feature functions, a solution ∇ϕ to (6) is not guaranteed to be unique or
optimal. Thus, the sample-driven OT problem as formulated in [23] is to find a minimum cost map
∇ϕ which satisfies sample-equivalence,

min
{∇ϕ(X

(j)
t )}J

j=1∼{w(j)
t X

(j)
t }J

j=1

J∑
j=1

∥∥∥X(j)
t −∇ϕ(X(j)

t )
∥∥∥2 . (7)

Without imposition of further restrictions, the problem (7) will not yield a smooth transport map. Thus
Kuang and Tabak [23] suggest parameterizing the potential ϕ by the feature functions themselves,

ϕs(x) =
∥x∥2

2
+

M∑
m=1

smfm(x) =⇒ ∇ϕs(x) = x+

M∑
m=1

sm∇fm(x), (8)

where s1, . . . , sM ∈ R are coefficients to be optimized. With this parameterization the sample-based
optimal transport problem (7) is reduced to a finite-dimensional constrained optimization over the
coefficients s ≡ (s1, . . . , sM ). Owing to the relationship between the feature functions f1, . . . , fM
and the parameterization (8), the optimal s can be identified via root-finding: define F : Rd → RM

by F (x) = (f1(x), . . . , fM (x))⊤ with Jacobian∇F (x) ∈ RM×d and denote by a and b the feature
means over the unweighted and weighted reference ensembles,

a =
1

J

J∑
j=1

F (X
(j)
t ), b =

J∑
j=1

w
(j)
t F (X

(j)
t ) ∈ RM .

For s ∈ RM , define G : RM → RM to be the feature means over {∇ϕs(X
(j)
t )}Jj=1,

G(s) =
1

J

J∑
j=1

F (∇ϕs(X
(j)
t )) =

1

J

J∑
j=1

F (X
(j)
t + s⊤∇F (X

(j)
t )).

In order for sample-equivalence to be satisfied, we need to find s∗ such that G(s∗) = b.

Kuang and Tabak [23] demonstrate that if the Jacobian of G at s = 0 is nonsingular (for which
a necessary condition is M ≤ dJ), G is a bijection from a neighborhood U about s = 0 to a
neighborhood V about G(0) = a. If b ∈ V , then the potential ϕs parameterized with s∗ = G−1(b)
gives the global minimum of the sample-based OT problem (7) restricted to maps of the form (8).
Furthermore, [23] shows that if the feature functions are in C2, then ϕs∗ is locally convex.

Existence of the solution s∗ = G−1(b) and regularity of the importance weights w
(j)
t ultimately

depend on how close b is to a, which can be managed by choice of time-step ∆t. As ∆t→ 0 the
importance weights approach uniformity and b → a. Thus, for sufficiently small ∆t, a solution
s∗ = G−1(b) will exist and the weights w(j)

t will not suffer from degeneracy.

3.2 Adaptive algorithm

Given sufficiently small ∆t, in order to find the optimal sample-driven OT map (8) from πt to πt+∆t

we must solve the root-finding problem G(s∗) = b. To enable fast updating within Algorithm 1, we
restrict ourselves to just one step of Newton’s method starting from s0 = 0 and approximate

s∗ ≈ −

(
1

J

J∑
i=1

∇F (X
(i)
t )∇F (X

(i)
t )⊤

)−1 J∑
k=1

( 1
J
− w

(k)
t )F (X

(k)
t ), (9)
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keeping in mind that if the feature functions f1, . . . , fm are chosen to be C1, G(s) will be locally
linear and thus the approximation (9) will become exact as ∆t→ 0. This choice also enables us to
easily write our algorithm as an interacting particle system, which we discuss in Sections 3.3.2 and 4.

This sample-driven OT approach ((7) and (8)) and local linear approximation (9) we have outlined for
finding the local maps T1, . . . , TN give rise to a fixed-timestep instantiation of Algorithm 1, which we
have included in Appendix A.1 (Algorithm 3). However, the transport maps employed in Algorithm 3
will not achieve exact sample equivalence because we are approximating the solution to

1

J

J∑
j=1

F (X
(j)
t + (∇F (X

(j)
t )⊤s) =

J∑
j=1

w
(j)
t F (X

(j)
t )

with the first Newton iterate starting from s0 = 0. When the incremental importance weights w(j)
t

are sufficiently close to uniformity this local linear approximation should be fairly accurate, but it
is hard to know a priori how small ∆t must be taken to ensure that this is the case. For this reason
we suggest performing the time-stepping in the tempered transport update adaptively, adjusting the
increment ∆t on the fly such that a sample-equivalence accuracy criterion is met at each step. An
implementation of this idea is given in Algorithm 2.

Algorithm 2 Adaptive tempered transport with sample-driven OT maps

Require: Reference ensemble {X(j)
0 }Jj=1

i.i.d.∼ π0, density ratio π1/π0, tolerance ϵ > 0, maximum
time step ∆tmax > 0, features f1, . . . , fM : Rd → R

1: ∆t← ∆tmax/2, t← 0
2: while t < 1 do,
3: success← false, ∆t← min(∆tmax, 1− t, 2∆t)
4: while success = false do
5: Compute importance weights: w(j)

t =
(
π1
π0

(X
(j)
t ))∆t∑J

i=1(
π1
π0

(X
(i)
t ))∆t

, j ∈ {1, . . . , J}

6: Approximate solution to sample-driven OT with one Newton step:

st = −

(
1

J

J∑
i=1

∇F (X
(i)
t )∇F (X

(i)
t )⊤

)−1 J∑
k=1

( 1
J
− w

(k)
t )F (X

(k)
t )

7: Compute sample-equivalence error

ℓ(st) =
1

M

∥∥∥∥∥∥ 1J
J∑

j=1

F (X
(j)
t + (∇F (X

(j)
t )⊤st)−

J∑
j=1

w
(j)
t F (X

(j)
t )

∥∥∥∥∥∥
2

8: if ℓ(st) < ϵ then
9: Transport: X(j)

t+∆t = X
(j)
t +

(
∇F1(X

(j)
t ) · · · ∇FM (X

(j)
t )
)
st

10: success← true, t← t+∆t
11: else
12: ∆t← ∆t/2
13: end if
14: end while
15: end while
Ensure: {X(j)

1 }Jj=1 ∼ πX1 ≈ π1

An interesting benefit of Algorithm 2 is that it does not prescribe a particular schedule for traversing
the path πt ∝ π1−t

0 πt
1. For instance, Algorithms 1 and 3 are written assuming a uniform schedule as

in (1) but we could easily modify the importance increments and adopt a non-uniform schedule

π0
T1−→ πτ( 1

N )
T2−→ · · · TN−1−→ πτ(N−1

N )

TN−→ π1,

for some continuous, strictly increasing τ : [0, 1] → [0, 1] satisfying τ(0) = 0 and τ(1) = 1 (e.g.,
τ(t) = tp for p ∈ N, τ(t) = sin(πt2 ), etc.). Algorithm 2 adapts the schedule and the number of steps
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to the problem, saving us the need to guess what a suitable τ(·) and N might be for a given π0 and
π1. We will see examples of schedules traced out by our adaptive Algorithm 2 in Section 5.

3.3 Implementation choice: feature functions

Employing Algorithm 2 requires identifying feature functions f1, . . . , fM for enforcement of sample-
equivalence at each step. While this choice may be application-specific, here we suggest two generally
applicable families from which to select features: multivariate polynomials and kernels.

3.3.1 Multivariate polynomials

A straightforward choice is to take F to be a collection of multivariate polynomials, F (x) =
(Pα1

(x), . . . , PαM
(x))⊤, with each multivariate polyomial Pα : Rd → R obtained as the product of

univariate polynomials according to a multi-index α ∈ (N∪{0})d. That is, Pα(x) =
∏d

i=1 Pαi
(xi),

with Pα1
, . . . Pαd

univariate polynomials of degrees α1, . . . , αd. Any number of bases can be used
to define the univariate Pαi

, but, for ease of exposition, consider a total-degree multiindex set
{α : 0 < ∥α∥1 ≤ p}2 for some p ≥ 1, with the univariate polynomials taken to be monomials.
This choice causes sample equivalence (6) to enforce moment-matching up to order p. For instance,
setting p = 2 corresponds to matching the sample mean and covariance across the weighted and
push-forward ensembles,

1

J

J∑
i=1

∇ϕs(X
(i)
t ) =

J∑
i=1

w
(i)
t X

(i)
t and 1

J

J∑
i=1

∇ϕs(X
(i)
t )(∇ϕs(X

(i)
t ))⊤ =

J∑
i=1

w
(i)
t X

(i)
t (X

(i)
t )⊤,

and results in affine transport maps. Indeed, Kuang and Tabak [23] note that when the feature
functions consist of first and second moments, the optimal map∇ϕs∗ takes the form of an optimal
transport map between two Gaussians, which can equivalently be viewed as a symmetrized ensemble
Kalman update. Thus in the Bayesian setting this choice of features recovers what may be viewed as
a deterministic form of ensemble Kalman inversion (EKI) [13, 21].

Within our tempered sample-driven OT framework with total-order polynomial feature bases we have
the opportunity to enforce matching of even higher moments than the mean and covariance matrix,
yielding a family of algorithms which can be seen as generalizations of this deterministic EKI.

3.3.2 Kernels

As an alternative to polynomials, we can take the feature functions to be kernels placed at each
ensemble member, fj(x) = K(x,X

(j)
t ), j = 1, . . . J , for some positive-definite kernel K : Rd ×

Rd → R. The sample-equivalence we enforce under this choice is

1

J

J∑
i=1

K(∇ϕs(X
(i)
t ), X

(j)
t ) =

J∑
i=1

w
(i)
t K(X

(i)
t , X

(j)
t ), j = 1, . . . , j. (10)

Equation (10) can be interpreted as requiring that a kernel density estimate (KDE) of the push-forward
of {X(i)

t }Ji=1 under ∇ϕ match the importance-weighted KDE of πXt
at each of X(1)

t , . . . X
(J)
t , or

equivalently requiring that the Monge–Ampère equations be satisfied for all functions in the finite-
dimensional RKHS spanned by {K(·, X(1)

t ), . . . ,K(·, X(J)
t )}.

Using the single Newton step approximation (9), the iteration represented in Algorithm 2 is

X
(j)
t+∆t = X

(j)
t −

(
∇1K(X

(j)
t , X

(1)
t ) · · · ∇1K(X

(j)
t , X

(J)
t )

)
M−1

t

J∑
k=1

(
1
J
− w

(k)
t

)
K(X

(k)
t , X

(1)
t )

...
K(X

(k)
t , X

(J)
t )

 ,

j = 1, . . . , J, t ∈ [0, 1], {X(j)
0 }Jj=1

i.i.d.∼ π0, (11)

2We exclude P0 ≡ 1 because expectations of constant functions are the same across all probability measures.
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with w
(k)
t =

(
π1
π0

(X
(k)
t ))∆t∑J

i=1(
π1
π0

(X
(i)
t ))∆t

and Mt ∈ RJ×J defined

(Mt)ℓ,m =
1

J

J∑
i=1

⟨∇1K(X
(i)
t , X

(ℓ)
t ), ∇1K(X

(i)
t , X

(m)
t )⟩, ℓ,m = 1, . . . , J.

Combining a kernel feature basis with the updating scheme (9) yields a curious interacting particle
system (11) somewhat resembling Stein variational gradient descent (SVGD) [26]—with the major
distinction that (11) is to be run for unit time, while SVGD is an infinite-time iteration. We explore
this connection further by examining the continuous-time and mean-field limits of (11) in Section 4.

4 Continuous-time and mean-field limits

In this section we consider the continuous-time (∆t → 0) and mean-field (J → ∞) limits of the
particle system (11), with proofs deferred to Appendix A.2. We begin with the continuous-time limit.

Theorem 1 In the limit as ∆t→ 0, Equation (11) approaches the ODE

Ẋ
(j)
t =

(
∇1K(X

(j)
t , X

(1)
t ) · · · ∇1K(X

(j)
t , X

(J)
t )

)
M−1

t ·

1

J

J∑
k=1

(
log

π1

π0
(X

(k)
t )− 1

J

J∑
i=1

log
π1

π0
(X

(i)
t )

)
K(X

(k)
t , X

(1)
t )

...
K(X

(k)
t , X

(J)
t )

 , (12)

with t ∈ [0, 1] and {X(j)
0 }Jj=1

i.i.d.∼ π0.

Understanding the performance of direct discretization of the ODE (12) as an alternative to to the
sample-driven OT update (11) is a subject of ongoing work.

Next we take the number of particles J →∞ and examine the mean-field limit of Equation (12)

Theorem 2 In the limit as J →∞, the, interacting particle system (12) approaches the mean-field
ODE

Ẋ
(j)
t = EX∼πt

[
M−1

πt
∇1K(X

(j)
t , X)Kπt

(
log π1

π0
(·)− Eπt

[
log π1

π0

])
(X)

]
, (13)

where Kπt is the kernel integral operator

Kπtf(x) =

∫
Rd

f(z)K(x, z) dπt(z)

and Mπt
is the integral operator

Mπtf(x) =

∫
Rd

f(z)EXt∼πt [⟨∇1K(Xt, x), ∇1K(Xt, z)⟩] dπt(z)

=
x

Rd×Rd

f(z)⟨∇1K(y, x), ∇1K(y, z)⟩dπt(y)dπt(z).

To our knowledge, these finite-particle (12) and mean-field (13) ODEs are new. Interpretation and
analysis of these finite-particle and mean-field ODEs is the subject of a forthcoming paper.

5 Numerical example

To demonstrate the efficacy of our adaptive tempered transport Algorithm 2, we apply it to a two-
dimensional problem in which π1 is a Bayesian posterior π1 ∝ π0πℓ(y

∗ | ·), and the density ratio is
π1

π0
= πℓ(y

∗ | ·). We take π0 = N (0, I) to be the prior distribution of X0 ∈ R2 and Y ∈ R related
to X0 by Y = ∥X0∥+ ε with ε ∼ N (0, σε). In our experiments we set y∗ = 2 and σε =

1
2 , and the

posterior density of X0 | Y = y∗ is the “donut”

π1(x) ∝ exp
(
−1

2
x⊤x− 1

2σ2
ε
(y∗ − ∥x∥)2

)
.
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We apply our adaptive Algorithm 2 to approximately transport J = 500 samples of π0 to π1 in unit
time. We choose feature bases {Fm}Mm=1 as either total-degree Hermite polynomial bases, varying
the degree p ∈ {1, . . . , 8}, or Gaussian kernels centered at a random subset of the ensemble members
{X(j)

t }Jj=1. We vary the total number of kernel basis functions in
{

J
8 ,

2J
8 , . . . , 7J

8 , J
}

and select the
bandwidth according to the median heuristic [26]. For each feature basis setting we vary the sample
equivalence error tolerance ϵ (line 9 of Algorithm 2) in {10−1, 10−2, . . . , 10−8}.
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Figure 1: Ensembles at time t = 1 for total order polynomial feature bases of varying degree (left)
and kernel feature bases of varying size (right) and varying sample-equivalence error tolerance.

In Figure 1 we show the particle ensembles at t = 1 overlaid atop the true density π1 for a subset
of the (feature basis, tolerance) settings considered (for complete results see Appendix A.3). For
sufficiently rich feature bases and strict tolerances the samples generated by the adaptive algorithm
are visually of good quality, with lower tolerances generally leading to better samples. Interestingly,
for total-degree polynomial bases sample quality appears to increase with total degree up to a certain
threshold (perhaps degree 6) and then decrease, perhaps as overfitting effects become present. For
kernel basis functions, sample quality tends to improve with increasing numbers of kernels.
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Figure 2: Examples of tempering schedules discovered by the adaptive Algorithm 2 grouped by
tolerance (top row) and basis complexity (bottom row). The first and third columns show the evolution
of time t with number of steps n ∈ {0, . . . , N}, revealing that more complex bases and stricter
tolerances tend to require smaller increments ∆t. The second and fourth columns show the evolution
with time t of the normalized step number n/N ∈ [0, . . . , 1] to allow for easier comparison of the
“shapes” of the tempering schedules.
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In Figure 2 we show the schedules—that is, the choice of number of steps N and waypoints
{t1, . . . , tN−1}—traced out by the adaptive algorithm for a selection of feature bases and tolerances.
It is interesting that for low tolerances and rich bases the schedules selected by the adaptive algorithm
for kernel bases tend to be concave, while those selected for polynomial bases tend to be linear or
even slightly convex. Understanding the nature of these schedules is an area of ongoing investigation.

6 Future work

There are many questions surrounding the methods presented in this paper which remain to be
answered. The kernel implementation of our algorithm in particular yields a curious new interacting
particle system, suggesting that it may be possible to write an SVGD-like [26, 14] algorithm which
samples in finite time rather than infinite time. We are working to understand the continuous-time (12)
and mean-field (13) limits further and to answer questions of, e.g., consistency, optimal schedules,
and performance with both finite and infinite numbers of particles.
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A Supplementary Material

A.1 Fixed-timestep tempered, sample-driven transport algorithm

Algorithm 3 Tempered transport with sample-driven OT

Require: Reference ensemble {X(j)
0 }Jj=1

i.i.d.∼ π0, density ratio π1/π0, timestep ∆t ∈ (0, 1],
features f1, . . . , fM : Rd → R

1: N ← 1/∆t
2: t← 0
3: for n = 1, . . . , N do
4: Compute importance weights: for j ∈ {1, . . . , J}

w
(j)
t =

(π1

π0
(X

(j)
t ))∆t∑J

i=1(
π1

π0
(X

(i)
t ))∆t

5: Approximate solution to sample-driven OT with one Newton step:

st = −

(
1

J

J∑
i=1

∇F (X
(i)
t )∇F (X

(i)
t )⊤

)−1 J∑
k=1

( 1
J
− w

(k)
t )F (X

(k)
t )

6: Transport samples:

X
(j)
t+∆t = X

(j)
t +

(
∇F1(X

(j)
t ) · · · ∇FM (X

(j)
t )
)
st

7: t← t+∆t
8: end for

Ensure: {X(j)
1 }Jj=1 ∼ πX1

≈ π1

10



A.2 Proofs

A.2.1 Proof of Theorem 1

Notice that time only enters the update equation (11) through the importance weights w(k)
t . To obtain

the continuous time limiting ODE we rearrange, divide by ∆t on both sides, and take ∆t→ 0,

lim
∆t→0

X
(j)
t+∆t −X

(j)
t

∆t
=

lim
∆t→0

−
(
∇1K(X

(j)
t , X

(1)
t ) · · · ∇1K(X

(j)
t , X

(J)
t )

)
M−1

t

J∑
k=1

1
J − w

(k)
t

∆t

K(X
(k)
t , X

(1)
t )

...
K(X

(k)
t , X

(J)
t )

 .

Examining the terms above involving ∆t, we see that for k ∈ {1, . . . , J} we have

lim
∆t→0

1
J
− w

(k)
t

∆t
= lim

∆t→0

1
J
−

(
π1
π0

(X
(k)
t ))∆t∑J

i=1
(
π1
π0

(X
(i)
t ))∆t

∆t
= − lim

∆t→0

(
π1
π0

(X
(k)
t ))∆t∑J

i=1
(
π1
π0

(X
(i)
t ))∆t

−
(
π1
π0

(X
(k)
t ))0∑J

i=1
(
π1
π0

(X
(i)
t ))0

∆t

= − d

d∆t

(π1
π0

(X
(k)
t ))∆t∑J

i=1(
π1
π0

(X
(i)
t ))∆t

∣∣∣∣∣
∆t=0

= −
(π1
π0

(X
(k)
t ))∆t log π1

π0
(X

(k)
t )

J∑
i=1

(π1
π0

(X
(i)
t ))∆t − (π1

π0
(X

(k)
t ))∆t

J∑
i=1

(π1
π0

(X
(i)
t ))∆t log π1

π0
(X

(i)
t )(∑J

i=1(
π1
π0

(X
(i)
t ))∆t

)2
∣∣∣∣∣∣∣∣∣∣
∆t=0

= −
J log π1

π0
(X

(k)
t )−

∑j
i=1 log

π1
π0

(X
(i)
t )

J2
= − 1

J

(
log

π1

π0
(X

(k)
t )− 1

J

J∑
i=1

log
π1

π0
(X

(i)
t )

)
.

Hence, the ODE arising from the limit of (11) as ∆t→ 0 is

Ẋ
(j)
t =

(
∇1K(X

(j)
t , X

(1)
t ) · · · ∇1K(X

(j)
t , X

(J)
t )

)
M−1

t

1

J

J∑
k=1

(
log π1

π0
(X

(k)
t )− 1

J

J∑
i=1

log π1

π0
(X

(i)
t )

)K(X
(k)
t , X

(1)
t )

...
K(X

(k)
t , X

(J)
t )

 , (14)

with initial condition {X(j)
0 }Jj=1

i.i.d.∼ π0.

A.2.2 Proof of Theorem 2

Notice that as J →∞ and for any x ∈ Rd the sum

1

J

J∑
k=1

(
log π1

π0
(X

(k)
t )−

J∑
i=1

log π1

π0
(X

(i)
t )

)
K(X

(k)
t , x), X

(k)
t

i.i.d.∼ πt

approaches the projection of log π1

π0
(·) − Eπt [log

π1

π0
] onto the reproducing kernel Hilbert space

(RKHS) defined by K with respect to πt, evaluated at x,

Kπt

(
log π1

π0
(·)− Eπt [log

π1

π0
]
)
(x) ≡

∫
Rd

(log π1

π0
(z)− Eπt [log

π1

π0
])K(z, x)dπt(z).

Hence, as J →∞ the vector

1

J

J∑
k=1

(
log π1

π0
(X

(k)
t )−

J∑
i=1

log π1

π0
(X

(i)
t )

)K(X
(k)
t , X

(1)
t )

· · ·
K(X

(k)
t , X

(J)
t )


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can be replaced by the function x 7→ Kπt

(
log π1

π0
(·)− Eπt

[log π1

π0
]
)
(x).

Similarly, as J →∞, Mt can be viewed as a kernel Mt : Rd × Rd → R

Mt(z, z
′) = EXt∼πt

⟨∇1K(Xt, z), ∇1K(Xt, z
′)⟩,

which can be applied to functions on Rd as a convolution-type operator with respect to πt,

Mπt
f(x) =

∫
Rd

f(z)Mt(x, z) dπt(z) =

∫
Rd

∫
Rd

f(z)⟨∇1K(y, x), ∇1K(y, z)⟩dπt(y)dπt(z).

M−1
πt

is the inverse operator to Mπt
. We see in (12) that we have a choice in whether we view M−1

πt

as acting on ∇K(X
(j)
t , ·) or on Kπt

(
log π1

π0
(·)− Eπt [log

π1

π0
]
)

. Thus the mean-field limit of (12)
can be written

Ẋ
(j)
t

J→∞→
∫
Rd

M−1
πt
∇1K(X

(j)
t , x)Kπt

(
log π1

π0
(·)− Eπt

[
log π1

π0

])
(x) dπt(x)

= EX∼πt

[
M−1

πt
∇1K(X

(j)
t , X)Kπt

(
log π1

π0
(·)− Eπt

[
log π1

π0

])
(X)

]
,

or equivalently

Ẋ
(j)
t

J→∞→ EX∼πt

[
∇1K(X

(j)
t , X)M−1

πt
Kπt

(
log π1

π0
(·)− Eπt

[
log π1

π0

])
(X)

]
.
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A.3 Additional numerical results
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Figure 3: Ensembles at time t = 1 for total order polynomial feature bases of varying degree and
sample-equivalence error tolerances.
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Figure 4: Ensembles at time t = 1 for kernel feature bases with varying number of kernels and
sample-equivalence error tolerance.
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