
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEDSFT: RESOURCE-CONSTRAINED FEDERATED
BLACK-BOX ADAPTATION OF LARGE LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated fine-tuning enables privacy-preserving adaptation of large language
models (LLMs) by allowing decentralized training without sharing raw data.
However, its real-world deployment is often hindered by restricted access to
model parameters and substantial computation, communication, and memory
overhead. To address these challenges, we propose Federated Surrogate Fine-
Tuning (FedSFT), a novel framework for federated black-box fine-tuning of
LLMs that requires access only to the token probabilities of output sequences and
significantly reduces resource demands on clients. In each communication round
of FedSFT, clients fine-tune a small model that serves as a surrogate for the large
model hosted on the server. The server then leverages the logit offsets between the
tuned and untuned small models to adjust the output of the untuned large model
and distills the knowledge to update the small model for the next training round.
Experimental results show that FedSFT significantly reduces client-side compu-
tation, communication, and memory overhead while maintaining competitive per-
formance compared to direct federated fine-tuning of large models. FedSFT offers
a promising solution for efficient and privacy-preserving black-box fine-tuning of
large models on resource-constrained clients, broadening the accessibility and ap-
plicability of state-of-the-art LLMs.

1 INTRODUCTION

Recent advancements in large language models (LLMs), exemplified by models like LLaMA 3 (Tou-
vron et al., 2023) and GPT-4 (Achiam et al., 2023) trained on massive, diverse public datasets with
up to hundreds of billions of parameters, have demonstrated remarkable zero-shot and few-shot
learning across various language tasks, including text generation, question answering, and machine
translation. Fine-tuning these untuned, general-purpose LLMs on task-specific datasets is a com-
mon approach to achieve desired performance (e.g., PMC-LLaMA (Wu et al., 2023) for improved
accuracy on medical questions). However, the practical application of LLM fine-tuning often faces
the challenge of task-specific data (such as patient medical records) being distributed across multiple
locations, making centralization expensive and potentially compromising patient privacy.

To overcome this issue, federated learning (FL) (McMahan et al., 2017) that enables collaborative
model training without sharing raw data is the state-of-the-art solution. However, directly fine-tuning
LLMs in FL faces several major challenges: 1) Computation and communication overhead: The
federated fine-tuning process for LLMs involves significant computational and communication costs
due to the extensive number of trainable parameters in LLMs. Clients with limited computational
power may find it challenging to carry out complex model updates, resulting in prolonged training
time. Transferring a large number of model parameters between the server and clients also incurs
high communication costs, consuming considerable bandwidth and increasing latency. 2) Memory
footprint: Local fine-tuning of LLMs on each client requires substantial on-device memory to store
not only trainable model parameters, but also their gradients and optimizer states that can exceed
the size of the parameters themselves. For instance, fine-tuning a LLaMA 7B model directly with
a single batch size demands at least 58 GB of memory (14GB for trainable parameters, 42GB for
Adam optimizer states and weight gradients, and 2GB for activations) (Zhao et al., 2024), mak-
ing it impractical for resource-constrained clients to participate in federated fine-tuning of LLMs.
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Figure 1: Peak memory footprint
of different training methods for
each client with batch size of 1 and
sequence length 512.

3) Access to full model parameters: The most powerful ver-
sions of LLMs, such as GPT-4.5 and Gemini 2.5, are propri-
etary, with their model parameters unavailable to the public.
Consequently, clients cannot perform local fine-tuning of these
models within FL. Thus, novel approaches that do not require
full model access are both desirable and necessary.

To overcome these challenges, parameter-efficient fine-tuning
(PEFT) methods, including prompt tuning (Lester et al., 2021),
adapter tuning (Houlsby et al., 2019), and low-rank adaptation
(LoRA) (Hu et al., 2021), have been integrated into FL. These
methods freeze most parameters of untuned LLMs and update
only a few trainable parameters, leading to a significant reduc-
tion in computation and communication overhead. However,
since the gradient computation for trainable parameters needs
back-propagation through the entire LM, fine-tuning with PEFT still requires a significant memory
footprint, as shown in Figure 1. For instance, fine-tuning a LLaMA 13B model with LoRA and
a batch size of 1 demands around 25.8 GB of memory, exceeding the capacity of most resource-
constrained edge devices (4∼8 GB), such as smartphones and IoT devices. Furthermore, these
methods still require the clients to access full model parameters and gradients for local training.

To address the challenges of fine-tuning black-box LLMs in federated settings, we propose
Federated Surrogate Fine-Tuning (FedSFT), a novel framework that significantly reduces the com-
putation, communication, and memory overheads on resource-constrained clients. FedSFT is in-
spired by the observation that behavioral changes of language models during fine-tuning reflect
critical model capabilities (Liu et al., 2021; Mitchell et al., 2023). Therefore, instead of directly
fine-tuning the target large model, clients in FedSFT collaboratively fine-tune a small surrogate
model. The knowledge from this tuned small model is then integrated with the untuned large model
to emulate the behavior of a fully tuned large model. Figure 2 depicts the overall FedSFT process.
Initially, the server hosts a pair of untuned large and small models that share the same tokenizer
and distributes the small model to each client. In each training round, clients locally fine-tune their
small models on private data using LoRA, and send the LoRA updates back to the server. The
server aggregates the received LoRA updates to obtain a globally tuned small model and constructs
a composite model consisting of three components: the tuned LoRA modules, the untuned small
model, and the untuned large model. This composite model is then used for knowledge distillation
to update the small model for the next training round. Specifically, the server computes logit offsets,
the differences between the tuned and untuned small models, and uses them to adjust the untuned
large model’s outputs, and then further tunes the small model to align with these adjusted outputs
using a small public dataset.

Evaluation across multiple datasets and LLMs demonstrates that FedSFT achieves performance
comparable to direct federated fine-tuning method, despite lacking access to full model parameters.
Specifically, with a batch size of 1 and an input length of 512 tokens, FedSFT reduces communica-
tion overhead, computation cost, and memory usage by over 4.2×, 9.6×, and 8.3×, respectively, by
fine-tuning OPT-1.3B instead of OPT-13B. This enables resource-constrained clients to participate
in federated fine-tuning, making FedSFT a promising step toward democratizing LLM.

In summary, this paper makes the following main contributions:

• We propose FedSFT, a novel framework that enables resource-constrained clients to collabora-
tively fine-tune a black-box LLM without accessing the model parameters or sharing the private
data.

• We develop a novel strategy in FedSFT that can effectively integrate the knowledge from the
untuned large model and tuned small model to guide the local fine-tuning of clients in each FL
training round.

• We conduct extensive experiments across diverse models, tasks, and datasets, demonstrating that
FedSFT achieves comparable model performance to direct federated fine-tuning of LLMs, while
significantly reducing computation, communication, and memory overheads.
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Figure 2: Overview of FedSFT. Each training round comprises the following steps: 1) The server
broadcasts the latest LoRA weight matrices of the small model to all clients; 2) Each client fine-
tunes the small model’s LoRA weight matrices and sends the updated LoRA weight matrices to the
server; 3) The server aggregates the updated local LoRA weight matrices to obtain the global LoRA
weight matrices; 4) The server constructs the composite model; and 5) The server updates the global
LoRA weight matrices to align its predictions with the composite model via knowledge distillation.

2 RELATED WORK

Existing literature on federated fine-tuning of LLMs can be broadly categorized based on the adopted
PEFT methods. For example, federated prompt tuning has been studied in Zhao et al. (2023b;a); Che
et al. (2023), where clients update only a small set of soft prompt parameters while keeping the base
LLM frozen. However, these approaches still require backpropagation through the entire LLM to
update the prompts, leading to high resource consumption and necessitating white-box access to the
model. In contrast, recent methods such as Fed-BBPT (Lin et al., 2023) and FedBPT (Sun et al.,
2023) support prompt tuning in black-box settings, where clients interact with the LLM solely via
APIs without access to model internals. Nonetheless, prompt tuning modifies only the model’s input
representations without updating its internal weights, which may limit effectiveness on complex
tasks that require substantial weight adaptation. As one of the most popular PEFT methods, LoRA
has been incorporated into various federated fine-tuning schemes for LLMs (Zhang et al., 2024;
Sun et al., 2024; Bai et al., 2024; Wang et al., 2024). Nonetheless, these approaches face similar
challenges as federated prompt tuning, including high memory overhead on clients and the need for
full access to model parameters. To mitigate memory usage, some works (Ling et al., 2024; Xu
et al., 2024; Qin et al., 2024) introduce zeroth-order optimization during local fine-tuning, which
avoids backpropagation. However, these methods still require full model deployment on the client
side, making them inapplicable to the black-box setting considered in this paper.

A few recent studies (Wu et al., 2024; Peng et al., 2024) have applied the offsite-tuning (OT) (Xiao
et al., 2023) to FL by constructing a small submodel for local fine-tuning at clients, which is then
used to guide the tuning of the target LLM at the server. While sharing some conceptual similarities,
our approach differs fundamentally from OT in two key aspects. First, OT constructs a small sub-
model by truncating layers from the target LLM, and then performs model compression on a large
corpus to align its outputs with those of the target LLM. This compression step incurs additional
computational and data costs. In contrast, our approach allows the small model to be any untuned
language model as long as it shares the same tokenizer as the target LLM, eliminating the need
for costly model compression. Second, OT limits the compression ratio to relatively modest values
(e.g., 0.5 in Wu et al. (2024)) to maintain performance, whereas our approach supports small models
that are up to 10× smaller than the target LLM, offering significantly greater scalability.

3 FEDSFT: FEDERATED SURROGATE FINE-TUNING

3.1 PROBLEM SETTINGS

Consider an FL system with a server and a set of K clients. Each client k ∈ [K] has a local private
dataset Dk for downstream tasks such as natural language understanding or generation. The server
hosts a black-box untuned LLMMl that provides output logits over the entire vocabulary for any
given input, without revealing its internal model parameters. Our goal is to tune the untuned LLM

3
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Algorithm 1 Proposed FedSFT Algorithm
Input: Untuned large modelMl and small modelMs, total training rounds T , public dataset Dkd

Output: Composite model M̃l

1: Initialize LoRA weight matrix A with random Gaussian values and matrix B with zeros
2: for round t = 0, 1, 2 . . . , T − 1 do
3: Server sends (A,B) to all clients
4: for each client k ∈ [K] in parallel do
5: (Ak, Bk)← Update (A,B) by solving (3)
6: Send (Ak, Bk) back to the server
7: end for
8: Server aggregates the LoRA weight matrices according to (4)
9: Server obtains the surrogate-tuned outputs for the data samples in Dkd according to (7)

10: Server updates (A,B) by knowledge distillation according to (8)
11: end for
12: return M̃l := (Ml,Ms, A,B)

Ml with model parameters Wl on the union of all local datasets D :=
⋃

k∈[K]Dk by solving the
following optimization problem:

min∆W f(∆W ) :=
∑K

k=1 pkfk(Ml(Wl +∆W )), (1)
where fk(Ml(Wl+∆W )) = Ez∈Dk

[ℓ(Ml(Wl+∆W ); z)] is the local objective function of client
k with ℓ(·; z) being the model loss on a data sample z, and pk denotes the weight coefficient for
client k. In our setting, the clients are unwilling to share their privacy-sensitive data with the server
and are also resource-constrained, lacking the capacity to train the target LLM locally due to the
high memory demands and significant communication and computation costs of fine-tuning.

In this paper, we propose a novel approach called FedSFT, where each client only fine-tunes a small
model to steerMl to act like a tuned model on all client datasets while avoiding the cost of tuning
Ml directly. As depicted in Figure 2, FedSFT consists of two main components: client-side LoRA
fine-tuning of small models, and server-side black-box large model adaptation. In the following, we
will describe the design strategies for these two components in detail. The pseudocode of FedSFT
is provided in Algorithm 1. It is worth noting that FedSFT preserves the privacy benefits of standard
FL by keeping raw data local and sharing only model parameters. It is also compatible with existing
privacy-preserving FL techniques such as secure aggregation and differential privacy.

3.2 CLIENT-SIDE LORA FINE-TUNING OF SMALL MODELS

To address the substantial resource overheads and white-box access requirements associated with
directly fine-tuning the large model Ml, clients in FedSFT collaboratively fine-tune an untuned
small modelMs using LoRA. The small modelMs shares the same tokenizer and vocabulary as
the large model Ml. The resulting tuned model, M+

s , is then used to steer the outputs of Ml to
closely approximate those of its directly tuned counterpart. Specifically, let Ws ∈ Rm×n denote the
weight matrix of small modelMs for the target module (e.g., the query, key, value projection layers
in self-attention layers), and B ∈ Rm×r, A ∈ Rr×n denote the corresponding trainable low-rank
matrices injected into this module. Then the weight matrix of the tuned small modelM+

s becomes

Ŵs = Ws +BA. (2)
Here, the rank r ≪ min{m,n}, thereby reducing the number of trainable parameters compared to
full fine-tuning.

During each FL round, after receiving the latest global LoRA weight matrices B,A of the small
model from the server, each client k ∈ [K] freezes the base model weight matrix Ws and updates
the LoRA weight matrices as follows:

(Ak, Bk) = argminA,B

∑
z∈Dk

fk(Ms(Ws +BA); z). (3)
By applying LoRA for local fine-tuning of the lightweight small model, we significantly reduce
computation and memory overheads, since only a small number of LoRA parameters are updated
while keeping the base model frozen. Furthermore, each client uploads only the LoRA matrices
(Ak, Bk) to the server rather than the entire model, thereby reducing communication costs.

4
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Figure 3: Inference with composite model M̃l.

3.3 SERVER-SIDE BLACK-BOX LARGE MODEL ADAPTATION

Upon receiving the LoRA weight matrices {(Ak, Bk)}k∈[K] from all clients, the server aggregates
them to obtain the global LoRA weight matrices (A,B) as follows:

A←∑
k∈[K] pkAk, B ←∑

k∈[K] pkBk. (4)

Before sending the aggregated LoRA weight matrices (A,B) back to the clients for further training
as in the traditional federated LoRA fine-tuning methods, we draw inspirations from prior works (Li
et al., 2022; Liu et al., 2024; Mitchell et al., 2023) on the information gained from pre-training and
fine-tuning in LLM: pre-training at scale enables greater accumulation of raw knowledge (improved
factual correctness), while fine-tuning at larger scale produces greater helpfulness (improved user
satisfaction) (Gudibande et al., 2023). Therefore, we could boost the performance of the small tuned
model M+

s by ensembling it with the large untuned model Ml, which will better guide the local
training of all clients in the next round.

To achieve that goal, the server constructs a composite model M̃l that mimics the performance of a
directly tuned version ofMl. We formulate fine-tuningMl as a reinforcement learning (RL) prob-
lem, where the objective is to maximize task reward while incorporating a KL-divergence penalty to
constrain deviation from a reference (large untuned) model. Specifically, following Rafailov et al.
(2023); Jaques et al. (2020), the RL objective can be written as

M̃l = argmaxM+
l
Ex∼D,y∼M+

l (·|x)[r(x, y)− βKL(M+
l (y|x)||Ml(y|x))], (5)

where r(x, y) represents the reward, M+
l denotes the large tuned model, Ml is the large untuned

model, and β is a parameter that controls the strength of the KL constraint towardMl. The optimal
solution to (5) is given by

M̃l(y|x) = 1
Z(x)Ml(y|x) exp ( 1β r(x, y)), (6)

where Z(x) =
∑

yMl(y|x) exp ( 1β r(x, y)) is the partition function (see detailed derivation in Ap-
pendix A.1). Since the large model is a black-box and cannot be directly fine-tuned, we instead
fine-tune a small model on the downstream task. To capture the change in output probabilities in-
duced by the downstream dataset, we define the reward as r(x, y) = β log

M+
s (y|x)

Ms(y|x) , which reflects
the distributional shift betweenM+

s andMs. This reward is then integrated with the large untuned
model to construct the surrogate fine-tuned model M̃l, as formalized in the following theorem.

Theorem 1. Given the RL objective in (5), when setting reward as r(x, y) = β log
M+

s (y|x)
Ms(y|x) , the

probability distribution of the next token prediction from the composite model M̃l is given by:

πM̃l
(Xt|x<t) := softmax

[
gMl

(Xt|x<t) + α
(
gM+

s
(Xt|x<t)− gMs

(Xt|x<t)
)]

, (7)

where x<t := {x0, . . . , xt−1} is given the input token sequence at each time step t. gMl
, gM+

s
,

and gMs
are the logit scores over the vocabulary produced by the language modeling heads of

modelsMl,M+
s , andMs, respectively. The hyperparameter α controls the influence on the output

distribution of theMl.

Proof. See Appendix A.2.
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As illustrated in Figure 3, the composite model generates the next token by combining the outputs
from the three models Ml, Ms, and M+

s . We then use knowledge distillation to transfer the
knowledge from the composite model M̃l (i.e., as the teacher) to the small tuned modelM+

s (i.e.,
as the student). For the distillation, the teacher model is evaluated on samples of unlabeled data on
the server based on (7), and their logit outputs are used to further tune the LoRA weight matrices of
the student model on the server:

(A,B) = argminA,B Ex∼Dkd

[
KL

(
πM̃l

(x)||softmax
(
gM+

s
(x)

))]
, (8)

where Dkd is a small public unlabeled dataset that could come from other domains as demonstrated
in our experiments, and gM+

s
(x) := g(Ms(Ws + BA);x) is the logits output of the small tuned

model given input x.

After obtaining the newly updated global LoRA weight matrices from (8), the server distributes
them to the clients for the next round of training. During the inference, the client sends a query
to the server, which encodes it into a prompt token sequence and generates the response sequence
according to (7). This requires computing one forward pass of the large model and two forward
passes of the small model (one for the untuned small model, and the other for the tuned small
model). When the size of the small model is much smaller than that of the large model, the total
inference cost is comparable to that of using the directly tuned large model.

4 EXPERIMENTS

In this section, we detail our experimental setup, including the tasks, datasets, models, baseline
methods, and evaluation protocol. We then present the main results of FedSFT on each task, fol-
lowed by an analysis of system costs. Finally, we conduct ablation studies to assess the impact of
key design components in FedSFT. Additional results and analyses are provided in the Appendices.

4.1 EXPERIMENTAL SETUP

We empirically evaluate our method in a cross-silo federated setup involving 10 clients, focusing
on two tasks: controlled sentiment generation and a more challenging instruction-following task.
All experiments are conducted on a server with 4 A6000 GPUs. Hyperparameters are detailed
in Appendix B.5. Our code and data are publicly available at https://anonymous.4open.
science/r/FedSFT-F808.

Tasks and Datasets. For the controlled sentiment generation task, we use the “imdb-preference”
dataset1, which consists of 20,000 training data points, each containing a prompt and a pair of
responses scored by a golden reward model (Zhou et al., 2024). We allocate 128 examples
for knowledge distillation and split the remaining data across 10 clients for training. For eval-
uation, we randomly select 200 samples from the test set. For the instruction-following task,
we adopt the “databricks-dolly-15K” dataset (Ouyang et al., 2022), which includes over 15,000
instruction-response examples. For knowledge distillation in this task, we use subsets of the Alpaca
dataset (Taori et al., 2023) (128 examples for GPT-2 and 512 for OPT/LLaMA), selected for their di-
versity and accessibility. To simulate an FL setup similar to FedIT (Zhang et al., 2024), we adopt two
data partition strategies: pathological non-IID (McMahan et al., 2017) and Dirichlet non-IID (Hsu
et al., 2019). Due to the page limit, we present the results on pathological non-IID distribution in
the main paper, and the results on the Dirichlet distribution in Appendix B.2. We evaluate on three
distinct test sets: 1) Dolly: 500 samples from databricks-dolly-15K. 2) SelfInst (Wang et al., 2023):
252 user-generated instructions. 3) Super-NaturalInstructions (S-NI)(Wang et al., 2022): 9,000 sam-
ples across 119 tasks. Following (Peng et al., 2023; Gu et al., 2023), we divide this set into three
subsets based on ground truth response lengths: [0, 5], [6, 10], and [11, +∞], and use the [11, +∞]
response length subset for evaluation. Details on datasets are in Appendix B.1.

Models. For each task, we employ pairs of small models and large models. For controlled-
sentiment generation, we employ the GPT-2-base (120M)2 as the small model and GPT-2-xlarge

1https://huggingface.co/datasets/ZHZisZZ/imdb_preference
2https://huggingface.co/lvwerra/gpt2-imdb
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(1.5B) as the large model. For instruction-following, we use the following pairings of small model
and large model: OPT-1.3B with OPT-13B, GPT-2-large (760M) with GPT-2-xlarge (1.5B), and
LLaMA-7B with LLaMA-13B.

Baselines. We compare FedSFT with the following baselines: 1) Base directly uses the large
model for zero-shot inference. 2) FedIT (Zhang et al., 2024) fine-tunes the small model or large
model with LoRA by the FedAvg algorithm (McMahan et al., 2017). 3) FedIT+SFT follows the
same procedure as FedIT to fine-tune the small model. During inference, it utilizes a composite
model consisting of the tuned and untuned small models and the large model to generate responses.
4) FedOT, the federated version of Offsite-Tuning (OT) (Xiao et al., 2023), constructs a small model
by compressing the LLM using layer dropping and knowledge distillation. We match its model size
to FedSFT for fair comparison, and use the full Alpaca dataset (52,000 samples) for knowledge
distillation because OT requires a large corpus to distill the compressed small model.

Evaluation Metrics and Protocol. For the controlled-sentiment generation task, we follow the
prior work (Zhou et al., 2024) to utilize the golden reward model Distilbert-imdb3 to emulate human
judgment in classifying movie review sentiments. Distilbert-imdb model assigns a reword score to
each response, with higher scores indicating more positive sentiment. For the instruction following
task, we use two metrics to ensure a balanced and comprehensive evaluation of the model’s ability
to generate high-quality, contextually appropriate responses: 1) Rouge-L score (Lin, 2004): The
Rouge-L score is used to assess the recall and relevance of text generated by a model by measuring
the longest common subsequence of words compared to a reference text. Previous works (Wang
et al., 2022; Gu et al., 2023) have indicated that Rouge-L is appropriate for large-scale evaluation
of instruction-following tasks. 2) GPT-4 feedback: We employ GPT-4-Turbo as a judge to evaluate
model-generated responses from multiple perspectives, such as helpfulness, relevance, accuracy, and
level of detail of their responses. The details are given in Appendix B.3.

In our evaluation process, we extract responses from each model by setting the temperature to 1,
limiting responses to a maximum length of 512, and employing random seeds {10, 20, 30, 40, 50}.
Following the previous works (Taori et al., 2023; Gu et al., 2023), we utilize a prompt wrapper to
reformat each pair of instruction responses into a sentence (See details in Appendix B.4).

4.2 CONTROLLED SENTIMENT GENERATION TASK

Base FedOT FedIT+SFT FedSFT FedIT(1.5B)
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Figure 4: Reward scores of FedSFT and
baselines on the controlled-sentiment
generation task.

Figure 4 presents the mean reward scores of FedSFT and
baselines on the controlled-sentiment generation task. We
highlight four key observations: First, federated fine-
tuning via FedIT (120M) yields substantial improve-
ment over the untuned small model (GPT-2 (120M)),
though it still lags slightly behind the untuned large model
(Base (1.5B)). Second, fine-tuning approaches via sur-
rogates, FedIT+SFT (120M-1.5B) and FedSFT (120M-
1.5B), consistently outperform both FedIT (120M) (black
dashed line) and the untuned large model GPT-2 (120M)
(gray dashed line), achieving reward scores comparable
to directly fine-tuning the large model (FedIT (1.5B)).
Importantly, these surrogate methods only require fine-
tuning the small model, avoiding the need to train the large model entirely. Third, FedSFT surpasses
FedIT+SFT, which we attribute to its use of a large composite model during training for knowledge
distillation. This design improves the quality of the aggregated small model. Fourth, FedOT, which
uses the first and last two layers as the adapter and two layers as the emulator, performs much worse
than FedSFT. This is due to two factors: 1) the emulator requires a large corpus for effective model
compression, and 2) OT suffers from a large performance degradation when the layer-drop retention
ratio falls below 0.5. These observations align with the findings in Xiao et al. (2023).

3https://huggingface.co/lvwerra/distilbert-imdb
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4.3 INSTRUCTION FOLLOWING TASK

The main results are summarized in Table 1, with detailed training outcomes provided in Ap-
pendix C.1. Due to GPU memory constraints, distilling an emulator under LLaMA-13B for FedOT
is infeasible, and thus FedOT is excluded from this experimental setting.

Table 1: The mean and standard deviation of Rouge-L
scores across 5 random seeds for the instruction follow-
ing task. Larger value indicates better performance.

Model Method Dataset

Dolly SelfInst S-NI

O
PT

Base (13B) 9.8±.2 6.7±.2 7.6±.1

FedIT (13B) 23.6±.2 15.2±.7 25.9±.5

FedIT (1.3B) 20.4±.5 11.5±.5 21.0±.1

FedIT+SFT (1.3B-13B) 21.5±.3 13.0±.4 23.3±.2

FedOT (2-2-2) 6.1±.1 3.7±.1 3.8±.1

FedSFT (1.3B-13B) 21.8±.2 15.1±.6 25.8±.2

G
PT

-2

Base (1.5B) 7.2±.1 5.5±.3 5.8±.1
FedIT (1.5B) 19.2±.4 11.7±.7 22.1±.4

FedIT (760M) 17.8±.5 10.4±.3 18.4±.3
FedIT+SFT (760M-1.5B) 18.6±.4 10.9±.5 21.4±.3
FedOT (2-18-2) 5.1±.2 4.2±.1 4.5±.1
FedSFT (760M-1.5B) 18.9±.5 11.0±.4 21.6±.2

L
L

aM
A

Base (13B) 9.7±.2 7.3±.5 8.8±.1
FedIT (13B) 24.5±.3 19.0±.8 29.9±.5

FedIT (7B) 23.3±.6 17.6±.6 25.9±.2
FedIT+SFT (7B-13B) 23.5±.7 18.9±.3 26.7±.4
FedSFT (7B-13B) 23.8±.4 19.1±.7 28.7±.3

We draw the following key observa-
tions: First, comparing the Base and
FedIT methods using large models re-
veals that: 1) Untuned large models
(Base) exhibit suboptimal performance
across all instruction-following datasets.
2) Directly fine-tuning large models with
FedIT significantly enhances performance
on specific downstream tasks. Second,
evaluating the methods involving surro-
gate models yields the following insights:
1) Surrogate fine-tuning can match or
even surpass the performance of directly
tuned large models. For instance, on
the Dolly dataset, although FedIT+SFT
(760M-1.5B) and FedSFT (760M-1.5B)
only fine-tune GPT-2-large (760M) lo-
cally, they achieve Rouge-L scores of 18.9
and 18.6, respectively. These scores sur-
pass the 17.8 achieved by directly fed-
erated fine-tuning of GPT-2-large (FedIT
(760M)) and are nearly as high as the 19.2 achieved by federated fine-tuning GPT-2-xlarge (FedIT
(1.5B)). 2) FedSFT consistently outperforms FedIT+SFT, as its composite model facilitates knowl-
edge distillation during the training, effectively enhancing the performance of the aggregated small
model. 3) Notably, FedSFT (7B-13B) even surpasses FedIT (13B) on the SelfInst dataset, sug-
gesting that surrogate fine-tuning can better preserve essential knowledge than direct fine-tuning,
underscoring the strong potential of our approach. Third, consistent with the controlled sentiment
generation task, FedOT underperforms on instruction-following datasets as well.

In addition to the Rouge-L results, we report GPT-4 feedback evaluations in Appendix B.3, offering
a more holistic assessment of the model’s ability to produce helpful, accurate, and contextually
appropriate responses. The GPT-4 evaluations exhibit trends consistent with the Rouge-L results.

4.4 SYSTEM COST ANALYSIS

Table 2: Comparison of system costs. Model Size is
the model size deployed on clients. Comm. Cost is the
per-round upload communication cost for each client.
Comp. Cost is the total TFLOPs for one local itera-
tion. VRAM is the peak GPU memory usage.

Model Method Model Size
(B)

Comm. Cost
(MB)

Comp. Cost
(TFLOPs)

VRAM
(GB)

O
PT

Base (13B) N/A N/A N/A N/A
FedIT (13B) 13.1 12.5 13.4 25.0

FedIT (1.3B)
1.3 3.0 1.4 3.0FedIT+SFT (1.3B-13B)

FedSFT (1.3B-13B)

G
PT

-2

Base (1.5B) N/A N/A N/A N/A
FedIT (1.5B) 1.5 2.4 1.7 3.5

FedIT (760M)
0.8 1.4 0.8 2.0FedIT+SFT (760M-1.5B)

FedSFT (760M-1.5B)

L
L

aM
A

Base (13B) N/A N/A N/A N/A
FedIT (13B) 12.9 12.5 13.4 25.8

FedIT (7B)
6.7 8.1 6.9 13.5FedIT+SFT (7B-13B)

FedSFT (7B-13B)

The system costs for FedSFT and base-
lines (with batch size set to 1) are summa-
rized in Table 2. We make the following
observations: 1) Model Size. Surrogate
fine-tuning methods such as FedIT+SFT
and FedSFT only require fine-tuning small
models on client devices, substantially re-
ducing local storage requirements. 2)
Communication Cost. By leveraging
the small model and LoRA for local
fine-tuning, surrogate fine-tuning methods
significantly lower communication over-
head per client, making them suitable for
resource-constrained environments. For
example, FedSFT reduces communication
cost from 12.5MB to 3MB for OPT mod-
els. These savings are especially im-
portant in real-world applications where
clients may operate over limited-bandwidth or unstable network connections. 3) Computation
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Figure 5: Performance comparison of FedSFT with different α values on GPT-2 for Dolly, SelfInst,
and S-NI datasets. Higher Rouge-L score indicates better performance.
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Figure 6: Performance comparison of FedSFT across different small model sizes on the Dolly,
SelfInst, and S-NI datasets. Higher Rouge-L scores indicate better performance.

Cost. Surrogate fine-tuning also reduces the computational burden on clients. Since only a small
model is tuned with LoRA, the total FLOPs are significantly lower. We measure FLOPs using the
DeepSpeed FLOPs profiler4 (with a batch size of 1 and input length of 512 tokens), and find that
FedSFT reduces computational cost by up to a factor of 10 compared to full fine-tuning of large
models. 4). VRAM Usage. Surrogate fine-tuning methods lower GPU memory requirements, en-
abling deployment on clients with limited hardware. For instance, FedSFT using OPT-1.3B instead
of OPT-13B reduces peak VRAM usage from 25.0GB to just 3.0GB. This makes it feasible for
lightweight clients to participate in federated learning without sacrificing model performance.

4.5 ABLATION STUDY

Impact of α. We investigate different values of α in FedSFT to analyze its impact. According to
Equation (7), a larger α magnifies the influence of the difference between the tuned and untuned
small models, making the predictions more responsive to the fine-tuning adjustments. Conversely, a
smaller α results in predictions more similar to the untuned large model. Figure 5 shows results for
GPT-2 across three datasets. Notably, for FedSFT on GPT-2, α = 1.5 yields the best performance.
This demonstrates the importance of carefully tuning α to balance the trade-off between leveraging
fine-tuning adjustments and maintaining stability of the untuned large model’s predictions.

Impact of Small Model Scaling. We fix the LM size to OPT-13B and vary the small model size
(OPT-350M, 1.3B, and 2.7B) to evaluate its impact on performance during surrogate fine-tuning.
The results are presented in Figure 6. The performance of both FedSFT and FedIT+SFT consistently
improves as the small model size increases. Notably, FedSFT can match or even outperform directly
federated fine-tuning of LM when using a moderately sized small model in all datasets.

5 CONCLUSION

In this paper, we presented FedSFT, a novel FL framework designed to enable efficient fine-tuning
of black-box LLMs on resource-constrained clients. FedSFT allows clients to fine-tune LLMs with-
out requiring access to the full model parameters, making it well-suited for practical deployment
scenarios. Experiments show that FedSFT achieves performance comparable to direct federated
fine-tuning approaches, while significantly reducing computational, communication, and memory
overheads. Future work includes analyzing the theoretical convergence of the algorithm.

4https://www.deepspeed.ai/tutorials/flops-profiler/
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A MATHEMATICAL DERIVATIONS

A.1 DERIVATION OF THE OPTIMAL SOLUTION OF THE RL OBJECTIVE

Recall that the fine-tuning can be formulated as the following RL objective:

max
M+

l

Ex∼D,y∼M+
l (·|x)[r(x, y)− βKL(M+

l (y|x)||Ml(y|x))], (9)

where r(x, y) represents the reward, M+
l denotes the large tuned model, Ml is the large untuned

model, and β is a parameter that controls the strength of the KL constraint toward Ml. We now
have:

max
M+

l

Ex∼D,y∼M+
l (·|x)[r(x, y)− βKL(M+

l (y|x)||Ml(y|x))]

=max
M+

l

Ex∼D,y∼M+
l (·|x)[r(x, y)− β log

M+
l (y|x)

Ml(y|x)
]

=min
M+

l

Ex∼D,y∼M+
l (·|x)[log

M+
l (y|x)

Ml(y|x)
− 1

β
r(x, y)]

=min
M+

l

Ex∼D,y∼M+
l (·|x)[log

M+
l (y|x)

1
Z(x)Ml(y|x) exp ( 1β r(x, y))

− logZ(x)], (10)

where we have the partition function:

Z(x) =
∑
y

Ml(y|x) exp
(
1

β
r(x, y)

)
. (11)

We can define

M̃l(y|x) =
1

Z(x)
Ml(y|x) exp

(
1

β
r(x, y)

)
, (12)

which is a valid probability distribution as M̃l(y|x) for all y and
∑

y M̃l(·|x) = 1. Since Z(x) is
not a function of y, we can re-organize the final objective in (10) as:

min
M+

l

Ex∼D[Ey∼M+
l (·|x)[log

M+
l (y|x)

M̃l(y|x)
− logZ(x)] (13)

= min
M+

l

Ex∼D[KL(M+
l (y|x),M̃l(y|x))− logZ(x)]. (14)

Since Z(x) is independent of the M+
l , minimizing the objective reduces to minimizing the KL

divergence term. By Gibbs’ inequality, the KL divergence achieves its minimum value of zero if
and only if the two distributions are identical. Therefore, the optimal policy is obtained by matching
M̃l(y|x) to the normalized reference distribution:

M̃l(y|x) =
1

Z(x)
Ml(y|x) exp

(
1

β
r(x, y)

)
. (15)

A.2 PROOF OF THEOREM 1

Proof. In our method, the large modelMl is a black box and cannot be directly fine-tuned. Instead,
we fine-tune the small modelMs to obtainM+

s , and define the reward as r(x, y) = β log
M+

s (y|x)
Ms(y|x) .

According to (15), the surrogate fine-tuned large model is then constructed by

M̃l(y|x) =
1

Z(x)
Ml(y|x)

M+
s (y|x)

Ms(y|x)
∝Ml(y|x)

M+
s (y|x)

Ms(y|x)
. (16)

Then, we have:

log M̃l(y|x)) = logMl(y|x) + logM+
s (y|x)− logMs(y|x). (17)

15
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Inspired by (17), we design a composite teacher model that directly implements this decomposition.
Specifically, we use the logits from the large untuned model gMl

and the difference in logits between
the tuned and untuned small model (gM+

s
−gMs

) to represent the task-specific reward signal. Then,
the probability distribution of the next token prediction from the composite model M̃l is given by

πM̃l
(Xt|x<t) := softmax

[
gMl

(Xt|x<t) + α
(
gM+

s
(Xt|x<t)− gMs

(Xt|x<t)
)]

, (18)

where gMl
, gM+

s
, and gMs

are the logit scores over the vocabulary produced by the language
modeling heads of models Ml, M+

s , and Ms, respectively. The hyperparameter α controls the
influence on the output distribution of the Ml. A smaller value of α results in predictions that
closely resemble those of the Ml, whereas a larger α magnifies the contrast between M+

s and
Ms.

B EXPERIMENT DETAILS

B.1 DATASET

“imdb-preference” dataset 5 consists of 20,000 training data points, each containing a prompt and a
pair of responses scored by a golden reward model. We select the higher-scored positive response
to encourage positive continuation of movie reviews. We randomly sample 128 data points for
knowledge distillation and allocate the remaining data across 10 clients for training.

Dolly (“databricks/databricks-dolly-15k”) 6 is an open-source collection of 15,000 high-quality
human-generated prompt and response pairs designed for training and evaluating natural language
processing models. We remove samples that surpass the models’ context length. Then, we randomly
allocate 1,000 samples for validation and 500 for testing, thereby retaining approximately 12,500
examples dedicated to training purposes. This dataset covers a range of instructional categories,
including brainstorming, classification, closed-question answering (QA), generation, information
extraction, open QA, and summarization. These categories were chosen to reflect different types
of cognitive tasks that could be useful for training LLMs to respond in human-like manners across
a variety of contexts. We plot the number of data samples and their corresponding percentage in
Figure 7.
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Figure 7: Bar and pie charts of the number (a) and corresponding percentage (b) of each category in
the Dolly dataset.

SelfInst dataset7 is designed to evaluate the practical utility of instruction-following models in user-
oriented contexts. This dataset includes a diverse array of tasks accompanied by specific instructions,
including tables, codes, or math equations. In total, it contains 252 distinct tasks, each associated
with a unique instruction, aimed at testing the capability of models across a broad spectrum of
applications. We show the number of data samples in the test dataset from each category in Figure 8.

5https://huggingface.co/datasets/ZHZisZZ/imdb_preference
6https://huggingface.co/datasets/databricks/databricks-dolly-15k
7https://github.com/yizhongw/self-instruct
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Figure 8: Bar chart of the number of each category in the SelfInst dataset.
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Figure 9: Bar chart of the number of each category in the S-NI dataset.

S-NI dataset (Super-NaturalInstructions) (Wang et al., 2022) is designed to test the generalization
capabilities of large models across a wide range of NLP tasks through declarative instructions. It
includes over 1,600 unique tasks, encompassing diverse categories such as text classification, sum-
marization, question answering, and more complex reasoning tasks. We draw the number of data
samples used for evaluation in each category in Figure 9.

B.2 DATA PARTITION STRATEGY

Federated fine-tuning LLMs involves tuning algorithms across multiple decentralized devices or
servers holding local data samples, which are usually not identically distributed. This scenario
frequently occurs in real-world applications, where data naturally varies across clients due to geo-
graphic diversity and user behavior. For example, diverse clients might engage in distinct activities
like open-domain QA and creative writing. In this case, the format and content of instructions can be
significantly different. For instance, QA tasks often focus on factual queries and responses, whereas
creative writing tasks require guidelines for crafting engaging and imaginative narratives.

To simulate an FL setup, we employ two data partition strategies, pathological non-IID (McMahan
et al., 2017) and Dirichlet non-IID (Hsu et al., 2019). Specifically, we first sort the data from the
Dolly dataset by categories. Then we randomly partition the dataset into 10 shards. For pathological

17
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Figure 10: (a) The pathological non-IID distribution of instruction categories distribution across
clients. Categories: creative writing(CW), summarization(S), information extraction(IE), brain-
storming(B), closed QA(CQA), classification(C), general QA(GQA), open QA(OQA). (b) The
Dirichlet non-IID distribution of instruction categories across clients.

Table 3: Evaluation results on Dirichlet distribution. We report the average and standard deviation
of Rouge-L scores across 5 random seeds. Higher values indicate better performance.

Model Method Dataset

Dolly SelfInst S-NI

GPT-2

FedIT (1.5B) 19.1±.6 11.2±.4 20.7±.3

Base (1.5B) 7.2±.1 5.5±.3 5.8±.1
FedIT (760M) 18.0±.5 10.1±1. 17.1±.3
FedIT+SFT (760M-1.5B) 18.6±.5 10.2±.8 19.7±.3
FedSFT (760M-1.5B) 18.8±.4 11.2±.4 20.3±.2

non-IID distribution, each shard contains an equal number of samples and exclusively represents
two specific categories. For the Dirichlet distribution, the data from the same category are dis-
tributed among shards following the Dirichlet distribution with concentration parameter 0.5. These
segmentation strategies followed a commonly used partitioning method in (Zhang et al., 2024; He
et al., 2020; Lai et al., 2022; Zhang et al., 2023), which led to a non-IID data distribution among the
clients with imbalanced categories of instructions, mirroring a typical real-world FL data distribu-
tion. Figure 10 depicts the distribution of instruction categories within each client’s dataset, with the
former showing the pathological distribution and the latter displaying the Dirichlet distribution, re-
spectively. As shown in Figure 10, for pathological distribution, each client has imbalanced instruc-
tion categories with some categories completely missing. For the Dirichlet distribution, Figure 10
illustrates that each client has an imbalanced distribution of instruction categories and a varying total
number of samples. These imbalances mirror real-world conditions, where individual users often
encounter a skewed variety of instructions, reflecting their unique usage patterns and preferences.

We apply the Dirichlet distribution to the training dataset and present the evaluation results for the
GPT-2 models in Table 3. The results indicate that FedSFT outperforms the federated fine-tuning
small model, such as FedIT (760M) and FedIT+SFT (760M-1.5B), and performs comparably to
federated fine-tuning large models like FedIT (1.5B).

B.3 GPT-4 EVALUATION

We use the Rouge-L scores and GPT-4 feedback scores to evaluate the model-generated responses.
These approaches ensure a more balanced and comprehensive evaluation of the model’s ability to
produce high-quality, contextually appropriate text. Following the same evaluation approach in (Gu
et al., 2023; Shen et al., 2023), we utilize GPT-4 as a judge to compare model-generated responses
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[Instruction]
{instruction}
[Input]
{input}
[The Start of Assistant 1’s response]
{answer 1}
[The End of Assistant 1’s Answer]
[The Start of Assistant 2’s response]
{answer 2}
[The End of Assistant 2’s Answer]
[System]
We would like to request your feedback on the performance of two AI
assistants in response to the user instruction and input displayed above.
Please rate the helpfulness, relevance, accuracy, and level of detail of
their responses. Each assistant receives an overall score on a scale of 1
to 10, where a higher score indicates better overall performance.
Please first provide a comprehensive explanation of your evaluation,
avoiding any potential bias and ensuring that the order in which the re-
sponses were presented does not affect your judgment.
Then, output two lines indicating the scores for Assistant 1 and 2, re-
spectively.
Output with the following format:
Evaluation evidence: <your evaluation explanation here>
Score of the Assistant 1: <score>
Score of the Assistant 2: <score>

Figure 11: GPT-4 evaluation prompt.

with the ground truth answers, assigning scores from 1 to 10 for both sets of responses. We call the
GPT-4 Turbo API8 with the temperature = 0.7. The evaluation prompt used for GPT-4 is illustrated
in Figure 11. We calculate the ratio of the total scores of model-generated responses and the ground
truth answers. We select the seed closest to the average Rouge-L score and then report its GPT-4
feedback score. For the Dolly and SelfInst datasets, we evaluate all the responses. For the S-NI
dataset, we randomly select 200 responses for evaluation. The results are summarized in Table 4.
Due to the poor performance of the base untuned large models and FedOT, we have excluded their
GPT-4 scores in Table 4. These tables demonstrate that FedSFT can achieve performance compara-
ble to the direct tuning of the large models in the FL setting.

B.4 AUTOMATIC EVALUATION DETAILS

In our evaluation process, we extract responses from each model by setting the temperature to 1,
limiting responses to a maximum length of 512, and employing random seeds [10, 20, 30, 40, 50].
Following the previous works Taori et al. (2023); Gu et al. (2023), we utilize a prompt wrapper
illustrated in Figure 12 to reformat each pair of instruction-response into a sentence.

B.5 HYPERPARAMETERS

The specific configurations are documented in Table 5. For all experiments, we use the most com-
mon PEFT technique, LoRA (Hu et al., 2021), for our local training. We fine-tune the models for 20
communication rounds using the Prodigy optimizer (Mishchenko & Defazio, 2024), with an initial
learning rate of 1. A cosine learning rate decay strategy (Loshchilov & Hutter, 2016) is applied at
each communication round, and safeguard warmup without bias correction is implemented. To save
the memory footprint, all models are loaded into VRAM in half-precision mode, with checkpoints
also saved in this format. For knowledge distillation of FedSFT, the hyperparameter λ is set to 0.1.

8API version of 2024-04-09.
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Table 4: Evaluation results by GPT-4 feedback. Higher scores indicate better performance.

Model Method Dataset

Dolly SelfInst S-NI

O
PT

FedIT (13B) 51.9 44.5 44.9

FedIT (1.3B) 37.0 28.4 29.2
FedIT+SFT (1.3B-13B) 43.4 35.4 35.3
FedSFT (1.3B-13B) 44.3 42.6 41.1

G
PT

-2

FedIT (1.5B) 35.7 29.1 29.2

FedIT (760M) 30.3 26.1 24.5
FedIT+SFT (760M-1.5B) 34.4 28.2 26.8
FedSFT (760M-1.5B) 34.8 28.8 27.8

L
L

aM
A FedIT (13B) 65.4 59.5 61.8

FedIT (7B) 57.7 52.1 50.7
FedIT+SFT (7B-13B) 63.6 56.4 59.0
FedSFT (7B-13B) 65.4 60.3 61.6

Below is an instruction that describes a task.
Write a response that appropriately completes the request.

[Instruction]
{instruction}

[Input]
{input}

[Response]

Figure 12: The prompt wrapper for training and evaluation.

During evaluation, we consistently generate responses using greedy search with unrestricted sam-
pling. The Top-p ratio is set to 1.0 and the temperature to 1.0. The maximum generation length is
capped at 512 tokens. Evaluation batch sizes are 32 for the GPT-2 model and 8 for the OPT/LLaMA
model, respectively.

B.6 LORA CONFIGURATION

We apply LoRA to the attention layer for GPT-2 model and “q proj”, “v proj” layers for LLaMA
model to enhance adaptation capabilities, using the Adam optimizer for effective training. We set the
rank of LoRA to be 4 and 8 for GPT-2 and LLaMA, respectively. This only yields 4.2 M trainable
parameters with size 8.1 MB for LLaMA-7B model, which is affordable for many user devices. The
overall LoRA training configuration for different models can be found in Table 6.

B.7 HARDWARE AND LIBRARY

We conduct the experiment on the Ubuntu (22.04.4 LTS) server equipped with 4 A6000 GPUs.
Each GPU has 48 GB VRAM. The training scripts were implemented using Pytorch 2.0.1 (Paszke
et al., 2019). To accelerate the experiment’s progress, we also employ popular open-sourced third-
party packages, including transformer 4.36.0.dev0 (Wolf et al., 2020), deepspeed 0.14.0 (Rasley
et al., 2020), accelerate 0.29.2 (Gugger et al., 2022), nltk 3.8.1 (Bird et al., 2009), sentencepiece
0.2.0 (Kudo & Richardson, 2018), and datasets 2.81.0 (Lhoest et al., 2021). For LoRA local training,
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Table 5: Hyperparameters for fine-tuning models.

Hyperparameter GPT-2 OPT LLaMA

Precision Float16 Float16 Float16
Number of local epochs 2 2 2
Total round 20 20 20
Training Batch size 64 64 64
LoRA rank 4 8 8
Weight decay 0.01 0.01 0.01
Max sequence length 512 512 512
KD data size 128 512 512
KD batch size 16 32 32
KD iterations 8 16 16

Table 6: LoRA training configuration for fine-tuning models.

Model #Size Rank Trainable Param LoRA Size Trainable Fraction

GPT-2 760M 4 0.7 M 1.4 MB 0.09%
1.5B 4 1.2 M 2.4 MB 0.08%

OPT

350M 8 0.8 M 3.0 MB 0.24%
1.3B 8 1.6 M 6.0 MB 0.12%
2.7B 8 2.6 M 10.0 MB 0.10%
13B 8 6.6 M 25.0 MB 0.05%

LLaMA 7B 8 4.2 M 8.1 MB 0.06%
13B 8 6.5 M 12.5 MB 0.05%
30B 8 12.8 M 25.6 MB 0.04%

we implement the low-rank model update using PEFT package (Mangrulkar et al., 2022). For all
experiments, we adopt the Python 3.10 interpreter and CUDA version 11.4.

C RESULT ANALYSIS

C.1 DETAILED TRAINING PROCESS

In this section, we conduct a comprehensive training process comparison of FedSFT and the base-
lines across Dolly, SelfInst, and S-NI datasets for the instruction following task. The detailed results
during training are depicted in Figure 13.

C.2 EVALUATION OF TOKENS MOST INFLUENCED BY SURROGATE FINE-TUNING

We aim to investigate which tokens are most influenced by FedSFT. To this end, we calculate the
frequency of each token in the generated responses for GPT-2-1.5B to its FedSFT version. Table 7
summarizes the 8 tokens whose occurrence frequency has increased from GPT-2-1.5B to its FedSFT.
We can see that these tokens are more contributing to reasoning and style. These findings are con-
sistent with the hypothesis that instruction-tuning mainly influences reasoning and style, rather than
increasing the model’s knowledge (Gudibande et al., 2023).

C.3 GENERATION DIVERSITY

Table 7 shows that the occur frequency of certain tokens increased from LLaMA-7B to its surrogate-
tuned version, potentially affecting generation diversity. To investigate this impact, we conducted
experiments on distinct n-grams (Dist-3 and Dist-4) diversity, a widely used metric to measure the
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Figure 13: Evaluation results of FedSFT and baselines on OPT (a, b, c), GPT-2 (d, e, f), and LLaMA
(g, h, i) models across different rounds for Dolly, SelfInst, and S-NI datasets. FedOT is omitted as it
fails to converge. Higher Rouge-L scores indicate better performance.

Table 7: For the three datasets, the 8 tokens whose occurrence frequency increased the most from
GPT-2-1.5B to its FedSFT version. Top Context shows the most common 3-gram that the word
occurs in.

Dolly SelfInst S-NI

Token Top Context Token Top Context Token Top Context

is is one of the equal is equal to because because he is
a it can be a well as well as he when he was

can can be used to was said it was in facts specified in
popular the most popular do need to do they they are not

most of the most it and it will changed entity changed from
known is known for into into something new has an individual has
when when I was nothing there is nothing were and I were
many there are many when when a change is there is a

generation diversity of LLMs (Li et al., 2016) (see Appendix C.4 for more details). As shown in
Table 8, our algorithm maintains a high level of diversity despite the observed changes in token
frequency.

C.4 DETAILS ABOUT GENERATION DIVERSITY METRICS

Dist-n is calculated as a fraction N/C, where N represents the number of distinct n-grams in the
generated responses and C denotes the total number of generated n-grams. We report the average
values across 5 seeds in Table 8.
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Table 8: The distinct 3-grams and 4-grams (Dist-3 and Dist-4) on the test sets. FedSFT preserves
generation diversity.

Model Method Dolly SelfInst S-NI

Dist-3 Dist-4 Dist-3 Dist-4 Dist-3 Dist-4

LLaMA

FedIT (13B) 96.4 99.3 97.5 99.4 93.2 98.0

Base (13B) 95.0 99.1 96.3 99.3 89.9 97.9
FedIT (7B) 96.6 99.3 97.7 99.5 93.5 98.4
FedIT+SFT 97.1 99.4 98.0 99.6 94.3 98.5
FedSFT 97.2 99.4 98.0 99.5 93.8 98.2

GPT-2

FedIT (1.5B) 97.0 99.4 98.1 99.5 94.7 98.5

Base (1.5B) 96.3 99.4 97.0 99.4 92.2 95.6
FedIT (760MB) 97.0 99.4 98.2 99.6 94.8 98.6
FedIT+SFT (760M-1.5B) 97.0 99.4 98.3 99.6 94.7 98.3
FedSFT (760M-1.5B) 97.4 99.5 98.5 99.6 93.3 97.5

C.5 FURTHER EVALUATION OF α

We use different α values in FedSFT to investigate the effect of surrogate-tuning weight α.
Specifically, we set α ∈ {1.0, 1.3, 1.5, 1.8, 2.0} to evaluate the GPT-2 model on three testing
datasets at global rounds {1, 5, 10, 15}. For the LLaMA model, we evaluate it at global rounds
{1, 5, 10, 15, 20}, using α values in the range {1.0, 1.5, 2.0}. The Rouge-L scores for LLaMA and
GPT-2 are illustrated in Figure 14. From these figures, we can find that the value α plays a crucial
role in determining the behavior of the model. As α increases, the influence of the tuned small model
on the predictions becomes more pronounced, leading to more substantial deviations from the un-
tuned large model’s behavior. Conversely, as α decreases, the predictions tend to align more closely
with the target untuned large model, resulting in a more stable and conservative output. Therefore,
in practice, we need to carefully choose an appropriate α for the specific downstream task.

C.6 IMPACT OF LARGE MODEL SCALING

We investigate the performance of FedSFT and FedIT+SFT when we scale up the size of a large
model. Figure 15 shows the best Rouge-L score, while the training dynamics are summarized in
Figure 16. Specifically, we reuse the tuned LLaMA-7B from FedSFT (7B-30B) to surrogate-tune
LLaMA-30B. Similarly, we evaluate FedIT+SFT on LLaMA-30B, reusing the tuned LLaMA-7B
from FedIT (7B). This approach is designed to simulate a realistic scenario in which, during the
training phase, only LLaMA-7B and LLaMA-13B are used. In the deployment phase, however,
if more powerful models such as LLaMA-30B become available, we aim to evaluate whether the
model trained with FedSFT retains its advantage over FedIT+SFT. From Figure 15, we observe that
performance improves for both FedSFT and FedIT+SFT as the large model size increases. The
results for both methods show a clear positive correlation between model size and performance,
highlighting the scaling law: larger models yield better results. Additionally, FedSFT consistently
outperforms FedIT+SFT, reinforcing the advantage of our proposed method as the number of model
parameters increases.

C.7 EFFECTIVENESS UNDER LIMITED LOGITS

In practice, closed-source LLM APIs often restrict logit access and return only top-k probabilities
for each generated token. To evaluate whether FedSFT remains effective under such constraints, we
consider an extreme setting in which the large model provides only its top-5 logit outputs instead
of the full logits. As shown in Table 9, FedSFT maintains strong performance even when the large
model exposes only top-5 logits, achieving results close to those obtained with full logits. This
demonstrates that FedSFT does not rely on access to complete logit vectors, and is robust to the
limited logit access commonly found in real-world API-based LLM deployments.
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Figure 14: Performance comparison of different α for FedSFT on OPT (a, b, c), GPT-2 (d, e, f), and
LLaMA (g, h, i) across different rounds for Dolly, SelfInst, and S-NI tasks. Higher Rouge-L scores
indicate better performance.
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Figure 15: The scaling of large model models in the LLaMA family. FedIT (7B) and FedIT (30B) are
directly tuned models by FedIT. At the 13B scale, we report the performance of FedSFT (7B-13B)
and FedIT+SFT (7B-13B). At the 30B scale, we use the tuned 7B model from FedSFT (7B-13B)
to surrogate fine-tune the 30B model for FedSFT, and the 7B model from FedIT (7B) to surrogate
fine-tune the 30B model for FedIT+SFT.

C.8 IMPACT OF AGGREGATION

To complement our ablation analysis and isolate the contribution of aggregation in FedSFT, we intro-
duce two additional baselines. 1) CentralSFT, which performs centralized fine-tuning on the small
model followed by distillation using a composite teacher that includes the large model. 2) LocalSFT,
where each client fine-tunes its small model independently and performs composite model distilla-
tion with the server without any aggregation. Together, CentralSFT and LocalSFT provide mean-
ingful upper- and lower-bound references for understanding the impact of aggregation in FedSFT..
As shown in Table 10, FedSFT consistently outperforms the local-only baseline (LocalSFT) and
approaches the centralized baseline (CentralSFT) across all datasets.
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Figure 16: The scaling of large models in the LLaMA family models. (a, b, c) are the results of
FedSFT. (d, e, f) are the results of FedIT+SFT. FedSFT† (7B-30B) uses the tuned 7B model from
FedSFT (7B-13B) to surrogate fine-tune the LLaMA 30B.

Table 9: The mean and standard deviation of Rouge-L scores across 5 random seeds with top-5 logits
from the large model for the instruction following task. A larger value indicates better performance.

Model Method Dataset

Dolly SelfInst S-NI

O
PT

Base (13B) 9.8±.2 6.7±.2 7.6±.1

FedIT (13B) 23.6±.2 15.2±.7 25.9±.5

FedIT (1.3B) 20.4±.5 11.5±.5 21.0±.1

FedIT+SFT (top-5) (1.3B-13B) 23.4±.3 14.7±.4 30.7±.2

FedOT (2-2-2) 6.1±.1 3.7±.1 3.8±.1

FedSFT (top-5) (1.3B-13B) 23.7±.3 15.3±.3 31.6±.3

C.9 PERFORMANCE-EFFICIENCY TRADE-OFF ANALYSIS

To provide a unified view of the performance-efficiency trade-off, we report the ROUGE-L scores
and system costs of FedSFT and FedIT+SFT under different client model sizes. Table 11 summa-
rizes the results across three datasets (Dolly, SelfInst, and S-NI) along with communication cost,
computation cost, and VRAM usage.

We observe a clear pattern: larger client models achieve higher downstream performance but in-
cur proportionally larger computation, communication, and memory overhead. More importantly,
FedSFT consistently attains higher accuracy than FedIT+SFT under the same resource budget,
demonstrating a better accuracy–efficiency balance.
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Table 10: Rouge-L scores across 5 random seeds. A larger value indicates better performance.

Model Method Dataset

Dolly SelfInst S-NI

O
PT

LocalSFT (1.3B-13B) 20.7±1.1 11.9±.8 20.9±2.1

CentralSFT (1.3B-13B) 23.7±.3 15.5±.8 26.1±.2

FedSFT (1.3B-13B) 21.8±.2 15.1±.6 25.8±.2

Table 11: Performance-efficiency trade-off under different client model sizes for FedSFT. We report
ROUGE-L scores on Dolly, SelfInst, and S-NI. The server model is fixed at 13B.

Method Size Dolly SelfInst S-NI Comm. Cost
(MB)

Comp. Cost
(TFLOPs)

VRAM
(GB)

FedSFT
350M 20.7 12.0 21.7 1.4 0.4 0.9
1.3B 21.8 15.2 25.8 3.0 1.4 3.0
2.7B 24.5 16.1 26.7 5.1 2.8 5.8

FedIT+SFT
350M 19.9 11.4 21.4 1.4 0.4 0.9
1.3B 21.5 13.0 23.3 3.0 1.4 3.0
2.7B 22.0 13.8 23.6 5.1 2.8 5.8

D SUPPORTING PLOTS

In this section, we analyze the Rouge-L score and BLEU score among different category distribu-
tions for different models tuned by FedSFT. Here, we only show the result of GPT-2 (760M-1.5B)
and LLaMA (7B-13B).

D.1 PLOTS FOR CATEGORY SCORES OF DOLLY

In Figure 17, 18, we plot the Rouge-L score and BLEU score from different categories of the Dolly
dataset at round 1, 15 on GPT-2 model and round 1, 20 on the LLaMA model. From the figures, we
can find the scores for most categories are continually improving as the global rounds increase. The
category “classification” leads the most contribution during training. In global round 1, the perfor-
mance across tasks is fairly uniform, hovering around an overall average Rouge-L score (indicated
by the dashed line), with “classification” scoring notably higher. By global rounds 15 and 20, there
is a clear shift in performance; “classification” peaks significantly above other tasks, suggesting an
improvement in the system’s capability to handle classification tasks, while the other tasks show
varied but generally less substantial improvement. The error bars for Rounds 15 and 20 tend to be
smaller across various tasks, suggesting a potential decrease in variability and enhanced consistency
in the model’s performance among different random seeds.

D.2 PLOTS FOR CATEGORY SCORES OF SELFINST

In Figure 19,20, we plot the Rouge-L score and BLEU score from different categories on the Self-
Inst dataset at round 1, 15 on GPT-2 model and round 1, 20 on LLaMA model. From the figures,
we can find the tasks evaluated cover a broad range of services, from search engines like Google,
and social media platforms like Instagram and Twitter, to productivity tools like Microsoft Word
and Google Sheets. Notably, some tasks like “Google Sheet” and “Markdown” score particularly
high, suggesting that text generated or retrieved in these contexts has a high degree of fidelity to
the expected reference texts. Conversely, tasks involving more dynamic or personalized content,
such as ”Twitter,” ”Facebook,” and ”YouTube” show lower scores, which could be due to the more
challenging nature of predicting or matching varied user-generated content. The graph also high-
lights specific domains that involve deeper domain knowledge, such as Leetcode, Quora, and Reddit,
where the Rouge-L scores fall below the overall average. This observation suggests that the model
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(c) Global Round 15
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(d) Global Round 15

Figure 17: Rouge-L score distribution across different categories of Dolly dataset at global commu-
nication round 1 (a) and 15 (b) for FedSFT. Model:GPT-2
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(b) Global Round 1
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(c) Global Round 20
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(d) Global Round 20

Figure 18: Rouge-L score distribution across different categories of Dolly dataset at global commu-
nication round 1 (a) and 20 (b) for FedSFT. Model: LLaMA.

may lack sufficient expertise or specialized knowledge needed to effectively generate or retrieve text
that aligns with the high standards of content in these areas. By Global Round 15, while overall
trends seem similar, several tasks show improved performance, narrowing the gap towards a higher
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overall average score, denoted by the dashed line. Notably, tasks like ”Markdown” and ”Google
Sheets” maintain high performance, and others like ”Google Calendar” and ”Google Meet” exhibit
a noticeable improvement.

D.3 PLOTS FOR CATEGORY SCORES OF S-NI

In Figure 21, 22, we plot the Rouge-L score and BLEU score from different categories on the S-NI
dataset at round 1, 15 on GPT-2 model and round 1, 20 on LLaMA model. From the figures, we can
find the tasks, including various natural language processing tasks, ranging from title generation to
summarization and answer generation across different contexts. Notably, tasks that involve summa-
rization (e.g., “task1540 parsed pdfs summarization”, “task510 reddit tifu title summarization”)
generally show lower performance, as seen by scores significantly below the overall average, repre-
sented by the dashed red line. In contrast, tasks focused on direct text generation show mixed results;
some scores (e.g., “task1557 jfleg answer generation”, “task402 grailqa paraphrase generation”)
are well above the average, indicating strong performance, while some other scores (e.g.,
“task1356 xlsum title generation”, “task393 plausible result generation”) fall below, suggesting
areas needing improvement. Similar to the Dolly dataset, the error bars in rounds 15 and 20 ap-
pear generally smaller for most tasks, indicating a possible reduction in variability and increased
model consistency over rounds.

E QUALITATIVE STUDY WITH EXAMPLE DEMONSTRATION

We present the generations for each dataset as case studies. As shown in Tables 12, 13, 14, 15, 16,
and 17, the generations of FedSFT is completely fluent and accurate from those of federated fine-
tuning small small models.
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Table 12: Generated responses from LLaMA family on Dolly dataset.

Dolly

Instruction What is a dispersive prism?

Input In optics, a dispersive prism is an optical prism that is used to disperse light, that is,
to separate light into its spectral components (the colors of the rainbow). Different
wavelengths (colors) of light will be deflected by the prism at different angles.[1]
This is a result of the prism material’s index of refraction varying with wavelength
(dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than
shorter wavelengths (blue). The dispersion of white light into colors by a prism led
Sir Isaac Newton to conclude that white light consisted of a mixture of different
colors.

FedIT
(7B)

In optics a dispersive prism used to separate light into its separate components wave-
lengths

FedIT+SFT
(7B-13B)

In optics a dispersive prism separates light into its spectral components.

FedSFT
(7B-13B)

In optics a dispersive prism are optical prisms that are used to disperse (or separate)
light into the spectrum of the colors of the rainbow.

FedIT
(13B)

A dispersive prism is a type of optical prism that defers light into its spectral compo-
nents, that is, the colors in the rainbow.

Instruction What is Magical Thinking?

Input Magical thinking, or superstitious thinking,[1] is the belief that unrelated events are
causally connected despite the absence of any plausible causal link between them,
particularly as a result of supernatural effects.[1][2][3] Examples include the idea
that personal thoughts can influence the external world without acting on them, or
that objects must be causally connected if they resemble each other or have come into
contact with each other in the past.[1][2][4] Magical thinking is a type of fallacious
thinking and is a common sour

FedIT
(7B)

Magical thinking is the belief that unconnected events are smartly connected.

FedIT+SFT
(7B-13B)

As described, Magical Thinking is the believe that personal thoughts can influence
external world without any causal actions performed

FedSFT
(7B-13B)

Magical thinking would typically be referred to as “superstitious thinking.” Example
include, thinking that one’s bedtime routine is exerting control over nightmares or
thinking that a performance hat will make you a better golfer.

FedIT
(13B)

Magical thinking is a cognitive behavior that imbues magical traits to objects or per-
ceived social interactions. Magical thinking is an example of superstitious think-
ing[1] and is used to describe a superstition, while also containing non-related events
(typically non-superstitious thinking) as causally connected despite the lack of a plau-
sible causal connection between the events.

F LLM USAGE

LLMs were employed for polishing the language. All technical contributions, derivations, and ex-
periments were designed and validated by the authors. The authors take full responsibility for the
accuracy and integrity of the content.
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Table 13: Generated responses from GPT-2 family on Dolly dataset.

Dolly

Instruction What is the average lifespan of a Golden Retriever?

Input Golden Retrievers are a generally healthy breed; they have an average lifespan of 12
to 13 years.[9] Irresponsible breeding to meet high demand has led to the prevalence
of inherited health problems in some breed lines, including allergic skin conditions,
eye problems and sometimes snappiness.[9] These problems are rarely encountered
in dogs bred from responsible breeders.[9]

FedIT
(760M)

An average lifespan of 12 to 12 years for a Golden Retriever

FedIT+SFT
(760M-1.5B)

According to breeders there average lifespan of a Golden is 13 years

FedSFT
(760M-1.5B)

12 to 13 years

FedIT (1.5B) An average lifespan of 12 to 12.5 years.

FedOT (2-18-
2)

Datation](http://www.treatyofPets.org/) provides a data source applied ...

Instruction When was the 8088 processor released?

Input The 8086[2] (also called iAPX 86)[3] is a 16-bit microprocessor chip designed by
Intel between early 1976 and June 8, 1978, when it was released. The Intel 8088,
released July 1, 1979,[4] is a slightly modified chip with an external 8-bit data bus
(allowing the use of cheaper and fewer supporting ICs),[note 1] and is notable as the
processor used in the original IBM PC design.

FedIT
(760M)

The 8086 processor was released in December 1976. IBM released the 8086, an 16-
bit microprocessor, in June 1978. The 8088, which was a modified chip, was released
in July of 1979.

FedIT+SFT
(760M-1.5B)

barring retro games, the 8088 was released July 1978.

FedSFT
(760M-1.5B)

July 1, 1979

FedIT (1.5B) The 8088 processor was released in July 1979.

FedOT (2-18-
2)

Alphabetically list the 8088 processors in order of release...
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Figure 19: Rouge-L score distribution across different categories of SelfInst dataset at global com-
munication round 1 (a) and 15 (b) for FedSFT. Model:GPT-2
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(c) Global Round 20
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(d) Global Round 20

Figure 20: Rouge-L score distribution across different categories of SelfInst dataset at global com-
munication round 1 (a) and 20 (b) for FedSFT. Model: LLaMA.
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(d) Global Round 15

Figure 21: Rouge-L score distribution across different categories of S-NI dataset at global commu-
nication round 1 (a) and 15 (b) for FedSFT. Model: GPT-2

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

ta
sk

03
6

qa
sc

to
pi

c
w

or
d

to
ge

ne
ra

te
re

la
te

d
fa

ct

ta
sk

11
61

co
da

19
tit

le
ge

ne
ra

tio
n

ta
sk

11
95

di
sfl

qa
di

sfl
ue

nt
to

flu
en

t
co

nv
er

si
on

ta
sk

13
42

am
az

on
us

re
vi

ew
s

tit
le

ta
sk

13
45

gl
ue

qq
p

qu
es

tio
n

pa
ra

pr
as

hi
ng

ta
sk

13
56

xl
su

m
tit

le
ge

ne
ra

tio
n

ta
sk

13
58

xl
su

m
tit

le
ge

ne
ra

tio
n

ta
sk

14
07

da
rt

qu
es

tio
n

ge
ne

ra
tio

n

ta
sk

14
09

da
rt

te
xt

ge
ne

ra
tio

n

ta
sk

15
40

pa
rs

ed
pd

fs
su

m
m

ar
iz

at
io

n

ta
sk

15
57

jfl
eg

an
sw

er
ge

ne
ra

tio
n

ta
sk

15
86

sc
if

ac
t

tit
le

ge
ne

ra
tio

n

ta
sk

15
98

ny
c

lo
ng

te
xt

ge
ne

ra
tio

n

ta
sk

16
22

di
sfl

qa
te

xt
m

od
ic

at
io

n

ta
sk

16
31

op
en

pi
an

sw
er

ge
ne

ra
tio

n

ta
sk

16
59

tit
le

ge
ne

ra
tio

n

ta
sk

17
28

w
eb

nl
g

da
ta

to
te

xt

ta
sk

21
9

ro
cs

to
ri

es
tit

le
an

sw
er

ge
ne

ra
tio

n

ta
sk

28
1

po
in

ts
of

co
rr

es
po

nd
en

ce

ta
sk

28
8

gi
ga

w
or

d
su

m
m

ar
iz

at
io

n

ta
sk

33
0

ga
p

an
sw

er
ge

ne
ra

tio
n

ta
sk

39
3

pl
au

si
bl

e
re

su
lt

ge
ne

ra
tio

n

ta
sk

40
2

gr
ai

lq
a

pa
ra

ph
ra

se
ge

ne
ra

tio
n

ta
sk

41
8

pe
rs

en
t

tit
le

ge
ne

ra
tio

n

ta
sk

44
2

co
m

qa
pa

ra
ph

ra
se

qu
es

tio
n

ge
ne

ra
tio

n

ta
sk

50
0

sc
ru

pl
es

an
ec

do
te

s
tit

le
ge

ne
ra

tio
n

ta
sk

51
0

re
dd

it
tif

u
tit

le
su

m
m

ar
iz

at
io

n

ta
sk

56
9

re
ci

pe
nl

g
te

xt
ge

ne
ra

tio
n

ta
sk

60
2

w
ik

ite
xt

-1
03

an
sw

er
ge

ne
ra

tio
n

ta
sk

61
4

gl
uc

os
e

ca
us

e
ev

en
t

de
te

ct
io

n

ta
sk

61
9

oh
su

m
ed

ab
st

ra
ct

tit
le

ge
ne

ra
tio

n

ta
sk

64
5

su
m

m
ar

iz
at

io
n

ta
sk

67
0

am
bi

gq
a

qu
es

tio
n

ge
ne

ra
tio

n

ta
sk

67
1

am
bi

gq
a

te
xt

ge
ne

ra
tio

n

ta
sk

67
7

ol
lie

se
nt

en
ce

an
sw

er
ge

ne
ra

tio
n

ta
sk

74
3

eu
rl

ex
su

m
m

ar
iz

at
io

n

ta
sk

95
7

e2
e

nl
g

te
xt

ge
ne

ra
tio

n
ge

ne
ra

te

0

20

40

60

80

100

R
ou

ge
-L

Average Rouge-L Scores by Topic Across All Seeds with Std. Dev.

Overall Avg Rouge-L
Rouge-L Score

(a) Global Round 1

ta
sk

03
6

qa
sc

to
pi

c
w

or
d

to
ge

ne
ra

te
re

la
te

d
fa

ct

ta
sk

11
61

co
da

19
tit

le
ge

ne
ra

tio
n

ta
sk

11
95

di
sfl

qa
di

sfl
ue

nt
to

flu
en

t
co

nv
er

si
on

ta
sk

13
42

am
az

on
us

re
vi

ew
s

tit
le

ta
sk

13
45

gl
ue

qq
p

qu
es

tio
n

pa
ra

pr
as

hi
ng

ta
sk

13
56

xl
su

m
tit

le
ge

ne
ra

tio
n

ta
sk

13
58

xl
su

m
tit

le
ge

ne
ra

tio
n

ta
sk

14
07

da
rt

qu
es

tio
n

ge
ne

ra
tio

n

ta
sk

14
09

da
rt

te
xt

ge
ne

ra
tio

n

ta
sk

15
40

pa
rs

ed
pd

fs
su

m
m

ar
iz

at
io

n

ta
sk

15
57

jfl
eg

an
sw

er
ge

ne
ra

tio
n

ta
sk

15
86

sc
if

ac
t

tit
le

ge
ne

ra
tio

n

ta
sk

15
98

ny
c

lo
ng

te
xt

ge
ne

ra
tio

n

ta
sk

16
22

di
sfl

qa
te

xt
m

od
ic

at
io

n

ta
sk

16
31

op
en

pi
an

sw
er

ge
ne

ra
tio

n

ta
sk

16
59

tit
le

ge
ne

ra
tio

n

ta
sk

17
28

w
eb

nl
g

da
ta

to
te

xt

ta
sk

21
9

ro
cs

to
ri

es
tit

le
an

sw
er

ge
ne

ra
tio

n

ta
sk

28
1

po
in

ts
of

co
rr

es
po

nd
en

ce

ta
sk

28
8

gi
ga

w
or

d
su

m
m

ar
iz

at
io

n

ta
sk

33
0

ga
p

an
sw

er
ge

ne
ra

tio
n

ta
sk

39
3

pl
au

si
bl

e
re

su
lt

ge
ne

ra
tio

n

ta
sk

40
2

gr
ai

lq
a

pa
ra

ph
ra

se
ge

ne
ra

tio
n

ta
sk

41
8

pe
rs

en
t

tit
le

ge
ne

ra
tio

n

ta
sk

44
2

co
m

qa
pa

ra
ph

ra
se

qu
es

tio
n

ge
ne

ra
tio

n

ta
sk

50
0

sc
ru

pl
es

an
ec

do
te

s
tit

le
ge

ne
ra

tio
n

ta
sk

51
0

re
dd

it
tif

u
tit

le
su

m
m

ar
iz

at
io

n

ta
sk

56
9

re
ci

pe
nl

g
te

xt
ge

ne
ra

tio
n

ta
sk

60
2

w
ik

ite
xt

-1
03

an
sw

er
ge

ne
ra

tio
n

ta
sk

61
4

gl
uc

os
e

ca
us

e
ev

en
t

de
te

ct
io

n

ta
sk

61
9

oh
su

m
ed

ab
st

ra
ct

tit
le

ge
ne

ra
tio

n

ta
sk

64
5

su
m

m
ar

iz
at

io
n

ta
sk

67
0

am
bi

gq
a

qu
es

tio
n

ge
ne

ra
tio

n

ta
sk

67
1

am
bi

gq
a

te
xt

ge
ne

ra
tio

n

ta
sk

67
7

ol
lie

se
nt

en
ce

an
sw

er
ge

ne
ra

tio
n

ta
sk

74
3

eu
rl

ex
su

m
m

ar
iz

at
io

n

ta
sk

95
7

e2
e

nl
g

te
xt

ge
ne

ra
tio

n
ge

ne
ra

te

0

1

2

3

4

5

B
L

E
U

Average BLEU Scores by Topic Across All Seeds with Std. Dev.

Overall Avg BLEU
BLEU Score

(b) Global Round 1

ta
sk

03
6

qa
sc

to
pi

c
w

or
d

to
ge

ne
ra

te
re

la
te

d
fa

ct

ta
sk

11
61

co
da

19
tit

le
ge

ne
ra

tio
n

ta
sk

11
95

di
sfl

qa
di

sfl
ue

nt
to

flu
en

t
co

nv
er

si
on

ta
sk

13
42

am
az

on
us

re
vi

ew
s

tit
le

ta
sk

13
45

gl
ue

qq
p

qu
es

tio
n

pa
ra

pr
as

hi
ng

ta
sk

13
56

xl
su

m
tit

le
ge

ne
ra

tio
n

ta
sk

13
58

xl
su

m
tit

le
ge

ne
ra

tio
n

ta
sk

14
07

da
rt

qu
es

tio
n

ge
ne

ra
tio

n

ta
sk

14
09

da
rt

te
xt

ge
ne

ra
tio

n

ta
sk

15
40

pa
rs

ed
pd

fs
su

m
m

ar
iz

at
io

n

ta
sk

15
57

jfl
eg

an
sw

er
ge

ne
ra

tio
n

ta
sk

15
86

sc
if

ac
t

tit
le

ge
ne

ra
tio

n

ta
sk

15
98

ny
c

lo
ng

te
xt

ge
ne

ra
tio

n

ta
sk

16
22

di
sfl

qa
te

xt
m

od
ic

at
io

n

ta
sk

16
31

op
en

pi
an

sw
er

ge
ne

ra
tio

n

ta
sk

16
59

tit
le

ge
ne

ra
tio

n

ta
sk

17
28

w
eb

nl
g

da
ta

to
te

xt

ta
sk

21
9

ro
cs

to
ri

es
tit

le
an

sw
er

ge
ne

ra
tio

n

ta
sk

28
1

po
in

ts
of

co
rr

es
po

nd
en

ce

ta
sk

28
8

gi
ga

w
or

d
su

m
m

ar
iz

at
io

n

ta
sk

33
0

ga
p

an
sw

er
ge

ne
ra

tio
n

ta
sk

39
3

pl
au

si
bl

e
re

su
lt

ge
ne

ra
tio

n

ta
sk

40
2

gr
ai

lq
a

pa
ra

ph
ra

se
ge

ne
ra

tio
n

ta
sk

41
8

pe
rs

en
t

tit
le

ge
ne

ra
tio

n

ta
sk

44
2

co
m

qa
pa

ra
ph

ra
se

qu
es

tio
n

ge
ne

ra
tio

n

ta
sk

50
0

sc
ru

pl
es

an
ec

do
te

s
tit

le
ge

ne
ra

tio
n

ta
sk

51
0

re
dd

it
tif

u
tit

le
su

m
m

ar
iz

at
io

n

ta
sk

56
9

re
ci

pe
nl

g
te

xt
ge

ne
ra

tio
n

ta
sk

60
2

w
ik

ite
xt

-1
03

an
sw

er
ge

ne
ra

tio
n

ta
sk

61
4

gl
uc

os
e

ca
us

e
ev

en
t

de
te

ct
io

n

ta
sk

61
9

oh
su

m
ed

ab
st

ra
ct

tit
le

ge
ne

ra
tio

n

ta
sk

64
5

su
m

m
ar

iz
at

io
n

ta
sk

67
0

am
bi

gq
a

qu
es

tio
n

ge
ne

ra
tio

n

ta
sk

67
1

am
bi

gq
a

te
xt

ge
ne

ra
tio

n

ta
sk

67
7

ol
lie

se
nt

en
ce

an
sw

er
ge

ne
ra

tio
n

ta
sk

74
3

eu
rl

ex
su

m
m

ar
iz

at
io

n

ta
sk

95
7

e2
e

nl
g

te
xt

ge
ne

ra
tio

n
ge

ne
ra

te

0

20

40

60

80

100

R
ou

ge
-L

Average Rouge-L Scores by Topic Across All Seeds with Std. Dev.

Overall Avg Rouge-L
Rouge-L Score

(c) Global Round 20

ta
sk

03
6

qa
sc

to
pi

c
w

or
d

to
ge

ne
ra

te
re

la
te

d
fa

ct

ta
sk

11
61

co
da

19
tit

le
ge

ne
ra

tio
n

ta
sk

11
95

di
sfl

qa
di

sfl
ue

nt
to

flu
en

t
co

nv
er

si
on

ta
sk

13
42

am
az

on
us

re
vi

ew
s

tit
le

ta
sk

13
45

gl
ue

qq
p

qu
es

tio
n

pa
ra

pr
as

hi
ng

ta
sk

13
56

xl
su

m
tit

le
ge

ne
ra

tio
n

ta
sk

13
58

xl
su

m
tit

le
ge

ne
ra

tio
n

ta
sk

14
07

da
rt

qu
es

tio
n

ge
ne

ra
tio

n

ta
sk

14
09

da
rt

te
xt

ge
ne

ra
tio

n

ta
sk

15
40

pa
rs

ed
pd

fs
su

m
m

ar
iz

at
io

n

ta
sk

15
57

jfl
eg

an
sw

er
ge

ne
ra

tio
n

ta
sk

15
86

sc
if

ac
t

tit
le

ge
ne

ra
tio

n

ta
sk

15
98

ny
c

lo
ng

te
xt

ge
ne

ra
tio

n

ta
sk

16
22

di
sfl

qa
te

xt
m

od
ic

at
io

n

ta
sk

16
31

op
en

pi
an

sw
er

ge
ne

ra
tio

n

ta
sk

16
59

tit
le

ge
ne

ra
tio

n

ta
sk

17
28

w
eb

nl
g

da
ta

to
te

xt

ta
sk

21
9

ro
cs

to
ri

es
tit

le
an

sw
er

ge
ne

ra
tio

n

ta
sk

28
1

po
in

ts
of

co
rr

es
po

nd
en

ce

ta
sk

28
8

gi
ga

w
or

d
su

m
m

ar
iz

at
io

n

ta
sk

33
0

ga
p

an
sw

er
ge

ne
ra

tio
n

ta
sk

39
3

pl
au

si
bl

e
re

su
lt

ge
ne

ra
tio

n

ta
sk

40
2

gr
ai

lq
a

pa
ra

ph
ra

se
ge

ne
ra

tio
n

ta
sk

41
8

pe
rs

en
t

tit
le

ge
ne

ra
tio

n

ta
sk

44
2

co
m

qa
pa

ra
ph

ra
se

qu
es

tio
n

ge
ne

ra
tio

n

ta
sk

50
0

sc
ru

pl
es

an
ec

do
te

s
tit

le
ge

ne
ra

tio
n

ta
sk

51
0

re
dd

it
tif

u
tit

le
su

m
m

ar
iz

at
io

n

ta
sk

56
9

re
ci

pe
nl

g
te

xt
ge

ne
ra

tio
n

ta
sk

60
2

w
ik

ite
xt

-1
03

an
sw

er
ge

ne
ra

tio
n

ta
sk

61
4

gl
uc

os
e

ca
us

e
ev

en
t

de
te

ct
io

n

ta
sk

61
9

oh
su

m
ed

ab
st

ra
ct

tit
le

ge
ne

ra
tio

n

ta
sk

64
5

su
m

m
ar

iz
at

io
n

ta
sk

67
0

am
bi

gq
a

qu
es

tio
n

ge
ne

ra
tio

n

ta
sk

67
1

am
bi

gq
a

te
xt

ge
ne

ra
tio

n

ta
sk

67
7

ol
lie

se
nt

en
ce

an
sw

er
ge

ne
ra

tio
n

ta
sk

74
3

eu
rl

ex
su

m
m

ar
iz

at
io

n

ta
sk

95
7

e2
e

nl
g

te
xt

ge
ne

ra
tio

n
ge

ne
ra

te

0

1

2

3

4

5

B
L

E
U

Average BLEU Scores by Topic Across All Seeds with Std. Dev.

Overall Avg BLEU
BLEU Score

(d) Global Round 20

Figure 22: Rouge-L score distribution across different categories of S-NI dataset at global commu-
nication round 1 (a) and 20 (b) for FedSFT. Model: LLaMA.
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Table 14: Generated responses from LLaMA family on SelfInst dataset.

SelfInst

Instruction You will be required to write a few questions from the given company’s interview section.

Input Kohl’s

FedIT
(7B)

Which company do you think is having the best and worst interviews? Can you share
the common interview questions in your company? Which field would you want your
company to expand to to attract more candidates?

FedIT+SFT
(7B-13B)

1. What’s your work culture like? 2. 3. What’s your current expansion agenda in India?
4. What technology stack are you working on? 5. Do you have an ownership culture?

FedSFT
(7B-13B)

1. What made you interested in a career at Kohl’s? 2. How did you hear about this
role with Kohl’s? 3. As you know, Kohl’s is growing rapidly and there will be rigorous
expectations for Extended Assisted Hours Supervisors and Associates to drive results -
especially when we open new stores! Is this something you are prepared for? 4. Do
you have any experience driving results? 5. What are some of the best practices you
have around conflict management and team building? 6. What strengths can you bring
to Kohl’s in this role? 7. What values are important to you and how do you demonstrate
these values in your everyday work?

FedIT
(13B)

- Why apply for this job? - Tell me about a time when you focused on a goal and accom-
plished it. - What makes you a great team player? - Why us over other competitors? -
How do you go above and beyond for people? - Why do you want to apply to this job? -
Why Us?

Instruction Identify the programming language used to write the given code.

Input if (20 > 18) printf(“20 is greater than 18”);

FedIT
(7B)

The programming language of the given code is Java

FedIT+SFT
(7B-13B)

Python

FedSFT
(7B-13B)

The language used appears to be the C language family, which supports conditional if
statements without block bodies.

FedIT
(13B)

The programming language is likely C, C++ or Java where comparing integers with the
equal to or greater than symbol (’>’) requires parenthesis.
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Table 15: Generated responses from GPT-2 family on SelfInst dataset.

SelfInst

Instruction Assess the sentiment of the given tweet and categorize it as Positive, Negative, or
Neutral.

Input This is the best cheat-sheet paper that I’ve found in a LONG time.

FedIT
(760M)

- Positive - Positive - Neutral - Negative - Neutral

FedIT+SFT
(760M-1.5B)

Positive is Good, Negative is Not, Neutral is Bad

FedSFT
(760M-1.5B)

Positive

FedIT (1.5B) An expert cheat sheet for students, using numbers to explain overall reasoning

FedOT (2-18-
2)

ASE stands for Automatic Teacher Interface, which does not require any human
input or actions.

Instruction Write the HTML syntax for the required action.

Input if (20 > 18) printf(“20 is greater than 18”);

FedIT
(760M)

<img src=“image.jpg” alt=“image.jpg” />

FedIT+SFT
(760M-1.5B)

noscript

FedSFT
(760M-1.5B)

<img src=“landscape image.jpg” alt=“A landscape image”>

FedIT (1.5B) <img src=“my-image-name.jpg” />

FedOT (2-18-
2)

Congrats! You just once again coded an exception handler! Now consider this
code:...
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Table 16: Generated responses from LLaMA family on S-NI dataset.
S-NI

Instruction In this task, we ask you convert a data table of restaurant descriptions into fluent natural-
sounding English sentences. The input is a string of key-value pairs; the output should
be a natural and grammatical English sentence containing all the information from the
input.

Input name[The Eagle], eatType[coffee shop], food[Italian], priceRange[cheap], customer rat-
ing[average], area[riverside], familyFriendly[no], near[Burger King]

FedIT
(7B)

The Eagle is a family friendly Italian coffee shop located on a riverside in the historic core
of Guilin. Its rich coffee ingredient and block art dessert are quite favored by locals and
visitors. With a menu price range from affordable to moderate, the restaurant welcomes
kids as long as they aren’t too noisy. Popular food include sliced spicy Bos-Bosand block
art art dessert which is a must-try. Overall, it is worthwhile because of their lovely shop
and rich menu.

FedIT+SFT
(7B-13B)

The Eagle is a coffeeshop and serves Italian food.
The price range is cheap.
The average family does not visit the restaurant. The restaurant is situated by the river-
side, and is located near the Burger King.

FedSFT
(7B-13B)

The Eagle is a coffee shop that serves Italian food at affordable prices in Riverside. The
restaurant has only an average rating from its customers and it’s not family friendly.
Burger King is close to The Eagle.

FedIT
(13B)

The Eagle is a locally popular coffee shop, popular among the folks in the neighborhood.
It serves one of the best Italian food available at a fair price and is located on the riverside
next to Burger King.

Instruction In this task, you are given a part of an article. Your task is to generate headline (title) for
this text. Preferred headlines are under fifteen words.

Input (To appear in Theory and Practice of Logic Programming (TPLP)) ESmodels is designed
and implemented as an experiment platform to investigate the semantics, language, re-
lated reasoning algorithms, and possible applications of epistemic specifications. We first
give the epistemic specification language of ESmodels and its semantics. The language
employs only one modal operator K but we prove that it is able to represent luxuriant
modal operators by presenting transformation rules. Then, we describe basic algorithms
and optimization approaches used in ESmodels. After that, we discuss possible applica-
tions of ESmodels in conformant planning and constraint satisfaction. Finally, we con-
clude with perspectives.

FedIT
(7B)

? Modal Epistemic Specification Inside Out ? Luxuriant Modal Logic OPERATIONS
AND introduction of KLONE ? Algorithm and Optimization Approaches Conformant
Planning and Constraint Satisfaction

FedIT+SFT
(7B-13B)

- Exploring Epistemic Logic and Its Applications - Employing One But Powerful Modal
Operator - Basic Algorithms Used in ESmodels - Possible Usages in Planning and Satis-
fiability - Concluding With Perspectives

FedSFT
(7B-13B)

“ESmodels: An Experiment Platform Investigating Epistemic Specifications”

FedIT
(13B)

1. ESmodels is an experimental platform to investigate the semantics and language for
epistemic specificaiton
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Table 17: Generated responses from GPT-2 family on S-NI dataset.
S-NI

Instruction In this task, you will be given a short story. One sentence from the story is
chosen. Consider the events that happen before that sentence, or are likely to
have happened before it. Does any of them directly cause it, or simply make
it possible? You should write your answer in the form “A >causes/enables>
B”. Try to use phrases and sentences from the story to compose your answer.

Input story: John wanted to learn how to play the violin. He went to the music
store to buy one. He selected a cheap model that he thought would do for a
beginner. He started practicing and two strings broke right away. John went
back to the store and bought a better violin. selected sentence: He started
practicing and two strings broke right away.

FedIT (760M) John was able to play violin because: a: The little violin he had was cheap.
b: He liked playing the easy stuff. c: With two string breaks, he could play
longer. d: He wanted to learn to play the violin. That was the reason he had
gone to the store and bought one.

FedIT+SFT (760M-
1.5B)

John wanted to learn how to start playing the violin. He went on to buy a
cheap violin and started practicing. Two pieces of wood broke in front of
him. He went for the second violin and it broke right away.

FedSFT (760M-1.5B) John broke two strings because he bought a violin with a cheap beginner
model.

FedIT (1.5B) John seems to have experienced two different things before he learned how to
play the violin, and during that time, two things happened that stopped him
from practicing enough to rectify the issue. In order to display this, simply
use phrases and sentences from John’s story that pertain to what the story
arewhases (or whatever term referring to what the story a twil pro to AND
what happened to break the strings). For example, let’s add a sentence such
as, ”John has experienced two events before he learned how to act.”

FedOT (2-18-2) Getting ready to write a response highest of three strings:...

Instruction In this task, you are given a text of the article. Your task is to generate a
headline (title) for this article.

Input the bank of japan appealed to financial markets to remain calm friday follow-
ing the us decision to order daiwa bank ltd. to close its us operations .

FedIT (760M) Bank had filed share resolution documents,Creditors backed bsma and sev-
eral other regulators have measures in power to influence the bank’s gover-
nance, Financial Markets said,Chongqing Prom finance director Wang Ma
hoped that the Japan Bank Account Service Company, betraying no sign of
confidence in banklandbanks people, instead Almaty today sought a volun-
tary settlement to resolve its internal problems The plan was only forced by a
25 minute hiccup of markets which blinded the whole world to a highly cau-
tious bargain market outcome Not only is the market bid above mono, Banks
in the current swath on Special explicit business plan economically insane
and financial (wrote Louis Ivan Oct.IlB mouthpiece plunked in a billboard
)....

FedIT+SFT (760M-
1.5B)

Bank of japan appeal to financial markets to remain calme friday following
the me decision to order daiwaj bank ltd. to closures it’s us operations

FedSFT (760M-1.5B) Bank of japan appealed to the financial markets to remain calm.

FedIT (1.5B) the bank of japan returned to financial markets to remain well positioned
friday following the ‘us decision to order daiwe bank ltd. to shut down’

FedOT (2-18-2) Sir what are you doing pic.twitter.com/XyZQKQl9jf...
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