
OptMATH: A Scalable Bidirectional Data Synthesis Framework for
Optimization Modeling

Hongliang Lu * 1 Zhonglin Xie * 2 Yaoyu Wu 1 Can Ren 3 Yuxuan Chen 3 Zaiwen Wen 2

Abstract

Despite the rapid development of large language
models (LLMs), a fundamental challenge per-
sists: the lack of high-quality optimization mod-
eling datasets hampers LLMs’ robust modeling
of practical optimization problems from natural
language descriptions (NL). This data scarcity
also contributes to the generalization difficulties
experienced by learning-based methods. To ad-
dress these challenges, we propose a scalable
framework for synthesizing a high-quality dataset,
named OptMATH. Starting from curated seed
data with mathematical formulations (MF), this
framework automatically generates problem data
(PD) with controllable complexity. Then, a back-
translation step is employed to obtain NL. To ver-
ify the correspondence between the NL and the
PD, a forward modeling step followed by rejec-
tion sampling is used. The accepted pairs consti-
tute the training part of OptMATH. Then a col-
lection of rejected pairs is identified and further
filtered. This collection serves as a new bench-
mark for optimization modeling, containing dif-
ficult instances whose lengths are much longer
than these of NL4OPT and MAMO. Through ex-
tensive experiments, we demonstrate that models
of various sizes (0.5B-32B parameters) trained on
OptMATH achieve superior results on multiple
modeling benchmarks, thereby validating the ef-
fectiveness and scalability of our approach. The
OptMATH dataset and related resources are avail-
able at https://github.com/optsuite/
OptMATH.

*Equal contribution, alphabetical order 1College of Engineer-
ing, Peking University 2Beijing International Center for Math-
ematical Research, Peking University 3School of Mathematics
Science, Peking University. Correspondence to: Zaiwen Wen
<wenzw@pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Automatic translation of natural language descriptions of
optimization problems into solver-ready formats is a criti-
cal step in democratizing access to optimization techniques.
This capability would enable individuals without expertise
in optimization to leverage the power of optimization for
solving real-world problems across various domains, includ-
ing logistics (Ghiani et al., 2022), finance (Consigli, 2019),
and engineering (Rao, 2019). Known as optimization mod-
eling, this task has long been challenging due to the inherent
ambiguity of natural language and the need for a deep under-
standing of optimization modeling principles. The manual
process of formulating an optimization problem typically
involves iterative refinement and demands significant mas-
tery of the relevant techniques, making it time-consuming
and inaccessible to many practitioners.

Recent advances in Large Language Models (LLMs), such
as ChatGPT (Brown et al., 2020b), GPT-4 (OpenAI et al.,
2023), and OpenAI’s o1 (OpenAI, 2024), have demonstrated
remarkable capabilities in understanding natural language
and performing complex reasoning tasks. Notably, the intro-
duction of o1 has significantly enhanced the performance
of LLMs in mathematical reasoning, achieving state-of-the-
art results on challenging datasets including AIME (2024),
GPQA, and CodeForces. However, optimization modeling
presents unique challenges. Unlike grade-school mathemat-
ics, where problems typically have a single correct solu-
tion, optimization problems can often be approached using
multiple valid models, making the task semi-open-ended.
Furthermore, optimization frequently relies on a vast body
of empirical knowledge that is less formally structured than
purely mathematical concepts. As a result, research has
shown that directly applying LLMs to optimization model-
ing tasks yields suboptimal outcomes (Ramamonjison et al.,
2021).

LLMs for Optimization Modeling. To address this issue,
recent efforts have explored various strategies. Research
on leveraging LLMs for optimization modeling typically
follows two main approaches. The first uses prompt engi-
neering techniques to guide LLMs in generating or refin-
ing optimization models, without modifying the underlying
model parameters. Examples include the NL4Opt compe-

1

https://github.com/optsuite/OptMATH
https://github.com/optsuite/OptMATH

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

tition (Ramamonjison et al., 2021), which aims to extract
optimization formulations from natural language descrip-
tions, and OptiMUS (AhmadiTeshnizi et al., 2023), which
proposes an agent-based prompt engineering method. More
recently, Autoformulation (Astorga et al., 2024) combines
Monte Carlo tree search with LLMs to address optimization
modeling. While these methods rely heavily on the base
capabilities of general-purpose LLMs, they do not yield
fundamental advancements beyond refined prompting.

The second approach centers on fine-tuning, wherein model
parameters are adapted using specially curated or synthe-
sized optimization datasets. ORLM (Tang et al., 2024) intro-
duces OR-Instruct, a data augmentation framework for opti-
mization problems, and demonstrates performance gains via
Supervised Fine-Tuning on a foundation model. LLMOPT
(Jiang et al., 2024) likewise applies a multi-instruction fine-
tuning strategy and self-correction mechanisms. Similarly,
OptLLM (Zhang et al., 2024) presents a framework that fine-
tuned a Qwen model using a large-scale self-developed op-
timization dataset, reporting an accuracy boost over prompt-
based models. However, many of these methods still tend
to generate synthetic training data that can be limited in
quantity, or may lack consistent quality and sufficient com-
plexity. Consequently, their ability to generalize to more
sophisticated optimization tasks can be constrained.

LLM-Based Data Synthesis for Optimization. Data syn-
thesis methods have become essential for addressing data
scarcity and enhancing the performance of LLMs. Accord-
ing to (Wang et al., 2024), these methods can be broadly cat-
egorized into two main approaches: data augmentation and
data synthesis. OR-Instruct (Tang et al., 2024; Wang et al.,
2022) exemplifies a data augmentation approach, following
the self-instruct framework to expand existing datasets. In
(Yang et al., 2025), a framework is proposed for the reverse
synthesis of optimization problem data pairs. However, this
approach initiates reverse synthesis from formatted demon-
strations, which inherently limits its scalability and does not
ensure the correspondence between the generated code and
the natural language descriptions. MILP-Evolve (Li et al.,
2024) introduces an evolutionary framework designed to
generate diverse mixed-integer linear programming (MILP)
problems using LLMs. While MILP-Evolve and other syn-
thesis efforts represent significant steps forward in synthetic
data generation, the critical challenge of translating natural
language descriptions into robust mathematical optimization
models often remains a key area for advancement, which
our OptMATH framework directly addresses through its
scalable, bidirectionally validated approach.

Instance Generation for Optimization. Recent research
in MILP instance generation has evolved along two primary
axes: learning-based structural synthesis and rule-based
distribution expansion. The learning-based paradigm ad-

dresses data scarcity by developing generative models that
preserve instance hardness and constraints. Examples in-
clude the bipartite graph variational autoencoder framework
proposed by (Geng et al., 2023), the block decomposition
operators for constraint matrices introduced in (Liu et al.,
2024b), the duality-driven feasibility guarantees established
by (Wang et al., 2023), and the adaptive constraint modi-
fication mechanisms developed in (Guo et al., 2024). The
rule-based approach leverages instance space analysis tech-
niques (Alipour et al., 2022; Strassl & Musliu, 2022; Alipour
& Smith-Miles, 2023) to guide the generation of more di-
verse instance distributions (Smith-Miles & Bowly, 2015;
Bowly, 2019). Alternatively, it may rely on manually se-
lected features to control the characteristics of the generated
instances (Bowly et al., 2020).

Our Contributions. We propose a scalable bidirectional
synthesis framework that addresses the critical challenge
of data scarcity in optimization modeling through triplet-
aligned (NL, MF, PD) data generation and rigorous vali-
dation. Our framework uniquely integrates a closed-loop
workflow with optimal value matching, ensuring seman-
tic equivalence between NL, MF, and PD. This approach
demonstrates exceptional scalability. The framework’s do-
main adaptability is evidenced by coverage of 10+ real-
world applications (e.g., logistics, energy, finance) through
53 seed generators, with manual analysis confirming 99.6%
equivalence accuracy across all triplets.

We introduce OptMATH-Train, a large scale verified opti-
mization modeling dataset containing rigorously validated
(NL, MF, PD) triplets. Each triplet undergoes three-stage
quality control: mathematical consistency checks (MF-
to-PD compilation), semantic fidelity validation (PD-to-
NL backtranslation), and solution equivalence verification
through solver-based rejection sampling. From rejected
instances, we curate OptMATH-Bench, a challenging bench-
mark comprising “hard instances” characterized by ex-
tended natural language contexts (2.9× longer than MAMO
EasyLP) and complex constraints. We further span it us-
ing various problems including LP, MILP, IP, NLP, SOCP.
This benchmark provides the standardized evaluation for
long-context optimization modeling.

Finally, extensive experiments demonstrate the efficacy of
our framework. Models trained on the OptMATH-Train
dataset achieve state-of-the-art performance on multiple
established modeling benchmarks, including NL4OPT and
MAMO. These results definitively validate the effectiveness
and scalability of our framework for generating high-quality
optimization modeling datasets.

2

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

2. Backgrounds & Overview
In mathematical optimization theory, a canonical optimiza-
tion problem can be formulated as:

min
x

g(x),

subject to ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I,

(1)

where x ∈ Rn denotes the decision vector. The objective
function g : Rn → R assigns a scalar value to each candi-
date solution, which we seek to minimize. The constraint
functions ci : Rn → R define the feasible region through
equality constraints indexed by E and inequality constraints
indexed by I.

To formalize the optimization modeling problem, we define
several key concepts and illustrate them using a concrete
example in Appendix D.1. For a specific optimization prob-
lem, we define NL as the natural language description,
which corresponds to the “Input-Natural Language Descrip-
tion” in the example. We represent the LP/MPS file, the
concrete mathematical expression (corresponding to the
“Output-Instance Formulation”), and any other solver-ready
formats, such as executable Python code with Gurobi shown
in Appendix D.1, as problem data (PD). A common char-
acteristic of these representations is that they allow us to
obtain the optimal value of the problem by invoking a solver
based on the PD. Mathematical formulation (MF) refers to
formulation where concrete numbers are not yet specified,
corresponding to the “Output-General Formulation” in the
example. We emphasize that, in subsequent sections, we
may use different forms of PD. However, these forms es-
sentially carry the same information about the problem and
can be inferred from the context without ambiguity. We use
different forms of PD to facilitate their integration into the
workflow and to enhance clarity in various contexts.

Modern solvers such as Gurobi and Mosek (Gurobi Opti-
mization, LLC, 2024; MOSEK ApS, 2025) can efficiently
solve problems stored with PDs using algorithms like
interior-point methods (Karmarkar, 1984). However, prac-
tical challenges remain. In real-world applications, one of
the main difficulties lies in converting informal NLs of prob-
lems into precise MFs. Moreover, extracting the PDs from
NLs poses an additional significant challenge. Tradition-
ally, this process has required deep optimization expertise
(Boyd, 2004), but recent advances in LLMs offer promising
opportunities to automate this transformation.

Let Aθ represent an LLM parameterized by θ. The formula-
tion for increasing the modeling capability of the LLM can
be expressed as:

max
θ

E(NL,MF,PD)∼D[Q(NL,MF,PD)(MF′,PD′)], (2)

s.t. (MF′,PD′) = Aθ(promptM(NL)), (3)

where promptM is a modeling prompt template map-
ping NL to MF′ and PD′. The quality metric Q evalu-
ates the generated (MF′,PD′) pairs based on the verified
(NL,MF,PD) triplet. Constraint (3) formalizes the auto-
mated formulation process (Autoformulation), as depicted
in the example in Appendix D.1. Optimizing θ relies on hav-
ing a large corpus of high-quality triplets (NL,MF,PD).
To address this requirement, we propose a systematic frame-
work for generating synthetic training data that maintains
mathematical rigor.

An Overview of Our Pipeline. The pipeline of our frame-
work is presented in Figure 1. In the reverse data gener-
ation phase, we collect optimization problems from two
sources: (1) LP/MPS files from challenging benchmarks
such as MIPLIB 2017 (Gleixner et al., 2021) and netlib
(Netlib, 1990; Gay, 1985), and (2) over 50 expert-curated
seed problem generators covering diverse optimization sce-
narios. Through our carefully designed backtranslation
pipeline, we leverage both the LP files and their MFs to gen-
erate high-quality NLs of optimization problems. Notably,
using an LLM-based feedback workflow with evaluation,
our collected generators can produce tremendous PDs with
controllable varying difficulty levels. This enables us to
effectively address the data scarcity challenge in training
learning-based optimization methods.

In the forward modeling and evaluation process, we uti-
lize our trained AutoFormulator to translate the generated
NLs back into PDs. Specifically, in this phase, all PDs are
represented as solver code, which can then be exported as
LP files. We then implement a rigorous rejection sampling
strategy, where only instances whose optimal objective val-
ues match between the original and generated LP files are
retained. This equivalence-based filtering mechanism en-
sures the high quality of our OptMATH-Train dataset by
guaranteeing the semantic consistency of each instance.

Building upon the high-quality instances obtained through
rejection sampling, we employ various data augmentation
strategies to further enhance the diversity and coverage of
our dataset. This enriched collection of training pairs is
then utilized to fine-tune a foundation model, leading to
AutoFormulator, a specialized model specifically designed
for automated mathematical optimization modeling.

3. Feedback-Driven PD Generation
The mature development of the optimization community has
provided us with access to many high-quality optimization
PDs. These PDs are typically stored in standardized formats
like MPS or LP files. To effectively leverage these resources,
we began by curating over 50 seed problem classes sourced
from a variety of optimization journals and websites (see
Appendix A.2 for details). For each i-th problem class, we

3

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

Benchmark
(Hard LP Files)

Natural Language
Description

 Generated LP FilesGenerator

AutoFormulator

min ���
s.t. 푨� ≤ �

Math Formula

 LP Files

OptMATH-Train

Augmentation

Augmented Data

Fine Tuning

Base ModelFilter

Backtranslation
Pipeline

Rejection Sampling

Reject

Step2: Forward Modeling and EvaluationStep1: Reverse Data Generation

Step3: Fine-Tuning

LLM/Expert

Quality Filtering

Figure 1. An overview of our scalable, bidirectional data synthesizing pipeline.

developed a corresponding instance generator Gi. This gen-
erator takes a problem-specific configuration as input and
outputs a probability distribution over PDs. The distribu-
tion is designed to produce PDs with varying scales and
complexities, which are controllable through adjustable con-
figurations. Before delving into the controlled generation
process for the PDs, we first explain how the complexity of
PDs can be measured.

Measuring the Modeling Complexity. The complexity of
formulating and solving a MIP problem depends on mod-
eling choices such as the types of variables, the forms of
constraints, and auxiliary modeling techniques employed.
We introduce a scoring function S defined as:

S(PD) = αbinNbin + αintNint + αcontNcont

+ βlinNlin + βindicNindic + βquadNquad

+ βgenNgen + γBigM fBigM + δexpr Lexpr,

(4)

where Nbin, Nint, Ncont are the number of binary, inte-
ger, and continuous variables, respectively. Similarly,
Nlin, Nindic, Nquad, Ngen represent the number of linear, in-
dicator, quadratic, and general nonlinear constraints. The
term fBigM is a factor reflecting the frequency of Big-M
formulations, and Lexpr is the average number of terms per
constraint and the objective function, which captures the
structural information of the expressions. Lastly, the weights
α·, β·, γBigM, δexpr are tunable parameters reflecting the con-

tribution of each component to the overall complexity. To
illustrate it, we provide an example in Appendix B.1 that
considers a MIP problem incorporating multiple constraint
types to optimize production costs for two products under
resource constraints.

Selecting Parameters to Control the Complexity. We now
present the workflow in Algorithm 1 for selecting parameter
configurations for instance generator Gi to generate PDs
fitting the complexity, feasibility, and solving time require-
ments. The prompt templates are illustrated in Appendix
E.4. As formalized in Algorithm 1, the process begins by
specifying target bounds. Then a template promptIC for
initializing the configuration are incorporated. After obtain-
ing the configuration, we generate N PDs using it. We then
evaluate the generated PDs through the complexity score,
solving time, and feasibility satisfactory. Then, a feedback
promptRC is created based on the statistics of these metrics
over the N generated PDs. The LLM iteratively adjusts
parameters based on feedback from solved instances, ulti-
mately converging to a configuration that satisfy predefined
criteria. This ensures generated PDs remain both expressive
and tractable by adhering to runtime thresholds.

4. The Data Synthesis Framework
This section presents our bidirectional scalable data synthe-
sis framework. In this section, all of the PDs are in solver

4

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

Algorithm 1 Feedback-Driven Problem Data Generation
Require: Target complexity range [Smin, Smax], time lim-

its [Tmin, Tmax], instance generator G, feasibility
threshold Ftarget, max iterations T

Ensure: Configuration Θ such that for PDi ∼ G(Θ):
S(PDi) ∈ [Smin, Smax] (complexity), τi ≤ Tmax (solv-
ing time), Pr(fi = feasible) ≥ Ftarget

1: Initialize parameters via LLM:
Θ0 ← L(promptIC(Smin, Smax, Tmin, Tmax))

2: for t = 1 to T do
3: Generate N PDs: {PDi}Ni=1 ← G(Θt−1)
4: Compute metrics: S(PDi) (Eq. 4), τi (solving time),

fi (feasibility)
5: Aggregate statistics: S̄t = 1

N

∑
S(PDi), τ̄t =

1
N

∑
τi, Ft =

1
N

∑
I(fi = feasible)

6: if S̄t ∈ [Smin, Smax] and τ̄t ≤ Tmax and Ft ≥
Ftarget then

7: return Θt−1

8: else
9: Refine parameters via feedback:

Θt ← L(promptRC(S̄t, τ̄t,Ft; Θt−1))
10: end if
11: end for
12: return ∅ (no valid Θ found)

code form (see subsection 4.2 for more details). Let L
represents the LLM employed on the reverse data genera-
tion phase, and Aθ for our fine-tuned AutoFormulator with
weights θ. We define promptI, promptC, promptR as the
prompt templates that accept certain inputs for the initial
generation, self-critism, and self-refinement stages. The
algorithm is formalized in Algorithm 2, with an illustrative
example of the backtranslation process shown in Figure 13.

The final OptMATH dataset D is constructed by collecting
all valid quadruples (NLi,j ,MF′

i,j ,PD
′
i,j ,OVi,j) that pass

the validation process, where MF′
i,j and PD′

i,j represent
the generated mathematical formulation and problem data
using Aθ, OVi,j is the optimal value obtained by solving
the problem specified by PDi,j . By leveraging our instance
generators and the iterative refinement process, this algo-
rithm enables scalable generation of high-quality data pairs.
The mathematical equivalence between the generated for-
mulations and the original instances is rigorously validated
through rejection sampling, ensuring the reliability of our
dataset. A comprehensive discussion of our quality control
and rejection sampling can be found in Section 4.3.

4.1. Backtranslation Pipeline

To generate high-quality NLs of optimization problems at
scale, we leverage a specific LLM as the foundation of our
pipeline. Recent research has demonstrated that complex

Algorithm 2 Bidirectional Data Synthesis Algorithm
Require: Instance pair (MFi,PDi,j), Max Iteration T
Ensure: (NLi,j ,MF′

i,j ,PD
′
i,j ,OVi,j)

1: Initial generation: NL← L(promptI(MFi,PDi,j))
2: Initialize: SC = SR = Null
3: for k = 1, . . . , T − 1 do
4: Self-Criticize:

SC← L(promptC(MFi,PDi,j ,NL))
5: Self-Refine:

SR← L(promptR(MFi,PDi,j ,NL,SC,SR))
6: if SR is good enough then
7: break
8: end if
9: end for

10: NLi,j ← SR
11: AutoFormulation:

(MF′
i,j ,PD

′
i,j)← Aθ(promptM(NLi,j))

12: OVi,j ← Solve PDi,j by Gurobi
13: OV′

i,j ← Solve PD′
i,j by Gurobi

14: if OVi,j = OV′
i,j then

15: return (NLi,j ,MF′
i,j ,PD

′
i,j ,OVi,j)

16: else
17: return Null
18: end if

tasks often benefit from iterative refinement approaches
rather than direct generation (Madaan et al., 2024). This
observation aligns with human problem-solving processes
in mathematics, which typically requires multiple attempts
and refinements. Building upon this insight, we design a
three-phase backtranslation pipeline that systematically im-
proves the quality of generated descriptions through iterative
refinement. All prompt templates used in this pipeline can
be found in E.1.

Initial Generation. Given the mathematical formulation
MFi and the corresponding problem data PDi,j of a prob-
lem j in i-class, the LLM generates an initial natural lan-
guage description NL using the prompt template promptI.
This stage requires the model to comprehend both the math-
ematical semantics and the instance parameters to produce
a preliminary human-readable description.

Self-Criticism. Using prompt template promptC, the LLM
evaluates the current description by examining the math-
ematical equivalence with MFi, completeness of the con-
straints and objective functions, clarity and comprehensi-
bility, and consistency of the parameters with PDi,j . The
criticism SC in iteration k incorporates feedback from all
previous iterations to guide improvements.

Self-Refinement. Based on the criticism, the model gen-
erates refined descriptions SR with the prompt template
promptR. The refinement process focuses on improving

5

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

the mathematical accuracy, completeness of the constraints,
and clarity of the descriptions.

This process iterates for T rounds until a satisfactory de-
scription NLi,j is obtained, with each iteration potentially
improving the quality of the generated description. Based
on our empirical analysis (see Appendix C.2), we set T = 1
in the final implementation.

4.2. Forward modeling

Building upon the NLs generated in subsection 4.1, we
leverage AutoFormulator to transform them back into MFs
and PDs in solver code form, enabling rejection sampling
for quality validation. Given a NL as input, AutoFormu-
lator produces two key outputs: a MF and corresponding
PD in solver code form. While previous works (Tang et al.,
2024; Jiang et al., 2024) adopted fixed output formats, our
approach is not constrained to any particular format, as
our primary goal is to obtain correct solver code, with the
formulation serving as an intermediate reasoning step. To
facilitate genuine mathematical modeling capabilities rather
than superficial format mapping, we design diverse Chain-
of-Thought (CoT) prompting strategies (Wei et al., 2022).
This approach generates multiple valid reasoning paths and
formulation variants for the same problem, enriching our
training data with diverse modeling perspectives and en-
hancing the model’s mathematical reasoning capabilities.
Detailed implementation of these CoT strategies is described
in Appendix D.1.

4.3. Rejection Sampling

To ensure the quality and mathematical soundness of our
generated optimization problem descriptions, we employ
a rejection sampling strategy (Yuan et al., 2023; Liu et al.,
2024c) to filter and select high-quality samples from the
generated candidates.

As illustrated in Algorithm 2, our rejection sampling mech-
anism relies on solution-based comparison to validate the
generated samples. Specifically, for each generated natural
language description NLi,j , we use AutoFormulator to trans-
form it into a mathematical formulation MF′

i,j and solver
code PD′

i,j , obtaining solution OV′
i,j . This solution is then

compared with OVi,j , obtained by directly solving the orig-
inal instance PDi,j . A sample is accepted into our dataset
D as a validated quadruple (NLi,j ,MF′

i,j ,PD
′
i,j ,OVi,j) if

and only if OVi,j = OV′
i,j .

While this solution-based validation approach may not guar-
antee perfect equivalence (as problems with identical opti-
mal values may represent different optimization problems),
our analysis using an LLM-committee (Zhao et al., 2024)
and manual inspection of randomly sampled instances (1%
of the total dataset) reveals a remarkable 99.6% accuracy

rate. We acknowledge that determining the exact equiva-
lence between two mathematical formulations remains an
open research question worthy of further investigation. Nev-
ertheless, our current approach provides a practical and
highly effective mechanism for ensuring dataset quality.

5. Fine-Tuning
5.1. Data Augmentation

To improve the diversity of our dataset, we use data augmen-
tation to augment the training data. This method generates
more non-standard problems compared to a data genera-
tor, enhancing the model’s generalization performance. We
create rules for problem rewriting, semantic substitution,
constraint expansion, and numerical augmentation. For
each instance, a randomly selected rule is used to prompt
the LLMs to generate the corresponding augmented data.
The detailed augmentation rules and prompt templates can
be found in Appendix E.7.

For quality control, we employ a specific LLM L to sample
each augmented description twice independently, followed
by the rejection sampling strategy described in Section 4.3.
This process yields approximately 10 qualified augmented
datasets for each problem, and this method was applied to
augment 50 thousand instances to complement our original
dataset.

5.2. Training the AutoFormulator

We adopt a supervised fine-tuning (SFT) approach to en-
hance the AutoFormulator’s modeling capabilities. Specif-
ically, we employ the LoRA algorithm (Hu et al., 2021)
for efficient parameter-efficient fine-tuning, which signif-
icantly reduces memory requirements while maintaining
model performance by updating only a small set of adapter
parameters. Using the OptMATH-Train dataset DSFT =
{(NLi,MFi,PDi)}NTrain

i=1 , we train the model to generate
both mathematical formulations and solver code given prob-
lem descriptions. For each training sample, the input con-
sists of the problem description NLi, while the target output
is the concatenation of the formulation and solver code:
yi = [MFi; PDi], where [;] denotes sequence concatena-
tion. The training objective follows the standard sequence-
to-sequence loss:

LSFT(θ) = −E(p,y)∼DA
SFT

 |y|∑
t=1

logPθ(yt|y<t, p)

 (5)

where yt represents the token at position t in the target
sequence, and y<t denotes all preceding tokens. This ap-
proach allows the model to learn the mapping from nat-
ural language problem descriptions to both mathematical
formulations and solver code within a unified sequence-to-

6

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

sequence framework.

6. Experiments
6.1. Statistics of the OptMATH Dataset

First, using our generators, we generated a quality-filtered
dataset containing over 600,000 LP files, which span 53
distinct problem types and are distributed across five hard-
ness levels. For more details on the seed data class, please
refer to Appendix A.2. To ensure computational feasibility,
we impose a solving time threshold and employ a feedback
pipeline that leverages an LLM to regulate both the com-
plexity and feasibility of the generated instances. Further
details on this process are provided in Appendix B. The
distribution of file lengths across these LP files is visual-
ized in Figure 2. As shown, the lengths range widely from
1,000 to 25,000 characters, capturing a rich variety of prob-
lem complexities. The proportions of different lengths are
well-balanced, with a concentration on medium difficulty
levels (which are already quite challenging compared to
other benchmarks) and a gradual decline as the problems
become harder. Additionally, the distribution confirms the
effectiveness of our complexity control mechanism.

5,000 10,000 15,000 20,000 25,000
Number of Characters

0

1

2

3

4

5

Pe
rc

en
ta

ge
 (%

)

Easy
Medium Easy
Medium
Medium Hard
Hard

Figure 2. Distribution of LP file lengths.

We further conducted a comparative analysis of problem
lengths between OptMATH and other benchmark datasets,
with their average lengths shown in Figure 3. The analy-
sis reveals that OptMATH presents significantly more com-
plex problem descriptions compared to existing benchmarks.
This increased complexity, manifested through longer prob-
lem descriptions, poses greater challenges for LLMs, as
longer descriptions typically demand enhanced comprehen-
sion and reasoning capabilities.

As shown in Figure 4, OptMATH-Bench has selected a num-
ber of representative mathematical optimization problems
covering a wide range of application scenarios, including
LP, MILP, IP, NLP, SOCP and other optimization problems.
For details, please refer to Appendix A.1.

Average Question Length (character)
0

500

1000

1500

2000

2500

3000

3500

4000

3,315
2,974

1,724

1,045

541

OptMATH-Train
OptMATH-Bench
MAMO ComplexLP

MAMO EasyLP
NL4OPT

Figure 3. Question length analysis

Figure 4. The proportion of problems in different datasets.

To visualize the distribution of different benchmarks and
OptMATH dataset, we project their high-dimensional em-
beddings onto a 2D space using t-SNE(van der Maaten
& Hinton, 2008). As shown in Figure 5, the instances
from different sources form distinct clusters, suggesting
that OptMATH effectively captures the diversity of differ-
ent problem families. It can be observed that OptMATH
surrounds the area of other benchmarks. This explains the
improvement on various benchmarks obtained by training
on OptMATH-Train.

−40 −20 0 20 40

−40

−20

0

20

40

NL4OPT
MAMO EasyLP

MAMO ComplexLP
OptMATH-Bench

OptMATH-Train

Figure 5. Visualization of OptMATH and other benchmarks.

6.2. Autoformulation

Evaluation Benchmarks and Metrics. We eval-
uate our fine-tuned model on five benchmarks:
NL4OPT(Ramamonjison et al., 2021), MAMO(Huang et al.,
2024), IndustryOR(Tang et al., 2024), OptiBench(Yang
et al., 2025) and our newly constructed OptMATH-Bench.

7

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

Table 1. Performance Comparison of Models on Different Benchmarks

Types Models NL4OPT
MAMO
EasyLP

MAMO
ComplexLP

OptMATH
Bench IndustryOR OptiBench Macro AVG

Baseline

Llama3.1-8B(pass@1) 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.1%
Qwen2.5-7B(pass@1) 86.9% 83.6% 21.8% 1.6% 10.0% 36.2% 40.0%
GPT-3.5-turbo(pass@1) 78.0% 79.3% 33.2% 15.0% 21.0% 47.4% 51.4%
GPT-4(pass@1) 89.0% 87.3% 49.3% 16.6% 33.3% 68.6% 57.4%
Deepseek-V3(pass@1) 95.9% 88.3% 51.1% 32.6% 37.0% 71.6% 62.8%
OptiMUS (GPT-4o-2024-05-13) 78.8% 77.0% 43.6% 20.2% 31.0% 45.8% 49.4%
Qwen2.5-32B(pass@1) 92.7% 82.2% 44.6% 9.3% 16.0% 47.6% 48.7%

Fine-tuning ORLM-Llama-3-8B (reported) 85.7% 82.3% 37.4% * 38.0% * 60.9%
ORLM-Llama-3-8B (reproduced) 84.5% 74.9% 34.1% 2.6% 24.0% 51.1% 45.2%
OptMATH-Llama3.1-8B (pass@1) 55.5% 73.9% 40.8% 24.4% 18.0% 55.5% 44.7%
OptMATH-Qwen2.5-7B (pass@1) 94.7% 86.5% 51.2% 24.4% 20.0% 57.9% 55.8%
OptMATH-Qwen2.5-32B (pass@1) 95.9% 89.9% 54.1% 34.7% 31.0% 66.1% 62.0%

Pass@8
OptMATH-Llama3.1-8B 97.6% 94.2% 71.6% 51.6% 37.0% 66.6% 69.8%
OptMATH-Qwen2.5-7B 98.4% 94.5% 72.5% 56.0% 38.0% 68.1% 71.3%
OptMATH-Qwen2.5-32B 97.9% 93.9% 75.4% 67.4% 47.0% 76.8% 76.4%

0.5B 1.5B 3B 7B 14B 32B

Model Size

0

20

40

60

80

100

M
icr

o
Ac

cu
ra

cy
 (%

)

0.1%

23.3%
23.2%

1.2%

49.3%
48.0%

48.0%

59.9%
11.8%

62.0%

73.6%
11.5%

68.0%

76.0%
8.0%

67.3%

76.9%
9.6%

Baseline Model
Finetuned Model

Figure 6. Scaling behavior of Qwen2.5 models (0.5B-32B).

Detailed descriptions of these benchmarks can be found in
Appendix A.1. We use pass@1 accuracy as the evaluation
metric, which specifically measures whether the optimal
value obtained by the generated code matches the ground
truth provided in the benchmark. The detailed matching
criteria are described in Appendix A.1. Notably, since
prompt design can significantly impact model performance,
we maintain consistency by using the same prompt template
across all model evaluations (see Appendix E.2 for details).
Additionally, comprehensive details about our fine-tuning
procedure are provided in Appendix D.3.

Main Results. The primary results are presented in Table 1.
First, our best-performing model, OptMATH-Qwen2.5-32B,
achieves superior performance across all benchmarks, sur-
passing proprietary large language models such as GPT-3.5-
Turbo(Brown et al., 2020a) and GPT4(OpenAI et al., 2023),
and reaching a level comparable to Deepseek-V3(Liu et al.,
2024a), despite these models often having significantly more
parameters. Furthermore, our OptMATH-Qwen2.5-7B out-

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

NL4OPT
MAMO EasyLP
MAMO ComplexLP
OptMATH-Bench
Micro Accuracy

Figure 7. Accuracy of Qwen2.5-1.5B within one training epoch.

performs ORLM-Llama-3-8B, a model of comparable size,
demonstrates performance only marginally inferior to GPT-
4. Collectively, these results demonstrate that training with
OptMATH-Train significantly enhances the model’s opti-
mization modeling capabilities.

The results in Table 1 also highlight that different base
models possess varying inherent modeling capabilities. For
instance, the Llama3.1-8B(Dubey et al., 2024) base model
exhibits very poor initial modeling ability, with performance
close to 0% on most datasets. However, after fine-tuning
with our dataset (OptMATH-Llama3.1-8B), its modeling
capability is substantially improved. Despite this significant
enhancement, the fine-tuned OptMATH-Llama3.1-8B still
performs below the level of OptMATH-Qwen2.5-7B, un-
derscoring the impact of the base model’s architecture or
pre-training on final fine-tuned performance. Moreover, the
strong pass@8 results achieved by the fine-tuned models
suggest a high upper limit to their modeling capabilities,

8

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

indicating potential for further enhancement through re-
inforcement learning methods, similar to approaches like
Deepseek-R1(Guo et al., 2025).

Ablation Study on Model Size. To investigate the effective-
ness of OptMATH training across different model scales, we
conducted experiments using Qwen2.5 models ranging from
0.5B to 32B parameters. Due to computational constraints,
we used a randomly sampled subset of 100,000 training
examples. As shown in Figure 6, all models exhibit sub-
stantial performance improvements after fine-tuning with
OptMATH-Train. Notably, we observe that while larger
models generally achieve better absolute performance, the
relative performance gains from OptMATH-Train training
demonstrate diminishing returns as model size increases.

Ablation Study on Data Size. Figure 7 shows how the
amount of training data affects Qwen2.5-1.5B’s perfor-
mance across different benchmarks. We observed significant
improvements in the model’s optimization modeling capabil-
ities even with only a small fraction of the OptMATH-Train
dataset. As we gradually increased the size of the training
data, the performance gains became less pronounced, ex-
hibiting a typical pattern of diminishing returns. Larger mod-
els exhibit smoother learning curves, while smaller models
demonstrate greater sensitivity to additional training data,
indicating higher potential for improvement through data
scaling (detailed results across model sizes can be found in
the Appendix D.4).

7. Conclusion
In this paper, we introduce a bidirectional data synthesis
framework for optimization modeling. It utilizes a two-
step process: reverse data generation, where LLMs refine
themselves in a loop to create diverse datasets, and auto-
formulation, where a specialized model translates natural
language into mathematical representations. Our evalu-
ation on NL4OPT, MAMO and OptMATH-Benchmarks
demonstrated AutoFormulator’s superior performance in
generating accurate and well-formed optimization models
compared to baseline approaches.

Acknowledgments
The computational resources were supported by the Center
for Intelligent Computing and Song-Shan Lake HPC Cen-
ter (SSL-HPC) in Great Bay University, Dongguan, China.
This work was supported in part by National Key Research
and Development Program of China under the grant num-
bers 2024YFA1012901 and 2024YFA1012903, and the Na-
tional Natural Science Foundation of China under the grant
numbers 12331010 and 12288101. We also thank the anony-
mous reviewers for their valuable feedback.

Impact Statement
This study introduces OptMATH, a dataset for optimization
modeling, comprising a large-scale training set (OptMATH-
Train) and a challenging benchmark (OptMATH-Bench).
OptMATH has the potential to democratize optimization
by enabling those without expertise to translate real-world
problems into mathematical formulations. The OptMATH-
Train dataset will significantly improve LLMs’ ability to
understand and model optimization problems. Further-
more, OptMATH’s structured data facilitates the integra-
tion of optimization with advanced AI techniques like re-
inforcement learning, Monte Carlo Tree Search. Addition-
ally, OptMATH-Bench provides a standardized benchmark
for evaluating optimization modeling systems, pushing the
boundaries of LLM capabilities. Ultimately, OptMATH can
improve efficiency and decision-making across industries.

References
Abara, J. Applying integer linear programming to the fleet

assignment problem. Interfaces, 19(4):20–28, 1989.

Adams, J., Balas, E., and Zawack, D. The shifting bottleneck
procedure for job shop scheduling. Management Science,
34(3):391–401, 1988. ISSN 00251909, 15265501. URL
http://www.jstor.org/stable/2632051.

AhmadiTeshnizi, A., Gao, W., and Udell, M. OptiMUS:
Optimization modeling using MIP solvers and large lan-
guage models, 2023. URL http://arxiv.org/
abs/2310.06116.

Alipour, H. and Smith-Miles, K. Instance
space analysis for 2d bin packing mathemat-
ical models. Discrete Optimization, 2023.
URL https://www.sciencedirect.com/
science/article/pii/S0377221723009335.

Alipour, H., Muñoz, M. A., and Smith-Miles, K. En-
hanced instance space analysis for the maximum flow
problem. European Journal of Operational Research,
2022. URL https://www.sciencedirect.com/
science/article/pii/S0377221722003101.

Astorga, N., Liu, T., Xiao, Y., and Schaar, M. v. d. Aut-
oformulation of mathematical optimization models us-
ing LLMs, 2024. URL http://arxiv.org/abs/
2411.01679.

Beasley, J. E., Krishnamoorthy, M., Sharaiha, Y. M., and
Abramson, D. Scheduling aircraft landings—the static
case. Transportation Science, 34(2):180–197, 2000. doi:
10.1287/trsc.34.2.180.12302.

Bertsekas, D. Network optimization: continuous and dis-
crete models, volume 8. Athena Scientific, 1998.

9

http://www.jstor.org/stable/2632051
http://arxiv.org/abs/2310.06116
http://arxiv.org/abs/2310.06116
https://www.sciencedirect.com/science/article/pii/S0377221723009335
https://www.sciencedirect.com/science/article/pii/S0377221723009335
https://www.sciencedirect.com/science/article/pii/S0377221722003101
https://www.sciencedirect.com/science/article/pii/S0377221722003101
http://arxiv.org/abs/2411.01679
http://arxiv.org/abs/2411.01679

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

Bowly, S. Stress testing mixed integer programming solvers
through new test instance generation methods. PhD thesis,
University of Melbourne, Parkville, Victoria, Australia,
2019.

Bowly, S., Smith-Miles, K., Baatar, D., and Mittelmann, H.
Generation techniques for linear programming instances
with controllable properties. Math. Program. Comput.,
12(3):389–415, 2020. ISSN 1867-2949,1867-2957. doi:
10.1007/s12532-019-00170-6. URL https://doi.
org/10.1007/s12532-019-00170-6.

Boyd, S. Convex optimization. Cambridge UP, 2004.

Brown, G. G., Dell, R. F., and Newman, A. M. Op-
timizing military capital planning. Interfaces, 34(6):
415–425, 2004. ISSN 00922102, 1526551X. URL
http://www.jstor.org/stable/25062950.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020a.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners, 2020b. URL http://
arxiv.org/abs/2005.14165.

Burkard, R., Dell’Amico, M., and Martello, S. Assign-
ment Problems. Society for Industrial and Applied
Mathematics, 2012. doi: 10.1137/1.9781611972238.
URL https://epubs.siam.org/doi/abs/10.
1137/1.9781611972238.

Caprara, A., Toth, P., and Fischetti, M. Algorithms
for the set covering problem. Annals of Operations
Research, 98(1):353–371, 2000. URL https:
//www.dei.unipd.it/˜fisch/papers/
survey_set_covering_problem.pdf. [Online;
accessed 19-January-2025].

Chen, G., Li, X., and Ye, Y. An improved analysis
of lp-based control for revenue management. arXiv
preprint, 2022. URL https://arxiv.org/abs/
2101.11092. [Online; accessed 19-January-2025].

Consigli, G. Optimization methods in finance. Quan-
titative Finance, 19:717 – 719, 2019. URL https:
//api.semanticscholar.org/CorpusID:
262220633.

Cooper, L. G. Market-share models. In Handbooks in Op-
erations Research and Management Science, volume 5,
pp. 259–314. Elsevier Science Publishers, 1993. URL
https://escholarship.org/content/
qt1gk2z67m/qt1gk2z67m_noSplash_
3fabc6d7de059914e4c306fc58649c48.pdf.
[Online; accessed 19-January-2025].

Cordeau, J., Pasin, F., and Solomon, M. An integrated
model for logistics network design. Annals of Op-
erations Research, 144:59–82, 2006. doi: 10.1007/
s10479-006-0001-3.

Dantzig, G., Fulkerson, R., and Johnson, S. Solution of a
large-scale traveling-salesman problem. Journal of the
Operations Research Society of America, 2(4):393–410,
1954. doi: 10.1287/opre.2.4.393.

Daskin, M. S. Network and Discrete Location:
Models, Algorithms, and Applications. Wi-
ley, 1995. URL https://www.wiley.com/
en-us/Network+and+Discrete+Location%
3A+Models%2C+Algorithms%2C+and+
Applications-p-9780471181170. [Online;
accessed 19-January-2025].

Drexl, A. and Kimms, A. Lot sizing and scheduling —
survey and extensions. European Journal of Operational
Research, 99(2):221–235, 1997. ISSN 0377-2217.
doi: https://doi.org/10.1016/S0377-2217(97)00030-1.
URL https://www.sciencedirect.com/
science/article/pii/S0377221797000301.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
et al. The llama 3 herd of models. ArXiv, abs/2407.21783,
2024. URL https://api.semanticscholar.
org/CorpusID:271571434.

Fleischmann, B. The discrete lot-sizing and schedul-
ing problem. European Journal of Operational
Research, 44(3):337–348, 1990. ISSN 0377-2217.
doi: https://doi.org/10.1016/0377-2217(90)90245-7.
URL https://www.sciencedirect.com/
science/article/pii/0377221790902457.

Florian, M. and Klein, M. Deterministic production plan-
ning with concave costs and capacity constraints. Man-
agement Science, 18(1):12–20, 1971.

Ford, L. R. and Fulkerson, D. R. Maximal flow through a
network. Canadian Journal of Mathematics, 8:399–404,
1956. doi: 10.4153/CJM-1956-045-5.

Garey, M. R. and Johnson, D. S. Approximation algorithms
for bin packing problems: A survey. In Analysis and
design of algorithms in combinatorial optimization, pp.
147–172. Springer, 1981.

10

https://doi.org/10.1007/s12532-019-00170-6
https://doi.org/10.1007/s12532-019-00170-6
http://www.jstor.org/stable/25062950
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://epubs.siam.org/doi/abs/10.1137/1.9781611972238
https://epubs.siam.org/doi/abs/10.1137/1.9781611972238
https://www.dei.unipd.it/~fisch/papers/survey_set_covering_problem.pdf
https://www.dei.unipd.it/~fisch/papers/survey_set_covering_problem.pdf
https://www.dei.unipd.it/~fisch/papers/survey_set_covering_problem.pdf
https://arxiv.org/abs/2101.11092
https://arxiv.org/abs/2101.11092
https://api.semanticscholar.org/CorpusID:262220633
https://api.semanticscholar.org/CorpusID:262220633
https://api.semanticscholar.org/CorpusID:262220633
https://escholarship.org/content/qt1gk2z67m/qt1gk2z67m_noSplash_3fabc6d7de059914e4c306fc58649c48.pdf
https://escholarship.org/content/qt1gk2z67m/qt1gk2z67m_noSplash_3fabc6d7de059914e4c306fc58649c48.pdf
https://escholarship.org/content/qt1gk2z67m/qt1gk2z67m_noSplash_3fabc6d7de059914e4c306fc58649c48.pdf
https://www.wiley.com/en-us/Network+and+Discrete+Location%3A+Models%2C+Algorithms%2C+and+Applications-p-9780471181170
https://www.wiley.com/en-us/Network+and+Discrete+Location%3A+Models%2C+Algorithms%2C+and+Applications-p-9780471181170
https://www.wiley.com/en-us/Network+and+Discrete+Location%3A+Models%2C+Algorithms%2C+and+Applications-p-9780471181170
https://www.wiley.com/en-us/Network+and+Discrete+Location%3A+Models%2C+Algorithms%2C+and+Applications-p-9780471181170
https://www.sciencedirect.com/science/article/pii/S0377221797000301
https://www.sciencedirect.com/science/article/pii/S0377221797000301
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://www.sciencedirect.com/science/article/pii/0377221790902457
https://www.sciencedirect.com/science/article/pii/0377221790902457

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

Garille, S. G. and Gass, S. I. Stigler’s diet problem revis-
ited. Operations Research, 49(1):1–13, 2001. doi: 10.
1287/opre.49.1.1.11187. URL https://doi.org/
10.1287/opre.49.1.1.11187.

Gay, D. M. Electronic mail distribution of linear program-
ming test problems. Mathematical Programming Society
COAL Newsletter, 13:10–12, 1985.

Gendron, B., Crainic, T. G., and Frangioni, A. Multicom-
modity capacitated network design. In Telecommunica-
tions network planning, pp. 1–19. Springer, 1999.

Geng, Z., Li, X., Wang, J., Li, X., Zhang, Y., and Wu, F.
A deep instance generative framework for MILP solvers
under limited data availability. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S. (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023.

Ghiani, G., Laporte, G., and Musmanno, R. Introduction
to Logistics Systems Management: With Microsoft Excel
and Python Examples. John Wiley & Sons, 2022.

Gilmore, P. C. and Gomory, R. E. A linear program-
ming approach to the cutting-stock problem. Operations
Research, 9(6):849–859, 1961. doi: 10.1287/opre.9.6.
849. URL https://doi.org/10.1287/opre.9.
6.849.

Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T.,
Bastubbe, M., Berthold, T., Christophel, P. M., Jarck,
K., Koch, T., Linderoth, J., Lübbecke, M., Mittelmann,
H. D., Ozyurt, D., Ralphs, T. K., Salvagnin, D., and
Shinano, Y. MIPLIB 2017: Data-Driven Compila-
tion of the 6th Mixed-Integer Programming Library.
Mathematical Programming Computation, 2021. doi:
10.1007/s12532-020-00194-3. URL https://doi.
org/10.1007/s12532-020-00194-3.

Golden, B., Raghavan, S., and Wasil, E. (eds.). The Vehi-
cle Routing Problem: Latest Advances and New Chal-
lenges. Operations Research/Computer Science Inter-
faces Series. Springer New York, NY, 1 edition, 2008.
ISBN 978-0-387-77777-1. doi: https://doi.org/10.1007/
978-0-387-77778-8.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Guo, Z., Li, Y., Liu, C., Ouyang, W., and Yan, J. Acm-
milp: Adaptive constraint modification via grouping and

selection for hardness-preserving milp instance genera-
tion. In International Conference on Machine Learn-
ing (ICML), 2024. URL https://dblp.org/rec/
conf/icml/GuoLLOY24.

Gurobi Optimization, L. Optimization model-
ing, 2025. URL https://www.gurobi.
com/documentation/9.5/refman/
optimization_modeling.html. [Online;
accessed 19-January-2025].

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2024. URL https://www.gurobi.com.

Hazell, P. B. R. and Norton, R. D. Mathematical
Programming for Economic Analysis in Agriculture.
Macmillan Publishing Co., 1986. URL https:
//www.researchgate.net/publication/
256475967_Mathematical_Programming_
for_Economic_Analysis_in_Agriculture.
[Online; accessed 19-January-2025].

Herrmann, J. W. (ed.). Handbook of Production Scheduling.
International Series in Operations Research & Manage-
ment Science. Springer New York, NY, 1 edition, 2006.
ISBN 978-0-387-33115-7. doi: https://doi.org/10.1007/
0-387-33117-4.

Hillier, F. S. and Lieberman, G. J. Introduction to Opera-
tions Research. McGraw-Hill Education, 10th edition,
2014. URL https://thuvienso.hoasen.edu.
vn/handle/123456789/8952. [Online; accessed
19-January-2025].

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Huang, X., Shen, Q., Hu, Y., Gao, A., and Wang, B.
Mamo: a mathematical modeling benchmark with solvers.
CoRR, abs/2405.13144, 2024. doi: 10.48550/ARXIV.
2405.13144. URL https://doi.org/10.48550/
arXiv.2405.13144.

Jiang, C., Shu, X., Qian, H., Lu, X., Zhou, J., Zhou, A., and
Yu, Y. LLMOPT: Learning to define and solve general
optimization problems from scratch, 2024. URL http:
//arxiv.org/abs/2410.13213.

Karmarkar, N. A new polynomial-time algorithm for linear
programming. In Proceedings of the sixteenth annual
ACM symposium on Theory of computing, pp. 302–311,
1984.

Klein, M. A primal method for minimal cost flows with
applications to the assignment and transportation prob-
lems. Management Science, 14(3):205–220, 1967. doi:
10.1287/mnsc.14.3.205.

11

https://doi.org/10.1287/opre.49.1.1.11187
https://doi.org/10.1287/opre.49.1.1.11187
https://doi.org/10.1287/opre.9.6.849
https://doi.org/10.1287/opre.9.6.849
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://dblp.org/rec/conf/icml/GuoLLOY24
https://dblp.org/rec/conf/icml/GuoLLOY24
https://www.gurobi.com/documentation/9.5/refman/optimization_modeling.html
https://www.gurobi.com/documentation/9.5/refman/optimization_modeling.html
https://www.gurobi.com/documentation/9.5/refman/optimization_modeling.html
https://www.gurobi.com
https://www.researchgate.net/publication/256475967_Mathematical_Programming_for_Economic_Analysis_in_Agriculture
https://www.researchgate.net/publication/256475967_Mathematical_Programming_for_Economic_Analysis_in_Agriculture
https://www.researchgate.net/publication/256475967_Mathematical_Programming_for_Economic_Analysis_in_Agriculture
https://www.researchgate.net/publication/256475967_Mathematical_Programming_for_Economic_Analysis_in_Agriculture
https://thuvienso.hoasen.edu.vn/handle/123456789/8952
https://thuvienso.hoasen.edu.vn/handle/123456789/8952
https://doi.org/10.48550/arXiv.2405.13144
https://doi.org/10.48550/arXiv.2405.13144
http://arxiv.org/abs/2410.13213
http://arxiv.org/abs/2410.13213

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

Kuby, M. J. Programming models for facility dis-
persion: the p-dispersion and maxisum dispersion
problems. Mathematical and Computer Mod-
elling, 10(10):792, 1988. ISSN 0895-7177. doi:
https://doi.org/10.1016/0895-7177(88)90094-5.
URL https://www.sciencedirect.com/
science/article/pii/0895717788900945.

Kuhn, H. W. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2(1-2):83–
97, 1955. doi: https://doi.org/10.1002/nav.3800020109.
URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/nav.3800020109.

Li, S., Kulkarni, J., Menache, I., Wu, C., and Li, B. Towards
foundation models for mixed integer linear programming.
arXiv preprint arXiv:2410.08288, 2024.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-
v3 technical report. arXiv preprint arXiv:2412.19437,
2024a.

Liu, H., Wang, J., Zhang, W., Geng, Z., Kuang, Y., Li,
X., Li, B., Zhang, Y., and Wu, F. Milp-studio: MILP
instance generation via block structure decomposition.
CoRR, abs/2410.22806, 2024b. doi: 10.48550/ARXIV.
2410.22806. URL https://doi.org/10.48550/
arXiv.2410.22806.

Liu, H., Zhang, Y., Luo, Y., and Yao, A. C.-
C. Augmenting math word problems via itera-
tive question composing. ArXiv, abs/2401.09003,
2024c. URL https://api.semanticscholar.
org/CorpusID:267028678.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing
Systems, 36, 2024.

Markowitz, H. Portfolio selection. The Journal of Finance,
7(1):77–91, 1952. ISSN 00221082, 15406261. URL
http://www.jstor.org/stable/2975974.

Martello, S. and Toth, P. Knapsack problems: algorithms
and computer implementations. John Wiley & Sons, Inc.,
USA, 1990. ISBN 0471924202.

MOSEK ApS. MOSEK Optimization Software, 2025. Ver-
sion 11.0.3.

Netlib. Netlib: A collection of mathematical software,
papers, and databases. http://netlib.org, 1990.
Available at http://netlib.org.

OpenAI. Learning to reason with llms: Introduc-
ing openai o1. https://openai.com/index/
learning-to-reason-with-llms/, 2024. Ac-
cessed: 2024-12-21.

OpenAI, Achiam, J., and Adler, S. e. a. GPT-4 Technical Re-
port, 2023. URL http://arxiv.org/abs/2303.
08774.

Padhy, N. Unit commitment-a bibliographical survey. IEEE
Transactions on Power Systems, 19(2):1196–1205, 2004.
doi: 10.1109/TPWRS.2003.821611.

Pinedo, M. L. Scheduling: Theory, Algorithms, and Systems.
Springer Cham, 6 edition, 2022. ISBN 978-3-031-05920-
9. doi: https://doi.org/10.1007/978-3-031-05921-6.

Rajendran, C. Heuristics for scheduling in flowshop with
multiple objectives. European Journal of Operational
Research, 82(3):540–555, 1995. ISSN 0377-2217.
doi: https://doi.org/10.1016/0377-2217(93)E0212-G.
URL https://www.sciencedirect.com/
science/article/pii/0377221793E0212G.

Ramamonjison, R., Yu, T. T. L., Li, R., Li, H.,
Carenini, G., Ghaddar, B., He, S., Mostajabdaveh,
M., Banitalebi-Dehkordi, A., Zhou, Z., and Zhang, Y.
Nl4opt competition: Formulating optimization prob-
lems based on their natural language descriptions. In
Ciccone, M., Stolovitzky, G., and Albrecht, J. (eds.),
NeurIPS 2022 Competition Track, November 28 - De-
cember 9, 2022, Online, volume 220 of Proceedings
of Machine Learning Research, pp. 189–203. PMLR,
2021. URL https://proceedings.mlr.press/
v220/ramamonjison22a.html.

Rao, S. S. Engineering optimization: theory and practice.
John Wiley & Sons, 2019.

Schöbel, A. Line planning in public transportation: models
and methods. OR Spectrum, 34:491–510, 2012. doi:
10.1007/s00291-011-0251-6.

Smith, D. Network flows: Theory, algorithms, and ap-
plications. J Oper Res Soc, 45:1340, 1994. doi:
10.1057/jors.1994.208.

Smith-Miles, K. and Bowly, S. Generating new test in-
stances by evolving in instance space. Comput. Oper.
Res., 63:102–113, 2015. ISSN 0305-0548,1873-765X.
doi: 10.1016/j.cor.2015.04.022. URL https://doi.
org/10.1016/j.cor.2015.04.022.

Solomon, M. M. Algorithms for the vehicle routing
and scheduling problems with time window constraints.
Oper. Res., 35:254–265, 1987. URL https://api.
semanticscholar.org/CorpusID:15346313.

12

https://www.sciencedirect.com/science/article/pii/0895717788900945
https://www.sciencedirect.com/science/article/pii/0895717788900945
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://doi.org/10.48550/arXiv.2410.22806
https://doi.org/10.48550/arXiv.2410.22806
https://api.semanticscholar.org/CorpusID:267028678
https://api.semanticscholar.org/CorpusID:267028678
http://www.jstor.org/stable/2975974
http://netlib.org
http://netlib.org
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://www.sciencedirect.com/science/article/pii/0377221793E0212G
https://www.sciencedirect.com/science/article/pii/0377221793E0212G
https://proceedings.mlr.press/v220/ramamonjison22a.html
https://proceedings.mlr.press/v220/ramamonjison22a.html
https://doi.org/10.1016/j.cor.2015.04.022
https://doi.org/10.1016/j.cor.2015.04.022
https://api.semanticscholar.org/CorpusID:15346313
https://api.semanticscholar.org/CorpusID:15346313

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

SteadieSeifi, M., Dellaert, N., Nuijten, W., Van Woensel,
T., and Raoufi, R. Multimodal freight transporta-
tion planning: A literature review. European Journal
of Operational Research, 233(1):1–15, 2014. ISSN
0377-2217. doi: https://doi.org/10.1016/j.ejor.2013.06.
055. URL https://www.sciencedirect.com/
science/article/pii/S0377221713005638.

Strassl, S. and Musliu, N. Instance space analysis
and algorithm selection for the job shop scheduling
problem. European Journal of Operational Research,
2022. URL https://www.sciencedirect.com/
science/article/pii/S0305054821003634.

Tang, Z., Huang, C., Zheng, X., Hu, S., Wang, Z., Ge, D.,
and Wang, B. ORLM: Training large language models for
optimization modeling, 2024. URL http://arxiv.
org/abs/2405.17743.

Toregas, C., Swain, R., ReVelle, C., and Bergman, L. The
location of emergency service facilities. Operations Re-
search, 19(6):1363–1373, 1971. doi: 10.1287/opre.19.
6.1363. URL https://doi.org/10.1287/opre.
19.6.1363.

Toth, P. The vehicle routing problem. SIAM Monographs
on Discrete Mathematics and Applications, 2002.

van der Maaten, L. and Hinton, G. E. Visualizing
data using t-sne. Journal of Machine Learning Re-
search, 9:2579–2605, 2008. URL https://api.
semanticscholar.org/CorpusID:5855042.

Wang, H., Liu, J., Chen, X., Wang, X., Li, P., and Yin,
W. DIG-MILP: A Deep Instance Generator for Mixed-
Integer Linear Programming with Feasibility Guaran-
tee. arXiv preprint, 2023. URL https://arxiv.
org/abs/2310.13261. Code: https://github.
com/Graph-COM/DIG_MILP.

Wang, K., Zhu, J., Ren, M., Liu, Z., Li, S., Zhang, Z., Zhang,
C., Wu, X., Zhan, Q., Liu, Q., et al. A survey on data
synthesis and augmentation for large language models.
arXiv preprint arXiv:2410.12896, 2024.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language models with self-generated instructions. arXiv
preprint arXiv:2212.10560, 2022.

Weatherford, L. R. and Bodily, S. E. Forecasting and con-
trol of passenger bookings. Journal of Revenue and
Pricing Management, 1(1):37–45, 1997. doi: 10.1057/
palgrave.rpm.5170134. URL https://doi.org/10.
1057/palgrave.rpm.5170134. [Online; accessed
19-January-2025].

Wei, J., Wang, X., Schuurmans, D., Bosma, M.,
Chi, E. H., Xia, F., Le, Q., and Zhou, D.
Chain of thought prompting elicits reasoning in
large language models. ArXiv, abs/2201.11903,
2022. URL https://api.semanticscholar.
org/CorpusID:246411621.

Wikipedia. Supply chain management — Wikipedia,
the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Supply%20chain%
20management&oldid=1261250036, 2025.
[Online; accessed 19-January-2025].

Winston, W. L. Operations Research: Applications
and Algorithms. Duxbury Press, 4th edition, 2004.
URL https://www.academia.edu/download/
43587201/Winston.OperationsResearch.
pdf. [Online; accessed 19-January-2025].

Xiao, Z., Zhang, D., Wu, Y., Xu, L., Wang, Y. J., Han, X., Fu,
X., Zhong, T., Zeng, J., Song, M., and Chen, G. Chain-
of-experts: When llms meet complex operations research
problems. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=HobyL1B9CZ.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Yang, Z., Wang, Y., Huang, Y., Guo, Z., Shi, W., Han, X.,
Feng, L., Song, L., Liang, X., and Tang, J. Optibench
meets resocratic: Measure and improve llms for optimiza-
tion modeling. In The Thirteenth International Confer-
ence on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025. URL https:
//openreview.net/forum?id=fsDZwS49uY.

Yuan, Z., Yuan, H., Li, C., Dong, G., Tan, C., and Zhou,
C. Scaling relationship on learning mathematical reason-
ing with large language models. ArXiv, abs/2308.01825,
2023. URL https://api.semanticscholar.
org/CorpusID:260438790.

Zhang, J., Wang, W., Guo, S., Wang, L., Lin, F., Yang, C.,
and Yin, W. Solving general natural-language-description
optimization problems with large language models. arXiv
preprint arXiv:2407.07924, 2024.

Zhao, R., Zhang, W., Chia, Y. K., Xu, W., Zhao, D., and
Bing, L. Auto-arena: Automating llm evaluations with
agent peer battles and committee discussions, 2024. URL
https://arxiv.org/abs/2405.20267.

Zheng, Y., Zhang, R., Zhang, J., Ye, Y., Luo, Z., Feng,
Z., and Ma, Y. Llamafactory: Unified efficient fine-
tuning of 100+ language models. In Proceedings of the

13

https://www.sciencedirect.com/science/article/pii/S0377221713005638
https://www.sciencedirect.com/science/article/pii/S0377221713005638
https://www.sciencedirect.com/science/article/pii/S0305054821003634
https://www.sciencedirect.com/science/article/pii/S0305054821003634
http://arxiv.org/abs/2405.17743
http://arxiv.org/abs/2405.17743
https://doi.org/10.1287/opre.19.6.1363
https://doi.org/10.1287/opre.19.6.1363
https://api.semanticscholar.org/CorpusID:5855042
https://api.semanticscholar.org/CorpusID:5855042
https://arxiv.org/abs/2310.13261
https://arxiv.org/abs/2310.13261
https://github.com/Graph-COM/DIG_MILP
https://github.com/Graph-COM/DIG_MILP
https://doi.org/10.1057/palgrave.rpm.5170134
https://doi.org/10.1057/palgrave.rpm.5170134
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
http://en.wikipedia.org/w/index.php?title=Supply%20chain%20management&oldid=1261250036
http://en.wikipedia.org/w/index.php?title=Supply%20chain%20management&oldid=1261250036
http://en.wikipedia.org/w/index.php?title=Supply%20chain%20management&oldid=1261250036
https://www.academia.edu/download/43587201/Winston.OperationsResearch.pdf
https://www.academia.edu/download/43587201/Winston.OperationsResearch.pdf
https://www.academia.edu/download/43587201/Winston.OperationsResearch.pdf
https://openreview.net/forum?id=HobyL1B9CZ
https://openreview.net/forum?id=HobyL1B9CZ
https://openreview.net/forum?id=fsDZwS49uY
https://openreview.net/forum?id=fsDZwS49uY
https://api.semanticscholar.org/CorpusID:260438790
https://api.semanticscholar.org/CorpusID:260438790
https://arxiv.org/abs/2405.20267

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 3: System Demonstrations),
Bangkok, Thailand, 2024. Association for Computational
Linguistics. URL http://arxiv.org/abs/2403.
13372.

Zieyel, E. R. Operations research : applica-
tions and algorithms. Technometrics, 30:361–362,
1988. URL https://api.semanticscholar.
org/CorpusID:122790857.

14

http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://api.semanticscholar.org/CorpusID:122790857
https://api.semanticscholar.org/CorpusID:122790857

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

A. Dataset
A.1. An Introduction of Different Benchmarks

We evaluated the modeling capabilities of our trained model on NL4OPT, MAMO, IndustryOR, OptiBench, and our
self-constructed dataset, OptMATH-Bench. Both MAMO and OptMATH-Bench have ground truth annotations, while
the original NL4OPT dataset lacks ground truth. To address this, we utilized a LLM to generate initial ground truth for
NL4OPT, followed by expert validation and correction for each data. As a result, we obtained the ground truth for the
NL4OPT dataset. In addition, we have also analyzed these datasets in terms of problem scenarios and problem model types,
and the distribution of scenarios for each dataset is shown in Figure 8, the distribution of problem types for each dataset is
shown in Figure 4.

Figure 8. Scenarios distribution of the datasets.

NL4OPT(Ramamonjison et al., 2021) is a curated dataset derived from the NL4OPT Competition, where participants
were tasked with developing automated methods to convert natural language problem descriptions into solver-ready code.
This dataset primarily focuses on LP (Linear Programming) problems across various contexts, though the underlying
mathematical models are relatively uniform, with more complex MIPS (Mixed Integer Programming and Scheduling)
problems notably absent. For our experiments, we selected the test set from this dataset, filtered out low-quality examples,
and retained a total of 245 high-quality instances.

MAMO(Huang et al., 2024) introduces a novel optimization dataset to assess the modeling capabilities of LLMs. The
dataset is divided into two main components, Easy LP and Complex LP, containing 652 and 211 instances, respectively.
These components cover both LP and MILP problems, capturing a wide range of real-life scenarios. However, the dataset
does not include any nonlinear programming (NLP) problems.

IndustryOR(Tang et al., 2024) is the first industrial benchmark for operations research, consisting of 100 real-world
OR problems collected from eight different industries. This dataset covers five types of optimization problems: linear
programming, integer programming, mixed integer programming, non-linear programming, and others, with problems
distributed across three levels of difficulty.

15

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

OptiBench(Yang et al., 2025) introduces a comprehensive benchmark designed to evaluate LLMs’ end-to-end solving
capabilities in optimization tasks. The dataset consists of 605 carefully selected and manually verified problems, covering
linear and nonlinear programming with both integer and mixed integer variables. Since this benchmark does not directly
include an ”answer” field, we extracted the optimal values to serve as golden answers using both rule-based methods and
LLM-based approaches.

OptMATH-Bench. As shown in Table 1, while our fine-tuned model achieves remarkable performance on NL4OPT
and MAMO EasyLP, these datasets alone are insufficient to comprehensively evaluate the model’s optimization modeling
capabilities. Moreover, both NL4OPT and MAMO datasets are limited to linear programming problems, making them less
representative of the broader optimization landscape. To address this limitation, we constructed OptMATH-Bench, a more
challenging dataset for large models that also expands the diversity of problem types.

The creation of OptMATH-Bench followed two distinct routes. The first pathway began with instances initially rejected by
our AutoFormulator due to failing the optimal value (OV) check, indicating their inherent difficulty. A ”LLM-Committee”
(inspired by (Zhao et al., 2024), utilizing diverse powerful models such as GPT-4, Claude, Gemini, and DeepSeek) then
filtered these problematic instances. PD and NL pairs were retained only if at least one, but no more than two, committee
members successfully formulated them (i.e., passed the OV check). This process isolated problems that were well-posed yet
presented non-trivial modeling challenges. Crucially, human OR experts subsequently validated the correctness of these
selected pairs and further refined them based on relevance and clarity. The second pathway involved OR experts directly
curating challenging problems from external operations research literature, including journals and textbooks. This approach
ensured methodological and source independence in the dataset’s composition and allowed for the inclusion of known hard
problem types, such as NLP and SOCP (as illustrated in Figure 4).

This dataset includes a carefully curated selection of representative mathematical optimization problems that span a broad
range of application scenarios, covering LP, MILP, IP, NLP, SOCP, and other common optimization problems. Additionally,
the problems in OptMATH-Bench are inherently challenging, making them effective in distinguishing the modeling
capabilities of the model.

During evaluation, we observed that certain ambiguities in problem statements could cause the LLM to struggle in
determining whether a variable is integer or continuous. To address this, we applied a rule-based substitution approach: as
long as the optimal solution derived under either assumption (integer or continuous variable) matches the ground truth, we
consider it a pass. We also implemented several other rule-based substitutions to handle variations in solution formats and
representations, ensuring a fair evaluation process where all models are assessed using the same standardized evaluation
methodology. To determine whether the optimal values are equivalent, we use the following formula:

|ypred − ylabel|
|ylabel|+ 1

< ϵ,

where ϵ is set to 1e-6.

A.2. Seed Classes

Our seed problem classes were curated by drawing from MIPLIB instances and integrating insights from both Chain-of-
Experts(Xiao et al., 2024) and peer-reviewed literature. For each instance, we conducted an in-depth analysis of its structure,
starting from the problem description to identify its broader optimization category and further refining it into specific
subclasses. To ensure theoretical accuracy, we consulted literature that provided detailed descriptions of these optimization
subclasses. Based on these references, we formulated the mathematical representation of each subclass, systematically
outlining sets (where applicable), parameters, decision variables, objective functions, and constraints. This step aimed to
establish an abstract mathematical framework rather than focusing on specific instances.

We organized comprehensive metadata for each problem class in a structured metadata.json file, encompassing subclass
names, references, reference links, and LaTeX-formulated mathematical expressions. An example of this metadata structure
is provided in Appendix E.5. This systematic documentation not only ensures clarity but also facilitates dataset utilization
and future extensions.

Next, we focused on generating new problem instances. We implemented a custom Python class, Generator(), in
generator.py, which contained a step-by-step algorithm to create instances of the identified subclasses (an example is

16

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

provided in Appendix E.6). The input parameters and outputs were explicitly defined, with detailed specifications for each
parameter’s type and valid range documented in README.md. We validated the generator by running test generator()
with default parameters to ensure the produced instances were both mathematically valid and practically meaningful.

Through this systematic and meticulous approach, we constructed a high-quality dataset of Problem Description (PD)
generators that lays a solid foundation for generating natural language descriptions of optimization problems through
Backtranslation Pipeline. This dataset is designed to be versatile and scalable, making it suitable for a wide range of
applications in optimization research and practice.

Main Class Problem Class Num Reference
Assignment and Resource Allocation
Optimization

Car Selection Problem 1 (Burkard et al., 2012)

Contract Allocation Problem 1 (Wikipedia, 2025)
Assignment Problem 2 (Kuhn, 1955)
Structure-Based Assignment Prob-
lem

1 (Burkard et al., 2012)

Team Formation Problem 1 (Gurobi Optimization, 2025)
Military Personnel Deployment
Problem

1 (Brown et al., 2004)

Combinatorial Optimization Knapsack Problem 1 (Martello & Toth, 1990)
Market Share Optimization Problem 1 (Cooper, 1993)
Set Multi-Cover Problem 1 (Winston, 2004)
Set Cover Problem 1 (Caprara et al., 2000)

Cutting and Packing Optimization Bin Packing Problem 1 (Garey & Johnson, 1981)
Blending Problem 1 (Zieyel, 1988)
Cutting Stock Problem 1 (Gilmore & Gomory, 1961)

Domain-Specific Optimization Diet Problem 3 (Garille & Gass, 2001)
Unit Commitment Problem 1 (Padhy, 2004)
Farm Planning Problem 1 (Hazell & Norton, 1986)

Facility Location Optimization Facility Location Problem 2 (Toregas et al., 1971)
Capacitated Facility Location Prob-
lem

2 (Daskin, 1995)

Transportation Problem, Airline In-
dustry Resource Allocation

1 (Toth, 2002)

Facility Dispersion Problem 2 (Kuby, 1988)
Financial and Revenue Optimization Portfolio Optimization Problem 1 (Markowitz, 1952)

Profit Maximization Problem 1 (Hillier & Lieberman, 2014)
Revenue Management Problem 1 (Chen et al., 2022)
Revenue Maximization Problem 1 (Weatherford & Bodily, 1997)

Network Flow Optimization Multi-Commodity Capacitated Net-
work Design Problem

1 (Gendron et al., 1999)

Multi-Commodity Transportation
Problem

1 (Smith, 1994)

Minimum Cost Flow Problem 1 (Klein, 1967)
Multi-Commodity Network Flow
Problem

1 (Smith, 1994)

Network Flow Problem 1 (Ford & Fulkerson, 1956)
Static Line Planning Problem 1 (Schöbel, 2012)
Supply Chain Optimization 1 (Cordeau et al., 2006)
Network Optimization 1 (Bertsekas, 1998)

Production Planning and Scheduling
Optimization

Capacitated Lot-Sizing Problem 1 (Florian & Klein, 1971)

Factory Planning Problem 1 (Pinedo, 2022)
Flow Shop Scheduling Problem 1 (Rajendran, 1995)

17

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

Figure 9. Distribution of Application Scenarios across OptMATH-
Train

0 5000 10000
Sequence Length

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

Input
Output

Figure 10. Sequence Length Distribution of OptMATH-Train

Main Class Problem Class Num Reference
Job Shop Scheduling Problem 1 (Adams et al., 1988)
Discrete Lot-Sizing and Scheduling
Problem

1 (Fleischmann, 1990)

Production Planning Problem 3 (Herrmann, 2006)
Lot-Sizing Problem 1 (Drexl & Kimms, 1997)

Transportation and Routing Optimiza-
tion

Aircraft Assignment Problem 1 (Abara, 1989)

Aircraft Landing Problem 1 (Beasley et al., 2000)
Transportation Problem 2 (SteadieSeifi et al., 2014)
Traveling Salesman Problem 1 (Dantzig et al., 1954)
Operations Optimization 1 (Golden et al., 2008)
Capacitated Vehicle Routing Prob-
lem with Time Windows

3 (Solomon, 1987)

A.3. OptMATH-Train

The OptMATH-Train dataset consists of over 150k reverse-generated samples and 50k augmented instances, forming a
comprehensive collection of optimization problems. The dataset encompasses a rich variety of real-world application
scenarios. As illustrated in Figure 9, the dataset covers over 10 major application domains spanning across both core
business sectors and specialized industries, demonstrating extensive coverage of real-world optimization scenarios. The
substantial proportions in logistics, supply chain, and manufacturing ensure robust representation of primary industrial
applications, while the balanced inclusion of sectors like transportation, energy, and finance provides comprehensive
coverage of specialized use cases. This thoughtful allocation of problems across different domains not only prevents data
concentration but also maintains sufficient samples for each sector, enabling effective model training and evaluation.

The sequence length distribution of OptMATH-Train, as shown in Figure 10, exhibits a well-balanced profile for both
input and output sequences. The distribution approximates a normal distribution with mild right-skewness, centered
around 5,000 characters, demonstrating a natural variation in problem complexity. This balanced distribution pattern is
particularly advantageous for model training, as it ensures sufficient context length for complex problem representation
while maintaining computational efficiency. Furthermore, the moderate right-skewness encompasses challenging cases
with extended sequences, which is essential for developing robust models capable of handling sophisticated optimization
problems that require comprehensive reasoning and detailed solution steps.

18

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

B. Details of Instance Generation
B.1. An Example for Measuring the Complexity

Let binary variables y1, y2 ∈ {0, 1} indicate whether products 1 and 2 are produced, integer variables x1, x2 ∈ Z+

represent production quantities, and a continuous variable z ≥ 0 denote total cost. The objective function minimizes total
operational costs: min z + 10y1 + 8y2. The constraints span four categories: First, linear constraints include the resource
limitation 2x1 + 3x2 ≤ 100 and market demand bounds x1 ≤ 50, x2 ≤ 30. Second, indicator constraints using the Big-M
method (with M = 100) enforce minimum production levels when activated: y1 = 1 =⇒ x1 ≥ 5 is reformulated as
x1 ≥ 5−100(1−y1), and analogously for y2 = 1 =⇒ x2 ≥ 3. Third, a quadratic constraint z ≥ 0.5x2

1+0.3x2
2 integrates

inventory costs into the objective. Finally, a general nonlinear constraint x1e
x2 ≤ 100 captures efficiency coupling between

products.

To compute the complexity score S(PD), we identify: 2 binary variables, 2 integer variables, and 1 continuous variable; 3
linear constraints, 2 indicator constraints, 1 quadratic constraint, and 1 nonlinear constraint. The Big-M factor frequency is
fBigM = 2, while the average number of terms per expression Lexpr ≈ 2.71 is derived from structural analysis of constraints
and the objective. With all weights set to 1, the total complexity score becomes S = 16.71. This example demonstrates
how modeling choices (e.g., introducing nonlinear terms, Big-M parameterization) directly influence the score, providing a
quantitative framework for assessing model complexity.

B.2. An Overview of the Generated LP Files

The average lengths of LP files for different difficulty levels are illustrated in Figure 11. We define the complexity thresholds
for the five difficulty levels—easy, medium easy, medium, medium hard, and hard—as [25, 75], [50, 100], [75, 125], [100,
150], and [125, 175], respectively. The results demonstrate that our feedback-driven problem data generation approach is
effective. The average length of the generated LP files across the five difficulty levels is presented in Figure 12, categorized
by seed data name. All generated LP files are feasible and possess optimal solutions.

Eas
y

Med
ium

 E
as

y

Med
ium

Med
ium

 H
ar

d
Har

d

Difficulty Level

0

5000

10000

15000

20000

25000

Av
er

ag
e

N
um

be
r

of
 C

ha
ra

ct
er

s

4,092

8,430

11,919

16,098

24,329

Figure 11. Distribution of LP file lengths across generated instances by difficulty levels.

19

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

Figure 12. Distribution of LP file lengths across generated instances by problem types.

C. Details of Backtranslation
C.1. Backtranslation Pipeline

In our reverse generation pipeline, we employ Deepseek-V3(Liu et al., 2024a) as our foundation model and configure
its temperature parameter to 0.8 to enhance the diversity of generated problems. Furthermore, to achieve rich contextual
diversity, we implement a random scenario assignment mechanism during the Initial Generate phase. This mechanism
directs the LLM to synthesize problems that optimally integrate the mathematical characteristics with the designated scenario
context. The detailed prompt is elaborated in Section E.1.

Through this backtranslation process, we initially generated approximately 120,000 easy optimization problems. As
shown in Figure 15, the length distribution of problem descriptions exhibits a right-skewed pattern, with most problems
containing 2,000 to 5,000 characters. After applying rejection sampling, around 40% of the generated problems were
filtered out while maintaining a similar distribution pattern. This consistency in distribution before and after filtering
suggests that our quality control process effectively removes low-quality samples without introducing length-related biases,
ensuring the retained problems maintain natural and appropriate descriptive lengths. After multi-stage refinement including
semantic verification and difficulty calibration, the pipeline ultimately produced 150,000 rigorously validated optimization
problems. Together with 50,000 augmented instances, this curated collection forms our OptMATH-Train dataset, where
each instance demonstrates: (1) Contextual alignment between mathematical formulations and real-world scenarios, (2)
Controllable complexity levels matching specified difficulty tiers, and (3) Natural language expressions adhering to authentic
problem-solving discourse patterns. The hierarchical quality assurance framework ensures the dataset’s applicability for
both educational interventions and benchmarking mathematical reasoning systems.

20

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

Output-Natural Language Description
A city is planning the layout of emergency medical stations. There are 6 candidate locations for building medical stations, each
with different construction costs:
Location 1: Construction cost $80,000 ; Location 2: Construction cost $40,000 ……
The city is divided into 10 districts, each requiring different numbers of medical stations for coverage due to population density and
emergency medical needs:
Districts 1 and 2: require coverage by at least 4 stations； District 3: requires coverage by at least 2 stations ……
Each candidate location can cover specific districts:
Location 1 covers districts: 1, 2, 6, 10； Location 2 covers districts: 3, 5, 6, 9 ……
The objective is to decide which locations should be selected for building medical stations, minimizing the total construction cost
while meeting the coverage requirements for each district. Each location can only be selected or not selected (binary decision).

Input-LP File
Minimize
 80000 Selected[1] + 40000 Selected[2] + 20000
Selected[3] + 10000Selected[4]
 + 80000 Selected[5] + 90000 Selected[6]
Subject To
 MultiCover_e1: Selected[1] + Selected[3] + Selected[5] +
Selected[6] >= 4
…………
 MultiCover_e10: Selected[1] + Selected[4] + Selected[5] +
Selected[6]
 >= 4
Bounds
Binaries
 Selected[1] Selected[2] Selected[3] Selected[4] Selected[5]
Selected[6]
End

Backtranslation

An Example of Backtranslation

 Input-General Formulation

 represents the cost coefficient for each set
is a binary decision variable indicating whether set

i is selected
 represents the set of all sets containing element j
 represents the minimum number of times element j

needs to be covered

Generator

Figure 13. An example of backtranslation: transforming mathematical formulations and LP files into natural language descriptions of
optimization problems. The process transforms formal mathematical notation and concrete data into human-readable problem descriptions.

C.2. Ablation Study on the Impact of Self-Refine Iterations

To validate the effectiveness of each step in our backtranslation pipeline, we conducted comprehensive ablation studies.
We first compared the accuracy between using only the Generate step versus implementing the complete pipeline with
Generate, Self-criticize, and Self-refine steps. To investigate the impact of parameter T on the acceptance rate of rejection
sampling, we randomly selected 500 instances for evaluation, with results shown in Figure 14. The results demonstrate that
our Self-Refine loop (T ≥ 1) consistently outperforms direct generation (T = 0) in terms of acceptance rate. While there
are some fluctuations in performance across different T values, possibly due to the inherent hallucination tendencies of large
language models, we observe that setting T = 1 achieves a satisfactory acceptance rate of 61.56%. Considering the trade-off
between performance and computational efficiency (token usage), we adopt T = 1 in our final data synthesis process.

D. Details of AutoFormulation
D.1. CoT Instructions of AutoFormulation

To support comprehensive mathematical modeling capabilities, we developed a diverse set of CoT instructions, which
are detailed in Section E.3. These instructions vary in their decomposition approaches, intermediate reasoning steps, and

21

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

0 1 3 5 7 9 10
Max Iteration of the self-refine loop

60

61

62

63

64

65

66

A
cc

ep
ta

nc
e

R
at

e
(%

)

60.86

61.56

64.37

61.67

63.06

64.26

65.77

Figure 14. Acceptance Rate vs. Maximum Iteration of Self-Refine
Loop. The bar chart illustrates the acceptance rate achieved at
different maximum iteration limits.

0 5000 10000
Problem Description Length

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

Original
After Rejection

Figure 15. Distribution of Natural Language Description Lengths
for Easy Problems in OptMATH-Train Dataset. The histogram
compares the length distribution before and after rejection sam-
pling, showing the quality filtering process.

presentation formats, providing multiple pathways for problem formulation. In Figure 16, we present one representative
formulation pattern from our instruction set. This format includes three key components: a general mathematical formulation
with standard notation, a detailed instance-specific formulation with complete parameter specifications, and the corresponding
Python implementation using Gurobi. However, this represents just one of many possible formulation styles. Other formats
in our instruction set may use different ordering of steps, alternative notation systems, or various levels of mathematical
abstraction. The diversity in formulation patterns ensures that our dataset captures a wide range of valid mathematical
modeling approaches while maintaining logical coherence and mathematical correctness.

D.2. Ablation Study on Augmentation

As mentioned in the previous section, the purpose of data augmentation is to increase the diversity of the dataset and generate
more non-standard problems, which can help the fine-tuned model to solve more difficult problems. We use 50k raw data,
augmented data and mixed data (50% raw data and 50% augmented data) for fine-tuning training on the Qwen2.5-7B model,
respectively, and the results show in Table 3 that the model fine-tuned with raw data performs better in solving relatively
simple problems, augmented data performs better in solving difficult problems, and mixed data combines the advantages of
the above two very well, being the best in terms of average accuracy across the four types of test sets.

Table 3. Comparison of Original Data and Augmentation Data in Training Models.

Types NL4OPT
MAMO
EasyLP

MAMO
ComplexLP

OptMATH
Bench

Micro
Avg

Macro
Avg

Without Augmentation 86.9% 88.0% 44.5% 31.1% 72.1% 62.3%

Without Original 82.9% 85.5% 44.7% 23.6% 69.2% 59.2%

Mixture of Augmentation and Original 87.3% 87.7% 48.1% 33.3% 73.1% 64.1%

D.3. SFT

We employ the LlamaFactory framework for fine-tuning (Zheng et al., 2024). We select the Qwen2.5 series (0.5B∼32B) as
our base models (Yang et al., 2024), and the hyperparameters are generally set as follows: initial learning rate of 1e-4, 1∼3
epochs, LoRA rank of 32, LoRA alpha of 32, and LoRA dropout of 0.1. While there are minor variations in hyperparameters

22

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

Input-Natural Language Description
A city is planning the layout of emergency medical stations. There are 6 candidate locations for building medical stations, each
with different construction costs:
Location 1: Construction cost $80,000 ; Location 2: Construction cost $40,000 ……
The city is divided into 10 districts, each requiring different numbers of medical stations for coverage due to population density and
emergency medical needs:
Districts 1 and 2: require coverage by at least 4 stations； District 3: requires coverage by at least 2 stations ……
Each candidate location can cover specific districts:
Location 1 covers districts: 1, 2, 6, 10； Location 2 covers districts: 3, 5, 6, 9 ……
The objective is to decide which locations should be selected for building medical stations, minimizing the total construction cost
while meeting the coverage requirements for each district. Each location can only be selected or not selected (binary decision).

Output-Instance Formulation
1.Sets
L = {1,...,6}: set of potential locations
D = {1,...,10}: set of districts
2. Parameters
c[i]: construction cost for location i ∈ L

c[1] = 8, c[2] = 4, c[3] = 2, c[4] = 1, c[5] = 8, c[6] = 9
r[j]: coverage requirement for district j ∈ D

r[1] = 4, r[2] = 4, r[3] = 2, r[4] = 4, r[5] = 5
r[6] = 1, r[7] = 2, r[8] = 3, r[9] = 4, r[10] = 4

a[i,j]: coverage matrix, 1 if location i can cover district j, 0
otherwise.
3. Variables

x[i] ∈ {0,1}: binary decision variable
x[i] = 1 if location i is selected
x[i] = 0 otherwise

4. Objective Function
Minimize: ∑(i∈L) c[i]×x[i] (total construction cost)

5. Constraints

Coverage requirements: ∑(i∈L) a[i,j]×x[i] ≥ r[j], ∀j∈D
Binary constraints: x[i] ∈ {0,1}, ∀i∈L

 Output-Python Code with Gurobi
from gurobipy import *

Create a new model
m = Model("Medical Station Location")

Parameters
costs = {
1: 8, # $80,000
2: 4,
…………
}

Coverage requirements for each district
coverage_req = {
1: 4,
2: 4,
3: 2,
…………
}
Coverage matrix
coverage = {
1: [1, 2, 6, 10],
2: [3, 5, 6, 9],
…………
}
Decision Variables
selected = m.addVars(costs.keys(),

vtype=GRB.BINARY, name="Selected")

Objective Function
m.setObjective(quicksum(costs[i] * selected[i] for

i in costs.keys()), GRB.MINIMIZE)

Constraints
for district in coverage_req.keys():

Sum up all locations
m.addConstr(quicksum(selected[loc]
for loc in coverage.keys() if district in
coverage[loc])>=coverage_req[district],
f"MultiCover_e{district}")

Optimize model
m.optimize()

Print results
if m.status == GRB.OPTIMAL:

 print("\nOptimal solution found:")

else:

 print("No solution found")

AutoFormulation

An Example of AutoFormulation

 Output-General Formulation

 represents the cost coefficient for each set
is a binary decision variable indicating whether set i is

selected
 represents the set of all sets containing element j
 represents the minimum number of times element j

needs to be covered

Figure 16. An Example of AutoFormulation

23

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

across different experiments, the overall settings remain similar and we omit these details for brevity. Notably, as illustrated
in our framework diagram 1, the entire AutoFormulator training process is an iterative cycle. The Rejection Sampling
in Step 2 relies on AutoFormulator’s modeling capabilities - stronger modeling abilities lead to higher pass rates and
better data quality. Similarly, the data augmentation phase depends on AutoFormulator’s modeling competence. Higher
quality data, in turn, results in a more capable Formulator through training.Through this systematic model fine-tuning
and data augmentation approach, we have developed a dynamically evolving fine-tuning framework. This framework
not only accurately transforms natural language descriptions into mathematical formulations and solver code but, more
importantly, establishes a self-improving data flywheel mechanism. This positive feedback loop enables the AutoFormulator
system to continuously enhance its capability in handling complex optimization problems through ongoing learning and
self-optimization, forming a virtuous growth cycle.

D.4. Detailed Ablation Studies on Model Size and Data Size

To investigate the impact of model capacity and training data volume on optimization modeling performance, we conducted
two sets of experiments using OptMATH-Train. For the model size study in Figure 6 and Figure 17, we compare the
performance of baseline and finetuned Qwen2.5 models ranging from 0.5B to 32B parameters. For the data scaling analysis
in Figure 7 and Figure 18, we track the accuracy progression within the first training epoch across different model sizes,
using varying proportions of the training data.

The model size experiments reveal distinct scaling patterns across benchmarks. On NL4OPT, the performance improves
from 12.7% (0.5B) to 96.7% (32B), showing particularly rapid gains in the 0.5B-3B range. For MAMO EasyLP, we observe
similar but more moderate improvements, with accuracy increasing from 31.9% to 90.5%. However, on more challenging
benchmarks like MAMO ComplexLP and OptMATH-Bench, even the largest models achieve relatively modest gains,
reaching 52.6% and 30.6% respectively at 32B parameters.

The comparison between baseline and OptMATH-Train finetuned models reveals interesting patterns across different model
scales. For simpler benchmarks like NL4OPT and MAMO EasyLP, while the performance gap narrows with increased
model size, OptMATH-Train finetuning still provides consistent improvements even for the largest models. More notably, on
complex benchmarks such as MAMO ComplexLP and OptMATH-Bench, models finetuned on OptMATH-Train demonstrate
substantial performance gains across all model sizes, highlighting the effectiveness of our training dataset in enhancing
models’ capabilities for challenging optimization problems.

The data scaling analysis reveals distinct learning dynamics across model sizes. Smaller models (0.5B, 1.5B, 3B) exhibit
higher initial performance variance during training, while larger models (7B, 14B) demonstrate more stable learning curves
from the outset. Notably, all model sizes achieve relative performance stability after utilizing approximately 40% of the
training data, though the absolute performance levels differ significantly. The 3B model, for instance, maintains consistently
higher performance across all benchmarks while requiring a similar proportion of training data to reach stability.

This efficient data utilization pattern holds true across all benchmarks, regardless of their complexity levels. Whether for
the relatively straightforward tasks in NL4OPT or the more challenging problems in OptMATH-Bench, models typically
converge to their peak performance using around 40% of the available training data. The remaining 60% of the data
contributes primarily to fine-tuning and minor performance adjustments rather than substantial improvements.

24

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

Table 4. Performance comparison of Qwen2.5 models of varying sizes on mathematical optimization tasks. The percentages in parentheses
indicate improvements after fine-tuning.

Models NL4OPT MAMO EasyLP MAMO ComplexLP OptMATH-Bench Micro AVG

Qwen2.5-0.5B 0.00% 0.15% 0.00% 0.00% 0.08%
Qwen2.5-0.5B(Finetuned) 12.65% (↑12.65%) 31.90% (↑31.75%) 16.59% (↑16.59%) 15.03% (↑15.03%) 23.29% (↑23.21%)

Qwen2.5-1.5B 0.00% 2.15% 0.95% 0.00% 1.23%
Qwen2.5-1.5B(Finetuned) 46.12% (↑46.12%) 68.10% (↑65.95%) 22.75% (↑21.80%) 18.65% (↑18.65%) 49.27% (↑48.04%)

Qwen2.5-3B 67.35% 65.18% 16.11% 0.52% 48.04%
Qwen2.5-3B(Finetuned) 68.57% (↑1.22%) 80.98% (↑15.80%) 25.59% (↑9.48%) 15.03% (↑14.51%) 59.88% (↑11.84%)

Qwen2.5-7B 86.94% 83.59% 21.80% 1.55% 62.03%
Qwen2.5-7B(Finetuned) 86.94% 89.42% (↑5.83%) 48.82% (↑27.02%) 30.05% (↑28.50%) 73.56% (↑11.53%)

Qwen2.5-14B 93.47% 82.52% 42.65% 14.51% 68.02%
Qwen2.5-14B(Finetuned) 95.51% (↑2.04%) 90.49% (↑7.97%) 51.18% (↑8.53%) 29.53% (↑15.02%) 76.02% (↑8.00%)

Qwen2.5-32B 92.65% 82.21% 44.55% 9.33% 67.26%
Qwen2.5-32B(Finetuned) 96.73% (↑4.08%) 88.04% (↑5.83%) 56.4% (↑11.85%) 36.27% (↑26.94%) 76.86% (↑9.60%)

0.5B 1.5B 3B 7B 14B 32B

Model Size

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0.0%

12.7%
12.7%

0.0%

46.1%
46.1%

67.3%

68.6%
1.2%

86.9%

86.9%

93.5%

95.5%
2.0%

92.7%

96.7%
4.1%

Baseline Model
Finetuned Model

(a) NL4OPT

0.5B 1.5B 3B 7B 14B 32B

Model Size

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0.1%

31.9%
31.8%

2.1%

68.1%
65.9%

65.2%

81.0%
15.8%

83.6%

89.4%
5.8%

82.5%

90.5%
8.0%

82.2%

88.0%
5.8%

Baseline Model
Finetuned Model

(b) MAMO EasyLP

0.5B 1.5B 3B 7B 14B 32B

Model Size

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0.0%

16.6%
16.6%

0.9%

22.8%
21.8%

16.1%

25.6%
9.5%

21.8%

48.8%
27.0%

42.6%

51.2%
8.5%

44.5%

56.4%
11.9%

Baseline Model
Finetuned Model

(c) MAMO ComplexLP

0.5B 1.5B 3B 7B 14B 32B

Model Size

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0.0%

15.0%
15.0%

0.0%

18.6%
18.6%

0.5%

15.0%
14.5%

1.6%

30.1%
28.5%

14.5%

29.5%
15.0%

9.3%

36.3%
26.9%

Baseline Model
Finetuned Model

(d) OptMATH-Bench

Figure 17. Scaling behavior of Qwen2.5 models (0.5B-32B) on various benchmarks.

25

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0

5

10

15

20

25

30

35

40

A
cc

ur
ac

y
(%

)

NL4OPT
MAMO EasyLP
MAMO ComplexLP
OptMATH-Bench
Micro Accuracy

(a) Qwen2.5-0.5B

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0

20

40

60

80

A
cc

ur
ac

y
(%

)
NL4OPT
MAMO EasyLP
MAMO ComplexLP
OptMATH-Bench
Micro Accuracy

(b) Qwen2.5-3B

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0

20

40

60

80

A
cc

ur
ac

y
(%

)

NL4OPT
MAMO EasyLP
MAMO ComplexLP
OptMATH-Bench
Micro Accuracy

(c) Qwen2.5-7B

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

NL4OPT
MAMO EasyLP
MAMO ComplexLP
OptMATH-Bench
Micro Accuracy

(d) Qwen2.5-14B

Figure 18. Scaling behavior of Qwen2.5-0.5B, Qwen2.5-3B, Qwen2.5-7B and Qwen2.5-14B Accuracy Within One Training Epoch.

26

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

E. Prompt Templates
In this section, we present all the important prompt templates. Due to space constraints, certain parts are omitted, and only
the prompt frameworks are shown.

E.1. Reverse Data Generate Prompt

GENERATE PROMPT

As an Operations Research Expert, analyze the given mathematical optimization
expression and LP data.

......

Input Mathematical Expression:
{{mathematical_expression}}

Input LP Data:
{{lp_data}}

Reference Examples:
{{examples}}

Required Output:
Provide ONLY a clear, detailed natural language description of the optimization

problem that:
- Describes the complete scenario
- States all decisions to be made
- Specifies the objective clearly
- Incorporates all constraints and conditions naturally
- Includes all numerical parameters within narrative
- Uses appropriate domain terminology
- Maintains mathematical accuracy without showing formulation

SELF-CRITICISM PROMPT

As an Operations Research Expert, evaluate if the generated problem description
matches the mathematical optimization problem...

Input LP Data:
{{lp_data}}

Generated Problem Description:
{{problem_description}}

Analysis Steps...

Required Output:
If perfect match:
"Complete Instance"

If inconsistencies exist:
"Incomplete Instance:
[List specific discrepancies...]"

27

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

SELF-REFINEMENT PROMPT

As an Operations Research Expert, analyze the criticism and refine the problem
description if needed.

First, check the criticism result:
{{criticism}}

If the criticism shows "Complete Instance":
Output "Nothing need to refine"

Otherwise, follow these steps to generate an improved description:

1. Review Input Materials:
Mathematical Expression:
{{mathematical_expression}}

LP Data:
{{lp_data}}

Initial Description:
{{initial_description}}

2. Task:
Based on the criticism feedback, LP data information, and initial description,

generate a complete and accurate problem description.

Required Output:
If criticism is "Complete Instance":
Output "Nothing need to refine"

Otherwise:
[Direct natural language description of the optimization problem]
- No introductory phrases or meta-commentary
- No section headers or separators
- Just the complete problem description in clear natural language
- Ensure exact match with all LP data parameters
- Include all constraints and objectives naturally
- Avoid mathematical notation

Note: The output should be ONLY the complete natural language description itself,
with no additional text or formatting.

28

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

E.2. Baseline Prompt

BASELINE PROMPT TEMPLATE FOR OPTIMIZATION MODELING

Below is an operations research question. Build a mathematical model and
corresponding python code using ‘gurobipy‘ that appropriately addresses the
question.

Question:
{}

Notes:
- Please output Python code starting with the following lines:‘‘‘python\n\nimport

gurobipy as gp\nfrom gurobipy import GRB\n‘‘‘
- Make sure the model variable is named ‘model‘.
- Avoid using "<" and ">" in Gurobi constraints; instead, use "<=" or ">=" as

appropriate.
- Carefully determine whether the variable is an integer or a continuous variable.

Response:

(Provide your response here,keep the notes above in mind)

E.3. AutoFormulation Instructions

COT INSTRUCTIONS

instructions = [
Total instructions: 15 entries
Showing 5 representative examples below...

"Below is an operations research question. Build a mathematical model and
corresponding Python code using ‘gurobipy‘ to solve it.",

"Create a complete solution that includes: 1) Mathematical formulation 2) Python
code using gurobipy 3) Results interpretation. Ensure all variables and

constraints are properly defined.",

"Transform this operations research problem into a mathematical model and
implement it in Python with gurobipy. Include clear variable definitions and
constraint explanations.",

"The following is an operations research problem. Let’s solve it step by step:
1) Identify the decision variables, objective function, and constraints 2)
Formulate the mathematical model 3) Implement the solution using Gurobi in
Python 4) Verify and interpret the results.",

"This is an operations research problem. Follow this structured approach: Begin
with understanding the problem -> Identify the key variables -> Analyze the
constraints -> Develop the mathematical model -> Solve it programmatically using
Gurobi in Python. Provide clear reasoning and explanations at each stage."

]

29

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

E.4. Prompts for Configuration Selecting

INITIALIZING THE PARAMETERS

You are an optimization expert helping to tune the parameters in:
\begin{verbatim}
{generator_code}
\end{verbatim}

CRITICAL REQUIREMENT:
Generated instances MUST be solvable to OPTIMALITY by Gurobi...

Model Complexity Score Calculation:
1. Variable Score:

- Binary variables: weight = {weights[’alpha_bin’]}
- Integer variables: weight = {weights[’alpha_int’]}
- Continuous variables: weight = {weights[’alpha_cont’]}

2. Constraint Score...
3. Additional Complexity Factors...

Total Score = Variable Score + Constraint Score + Big-M Score + Expression Score

Secondary Requirements:
1. Model Complexity: {complexity_score_min} to {complexity_score_max}
2. Solve Time: {min_solve_time} to {max_solve_time} seconds

Return parameter values in JSON format matching ’default_parameters’ structure:
- Keep exact same keys
- Preserve data types
- Use lists for tuples
- Format with proper indentation

FEEDBACK PROMPT

Based on testing {total_instances} instances with your suggested parameters:
{last_suggested_parameters}

Here are the detailed results:

1. Solution Status Analysis:
- Total Instances: {total_instances}
- Solvable Instances: {solvable_instances}
- OPTIMAL Solutions: {optimal_instances} ({optimal_rate:.1f}%)
- Solution Status Distribution:

...
- Status Percentages:

...

2. Overall Performance (Only OPTIMAL Solutions):
- Success Rate: {success_rate:.1f}% ({results["requirements_met"]["
all_requirements"]} out of {total_instances} instances met all requirements)
- Note: Only OPTIMAL solutions are considered successful

3. Requirements Satisfaction (Only OPTIMAL Solutions):
Complexity Score Distribution:{analyze_distribution("complexity")}
- Required range: {requirements}
- Success rate: {num_satisfying_requirements/total_instances}

Solve Time Distribution:{analyze_distribution("solve time")}
- Required range: {requirements}
- Success rate: {num_satisfying_requirements/total_instances}

30

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

4. Model Structure Analysis (Only OPTIMAL Solutions):
Variable Distributions:
Binary Variables: ...

Constraint Distributions:
Linear Constraints: ...
Indicator Constraints: ...
Quadratic Constraints: ...
General Constraints: ...

Complexity Score Components: ...

5. Distribution Analysis Insights:
{throughout analysis of the instances generated by the parameters by calling
statistics package in Python}

Based on these results and distribution analysis, please suggest parameter values
that would:

1. MAXIMIZE the proportion of instances that reach OPTIMAL status
2. Adjust the model complexity to meet the target score range (for OPTIMAL instances

)
3. Maintain solve times within the required range (for OPTIMAL instances)
4. Reduce variability in key metrics where high variance was detected
5. Increase the overall success rate

Return your response in JSON format, strictly following the structure of the
previous suggestions dictionary. Ensure that:

1. All keys remain exactly the same as in the previous suggestions
2. The data types for each value are preserved
3. The JSON should be properly formatted with indentation for readability
4. Do not add any new keys or remove any existing keys

31

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

E.5. An Example of Metadata

Metadata

Subclass: Bin Packing

Reference: Garey, M. R. and Johnson, D. S. "Approximation Algorithms for
Bin Packing Problems: A Survey." Analysis and Design of Algorithms in
Combinatorial Optimization (1981)

Reference URL: https://doi.org/10.1007/978-3-7091-2748-3 8

Mathematical Formula:

Consider n items, where each item i has:

• Weight si: The weight of item i

The problem includes:

• Bin Capacity c: The uniform capacity of each bin

• Bin Usage Variable yj: A binary variable indicating whether bin j is
used

• Assignment Variable xi,j: A binary variable indicating whether item i is
assigned to bin j

Minimize
n∑

j=1

yj

Subject to:
n∑

i=1

sixi,j ≤ cyj ∀j = 1, . . . , n

n∑
j=1

xi,j = 1 ∀i = 1, . . . , n

xi,j , yj ∈ {0, 1} ∀i, j = 1, . . . , n

32

https://doi.org/10.1007/978-3-7091-2748-3_8

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

E.6. An Example of Generator

Python Code for Bin Packing Generator

1 import gurobipy as gp
2 from gurobipy import GRB
3 import random
4

5 class Generator:
6 def __init__(self, parameters=None, seed=None):
7 self.problem_type = "binpacking"
8 default_parameters = {
9 "n_items": (3, 10),

10 "weight_range": (1, 50),
11 "bin_capacity": 100
12 }
13 if parameters is None:
14 parameters = default_parameters
15 for key, value in parameters.items():
16 setattr(self, key, value)
17 self.seed = seed
18 if self.seed:
19 random.seed(seed)
20

21 def generate_instance(self):
22 self.n_items = random.randint(*self.n_items)
23 items = list(range(self.n_items))
24 item_weights = {i: random.randint(*self.weight_range) for i in items}
25

26 model = gp.Model("BinPacking")
27 model.Params.OutputFlag = 0 # Suppress Gurobi output
28 x = model.addVars(items, items, vtype=GRB.BINARY, name="x")
29 y = model.addVars(items, vtype=GRB.BINARY, name="y")
30

31 # Objective: Minimize the number of bins used
32 model.setObjective(gp.quicksum(y[j] for j in items), GRB.MINIMIZE)
33 for j in items:
34 model.addConstr(
35 gp.quicksum(item_weights[i] * x[i,j] for i in items) <= self.

bin_capacity * y[j],
36 name=f"Capacity_{j}"
37)
38 for i in items:
39 model.addConstr(
40 gp.quicksum(x[i,j] for j in items) == 1,
41 name=f"Assignment_{i}"
42)
43 return model

33

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

E.7. Augmentation Prompt

GENERATE AUGMENTATION PROBLEM PROMPT

AUGMENTATION_RULES = [
Semantic Enhancement
"Rephrase the problem description while maintaining the same mathematical
structure...",
"Rewrite the problem using different expressions and terminology...",
Change the scenario
"Transform the problem into a different application scenario while preserving
the same structure...",
"Conceive a variant on another scenario for the mathematical model...",
Numerical enhancement
"Change the numerical parameters while maintaining the same problem structure
...",
"Scale up or down the problem size by adjusting parameters proportionally...",
Problem variant generation
"Generate a variant by adding/removing/modifying constraints...",
"Create a variation by combining different types of constraints...",
Complicating the problem
Variable Expansion
"Increase the number of decision variables while maintaining similar structure
...",
"Add bounds for adjustment variables...",
Constraints Expansion
"Add realistic constraints like capacity limitations, budget restrictions...",
"Introduce cross-variable constraints between components...",
Data Complexity
"Convert parameters into tabular form with more complex data structures...",
Problem Types
"Generate non-linear problems by replacing linear relations...",
"Combine with other problem types to generate hybrid problems...",
Multi-objective
"Add new objective functions to generate multi-objective problems...",
"Modify objective function to include additional terms...",
Problem symmetry
"Generate variants by introducing symmetries...",
"Generate dual problems while modifying parameters and constraints..."

]

AUGMENTATION_TEMPLATE = """Below is an optimization problem, please generate a new
optimization problem by following the augmentation rule provided.

Original Problem
The original optimization problem is as follows:
’’’
{original_problem}
’’’
Augmentation Rule
{rule}
Augmented Problem
Please construct a new optimization problem according to the above requirements and

the provided question in the following format:

[Write your new problem here]

Note: The generated problem should maintain mathematical validity and practical
feasibility.And just provide the problem description without any additional
information.

"""

34

