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Abstract

Switching dynamical systems provide a powerful, interpretable modeling frame-
work for inference in time-series data in, e.g., the natural sciences or engineering
applications. Since many areas, such as biology or discrete-event systems, are
naturally described in continuous time, we present a model based on a Markov
jump process modulating a subordinated diffusion process. We provide the exact
evolution equations for the prior and posterior marginal densities, the direct solu-
tions of which are however computationally intractable. Therefore, we develop
a new continuous-time variational inference algorithm, combining a Gaussian
process approximation on the diffusion level with posterior inference for Markov
jump processes. By minimizing the path-wise Kullback-Leibler divergence we
obtain (i) Bayesian latent state estimates for arbitrary points on the real axis and
(ii) point estimates of unknown system parameters, utilizing variational expectation
maximization. We extensively evaluate our algorithm under the model assumption
and for real-world examples.

1 Introduction

Many natural and engineered dynamical systems can be understood in terms of continuous-discrete
hybrid models, in which a given system switches between discrete modes exhibiting continuous
dynamics. Examples include neuro-mechanical models of locomotion [1], transition dynamics
between different brain states [2, 3] and brain-state dependent decision-making in neuroscience [4];
regime-switching volatility dynamics [5] and risk assessment [6, 7] in financial analysis or electric
power systems [8]; and phenotype differentiation in systems biology [9].

In a discrete-time setting, a widely used class of stochastic hybrid models are switching linear
dynamical system (SLDS) [10], which have received considerable attention in recent years [11,
12, 13, 14, 15]. Since real-world physical and biological systems naturally evolve in continuous
time, a discrete-time description of such systems is however limiting. In biological experiments
and discrete-event systems in engineering [16], for instance, one typically (i) is interested in the
system behavior at any given point in time and (ii) can not easily determine an appropriate time
discretization. To overcome these limitations, a continuous-time analog to SLDS models has been
put forward termed switching stochastic differential equations (SSDEs) [17], which augment a set of
diffusion processes with an underlying Markov jump process (MJP). Hybrid models of this kind have
a long tradition in statistics [18] and have been analyzed in particular in applications to biological
systems [19].

Diffusion processes and MJPs have been treated extensively in the literature [20, 21]. For each
process class individually, exact expressions for the posterior paths given some set of observations can
be obtained [22]. However, for diffusion processes in particular, these expressions quickly become
intractable as they entail solving multi-dimensional partial differential equations (PDEs). This is
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Figure 1: Sketch of the three layers of the hybrid process model. A two-state MJP Z(t) (blue)
evolves freely in the time interval t ∈ [0, T ], see Eq. (1) . The MJP controls the dynamics of the
SSDE Y (t) | Z(t) (green), see Eq. (2). From these continuous dynamics, only noisy observations
X1, X2, . . . (red) are available for inference at irregularly-spaced time points t1, t2, . . . . Left:
Graphical model. Right: Sample path (vertical dashed lines indicate the Z-transitions).

aggravated if the diffusion is coupled to an underlying jump process, because both processes then
have to be solved jointly.

One way to circumvent this issue are Monte Carlo approaches, which have been devised for both dif-
fusion [23] and jump processes [24]. Sampling methods may however suffer from slow convergence,
and, as we shall show, still face computational intractabilities for hybrid systems. An established
approach avoiding these problems are variational inference (VI) methods, which approximate the
exact posteriors by optimization [25]. For inference and parameter learning in diffusion processes,
continuous-time VI frameworks have been developed utilizing, e.g., Gaussian processes (GPs) [26,
27], and general exponential family distributions [28]. Similar methods have also been devised for
inference in MJPs [29, 30]. To the best of our knowledge, an inference framework for continuous-time
hybrid processes is however lacking. We draw on these previous works and present a generalized VI
framework for hybrid systems which recovers existing diffusion and MJP approximations as special
cases. We specifically focus on meta-stable systems which remain in distinct, qualitatively different
regimes over extended periods of time, which are of special interest, e.g., in computational structural
biology [31]. An implementation of our proposed method is publicly available.1

2 Mathematical Background

2.1 The Model

In this work, we consider three joint stochastic processes {Z(t)}t≥0, {Y (t)}t≥0, and {Xi}i∈N. A
continuous-time adaptation of a probabilistic graphical model and a realization of the processes is
shown in Fig. 1.

The Switching Process. The discrete-valued process Z(t) ∈ Z ⊆ N is given as a latent Markov
jump process (MJP) freely evolving in time t. An MJP is a continuous-time Markov process [32] on a
countable state space Z and is completely characterized by an initial probability p0(z) := P(Z(0) =
z), ∀z ∈ Z and a transition rate function

Λ(z, z′, t) = lim
h↘0

P(Z(t+ h) = z′ | Z(t) = z)

h
(1)

for z′ ∈ Z \ z, with the exit rate Λ(z, t) :=
∑
z′∈Z\z Λ(z, z′, t).

The Subordinated Diffusion Process. The freely evolving MJP controls the dynamics of a
continuous-valued process Y (t) ∈ Y ⊆ Rn, which is given as a latent switching stochastic differential
equation (SSDE) in an Itô sense, [17]

dY (t) = f(Y (t), Z(t), t) dt+Q(Y (t), Z(t), t) dW (t), (2)

where f : Y×Z×R≥0 → Y is an arbitrary drift function, the dispersionQ : Y×Z×R≥0 → Rn×m
determines the noise characteristics of the system and W (t) ∈ Rm is a standard Brownian motion.

1https://git.rwth-aachen.de/bcs/projects/lk/vi-ct-shs.git
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We define the system noise covariance D(Y (t), Z(t), t) as D := QQ>. Note that the only difference
to a conventional stochastic differential equation (SDE) is the Z(t)-dependence of the drift function
and dispersion; hence, Eq. (2) can be understood as a collection of individual SDEs between which
the systems switches via Z(t). For an accessible introduction to SDEs, see [33].

The Hybrid Process. In the following, we refer to the continuous value Y (t) as the state and to
the discrete value Z(t) as the mode of a hybrid process. The hybrid process {Z(t), Y (t)}t≥0 is fully
characterized by its time-point wise marginal density p(y, z, t) := ∂y1 · · · ∂ynP(Y (t) ≤ y, Z(t) = z),
where “≤” has to be interpreted element-wise. This density is given as the solution to the hybrid
master equation (HME) [34, 35]

∂tp(y, z, t) = Ap(y, z, t), (3)

with initial condition p(y, z, 0) = p0(z)p0(y, z), where p0(y, z) := ∂y1 · · · ∂ynP(Y (0) ≤ y |
Z(0) = z) denotes the initial density of the Y -process and p0(z) the initial probability mass function
of the Z-process. The operator A(·) = F(·) + T (·) is given via

Fφ(y, z, t) := −
n∑
i=1

∂yi {fi(y, z, t)φ(y, z, t)}+
1

2

n∑
i=1

n∑
j=1

∂yi∂yj{Dij(y, z, t)φ(y, z, t)}

T φ(y, z, t) :=
∑

z′∈Z\z

Λ(z′, z, t)φ(y, z′, t)− Λ(z, t)φ(y, z, t),

for an arbitrary test function φ : Rn × Z × R≥0 → R. We provide a detailed derivation in
Appendix A.1. As the discrete process Z(t) is independent of Y (t), we further obtain the dynamics
of the marginal distribution p(z, t) := P(Z(t) = z) by integrating over the continuous variable Y in
the HME. This recovers the traditional master equation [32]

d

dt
p(z, t) =

∑
z′∈Z\z

Λ(z′, z, t)p(z′, t)− Λ(z, t)p(z, t), (4)

with p(z, 0) = p0(z) ∀z ∈ Z; for details, see Appendix A.1.1.

Note that a general, analytical solution to the PDE (3) does not exist. Numerical solvers utilizing
schemes such as the finite differences or finite element method suffer from the curse of dimensionality
and can in principle only be applied to very low-dimensional state spaces [36] . Even in low
dimensions however, solvers need to be adapted to the problem at hand and may struggle due to,
e.g., slow step-size adaptation. On the other hand, sampling trajectories from a hybrid process
{Y (t), Z(t)} is straightforward: One can draw the process Z(t) by utilizing the Doob-Gillespie
algorithm [37, 38]. Given this trajectory, the SSDE Y (t) | Z(t) can be simulated using, e.g., an
Euler-Maruyama or stochastic Runge-Kutta method [39].

The Observation Process. Lastly, we denote with {Xi}i∈N the countable set of observed data
points at times {ti}i∈N. The observations Xi ∈ X l are generated as Xi ∼ p(xi | yi), where
p(xi | yi) := ∂xi1

· · · ∂xil
P(Xi ≤ xi | Y (ti) = yi), i ∈ N, by conditioning on the diffusion process

Y (t). The observation space X can be either discrete, X ⊆ N, or continuous, X ⊆ R. Note that in
our model, a continuous-time description for the latent processes is assumed, while the observations
are recorded at discrete time points. It therefore belongs to the class of continuous-discrete models,
which have a long history in the filtering community [33, 40, 41]. This type of description is of great
practical relevance as data is often recorded at discrete time points while the system of interest in fact
evolves continuously in time, see, e.g., [16].

2.2 Exact State Inference

We now show how the exact posterior inference problem is solved in principle; the detailed derivations
can be found in Appendix A.2.

The inference problem consists of finding the posterior hybrid process {Z(t), Y (t) |x[1,N ]}, where
we condition on a finite set x[1,N ] = {x1, . . . , xN} of N observations obtained at time points
{t1, . . . , tN} in the interval [0, T ]. The posterior process is fully specified by its marginal density
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p(y, z, t | x[1,N ]) := ∂y1 · · · ∂ynP(Y (t) ≤ y, Z(t) = z | X1 = x1, . . . , XN = xN ), which is known
as the smoothing distribution. The smoothing distribution is given by

p(y, z, t | x[1,N ]) = C−1(t)α(y, z, t)β(y, z, t), (5)

with the filtering density α(y, z, t) := ∂y1 · · · ∂ynP(Y (t) ≤ y, Z(t) = z | X1 = x1, . . . , Xk = xk),
the backward density β(y, z, t) :=

∏l
i=1

∏N
j=k+1 ∂xji

P(Xk+1 ≤ xk+1, . . . , XN ≤ xN | Y (t) =

y, Z(t) = z) and a time-dependent normalizer C(t) =
∑
z

´
α(y, z, t)β(y, z, t) dy, where k =

max(k′ ∈ N | tk′ ≤ t). The components α, β and C are continuous-time analogs to the quantities of
the forward-backward algorithm for discrete-time hidden Markov models (HMMs) [10].

It is a standard result for continuous-discrete filtering problems [33] that the filtering distribu-
tion between observation time points follows the prior dynamics, ∂tα(y, z, t) = Aα(y, z, t),
with initial condition α(y, z, 0) = p0(z)p0(y, z). At the observation times, it is reset as
α(y, z, ti) = C̃−1

i α(y, z, t−i )p(xi | y), with the normalizer C̃i =
∑
z

´
α(y, z, t−i )p(xi | y) dy

and α(y, z, t−i ) := limh↘0 α(y, z, ti−h). Similarly, the backward distribution between observations
is given as the solution to another PDE [22]

∂tβ(y, z, t) = −A†β(y, z, t), (6)

with end point condition β(y, z, T ) = 1 and adjoint operator A†, see Appendix A.1. The reset
conditions at observation times are given as β(y, z, t−i ) = β(y, z, ti)p(xi | y).

By calculating the time derivative of Eq. (5), it can be shown (see Appendix A.2.3) that the smoothing
distribution itself follows a HME

∂tp(y, z, t | x[1,N ]) = Ãp(y, z, t | x[1,N ]), (7)

with initial condition p(y, z, 0 | x[1,N ]) ∝ p0(z)p0(y, z)β(y, z, 0). The operator Ã contains the
posterior drift function f̃i(y, z, t) = fi(y, z, t)+

∑n
j=1Dij(y, z, t)∂yj{log β(y, z, t)}, the dispersion

matrix D̃(y, z, t) = D(y, z, t) and the posterior rate function Λ̃(z′, z, t) = Λ(z′, z, t) β(y,z,t)
β(y,z′,t) .

3 Approximate Inference

Since the smoothing distribution is governed by the HME (7), which depends on the solution of Eq. (6),
the exact inference problem amounts to solving two PDEs, which is computationally intractable
already for toy systems. Similarly, a naïve posterior sampling scheme would still require solving the
backward PDE Eq. (6) and hence suffers from the same issue [42]. To address this challenge, we
adopt a VI approach: we aim to find an approximate path measure QY,Z that minimizes the path-wise
Kullback-Leibler (KL) divergence

KL
(
QY,Z || PY,Z|X

)
= EQY,Z

[
log

dQY,Z
dPY,Z|X

]
, (8)

where dQY,Z

dPY,Z|X
is the Radon-Nikodym derivative between QY,Z and the exact posterior measure

PY,Z|X over paths Y[0,T ] := {Y (t)}t∈[0,T ] and Z[0,T ] := {Z(t)}t∈[0,T ]. For details on the path-wise
KL divergence between stochastic processes, see, e.g., [28, 43, 44]. It is a standard result for VI
methods that Eq. (8) can be recast as [25, 42]

KL (QY,Z || PY,Z|X) = KL (QY,Z || PY,Z)− E QY,Z
[ln p(x[1,N ] | y[0,T ])] + log p(x[1,N ]), (9)

with the expected log-likelihood E QY,Z
[ln p(x[1,N ] | y[0,T ])] =

∑N
i=1 E QY,Z

[ln p(xi | yi)]. The
minimization problem over Eq. (8) can then be cast as a maximization problem over the evidence
lower bound (ELBO) [25]

L[QY,Z ] = E QY,Z
[ln p(x[1,N ] | y[0,T ])]−KL (QY,Z || PY,Z), (10)

which does not include the computationally intractable marginal log-likelihood log p(x[1,N ]) and can
hence be evaluated.

Optimizing Eq. (10) requires explicitly computing the path-wise KL divergence KL (QY,Z || PY,Z).
For two hybrid processes of the same class obeying Eq. (3), this expression can formally be derived
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using Girsanov’s theorem for diffusion processes [45] and MJPs [46]. A more intuitive derivation
can however be carried out using a limiting argument, similar to [29]. The detailed derivation can be
found in Appendix A.3.1. Assuming a constant, state- and mode-independent dispersion D as done
also in [27] and a drift g(y, z, t) and rate function Λ̃(z, z′, t) pertaining to the variational measure
QY,Z , the path-wise KL divergence is obtained as

KL (QY,Z || PY,Z) = KL (Q0
Y,Z || P0

Y,Z) +
1

2

ˆ T

0

E
[
‖(g(y, z, t)− f(y, z, t)‖2D−1

+
∑

z′∈Z\z

{
Λ̃(z, z′, t)

(
ln Λ̃(z, z′, t)− ln Λ(z, z′, t)

)}
− (Λ̃(z, t)− Λ(z, t))

 dt, (11)

with the weighted norm ‖x‖2A := x>Ax, the KL of the initial distributions, KL (Q0
Y,Z || P0

Y,Z),
and the expectation is carried out with respect to the variational time-point marginal q(y, z, t) :=
∂y1 · · · ∂ynQ(Y (t) ≤ y, Z(t) = z). We note that extensions to mode- and time-dependent D =
D(z, t) [45] or state-dependent D = D(y) [28] are also possible. Additionally, in the absence of any
coupling between Z(t) and Y (t), i.e., f(y, z, t) = f(y, t), Eq. (11) reduces to the sum of the known
individual path-wise KL divergences for diffusion processes and MJPs.

3.1 The Constrained Objective

Since Eq. (10) is a mere reformulation, it is still optimized by the true, intractable posterior distribution
PY,Z|X . To arrive at computationally tractable expressions, we restrict the class Q of admissible
variational processes. Making a structured mean-field ansatz, we approximate the exact joint posterior
density p(y, z, t | x[1,N ]) as

p(y, z, t | x[1,N ]) = p(z, t | x[1,N ]) · p(y, t | z, t, x[1,N ])

≈ qZ(z, t) · qY (y, t | z) =: q(y, z, t),
(12)

with p(y, t | z, t, x[1,N ]) := ∂y1 · · · ∂ynP(Y (t) ≤ y | Z(t) = z, x[1,N ]). We approximate the
exact conditional p(y, t | z, t, x[1,N ]), which in general does not have a simple parametric form, by
one fixed parametric expression per mode qY (y, t | z) := ∂y1 · · · ∂ynQ(Y (t) ≤ y | Z̃ = z) via
the introduction of the time-independent random variable Z̃. This results in a point-wise mixture
distribution q(y, z, t) with weights qZ(z, t) := Q(Z(t) = z) and mixture densities qY (y, t | z).
Note that this is similar in spirit to amortized inference techniques [47], because we utilize the same
parametric form for all times t.

To ensure the mixture distribution structure Eq. (12) to hold at every time point t, we impose separate
constraints on the dynamics of qZ(z, t) and qY (y, t | z). Firstly, we require the marginal qZ(z, t) to
obey a master equation

d

dt
qZ(z, t) =

∑
z′∈Z\z

Λ̃(z′, z, t)qZ(z′, t)− Λ̃(z, t)qZ(z, t), ∀z ∈ Z. (13)

This reproduces the structure of the exact posterior marginal p(z, t | x[1,N ]), which can be seen by
integrating out the continuous variable in the HME (7), c.f. Eq. (4). Secondly, we constrain the
variational factor qY (y, t | z) to follow a Fokker-Planck equation (FPE) [21] with linear variational
drift g(y, z, t) = A(z, t)y + b(z, t) for every mode z individually,

∂tqY (y, t | z) = −
n∑
i=1

∂yi {gi(y, z, t)qY (y, t | z)}+
1

2

n∑
i=1

n∑
j=1

∂yi∂yj{DijqY (y, t | z)}. (14)

Equation (14) describes the marginal density of a classical SDE, which, under linear drift, is equivalent
to a GP [48]. This PDE is hence solved by a time-dependent Gaussian distribution qY (y, t | z) =
N (y | µ(z, t),Σ(z, t)) [33], where the dynamics of the parameters is described by two ordinary
differential equations (ODEs)

µ̇(z, t) = A(z, t)µ(z, t)+b(z, t), Σ̇(z, t) = A(z, t)Σ(z, t)+Σ(z, t)A>(z, t)+D, ∀z ∈ Z. (15)

Our approach hence amounts to a mixture of GPs: this approximation will be accurate whenever
the distribution qZ(z, t) is peaked at one z ∈ Z . In this case, the HME separates into a FPE and a
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master equation for the processes Y (t) | Z̃ and Z(t), respectively; see Appendix A.3.2 for details.
Accordingly, the approximation error over the whole interval [0, T ] will be small if the original system
dynamics are linear in each mode and the modes are well discernible, that is, if the exact posterior
concentrates on one mode. Since we are interested specifically in meta-stable systems which, by
definition, transition between qualitatively different regimes and exhibit a separation of time scales
between the intra-mode diffusive dynamics and the inter-mode transitions, we expect these criteria to
be met reasonably well for our systems of interest.

The constraints (13) and (15) can be included into the objective Eq. (10) via Lagrange multiplier
functions, yielding an augmented objective, the Lagrangian. We define the multipliers λ(z, t),
Ψ(z, t), ν(z, t) for the variational mean µ(z, t) and covariance Σ(z, t) and variational rates Λ̃(z, z′, t),
respectively. Writing the ELBO as L[QY,Z ] =

´ T
0
`Q(t) dt, the full Lagrangian L to be maximized

reads

L =

ˆ T

0

`Q(t) +
∑
z∈Z

[
λ>(z, t) (µ̇(z, t)− (A(z, t)µ(z, t) + b(z, t))

)
+ tr

{
Ψ>(z, t)

(
Σ̇(z, t)

−
(
A(z, t)Σ(z, t) + Σ(z, t)A>(z, t) +D

))}
+ ν(z, t)

(
q̇Z(z, t)−

∑
z′∈Z

Λ̃z′z(t)qZ(z′, t)

)]
dt,

(16)

where we used the shorthand Λ̃z′z(t) := Λ̃(z,′ z, t) for z′ 6= z and Λ̃zz(t) := −Λ̃(z, t) else. Note
that the dependency of L on the variational measure QY,Z is fully captured by the variational factors,
L = L[QY,Z ] = L[qZ , µ,Σ].

3.2 Optimizing the Variational Distributions

The optimization problem consists in finding the optimal variational factors q∗Z , µ
∗,Σ∗ and parameters

A∗, b∗, Λ̃∗, φ∗ maximizing Eq. (16), where φ summarizes the variational initial conditions. Our
structured mean-field assumption Eq. (12) allows us to maximize Eq. (16) individually with respect
to qZ(z, t) and qY (y, t | z) [10], guaranteeing an increase in the ELBO due to convexity in each
individual argument [25]. As a consequence of Pontryagin’s maximum principle [49], the solutions
to the maximization problems q∗Z(z, t) = arg maxqZ(z,t) L and q∗Y (y, t | z) = arg maxqY (y,t|z) L
have to fulfil the respective constraint equations (13) and (15) as well as the Euler-Lagrange (EL)
equation d

dt∂q̇` = ∂q`, where L =
´ T

0
`(t) dt. The latter is giving rise to ODEs for the Lagrange

multiplier functions: Firstly, the EL equation with respect to qZ(z, t) yields

ν̇(z, t) = ∂qZ(z,t)`Q −
∑

z′∈Z\z

Λ̃(z, z′, t)ν(z′, t) + Λ̃(z, t)ν(z, t). (17)

Secondly, the EL equations hold separately for both Gaussian parameters µ(z, t),Σ(z, t). We obtain

λ̇(z, t) = ∂µ(z,t)`Q −A>(z, t)λ(z, t),

Ψ̇(z, t) = ∂Σ(z,t)`Q −A>(z, t)Ψ(z, t)−Ψ(z, t)A(z, t).
(18)

Both Eqs. (17) and (18) hold between observations; at the observation time points, reset conditions
follow from the respective observation likelihoods. For the detailed derivations, including the explicit
expressions for the gradients ∂`Q for linear prior models f(y, z, t) := Ap(z, t)y + bp(z, t) as well as
the reset conditions, see Appendix A.3.3. Note that this constitutes a set of impulsive ODEs scaling
linearly in the number of observations [50]. For more details on the scaling behavior of these ODEs,
see Appendix A.3.3. As the parameters of both Eq. (17) and Eq. (18) are time-dependent, general,
analytic solutions does not exist [51]. Instead, we resort to established numerical solvers [52].

The full optimization problem requires the Lagrange multiplier ODEs (17) and (18) and the constraint
Eqs. (13) and (15) to be solved jointly as a boundary-value problem with terminal conditions
ν(·, T ), λ(·, T ),Ψ(·, T ) = 0 and initial conditions on the distribution parameters [49]. The variational
parameters have to be optimized simultaneously. A standard approach to this problem is an iterative
forward-backward sweeping algorithm [53, 54]: (i) solve the Lagrange multiplier ODEs Eqs. (17)
and (18) backward in time, starting from the terminal conditions ν, λ,Ψ = 0. Next, (ii) update the
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variational parameters acting on the constraints, in our case A, b, Λ̃, φ. Here, we employ a simple
gradient ascent scheme: for each u(t) ∈ {A(z, t), b(z, t), Λ̃(z, z′, t), φ}, we update

u(t)← u(t) + κ(t) · ∂u(t)`, (19)

where we use a back-tracking line search [55] for the step size κ(t), see Appendix A.3.4. Then,
(iii) solve the constraint equations (13) and (15) forward in time, starting from initial conditions
φ = {qZ(z, 0) = q0

Z(z), µ(z, 0) = µ0(z),Σ(z, 0) = Σ0(z)}. Finally, (iv) repeat until convergence.

Note that our results generalize the findings of [26, 29]: for f(y, z, t) = f(y, t), g(y, z, t) = g(y, t),
i.e., in the absence of coupling between the Y - and Z-processes, the MJP and diffusion contributions
to the prior KL Eq. (11) separate and the derivative ∂qZ(z,t)`Q reduces to the result of [29] between
observations. Furthermore, for the special case |Z| = 1, our result recovers the conventional GP
approximation [26].

3.3 Parameter Learning

input :observation data {ti, xi}i=1,...,N

Initialize qZ , µ, Σ, A, b, Λ̃, Θ
while L not converged do

while L not converged do
Compute multiplier functions λ,
Ψ, ν via Eqs. (17) and (18)

Update variational parameters A,
b, Λ̃ via Eq. (19)

Compute variational factors µ, Σ,
qZ via Eqs. (13) and (15)

Update lower bound L
end
Update prior parameters Θ via
gradient ascent

Update lower bound L
end

Algorithm 1: VI for hybrid processes

To learn the model parameters, that is, the prior tran-
sition rate matrix Λ, the dispersion D, the prior ini-
tial conditions, the parameters of the drift function
f(y, z, t) and the parameters of the observation like-
lihood p(xi | yi), we employ a variational expecta-
tion maximization (VEM) scheme [10]. After con-
verging onto variational distributions qZ(z, t) and
qY (y, t | z), we perform gradient ascent with respect
to these parameters on the Lagrangian L, Eq. (16),
see Appendix A.3.5. Note that we opt for this basic
approach for simplicity so as to focus on the general
inference framework. For an in-depth discussion on
parameter optimization, see, e.g., [56]. The complete
optimization scheme is summarized in Algorithm 1,
where we subsume all model parameters under Θ for
conciseness. This strategy yields a local optimum due
to convexity in each individual argument [25]. Note
that to alleviate potential issues with local optima it is
straightforward to utilize, e.g., multi-start approaches
[57].

4 Experiments

4.1 Model Validation on Ground-Truth Data

We validate our method on synthetic data generated from a 1D, two-mode hybrid system with
observations corrupted by Gaussian noise, p(xi | yi) = N (xi | yi,Σobs), where the observation times
are drawn from a Poisson point process [20]. Both mode dynamics are given by time-independent
linear drift functions

f(y, z, t) = αz(βz − y), (20)
with set points βz and dynamics αz > 0, z ∈ Z = {1, 2}. For |Z| = 1, this would recover the
well-known Ornstein-Uhlenbeck process [33].

As shown in Fig. 2 A, the inferred posterior distributions qY (y, t) =
∑
z∈Z qY (y, t | z) and qZ(z, t)

both faithfully reconstruct the respective latent ground-truth trajectories. This is also reflected by the
maximum a-posteriori (MAP) paths yMAP(t), zMAP(t) = arg maxy,z q(y, z, t). In regions around
mode transitions, one can observe artifacts from the variational approximation as a mixture of GPs: in
the time interval ∆ttrans between the last observation before and the first observation after the ground-
truth mode transition at t ≈ 12.5, the marginal qY (y, t) does not exhibit a smooth transition across
Y = 0, but splits the probability density between the independently evolving Gaussian distributions
qY (y, t | z). This is not surprising, as we have argued (c.f. Section 3.1) that our approximation will be
accurate in regions where qZ(z, t) ≈ 1, which is the case at the beginning and the end of the interval
∆t1, but not in between. Since the relaxation onto the mode set points βz is fast compared to the mode
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Figure 2: A: Model validation on ground-truth data from a 1D, two-mode hybrid process. Top:
True discrete path z(t) with observation times (vertical lines below). Middle: inferred marginal
qZ(2, t) and zMAP(t) (dashed). Bottom: true SSDE path (gray line), observations (crosses), the
inferred marginal qY (y, t) and yMAP(t) (dashed). Brighter colors indicate higher probability density.
B: Diffusion in a 1D four-well potential. Top: inferred marginals qZ(z, t). Bottom: true SDE and
observations with the inferred qY (y, t) and learned set points βz (arrows). Right: potential landscape.

remain times, these transition regions are short, yielding a high approximation quality. This is further
highlighted by comparison with an experiment in which this condition is violated, which we show
in Appendix B.1. As we pursue a generative modeling approach, we can verify the approximation
quality by sampling full trajectories from the variational posterior. The empirical distribution over
paths closely resembles the latent continuous trajectory. We provide a plot of the sampling distribution
in Appendix B.1 along with a version of Fig. 2 A showing the dynamics of the individual modes.
Furthermore, the model parameters are identified with high accuracy: the learned set points, for
instance, β1 = 0.70, β2 = −0.52, where the ground-truth values are ±1. The exhaustive list of both
the learned and ground truth model parameters is also provided in Appendix B.1.

4.2 Diffusions in Multi-Well Potentials

In many real-world scenarios, ground-truth discrete modes driving continuous dynamics do not exist,
but continuous dynamics often exhibit qualitatively different regimes. Transitions between different
regimes typically occur on vastly longer time scales than the relaxation dynamics within each regime,
as is observed, e.g., for the folding dynamics of complex biomolecules [58]. For such meta-stable
systems in particular, explicit probabilistic modeling of a set of underlying discrete modes can greatly
aid interpretability and enable targeted interventions on the system. To demonstrate the capability
of our model to yield sensible representations of distinct dynamic regimes, we apply it to latent Itô
diffusions driven by 1D and 2D benchmark potentials widely used in computational biology [59, 60,
61, 62] We model these system via hybrid processes with linear drift, c.f. Eq. (20), and Gaussian
observation noise in both the 1D and 2D case, as before. We assume a mode-dependent dispersion,
D = D(z). The observation time points are regularly spaced and we fix the observation covariance
Σobs.

In both the 1D and 2D case, the mode reconstructions accurately capture the global transitions between
distinct potential minima, see Fig. 2 B and Fig. 3 B. We note that in the 1D example (Fig. 2 B), the
true latent continuous trajectory exhibits a particularly clear separation of time scales between the
inter- and intra-well dynamics, which is reflected in sharp transitions in the mode reconstruction
and accordingly particularly accurate results. On the other hand, as shown in Fig. 3, in the 2D case,
more pronounced transition regions exist, where it is not possible to unambiguously assign the state
at a given time t to one of the three minima. The posterior marginals qZ(z, t) sensibly capture this
uncertainty, which is also reflected in a high quality mode-assignment of the observed data points
x[1,N ] as shown in Fig. 3 A. Furthermore, the asymmetry of the learned mode-dependent dispersions
accurately reflects the topology of the underlying potential. An overview over all parameters is given
in Appendix B.2.
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Figure 3: Diffusion in a three-well potential. A: Potential landscape with the inferred set points βz
(diamonds) and dispersions D(z) (ellipses, 3σ-region) with observations (crosses); colors according
to zMAP(ti) for each observation xi. B: Top: inferred marginals qZ(z, t). Bottom: components
of yMAP(t) (thick lines), the ground-truth path (thin lines) and the observations (crosses). Shaded
region: transition region with high ambiguity.

4.3 Switching Ion Channel Data
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Figure 4: Switching behavior of viral ion
channel KcvMT325. Top: marginals qZ(z, t)
corresponding to three channel conformations.
Middle: zMAP(t). Bottom: data (white line),
marginals qY (y, t) and learned set points βz
(arrows). Brighter colors indicate higher prob-
ability density.

We apply our method to a structural molecular
biology problem: we aim to identify the switching
behavior of the viral ion channel KcvMT325 exhibiting
three different channel conformations [63]. Different
conformations yield different ion permeabilities and
hence different conductivities which can be directly
detected by applying a voltage across the cell mem-
brane and measuring the trans-membrane current.
We model the conformation dynamics as discrete
process Z and the current, passing through an analog
(continuous-time) filter and incurring amplifier noise,
as continuous process Y . The observations Xi are
sampled at a fixed rate and subject to quantization
errors from an analog-to-digital converter. The obser-
vation noise is a known property of the used setup;
we hence fix Σobs. We reconstruct a highly plausible
switching behavior and filter out individual outliers,
as depicted in Fig. 4; see Appendix B.3 for a list of
all learned parameters and experimental details. We
note that very similar problem setups can be found,
e.g., in nanopore sequencing technologies [64].

4.4 Learning Complex Latent Continuous Dynamics

After having demonstrated the applicability of our model to hybrid systems with different time
scales for the discrete and continuous dynamics, we lastly show that it also works well when this
criterion is not met. In areas such as automation and robotics, hybrid models are ubiquitously used
to, e.g., encode highly complex continuous movements via a discrete set of movement primitives
[65], which are non-stationary processes. To demonstrate that our method is able to reconstruct
such complex latent continuous dynamics, we employ a 2D version of Eq. (20) where the mode
dynamics f(y, z, t) = f(y, z) are given as two counter-rotating vector fields, see Fig. 5 B. We fix the
observation covariance, as we can assume its value to be known and small compared to the system
volatility for applications such as robotics.

As shown in Fig. 5 A and C, the mode and state reconstructions accurately recover the true paths.
Accordingly, also the underlying mode dynamics are correctly learned, exhibiting the counter-rotating
behavior of the ground-truth model. We provide a list of all parameters in Appendix B.4.
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Figure 5: Inference of complex structured continuous dynamics. A: True mode path z(t) (top)
and inferred marginal qZ(2, t) (bottom). B: True state path y(t) (coloring according to associated
mode; Z = 1: blue, Z = 2: red), observations (crosses) and true mode dynamics f(y, z) (arrows)
in the phase plane. C: Reconstructed MAP path yMAP(t) (coloring according to zMAP(t)) and
reconstructed mode dynamics (arrows).

5 Conclusion

We presented, to the best of our knowledge, the first variational inference framework for continuous
time hybrid process models: since the exact filtering and smoothing distributions are computationally
intractable, we proposed a variational approximation to the exact model. The key assumption is
that the true discrete posterior is peaked at any z ∈ Z for extended periods of time, allowing for a
straightforward, easily interpretable mixture of GPs to be used as approximation. We have evaluated
our framework on various benchmark tasks including real-world biological data and demonstrated its
ability to faithfully reconstruct complex latent dynamics and to learn the unknown system parameters,
in particular in applications to meta-stable systems. While we implemented parameter learning via
point estimates, we aim to extend this to a fully Bayesian framework in the future, enabling the
integration of prior domain knowledge and the associated uncertainty about the system at hand.
Furthermore, due to the scaling behavior of the ODEs (13) and (15), additional approximations need
to be worked out to be able to apply the method to high-dimensional state spaces and large numbers
of modes, see, e.g., [66]. As many natural and engineered systems can be described as hybrid systems,
we think that extending the toolbox for inference will be of great utility for the analysis and control
of such systems.
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