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ABSTRACT
Running real-world experiments in supply chains is costly, risky,
and often limited by operational constraints. Evaluating a new
policy—such as a revised inventory heuristic or a routing strategy—
requires partial deployment, active monitoring, and foregone op-
portunity from not exploiting the current best-known alternative.
To address this, we propose LOGEX, a Bayesian framework for cost-
sensitive experimentation that models uncertain, evolving reward
functions using Bayesian Additive Regression Trees (BART). LO-
GEX quantifies the expected value of experimentation in economic
units, enabling practitioners to weigh the benefit of learning against
the cost of conducting operational pilots. Unlike conventional black-
box optimization, our approach supports partial rollouts, adapts to
non-stationary reward landscapes, and maintains interpretability
through rule-based posterior estimates. We validate LOGEX in a
synthetic supply chain environment and show that it outperforms
cost-unaware exploration strategies, achieving higher cumulative
reward with fewer, more valuable experiments. The framework of-
fers a practical and theoretically grounded solution for high-stakes
experimentation in logistics and operations.
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1 INTRODUCTION
Supply chainmanagement increasingly relies on data-driven decision-
making to optimize complex operational processes, yet implement-
ing new policies carries substantial operational and financial risks.
Unlike digital experimentation platforms where A/B tests can be
conducted with minimal cost, supply chain experiments require
physical deployment, activemonitoring, and acceptance of potential
disruptions to established workflows [18]. When organizations eval-
uate new inventory management heuristics, routing algorithms,
or demand forecasting models, they must balance the potential
benefits of improved performance against the immediate costs of
experimentation and the opportunity cost of not exploiting their
current best-known policies [5].

The challenge becomes particularly acute in dynamic supply
chain environments where market conditions, supplier relation-
ships, and customer demand patterns evolve continuously. Tradi-
tional approaches to policy evaluation often rely on static historical
data or simplified simulation models that may not capture the full
complexity of real-world operations [11]. Moreover, the high stakes
associated with supply chain decisions—where errors can result in
stockouts, excess inventory, or service disruptions—demand exper-
imental frameworks that explicitly account for both learning value
and implementation costs [6].

Recent advances in Bayesian optimization have demonstrated
promising approaches for managing costly experimentation in var-
ious domains. The Interpretable Bayesian Optimization for Value
Estimation (IBOVE) framework introduced a novel method for
translating Bayesian acquisition functions into direct estimates
of financial value, enabling stakeholders to make informed deci-
sions about when to experiment versus exploit existing knowledge
[2]. However, existing Bayesian optimization approaches face sig-
nificant limitations when applied to supply chain contexts. First,
they typically assume stationary reward functions, which poorly
represent the dynamic nature of supply chain performance where
external factors continuously influence outcomes [17]. Second, they
often rely on Gaussian process models that may struggle to cap-
ture the complex, nonlinear relationships common in logistics and
operations research [13].

The supply chain literature has long recognized the importance
of adaptive experimentation. Early work on supply chain learning
focused on demand sensing and forecasting improvement through
systematic data collection [7]. More recent research has explored
reinforcement learning approaches for inventory management [15]
and routing optimization [14], but these methods typically require
extensive online learning phases that may be impractical for op-
erational deployment. The concept of “learning while doing” in
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supply chains has been formalized through various frameworks [3],
yet most existing approaches fail to provide explicit guidance on
when the cost of continued experimentation exceeds its expected
benefits.

Bayesian Additive Regression Trees (BART) have emerged as
a powerful tool for modeling complex, nonlinear relationships in
high-dimensional spaces [4]. Unlike traditional Gaussian processes,
BART models provide natural interpretability through their tree-
based structure, allowing practitioners to understand which fac-
tors drive performance differences [8]. The flexibility of BART
in handling non-stationary environments has been demonstrated
in various applications, from causal inference [9] to time series
forecasting [12]. However, the integration of BART models within
cost-sensitive Bayesian optimization frameworks for operational
decision-making remains largely unexplored.

In this work, we introduce LOGEX (LOGistics EXperimentation),
a novel Bayesian framework specifically designed for cost-sensitive
experimentation in supply chain environments. LOGEX addresses
three critical limitations of existing approaches. First, it employs
BART models to capture complex, evolving reward functions that
better represent the nonlinear and non-stationary nature of supply
chain performance. Second, it provides explicit economic quantifi-
cation of experimentation value, enabling practitioners to make
principled decisions about resource allocation. Third, it supports
partial rollout strategies that allow organizations to test new poli-
cies on subsets of their operations while maintaining overall system
stability.

Our framework makes several key contributions to the intersec-
tion of Bayesian optimization and supply chain management. We
develop a theoretically grounded approach for translating BART
posterior distributions into expected monetary gains from exper-
imentation. We demonstrate how cost-sensitive acquisition func-
tions can guide sequential decision-making about when to experi-
ment, which policies to test, and how extensively to deploy them.
We provide empirical validation through synthetic supply chain
scenarios that capture realistic operational constraints and perfor-
mance dynamics.

The remainder of this paper proceeds as follows. Section 2 for-
malizes the problem setting and introduces the mathematical frame-
work underlying LOGEX. Section 3 presents the detailed algorithm,
including the BART-based reward modeling and cost-sensitive ac-
quisition strategy. Section 4 demonstrates the effectiveness of our
approach through comprehensive experimental evaluation using
synthetic supply chain scenarios. Section 5 discusses practical im-
plementation considerations and limitations. Section 6 concludes
with directions for future research.

2 PROBLEM FORMULATION: COST-SENSITIVE
SEQUENTIAL EXPERIMENTATION IN
SUPPLY CHAINS

We consider a sequential decision-making setting in which a supply
chain planner must evaluate and deploy operational policies under
uncertainty, with limited ability to conduct large-scale random-
ized trials. The planner aims to maximize cumulative long-term
value by balancing exploitation of the current best-known policy
with selective, cost-aware exploration of alternative configurations.

This setting is representative of numerous real-world applications,
including inventory control, replenishment timing, fulfillment rout-
ing, and labor allocation, where interventions are implemented
through resource-intensive pilots.

Let X ⊆ R𝑑 denote the continuous space of policy configura-
tions, where each 𝑥 ∈ X encodes an operational decision (e.g.,
reorder point, routing threshold, forecasting model parameter). Let
𝑓𝑡 : X → R denote the unknown reward function at time 𝑡 , mapping
each policy 𝑥 to an expected outcome—typically expressed in mon-
etary terms, such as margin improvement or cost reduction. Unlike
in classical Bayesian optimization, we assume that 𝑓𝑡 evolves over
time due to latent environmental factors such as seasonal demand
shifts, supplier behavior changes, or network reconfigurations.

At each round 𝑡 ∈ {1, . . . ,𝑇 }, the planner selects an action𝑥𝑡 ∈ X
and an allocation ratio 𝛼𝑡 ∈ [0, 1], where 𝛼𝑡 denotes the fraction
of operational volume or population exposed to the new policy.
When 𝛼𝑡 < 1, the action is treated as an experiment and incurs
both a direct cost 𝐶𝑒 (𝑥𝑡 ) and an opportunity cost due to foregone
exploitation. A noisy reward observation is received:

𝑦𝑡 = 𝛼𝑡 𝑓𝑡 (𝑥𝑡 ) + (1−𝛼𝑡 ) 𝑓𝑡 (𝑥∗𝑡 ) +𝜀𝑡 , 𝜀𝑡 ∼ N
(
0,

𝜎2

𝑚𝛼𝑡 (1 − 𝛼𝑡 )

)
(1)

where𝑚 denotes the total operational population and the vari-
ance expression reflects increased uncertainty under small or imbal-
anced treatment allocations, consistent with standard randomized
trial theory.

The planner maintains a posterior distribution over 𝑓𝑡 based
on all prior observed outcomes𝔇𝑡 = {(𝑥𝑠 , 𝛼𝑠 , 𝑦𝑠 )}𝑠<𝑡 , and selects
actions to maximize cumulative expected return over a horizon of
𝑇 rounds:

max
𝜋

E

[
𝑇∑︁
𝑡=1

(
𝛼𝑡 𝑓𝑡 (𝑥𝑡 ) + (1 − 𝛼𝑡 ) 𝑓𝑡 (𝑥∗𝑡 ) −𝐶𝑒 (𝑥𝑡 ) · 1[𝛼𝑡 < 1]

) ]
(2)

subject to:
• (𝑥𝑡 , 𝛼𝑡 ) ∼ 𝜋 (𝔇𝑡 ), a policy mapping prior data to allocation
decisions;

• 𝑓𝑡 ∼ P(𝑓 |𝔇𝑡 ), where P is a BART posterior;
• 𝑓𝑡 allowed to evolve via temporal drift as detailed in Section
4.2

This formulation captures several practical features of real-world
experimentation. First, observations are costly: even small-scale
pilots require logistics effort, and results are subject to noise. Second,
observations are partial: due to ethical, budgetary, or operational
concerns, interventions can only be tested on subpopulations. Third,
the underlying reward function is non-stationary, requiring the
planner to discount outdated evidence and re-explore policies when
the environment changes.

To guide decisions, we define the value of experimentation (VoE)
as the expected improvement in future deployment value attrib-
utable to a new trial, net of its cost. The planner conducts an ex-
periment at round 𝑡 if and only if the VoE of a candidate action is
positive. In the next section, we introduce the LOGEX framework,
which uses BART posteriors to estimate this quantity and optimize
experimentation choices.
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3 THE LOGEX FRAMEWORK: BART-BASED
VALUE OF EXPERIMENTATION

In this section, we present LOGEX, a Bayesian framework for cost-
sensitive experimentation in supply chain environments. LOGEX
uses posterior samples from Bayesian Additive Regression Trees
(BART) to estimate the expected value of experimentation (VoE),
guiding when and where to deploy pilots that balance potential
learning against operational cost and risk.

Given observed data𝔇 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1, where 𝑦𝑖 = 𝑓 (𝑥𝑖 ) +𝜀𝑖 and
𝜀𝑖 ∼ N(0, 𝜎2), BART provides posterior draws {𝑓 (𝑠 ) (𝑥)}𝑆

𝑠=1 from
the posterior distribution over 𝑓 .

The posterior mean reward for an action 𝑥 is approximated by:

𝜇 (𝔇, 𝑥) = 1
𝑆

𝑆∑︁
𝑠=1

𝑓 (𝑠 ) (𝑥) (3)

The opportunity cost of exploring 𝑥 is defined as:

𝑂̂ (𝔇, 𝑥) = max
𝑥 ′∈X

𝜇 (𝔇, 𝑥 ′) − 𝜇 (𝔇, 𝑥) (4)

For each posterior draw 𝑓 (𝑠 ) , simulate a new observation 𝑌 (𝑠 ) ∼
N(𝑓 (𝑠 ) (𝑥new), 𝜎2), and update the dataset with (𝑥new, 𝑌 (𝑠 ) ) to ob-
tain a new posterior𝔇′

𝑠 and updated mean:

𝜇′𝑠 =
1
𝑆 ′

𝑆 ′∑︁
𝑠′=1

𝑓
(𝑠′ )
𝑠 (𝑥∗) (5)

The expected value of model improvement is given by:

𝑈 (𝔇, 𝑥new) =
1
𝑆

𝑆∑︁
𝑠=1

max
(
0, 𝜇′𝑠 − 𝜇 (𝔇, 𝑥∗)

)
(6)

The value of experimentation (VoE) is then:

𝑉𝛾 (𝔇, 𝑥new) = 𝛾 ·𝑈 (𝔇, 𝑥new) − 𝑂̂ (𝔇, 𝑥new) −𝐶𝑒 (𝑥new) (7)

The decision rule is to explore 𝑥new if and only if𝑉𝛾 (𝔇, 𝑥new) >
0. Otherwise, the system exploits the best-known policy:

𝑥∗ = arg max
𝑥∈X

𝜇 (𝔇, 𝑥) (8)

In practice, expectations in 𝑈 (𝔇, 𝑥) are approximated using
Monte Carlo simulation over posterior samples from BART.

4 GENERALIZING LOGEX: ALLOCATION
RATIOS AND TEMPORAL DRIFT

This section extends the LOGEX framework to support two features
essential for real-world supply chain experimentation: (i) partial
deployments via allocation ratios, and (ii) evolving reward functions
due to environmental drift. These enhancements enable LOGEX to
model more realistic conditions under which experimentation is
conducted in logistics operations.

4.1 Partial Deployments via Allocation Ratios
Let the extended action space be denoted by X̄ := X × [0, 1], where
each element 𝑥 = (𝑥, 𝛼) consists of an operational policy 𝑥 ∈ X
and an allocation ratio 𝛼 ∈ [0, 1], representing the fraction of
operational volume exposed to the intervention.

The reward from partial deployment scales linearly with 𝛼 , de-
fined as:

𝑟 (𝑥, 𝛼) = 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑥∗) (9)

The explicit cost of experimentation remains fixed:

𝐶𝑒 (𝑥, 𝛼) = 𝐶𝑒 (𝑥) · 1[𝛼 < 1] (10)

The opportunity cost becomes:

𝑂 (𝔇, 𝑥, 𝛼) = 𝑓 (𝑥∗) − 𝑟 (𝑥, 𝛼) = 𝛼 (𝑓 (𝑥∗) − 𝑓 (𝑥)) (11)

Assuming a total experimental population of size𝑚, the variance
of the estimated treatment effect is:

Var[𝑦] = 𝜎2

𝑚𝛼 (1 − 𝛼) (12)

Simulated observations under partial allocation are generated
via:

𝑌 (𝑠 ) ∼ N
(
𝑓 (𝑠 ) (𝑥new, 𝛼),

𝜎2

𝑚𝛼 (1 − 𝛼)

)
(13)

The updated expected model improvement is:

𝑈 (𝔇, 𝑥new, 𝛼) =
1
𝑆

𝑆∑︁
𝑠=1

max
(
0, 𝜇′𝑠 − 𝜇 (𝔇, 𝑥∗)

)
(14)

And the generalized value of experimentation becomes:

𝑉𝛾 (𝔇, 𝑥new, 𝛼) = 𝛾 ·𝑈 (𝔇, 𝑥new, 𝛼) −𝑂 (𝔇, 𝑥new, 𝛼) −𝐶𝑒 (𝑥new, 𝛼)
(15)

4.2 Modeling Non-Stationarity via Time Decay
To address evolving environments, LOGEX models time decay in
its reward estimation. Each past observation (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 ) is assigned
a weight𝑤𝑖 based on its temporal distance from the current time 𝑡 :

𝑤𝑖 = exp(−𝜆(𝑡 − 𝑡𝑖 )) (16)

These weights are incorporated into BART’s training data, yield-
ing a posterior that discounts older data and increases respon-
siveness to drift. This mechanism supports re-exploration when
uncertainty rises due to environmental change.

5 EXPERIMENTAL EVALUATION
To assess the effectiveness of the LOGEX framework, we conduct
a series of experiments in a controlled simulation environment
designed to reflect the operational and informational constraints of
real-world supply chain experimentation. The simulation captures
core characteristics of the domain, including: (i) limited opportu-
nities to experiment due to cost; (ii) the ability to partially deploy
policies via allocation ratios; (iii) non-stationary reward functions
driven by environmental drift; and (iv) noisy, high-variance feed-
back typical of real-world logistics operations.

Our goal is to evaluate whether LOGEX can improve cumulative
system performance by intelligently selecting which policies to
test, how extensively to deploy them, and when to switch from
exploration to exploitation.
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5.1 Simulation Environment
The simulation models a single-agent sequential decision process
over a finite horizon of 𝑇 = 30 rounds. At each round 𝑡 , the agent
selects a policy 𝑥𝑡 ∈ X ⊂ R and an allocation ratio 𝛼𝑡 ∈ [0, 1],
representing the fraction of operational capacity or volume exposed
to the selected policy.

The true reward function 𝑓𝑡 (𝑥) is latent and evolves over time
through discrete structural changes. Initially, it is drawn from a
smooth nonlinear function perturbed by discontinuities—mimicking
typical operational settings where policy performancemay abruptly
change due to seasonality, capacity shifts, or upstream disruptions.
Every 10 rounds, 𝑓𝑡 undergoes a drift event that alters its shape.
Observed rewards are generated via:

𝑦𝑡 = 𝛼𝑡 𝑓𝑡 (𝑥𝑡 ) + (1 − 𝛼𝑡 ) 𝑓𝑡 (𝑥∗𝑡−1) + 𝜀𝑡 , 𝜀𝑡 ∼ N(0, 𝜎2) (17)

where 𝜎2 = 0.01 and 𝛼𝑡 modulates both the signal and the noise
due to treatment sample size. Each experiment incurs a fixed explicit
cost𝐶𝑒 (𝑥) = 0.1, and no feedback is observed when 𝛼𝑡 = 1 (i.e., full
exploitation). We assess agent performance using cumulative net
reward, which combines realized system reward and penalties for
experimentation:

𝑅cum (𝑇 ) =
𝑇∑︁
𝑡=1

[𝑦𝑡 −𝐶𝑒 (𝑥𝑡 ) · 1[𝛼𝑡 < 1]] (18)

This metric reflects the true operational value captured by the
planner and penalizes unnecessary or poorly timed experimenta-
tion. We compare LOGEX to a widely used heuristic: Explore-Then-
Exploit (ETE). The ETE agent randomly explores 20% of the rounds
with uniformly sampled actions fromX, each deployed with a fixed
allocation 𝛼 = 0.3. After this phase, it exploits the policy with the
highest average observed reward for the remaining rounds. This
baseline reflects real-world operational test-and-rollout strategies,
in which organizations initially run a fixed set of pilots and then
deploy the perceived best performer. However, such strategies typi-
cally fail to adapt once initial exploration is complete, particularly
under dynamic conditions.

5.2 Results
Figure 1 presents the cumulative net reward trajectories of LOGEX
and ETE averaged over 20 independent simulation runs. LOGEX
consistently outperforms the baseline across the full time horizon,
with especially notable gains following reward drift events. Its be-
havior is characterized by selective and adaptive exploration: the
algorithm initiates pilots when uncertainty is high and potential
gain exceeds cost, and reverts to exploitation once sufficient evi-
dence is acquired. By contrast, the ETE agent performs comparably
to LOGEX during early rounds but degrades significantly follow-
ing structural shifts in the reward function. Because it lacks any
mechanism to detect or respond to environmental change, it re-
mains locked into stale decisions based on early performance—a
common failure mode of fixed-horizon experimentation. LOGEX
also conducts fewer experiments overall, but with higher average
impact, showing its ability to internalize cost-benefit trade-offs at
each step. Moreover, LOGEX dynamically adjusts the allocation
ratio: it increases when potential gain is modest but uncertainty is

high (to limit risk), and decreases when targeting high-potential
candidates.

Figure 1: Cumulative Reward of LOGEX and the ETE-baseline
over 30 steps

6 CONCLUSION AND FUTUREWORK
This paper introduced LOGEX, a cost-sensitive Bayesian optimiza-
tion framework for guiding experimentation in complex, high-
stakes supply chain environments. By leveraging Bayesian Ad-
ditive Regression Trees (BART) to model uncertain, non-stationary
reward functions and computing value-of-experimentation (VoE)
scores in interpretable monetary units, LOGEX enables planners to
strategically allocate limited experimentation capacity across time,
actions, and subpopulations. The framework extends and opera-
tionalizes foundational ideas from value-based experimental design
[1, 16], cost-aware Bayesian optimization [10, 19], and nonpara-
metric modeling [4, 9] into the domain of applied supply chain
experimentation—an area where these methods have seen limited
adoption despite significant relevance.

Our results demonstrate that LOGEX consistently outperforms
static heuristics such as explore-then-exploit baselines, achieving
greater cumulative operational value with fewer, more targeted
experiments. Moreover, the framework adapts dynamically to struc-
tural shifts in the environment and supports partial deployments,
addressing gaps in the current literature on experimentation in
operations research with expensive setups.

Nonetheless, the current implementation has important limi-
tations. LOGEX assumes scalar policy parameters and continu-
ous action spaces, whereas real-world interventions often involve
structured, discrete, or combinatorial policies (e.g., routing rules,
batching thresholds, multi-knob tuning). The computational cost
of repeated posterior simulation under BART may also become
prohibitive at scale, particularly when the action space or data
size grows. Moreover, our evaluation uses synthetic environments,
which, while representative, lack the full complexity of real-world
operational frictions such as delayed feedback, interdependent poli-
cies, and stakeholder-driven constraints.

Future work will extend LOGEX in three directions. First, we
aim to generalize the acquisition framework to accommodate struc-
tured and high-dimensional action spaces, including discrete and
graph-based decision domains. Second, we plan to integrate causal
inference techniques into the reward estimation layer, improving
robustness when unobserved confounders or selection effects are
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present. Third, we will pursue deployment in real-world systems,
particularly in supply chain settings where test-and-learn culture is
emerging but still underutilized due to cost, scale, and interpretabil-
ity concerns. We believe LOGEX offers a promising foundation for
embedding formal experimentation into the everyday operational
logic of data-driven supply chains.

Algorithm 1 LOGEX with BART Posteriors
Require: Initial dataset 𝔇0, horizon 𝑇 , cost function 𝐶𝑒 , value

multiplier 𝛾
Ensure: Sequence of actions and rewards
1: for 𝑡 = 1 to 𝑇 do
2: Fit BART model on weighted dataset𝔇𝑡−1 with time decay

weights
3: Sample 𝑆 posterior functions {𝑓 (𝑠 ) }𝑆

𝑠=1 from BART
4: Compute current best policy: 𝑥∗ = arg max𝑥 𝜇 (𝔇𝑡−1, 𝑥)
5: for each candidate (𝑥, 𝛼) ∈ X̄ do
6: Compute opportunity cost: 𝑂 (𝔇𝑡−1, 𝑥, 𝛼)
7: Simulate posterior observations and compute

𝑈 (𝔇𝑡−1, 𝑥, 𝛼)
8: Compute VoE: 𝑉𝛾 (𝔇𝑡−1, 𝑥, 𝛼)
9: end for
10: Select action: (𝑥𝑡 , 𝛼𝑡 ) = arg max(𝑥,𝛼 ) 𝑉𝛾 (𝔇𝑡−1, 𝑥, 𝛼)
11: if 𝑉𝛾 (𝔇𝑡−1, 𝑥𝑡 , 𝛼𝑡 ) > 0 then
12: Execute experiment with allocation 𝛼𝑡
13: Observe reward 𝑦𝑡 and pay cost 𝐶𝑒 (𝑥𝑡 )
14: else
15: Exploit: set (𝑥𝑡 , 𝛼𝑡 ) = (𝑥∗, 1) and observe 𝑦𝑡 = 𝑓𝑡 (𝑥∗)
16: end if
17: Update dataset:𝔇𝑡 = 𝔇𝑡−1 ∪ {(𝑥𝑡 , 𝛼𝑡 , 𝑦𝑡 , 𝑡)}
18: end for
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