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Abstract

Large language models (LLMs) have revolutionized natural language processing
and are increasingly applied to other sequential data types, including genetic se-
quences. However, adapting LLMs to genetics presents significant challenges.
Capturing complex genomic interactions requires modeling long-range global de-
pendencies within DNA sequences, where interactions often span over 10,000 base
pairs, even within a single gene. This poses substantial computational demands
under conventional model architectures and training paradigms. Additionally,
traditional LLLM training approaches are suboptimal for DNA sequences: autore-
gressive training, while efficient for training, only supports unidirectional sequence
understanding. However, DNA is inherently bidirectional. For instance, bidirec-
tional promoters regulate gene expression in both directions and govern approxi-
mately 11% of human gene expression. Masked language models (MLMs) enable
bidirectional understanding. However, they are inefficient since only masked
tokens contribute to loss calculations at each training step. To address these
limitations, we introduce JanusDNA, the first bidirectional DNA foundation
model built upon a novel pretraining paradigm, integrating the optimization effi-
ciency of autoregressive modeling with the bidirectional comprehension capability
of masked modeling. JanusDNA’s architecture leverages a Mamba-Attention
Mixture-of-Experts (MoE) design, combining the global, high-resolution context
awareness of attention mechanisms with the efficient sequential representation
learning capabilities of Mamba. The MoE layers further enhance the model’s
capacity through sparse parameter scaling, while maintaining manageable com-
putational costs. Notably, JanusDNA can process up to 1 million base pairs
at single-nucleotide resolution on a single 80GB GPU using its hybrid ar-
chitecture. Extensive experiments and ablation studies demonstrate that Janus-
DNA achieves new state-of-the-art performance on three genomic representation
benchmarks. Remarkably, JanusDNA surpasses models with 250x more acti-
vated parameters, underscoring its efficiency and effectiveness. Code available at
https://github.com/Qihao-Duan/JanusDNA,
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1 Introduction

Modeling the language of DNA is crucial for investigating its biological function, offering potential
advancements in understanding genotype-phenotype associations, disease diagnosis, and new drug
development [[1]. Large language models (LLMs) have demonstrated remarkable success in large-
scale nonlinear representation learning for natural language processing (NLP) tasks, such as text
generation, translation, and summarization [2| |3} 4]]. This success has inspired researchers to explore
LLM applications in other domains [} 6]], including bioinformatics [7]]. However, applying general
LLMs directly to DNA sequence data is challenging. DNA sequences are represented as series
of nucleotides, lacking clear semantic meaning and posing challenges for interpretation by LLMs.
Additionally, non-coding regions in DNA can be remotely related to coding regions both upstream and
downstream, necessitating models capable of processing long-range dependencies while maintaining
bidirectional understanding. These factors make it challenging to apply LLMs directly to DNA
sequence data without significant modifications or adaptations [§]. Some models have been developed
specifically for DNA sequence representation [9, 10} [11]. However, these models still face some
limitations.

Current limitations (1) Limited Sequence Length and Low Resolution: Capturing complex
genomic interactions requires modeling long-range dependencies within DNA sequences, where
interactions can span over 10,000 base pairs even within a single gene [12]. This necessitates a
model that can effectively handle long-range dependencies and relationships within the sequence.
However, many current models solely rely on global attention mechanisms inspired by their superior
success in natural language applications [[13}|14], yet they often struggle to effectively process long
genomic sequences and uncover meaningful long-range interactions [11]. K-mer tokenization is
frequently used to expand the context window of DNA sequence models [9, [10]. However, this
method introduces a trade-off between sequence length and resolution [15], potentially leading to
the loss of crucial information, especially in cases where single nucleotide polymorphisms (SNPs)
are essential for understanding gene function. (2) Unidirectional Understanding: Many genomic
processes are influenced by bidirectional interactions, with essential regulatory elements located
both upstream and downstream of key genomic regions. For example, bidirectional promoters
initiate transcription in both orientations [[16} [17]]. Additionally, intergenic enhancers transcribed
predominantly bidirectionally often function as weak promoters in both directions. Conversely, for
elements with unidirectional transcription (both enhancers and promoters), transcription direction
typically correlates with the orientation in which the element functions as a promoter in vivo [[18].
Accurately modeling these bidirectional interactions is crucial for understanding genomic function
and making precise predictions, imposing significant demands on model architecture and training
strategies [8]]. However, some existing decoder-only models based on State Space Models (SSMs) [15}
19} 120] are primarily unidirectional or limited in their capacity to effectively understand bidirectional
context, thus constraining their ability to comprehensively capture these complex interactions. (3)
Low Training Efficiency: Long-range modeling and bidirectional understanding of DNA sequences
both require substantial computational resources and memory, especially for those requiring attention
for a more global representation. Therefore, training efficiency significantly impacts the model’s
performance, especially under limited computational resources. Most bidirectional models are trained
using masked training paradigms, such as BERT [21]], which utilize only a small fraction of tokens
(typically 15%) for loss calculation at each step. This limitation can hinder the model’s ability to learn
effectively from the entire sequence within limited training steps, thereby requiring more training
epochs to adequately cover the full training data.

Additionally, the masking process itself introduces extra computational overhead. In contrast,
autoregressive (next-token prediction) training is more efficient, as nearly all tokens contribute to
the loss at each training step, allowing the model to learn more effectively within a fixed number of
steps as sequence length increases [22]]. However, it’s important to note that autoregressive models
are inherently unidirectional, limiting their ability to incorporate bidirectional context.

In response to the aforementioned issues, we introduce JanusDNA[]_l the first bidirectional DNA
foundation model built upon a novel pretraining paradigm. Our architecture employs two principal
strategies: (1) Hybrid Architecture: To achieve powerful global understanding while maintaining

!Janus, the ancient Roman god of transitions and duality, is symbolized by two faces gazing in opposite
directions.



computational efficiency for long contexts, we integrate the strengths of state-space models (SSMs)
[23] and Mixture-of-Experts (MoE) designs [24, 25] into attention mechanisms [26]], enabling the
model to effectively capture long-range global dependencies and complex interactions within DNA
sequences. (2) Bidirectional Efficient Training: While preserving the bidirectional understanding
of DNA sequences typically achieved through masked training, we significantly improve learning
efficiency by computing the loss over all tokens in each training, same as in autoregressive modeling.
Notably, JanusDNA is capable of processing up to 1 million base pairs at single-nucleotide
resolution with global attention on a single 80GB GPU, making it suitable for large-scale under-
standing in genomic research. We evaluated JanusDNA on 35 diverse genomic tasks to showcase its
superior global understanding as well as long-range representation ability.

In summary, our contributions are as follows:

* We propose JanusDNA, a novel bidirectional DNA foundation model capable of capturing
global long-range dependencies and interactions at single-nucleotide resolution.

* We introduce an efficient Hybrid Mamba-Attention-MoE architecture designed for
processing ultra-long genomic sequences within practical computational budgets.

* We present Janus Modeling, a novel and efficient pretraining paradigm that effectively
combines the strengths of autoregressive and masked modeling, facilitating effective global
bidirectional learning.

* We demonstrate state-of-the-art performance across diverse genomic benchmarks, outper-
forming significantly larger models. In particular, JanusDNA significantly surpasses the
expert model Enformer on eQTL prediction tasks, despite having far fewer parameters.

2 Preliminary and Related Work

2.1 Large Language Model Pretraining Paradigms

Autoregressive Language Modeling (ALM) is a generative pretraining paradigm in which the
model predicts the next token in a sequence given all previous tokens. Trained on large corpora, the
model learns statistical properties to generate coherent text. The training objective is:

T
Lam ==Y log P(zi|wr,za,. .., x11), (1

t=1

where T is the sequence length, and x; denotes the token at position t. The model generates
text by sampling from the learned probability distribution over the vocabulary at each time step
[15L19L120, 14, 27]. Each token contributes to the overall loss, and the model minimizes the average loss
across all tokens. However, to maximize generative performance [28]], ALM is unidirectional, causing
a limited ability to model bidirectional contexts, which is crucial for DNA sequence understanding
(1} 129].

Masked Language Modeling (MLM) is a non-causal pretraining paradigm where the model
predicts masked tokens in a sequence using surrounding context. The training objective is:

N
‘CMLM:_ZIOgP(xi|xj1a'rjza'"a'rjk)7 (2)
i=1
where NV is the total number of tokens, z; is the masked token, and z;,,xj,,...,z;, are the un-

masked tokens. This approach enables the model to learn bidirectional representations, capturing
dependencies in both directions [} 28, 29, 9, 10} 130, [11} 31]. However, MLMs mostly follow the
BERT-style training paradigm, which masks a fixed percentage of tokens in the input sequence, e.g.,
15% (819, 110]. This can lead to inefficiencies, as only a small fraction of the data is used for loss
computation during each iteration. In contrast, autoregressive training paradigms take advantage of
nearly the entire data, significantly improving training efficiency and overall performance.

A detailed review of related work on DNA language models is provided in Appendix [A]
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Figure 1: The JanusDNA Architecture for Bidirectional DNA Modeling. JanusDNA employs a
hierarchical bidirectional strategy to comprehensively model DNA sequences. (A) DNA, with its
inherent double-stranded nature. (B) The model processes both the forward and reverse complement
strands independently in parallel to capture complete biological context, with their embeddings
subsequently combined for downstream tasks. (C) The core JanusDNA model architecture processes
a single input strand using parallel left-to-right and right-to-left pathways. Each pathway consists of
Mamba-FFN and Mamba-MOoE layers for effective and efficient sequential encoding. (D) The MoE
architecture enhances model capacity and specialization by dynamically and sparsely routing inputs to
a subset of expert networks, enabling efficient computation and improved representation learning. (E)
The Bidirectional Global Fusion mechanism, utilizing a specific attention mask, integrates the forward
and backward representations from (C) to ensure that each nucleotide’s embedding is informed by its
complete sequence context.

3 JanusDNA

We propose Janus modeling, an efficient bidirectional training method with global attention, and
JanusDNA, a powerful hybrid DNA foundation model.

As illustrated in Figure[T] JanusDNA processes bidirectional DNA sequences from both left-to-right
and right-to-left using two independent stacks of Mamba and Mixture-of-Experts (MoE) layers.
These stacks generate forward and backward representations independently, ensuring no information
leakage. The two representations are then fused to create a unified representation that encapsulates
bidirectional information. Each token position is predicted based on all upstream and downstream
tokens. The following sections detail the efficient bidirectional training method with global attention
— Janus Modeling, and the hybrid Mixture-of-Experts (MoE) architecture — JanusDNA.

3.1 Bidirectional Efficient Training

As discussed in Section 2] conventional pretraining paradigms face a trade-off: Masked Language
Models (MLMs) offer bidirectional understanding but suffer from low training efficiency due to
sparse loss signals, especially for those requiring global attention, while Autoregressive Models are
efficient in training but inherently unidirectional. To overcome this, we introduce Janus modeling, a
novel pretraining objective designed to achieve efficient, fully bidirectional sequence understanding
with global attention, as illustrated in Figure@

The core idea of Janus modeling is to predict every token x; in a sequence of length T using its

complete bidirectional context, i.e., all tokens preceding x; (z1, ..., z:—1) and all tokens succeeding
2 (Ty41,- .., 7). The training objective is therefore:
T
Lbidirectional = — Z 10g P(-Tt|x17 oy L1, T2y - - - a-rT) 3)
t=1
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Figure 2: Modeling Interpretation. Janus modeling treats each token as a target for loss calculation,
enabling higher training efficiency compared to masked modeling by full sequence learning while
keeping bidirectional context understanding.

This objective ensures that every token contributes to the loss, maximizing training efficiency, while
simultaneously demanding bidirectional comprehension.

To realize this objective, Janus modeling employs a two-stage process: independent context encoding
followed by a global fusion mechanism:

Independent Context Encoding: The input sequence X = (z1,...,2r) is processed by two
parallel and independent stacks of layers (detailed in Section[3.2):

* A forward pass processes the sequence from left-to-right, generating a sequence of hidden

states Rewa = (H{', HY ..., HE). Each hidden state H/" is a function of the input tokens
(21, ...,2¢) and primarily captures information about the left context of ;.
H}" = ForwardEncoder(z1, ..., x;) €))
* A backward pass processes the sequence from right-to-left, generating a sequence of hidden
states Rowa = (HP, HZ, ..., HE). Each hidden state H? is a function of the input tokens
(z7,...,x:) and primarily captures information about the right context of z;.
HP = BackwardEncoder(zr, ..., x¢) Q)

These two sets of representations, Rwg and Rpwd, are generated independently, ensuring no premature
information leakage between past and future contexts before the explicit fusion step. The entire
model is trained end-to-end using Lyigirectional from Equation E[

Bidirectional Global Fusion: To compute P(z¢|21,...,%t—1,Z¢+1,.-.,27) for each 4 as per
Equation 3] the left-context information captured in Ryyq and the right-context information captured
in Rywa must be integrated. This is organically achieved via a global attention mechanism, specifically
implemented with FlexAttention [26] for efficiency. The representations from both passes, Rewg =
(HE,...,HE) and Rywa = (HZ, ..., HE), are concatenated to form a combined input sequence
for the attention layer: Rinpu = [H 1F N HZ,E JH 13 e ,HQI? ]. This Rinpue sequence has a length of
2T. The core of the fusion lies in a carefully designed attention mask, M,;, which dictates how
tokens in R,y can attend to each other. This mask ensures that the prediction for x; is based only
on H, ,f for k < tand H JB for j > t, preventing information leakage. The mask, also illustrated in
Figure[I(E), is defined as:

Qidx = kVidx, if kvigx < T and gigx < T,
Gidx < Kkvidy, if kvigx > T and ¢igx > T,

ij = B . 6
M J kvidx >T + Qidx + 27 if k”Uidx Z T and Qidx < T, ( )

Qidx = kvigx + T + 27 if kvjgx < T and Qidx = T.

Here, gigx and kvjgx are the 0-indexed indices of the query and key-value pairs within the 27"-length
Rinput respectively. T'is the original sequence length. The mask M ;; is a binary matrix where allowed



attentions are 1 and disallowed are 0 (or —oo after softmax). The first two cases handle causal attention
within the Rywq and Rywa segments, respectively. The third and fourth cases manage the cross-
attention between Rywq and Rywg segments, precisely controlling information flow to maintain the
integrity of bidirectional prediction without information leakage relative to the token being predicted.

The output of this attention mechanism provides Masked vs. Janus training
a fused representation Hf"! for each token ;, e
which is then used to make the final prediction
following a repositioning step, where the repre-
sentations of the same token are summed, except
for the first and last tokens, due to their repre-
sentations containing information from only one
direction, while optimizing Ly;directional-

Accuracy

Janus 128
Janus 64
Janus 32
—*— Masked 128
—A&— Masked 64
—@— Masked 32

This Janus modeling approach, as conceptually 0e2
depicted in Figure[2](C), enables each token to
be a learning target informed by its full bidirec-
tional context, thereby enhancing training effi-
ciency compared to traditional MLMs (Figure 2]

(B)) and overcoming the limitations of unidirec- . . .
tional models (Figure[2] (A)). Figure 3: Superior Learning Efficiency of Janus

Modeling. Comparison of last-token prediction ac-
curacy between Janus modeling and conventional
masked modeling over 10k training steps. Janus
modeling consistently achieves higher accuracy for
the same model architecture and training duration,
demonstrating its enhanced efficiency in learning
from sequence data. The number in the legend
indicate hidden dimention.

K 2K 3K 'S 5K 6K 7K 8K %K 10K

Training Steps

Empirical Validation of Training Efficiency
To empirically assess the learning efficiency of
Janus modeling against conventional bidirec-
tional approaches, masked modeling, we con-
ducted a comparative experiment focused on
last-token prediction. This task was chosen as
it allows a direct comparison: both a standard
masked language model and our Janus modeling approach can predict the final token x7 given the
preceding context x1, . ..,x7_1, ensuring a fair basis for evaluation.

Aecmemcac C@@@C@@C\@\C@\C‘\C@@C@@@C@El
' Masked

_______________________________ S_t [a_n_d_A___________________________I__zis_t_T_oken
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Full global attention I

Figure 4: Janus and Masked Modeling Efficiency Validation. Both models are pre-trained from
scratch using identical hyperparameter settings, with the only difference being the masking strategy
applied in the final fusion attention layer. Last-token prediction is used to enable a fair comparison of
learning efficiency between the two models.

For this demonstration, we configured two model variants as Figure 4} Janus Model: A single-layer
bidirectional Mamba architecture equipped with a FlexAttention layer [26] for bidirectional fusion,
utilizing the Janus-specific attention mask M;; (Equation [6). This model predicts x; based on
the fused bidirectional context of 21, ...,2s—1,Z¢t1, ..., 27 as per the Janus modeling objective.
Masked Language Model: As a baseline, we construct a comparable single-layer Mamba architecture
followed by the same FlexAttention layer without an attention mask, trained using the conventional
masked language modeling (MLM) objective, where a fraction of tokens (typically 15%) contribute
to the loss.

il

Janus global attention

Both models were trained on the human reference genome (HG38) [132]] for 10,000 steps. Each training
sample had a context length of 131,072 tokens, processed with a batch size of 1. We evaluated
performance across three hidden dimensions: 32, 64, and 128, keeping other hyperparameters



consistent. Pre-training for Janus models, benefited from their sparse attention masks, takes around
27 minutes per 1,000 steps, nearly twice as fast as masked models.

For evaluation, both the masked and Janus models are given the full input sequence with the last
token 7 masked. This evaluation is conducted on a test set containing 1,920 sequences.

The results, presented in Figure [3| clearly demonstrate that models trained with the Janus modeling
method significantly outperformed those trained with the masked modeling approach in prediction
accuracy, given the same number of training steps. This finding substantiates that Janus modeling is
more effective at leveraging the DNA sequences for learning, thereby achieving superior training
efficiency while maintaining robust bidirectional understanding.

3.2 Hybrid Mixture-of-Experts (MoE) Model

After introducing the bidirectional efficient training method, we developed a bidirectional backbone
model to enhance sequence representation. Leveraging the efficient bidirectional fusion method, we
propose JanusDNA, a hybrid model that integrates the strengths of Mamba, Attention, and MoE.

Architecture As illustrated in Fig. |1} JanusDNA incorporates three primary components for se-
quence representation: Mamba, MoE, and Attention. Mamba, a State Space Model (SSM) [23]],
efficiently encodes input sequences using high-dimensional parameters. Compared to traditional
Transformer architectures, Mamba is more memory- and computationally efficient, making it particu-
larly suitable for processing long DNA sequences.

The Mixture-of-Experts (MoE) architecture provides a scalable approach to significantly increase
model capacity without proportionally increasing computational costs during training and inference
[33]. In JanusDNA, MoE layers replace the feedforward network (FFN) layers in the Mamba blocks
at a specific ratio following [24], achieving a balance between performance and efficiency. To ensure
balanced utilization of the experts, an auxiliary loss is introduced [34], encouraging the model to
distribute input data evenly across all experts. This auxiliary loss is computed based on the router
logits, which represent the probabilities of selecting each expert for a given input, as shown in Eq.
Given NN experts indexed by ¢ = 1 to IV and a batch 5 with T" tokens, the auxiliary loss is computed
as the scaled dot-product between vectors f and P:

N
Low=0a-N-> f;i-P, )

i=1

where f; is the fraction of tokens dispatched to expert 7,

fi= % meZB 1{argmax p(z) = i}, ®)

and P; is the fraction of the router probability allocated to expert ¢,

1
Pi=7 pilx). ©)

zeB

Here, p;(x) represents the probability of routing token x to expert ¢, while T is the total number of
tokens in the batch B. This auxiliary loss encourages balanced utilization of all experts, improving
overall model performance.

Bidirectional sequences are processed through independent stacks of Mamba and MoE layers, each
designed to enhance the model’s representational capacity. The Mamba layers efficiently capture
local contextual dependencies within the sequence, leveraging their memory-efficient state-space
modeling, while the MoE layers provide sparse scaling to enhance the model’s representational
capacity without incurring proportional computational overhead.

The forward and backward representations generated by these layers are fused using Flex Attention
[26], an optimized attention mechanism that supports sparse masks with reduced memory consump-
tion. This fusion enables the model to integrate both local and long-range global information streams,
resulting in a comprehensive bidirectional representation for improved performance.



Reverse Complement In the double-helix DNA structure, each strand contains semantically
equivalent information, with the reverse complement (RC) of a strand oriented in the opposite
direction and its bases complemented relative to the forward strand (A paired with T, and C paired
with G) [8]. However, recognizing both the forward and RC versions of non-palindromic motifs, such
as GATA and TATC, poses a significant challenge, as it is akin to learning two distinct motifs [35]]. To
address this, we adopt a post-hoc reverse complement representation strategy [36l]. Specifically, the
DNA sequence and its reverse complement are processed in parallel using the identical model. The
resulting representation vectors are then pooled to form a unified, enriched representation as shown in
Figure|1|(B). This approach enables the model to effectively learn from both the original and reverse
complement sequences, improving its ability to capture intricate patterns and relationships within
DNA sequences, thereby enhancing performance across various tasks. We further conduct ablation
experiments on reverse complement design in Appendix [B.1.3]

4 Experiments

4.1 Pre-training on Human Reference Genome

To ensure a fair comparison with prior work, we pre-train our model on only the human reference
genome (HG38 [32]) following the training setup described in [8]. Specifically, we adopt single
nucleotide-level tokenization to capture high-resolution input sequences and avoid overlooking critical
DNA information that may be lost when using k-mer tokenization, commonly used in attention-based
models [15]. Additionally, single nucleotide-level tokenization is employed to facilitate downstream
research on Single Nucleotide Polymorphisms (SNPs). Please note that performance on downstream
tasks depends on the model architecture, as well as the composition and diversity of the pretraining
data [[L1} [19) 20} [10]. Here, we specifically focus only on the architecture, and thus use only the
human reference genome for pretraining to ensure a fair comparison.

4.2 Downstream Tasks

We evaluate our model on three different benchmarks: Genomic Benchmark [37]], Nucleotide
Transformer Benchmark [11]], and DNALONGBENCH [38]]. We follow all benchmark settings of
Genomic Benchmark and Nucleotide Transformer Benchmark as described in [8]]. Accordingly,
we adopt the reported results from [8]] as our reference. Considering the practical computational
cost of sparse MoEs, we adjust the model’s hidden size to match or slightly reduce the number of
activated parameters compared to the baseline [8]], ensuring a fair comparison. As we introduce the
model with a middle attention layer in the ablation experiments (Section[B.I.1)), we present results for
models both with and without mid-attention on the Genomic Benchmark and Nucleotide Transformer
Benchmark.

4.2.1 Genomic Benchmark

Table 1: Genomic Benchmarks. Top-1 accuracy (1) across 5-fold cross-validation (CV) for a
supervised CNN baseline, pretrained HyenaDNA, Caduceus models, ConvNova and JanusDNA
models. Best values per task are bolded, second best are underlined. Error bars indicate the
difference between the maximum and minimum values across 5 random seeds used for CV.

CADUCEUS  CADUCEUS JANUSDNA  JANUSDNA

MODELS CNN HYENADNA PH PS CoNVNOvVA MLP MLP
ACTIVATED PARAM (264K) (436K) (470K) (470K) (386K) W/ MID-ATTN W/0 MID-ATTN
(426K) (431K)
MOUSE ENHANCERS 0.71540.087 0.780+0.025 0.7544+0.074 0.793+0.058 0.78440.009 0.770+0.048 0.76940.029
CODING VS. INTERGENOMIC 0.892+0.008 0.904+0.005 0.9154+0.003 0.910+0.003 0.943+0.001 0.912+0.003 0.91140.001
HUMAN vs. WORM 0.942+0.002 0.964+0.002 0.973+0.001 0.968+0.002 0.967+0.002 0.971+0.001 0.97140.001

HUMAN ENHANCERS COHN 0.70240.021 0.7294+0.014 0.747+0.004 0.745+0.007 0.74340.005 0.74140.005 0.74240.006
HUMAN ENHANCER ENSEMBL  0.74440.122 0.8494-0.006 0.89340.008 0.900+4-0.006 0.900+0.004 0.897+0.004 0.899+0.004
HUMAN REGULATORY 0.87240.005 0.869+0.012 0.872+0.011 0.87340.007 0.873+40.002 0.877+0.005 0.868+0.008
HUMAN OCR ENSEMBL 0.698+0.0130.7834-0.007 0.8284-0.006 0.8184-0.006 0.7934-0.004 0.822+0.003 0.824+40.001
HUMAN NONTATA PROMOTERS 0.86140.009 0.94440.002 0.946+0.007 0.94540.010 0.951+0.003 0.957+0.004 0.954+0.010

We start with the Genomic Benchmark, which is a collection of 8 regulatory element classification
tasks with sequence lengths mostly ranging from 200 to 500, and one up to 4,776. We take the hidden



state embedding of the final layer and apply a pooling layer on sequences to obtain a fixed-length
representation. We then apply a linear layer to map the representation to the number of classes for
each task. We perform 5-fold cross-validation for each task using the same seed as [8]. As shown
in Table[T] our model achieves state-of-the-art performance on 3 out of 8 tasks, outperforming the
previous best model, while the remaining tasks are close to the best model. Please note that this
benchmark is already quite saturated, as shown in Table[I] and we do not expect improvements in
pretraining to meaningfully improve benchmark performance further.

Table 2: Nucleotide Transformer Tasks. Performance (1) across 10-fold CV for Enformer, DNABERT-
2, Nucleotide Transformer v2, HyenaDNA, Caduceus-PH, ConvNova, and JanusDNAp,,. Metrics
vary by task: MCC for histone markers and enhancer annotation, F1-score for promoter annotation
and splice site acceptor/donor, and accuracy for splice site “all”. Best values per task are bolded,
second best are italicized. Given the disparity in model size, we also underline the best value among
models with fewer than 2M activated parameters. Error bars indicate the difference between the
maximum and minimum values across 10 random seeds used for CV.

> 100M ACTIVATED PARAM. MODELS < 2M ACTIVATED PARAM. MODELS
JANUSDNA  JANUSDNA
ENFORMER DNABERT-2 NT-v2 HYENADNA CADUCEUS-PH CONVNOVA MLP MLP
(252M) (117M) (500M) (1.6M) (1.9M) (1.7M) W/ MIDATTN W/O MIDATTN

(2.001M) (2.009M)

Histone Markers

H3 0.71940.048 0.785+0.033 0.7844+0.047 0.77940.037 0.815+0.048 0.8124+0.017 0.835+0.009 0.831+0.023
H3K14AC 0.288+0.0770.516+0.028 0.5514+0.021  0.6124+0.065 0.631+0.026 0.64440.009 0.729+40.022 0.718+0.026
H3K36ME3 0.344+0.0550.591£0.020 0.625+0.013  0.613+0.041 0.601£0.129 0.661£0.019 0.702+0.015 0.699+0.025
H3K4ME1 0.291+40.0610.5114+0.028 0.550+0.021  0.5124+0.024 0.523+0.039 0.55440.023 0.615+0.035 0.616+0.018
H3K4ME2 0.21140.069 0.336+0.040 0.31940.045 0.45540.095 0.487+0.170 0.48540.032 0.589+40.023 0.586+0.019
H3K4ME3 0.158+0.0720.352+0.077 0.410+£0.033  0.549+0.056 0.54440.045 0.566+0.027 0.688+0.026 0.675+0.014
H3K79ME3 0.496+0.0420.613+0.030 0.626+£0.026  0.672+0.048 0.697+0.077 0.700£0.007 0.747+0.013 0.743£0.009
H3K9AC 0.42040.063 0.542+0.029 0.562+0.040 0.581+0.061 0.622+0.030 0.658+0.011 0.673+0.014 0.661+0.027
H4 0.7324+0.076 0.796+0.027 0.7994+0.025 0.763+0.044 0.811+0.022 0.808+0.008 0.812+0.011 0.813+0.013
H4Ac 0.27340.063 0.463+0.041 0.495+0.032 0.564+0.038 0.6214+0.054 0.636+0.011 0.698+0.013 0.705+0.023

Regulatory Annotation

ENHANCER 0.4514+0.1080.516+£0.098 0.548+0.144  0.517+£0.117 0.546+0.073 0.586+0.038 0.559+0.042 0.542+0.044

ENHANCER TYPES 0.3094+0.134 0.423+0.051 0.42440.132  0.386+0.185 0.439+0.054 0.500£0.018 0.503+0.038 0.492+0.096

PROMOTER: ALL 0.954+0.006 0.971+0.006 0.976+0.006 0.960+0.005 0.970+0.004 0.967+0.001 0.970£0.002 0.97040.003
NONTATA 0.955+0.0100.972+0.005 0.976+0.005 0.959+0.008 0.969+0.011 0.968+0.003 0.9714+0.004 0.971+0.003

TATA 0.960+0.023 0.955+0.021 0.966+0.013  0.944+0.040 0.953+0.016 0.969+0.003 0.958+0.007 0.960+0.008
Splice Site Annotation
ALL 0.8484+0.0190.939+0.009 0.983+0.008 0.956+0.011 0.94040.027 0.9654+0.004 0.967+0.005 0.94340.020
ACCEPTOR 0.91440.028 0.975+0.006 0.981+0.011 0.9584+0.010 0.937+0.033 0.97140.003 0.957+0.012 0.961+0.009
DONOR 0.90640.027 0.963+0.006 0.985+0.022 0.949+0.024 0.948+0.025 0.965+0.003 0.94840.008 0.935+0.016

4.2.2 Nucleotide Transformer Tasks

Next, we evaluate our model on the Nucleotide Transformer tasks, which include 18 datasets covering
histone marker prediction, regulatory annotation prediction, and splice site annotation prediction.
Following the evaluation metrics outlined in [[L1], we perform 10-fold cross-validation for each task,
adhering to the same experimental settings as [8]].

As shown in Table[2} our model achieves state-of-the-art performance on 12 out of 18 tasks, surpassing
previous models, including those with 250 times more activated parameters. While the promoter
and splice site annotation tasks exhibit slightly weaker performance compared to the best larger
model, this underscores the potential importance of training data scale and diversity for these specific
tasks. For clarity, we present only the results of Caduceus-PH in the table due to space constraints, as
Caduceus-PS performs slightly worse than Caduceus-PH.

4.2.3 DNA Long Range Benchmark

To further assess our model’s ability to capture long-range dependencies in DNA sequences, we
evaluate it on the expression Quantitative Trait Loci (eQTL) prediction task from DNALONGBENCH
[38]] with the sequence length of 450,000. The eQTL task measures whether a nucleotide variant
can influence the expression of a target gene based on the sequences of the gene and its surrounding
regions.



Table 3: DNALongBench eQTL Tasks. The AUROC for expert model - Enformer, Caduceus-PH,
and JanusDNA. The best results are bolded.

JANUSDNA ~ JANUSDNA
MODELS EXPERT MODEL CADUCEUS-PH MLP
W/O MID-ATTN
ACTIVATED PARAM (252m) (7.7M) (7.662M) W/0 MID-ATTN
’ (7.745M)
ARTERY TIBIAL 0.741 0.690 0.803 0.852
ADIPOSE SUBCUTANEOUS 0.736 0.759 0.741 0.769
CELLS CULTURED FIBROBLASTS 0.639 0.690 0.771 0.802
MUSCLE SKELETAL 0.621 0.789 0.803 0.864
NERVE TIBIAL 0.683 0.842 0.877 0.914
SKIN NOT SUN EXPOSED SUPRAPUBIC 0.710 0.812 0.875 0.903
SKIN SUN EXPOSED LOWER LEG 0.700 0.692 0.706 0.846
THYROID 0.612 0.703 0.752 0.793
WHOLE BLOOD 0.689 0.769 0.794 0.821

Due to limited computational resources, we compare our model against the state-of-the-art DNA
language model, Caduceus-PH [8]], which is also trained with the same data scale for fair comparison,
and the expert model for this task, Enformer [39]. The results for Enformer are taken directly from
DNALONGBENCH [38]]. For Caduceus-PH, we entirely fine-tune the official HuggingFace-released
weights, which are pretrained on sequences of length 131k. Our model is pretrained and entirely
fine-tuned using the same setup and sequence length as Caduceus-PH to ensure a fair comparison.
As shown in Table 3] JanusDNA achieves the best performance on 8 out of 9 datasets, significantly
outperforming the expert model and Caduceus-PH despite using fewer computational parameters.

5 Conclusion

Summary In this work, we introduced a novel global modeling paradigm for bidirectional DNA
sequence representation, combining the bidirectional capability of masked language modeling with
the speed and optimization benefits of autoregressive approaches. We proposed JanusDNA, a
Mamba MoE-based DNA foundation model with global attention that enhances genomic sequence
understanding while maintaining low memory complexity, supporting the processing of up to 1
million base pairs (1 Mbp) on a single 80GB GPU. Experimental results demonstrate that JanusDNA
outperforms HyenaDNA, Caduceus, and other Transformer-based models across a range of benchmark
tasks and the expert model on eQTL tasks. By leveraging global attention mechanisms and efficient
long-range sequence processing, JanusDNA offers a powerful framework for advancing research on
long-range genomic interactions.

Limitations and Future Work Although JanusDNA demonstrates high learning efficiency on a
fixed data scale, current training is restricted to the human reference genome for fair architectural
comparison. Expanding the corpus to include human genomic variants (e.g., 1000 Genomes Project)
and non-human species (e.g., primates) could further boost modeling capacity and biological insight.
JanusDNA also lacks integration of multimodal data such as epigenetic states (e.g., chromatin
accessibility, histone modifications) and single-cell transcriptomic profiles, which are vital for
resolving cell-type-specific regulation and predicting chromatin-influenced phenotypes. Future work
will incorporate these modalities and explore functional roles of key genomic features (e.g., CTCF-
mediated chromatin loops, enhancer RNAs, non-coding risk variants). Experimental validation (e.g.,
CRISPR, organoids) will prioritize therapeutic targets, while clinical collaborations will evaluate
JanusDNA’s utility in personalized diagnostics and drug discovery. These efforts aim to evolve
JanusDNA into a unified framework linking genome structure, epigenetic regulation, and disease
mechanisms.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims are summarized in Section Bl Also see Section M and
Appendix [B.2] for more experimental evidence.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include the limitations of our work in Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We detail the assumption and proof of theoretical result on training efficiency
in Section

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We use publicly-accessible human reference genome [32] and benchmarks
(371111 /40]. We explain our setting in Sectiond]and Appendix [B.2] We upload the codes
and instructions to recover the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly-accessible dataset HG38 [32]. We upload the codes and
instructions to recover the results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details are summarized in Section[d]and Appendix [B.2]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We show the standard error in most training curves. We calculate standard error
across 10 random seeds for nucleotide transform tasks, and 5 random seeds for genomic
benchmark in Section[d] We use 3 random seeds for ablation in Appendix [B.1.1] But no
error bars for DNALongBench [40] due to limited computational resources.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have the Appendix [B.3]on this.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have read and understood the code of ethics and have done our best to
conform.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This work focuses on biological information understanding for the academic
use. This work is not related to any private or personal data, and there are no explicit
negative social impacts.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: We do not foresee any high risk for misuse of this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we credited them in appropriate ways.
Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will release our code base with included readme files.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We did not involve LLMs as any important, original or non-standard compo-
nents.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

A.1 DNA Language Models

Attention-based Models Attention-based DNA language models, such as DNABERT [9],
DNABERT?2 [[10]], and Nucleotide Transformer [11]], have demonstrated significant success in model-
ing DNA sequences. These models employ k-mer encoders to group consecutive nucleotide base pairs
into single tokens, enabling efficient sequence representation. However, their global attention mecha-
nisms restrict scalability to sequences of approximately 12,000 base pairs (bps), limiting their ability
to capture long-range dependencies. Furthermore, the use of k-mer tokenizers reduces modeling
resolution, posing challenges for tasks like Single Nucleotide Polymorphism (SNP) analysis.

State Space Models State Space Models (SSMs) have been applied to genomic tasks, with Hye-
naDNA [15] utilizing the Hyena operator [41]] to process sequences up to 1 million base pairs (bps).
Despite this capability, its unidirectional design limits the model’s ability to capture bidirectional
genomic contexts [29]. To overcome this, Caduceus [8] introduces a bidirectional Mamba archi-
tecture, which aggregates information from both upstream and downstream sequences, enhancing
genomic context comprehension. However, SSM-based models often face challenges in memory
recall tasks when compared to transformer-based approaches [42]. Additionally, their masking-based
training paradigm is less efficient, as it uses only 15% of the data for loss computation per iteration.
In contrast, autoregressive training paradigms take advantage of nearly 99% of the data, significantly
improving training efficiency and overall performance. Latest SSM-based DNA models, such as
Evo [19]] and Evo2 [20]], introduce stripedHyena and StripedHyena2, showing better scaling rate
and improved throughput compared to HyenaDNA. However, to gain better generative performance,
they still rely on the autoregressive training paradigm, facing the same limitation as HyenaDNA for
bidirectional understanding.

Hybrid Models Hybrid models incorporate multiple encoding mechanisms such as convolutional
neural networks (CNNs), Mamba, and Attention to leverage the complementary strengths of each
architecture. Enformer [39] combines CNNs with Transformers, enabling the model to capture
long-range genomic interactions spanning up to 100 kilobases. HybriDNA [43]] integrates Mamba
and Transformer components, extending its receptive field to 131 kilobases.

B Experimental Details

B.1 Ablation Experiments

B.1.1 JanusDNA Hybrid Architecture

To determine the optimal hybrid architecture for DNA sequence modeling that effectively balances
local and global attention, we perform ablation experiments on various configurations of the uni-
directional encoder (i.e., modules preceding the bidirectional fusion layer). Referring to [24]], we
also explore the value of the additional mid-attention layer. Specifically, we evaluate the following
configurations: 1) mamba and FFN blocks only, 2) mamba and FFN blocks with mid-attention, 3)
mamba and FFN blocks with MoE, and 4) mamba and FFN blocks with both mid-attention and MoE.
The ratio of MoE to replace FFNs is set to 0.5. In models with mid-attention, the two independent
bidirectional Mamba blocks at the 4th layer are replaced with two independent causal Attention
blocks implemented using FlashAttention2 [44].

The models are pre-trained on sequences of lengths 1024 and 131072, with batch sizes of 128 and 1,
respectively, using a single GPU. All other hyperparameters and training settings are consistent with
the pre-training setup described earlier. To ensure a consistent number of activated parameters across
different models, we adjust the model configurations as Table ] The training perplexity results for
these configurations are shown in Figure 3]

The training perplexity results reveal that the model with mamba, FFN, and mid-attention exhibits
higher perplexity compared to the model with only mamba and FFN, while the model with mamba,
FFN, and MoE achieves lower perplexity. This suggests that mid-attention may not enhance training
efficiency, whereas MoE contributes positively. Notably, the model combining mamba, FFN, mid-
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Table 4: Hyperparameter settings for JanusDNA ablation experiments.

JANUSDNA (ALL WITH MAMBA)

FFN MIDATTN+FFN  MOE+FFN  MIDATTN+MOE+FFN

LAYERS 8 8 8 8

WIDTH 148 148 128 128

ACTIVATED PARAMS (M) 5.973 5.973 6.084 6.080

TOTAL PARAMS (M) 5.973 5.973 28.104 28.100

GLOBAL STEPS 10K 10K 10K 10K

EXPERT NUMBER OF MOE 0 0 16 16

HEAD NUMBER OF ATTENTION 4 4 4 4

MULTIPLE NUMBER OF FFN WIDTH 4 4 4 4

OPTIMIZER ADAMW

OPTIMIZER MOMENTUM B1, B2 =0.9,0.95

LEARNING RATE 83

LR SCHEDULER COSINE DECAY

WEIGHT DECAY (MODEL) 0.1

. Loss Curves for Sequence Length 1024 Los Loss Curves for Sequence Length 131k
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Figure 5: Training perplexity of Mid-attention and MoE ablation models on 1024-length and 131k-
length sequences.

attention, and MoE achieves the lowest perplexity, indicating that mid-attention and MoE can
synergistically improve training performance.

To further investigate the role of mid-attention, we conduct additional ablation experiments comparing
models with and without mid-attention (all incorporating MoE due to its demonstrated benefits) on
the Nucleotide Transformer Benchmark with 3-fold cross-validation since Genomic Benchmark is
too saturated to show apparent differences. We pretrain and fine-tune models with hidden dimensions
of 32, 72, and 128. The results, summarized in Figure

[6] indicate that models with mid-attention perform better at a hidden dimension of 32. However, as
the hidden dimension increases, models without mid-attention outperform those with mid-attention at
a dimension of 72. At a dimension of 128, the performance of models with and without mid-attention
becomes comparable. These findings suggest that mid-attention provides diminishing benefits as the
hidden dimension grows larger, eventually becoming negligible at higher dimensions.

Given that larger hidden dimensions are generally preferred for large-scale DNA sequence modeling,
and considering that mid-attention introduces additional computational overhead, we prefer to use
models with mamba and FFN blocks without mid-attention for downstream tasks. Nonetheless, we
include the experiments of the model with mid-attention in our formal evaluations on Genomic Bench-
mark and Nucleotide Transformer Benchmark to ensure completeness and provide a comprehensive
analysis.

B.1.2 Reverse Complement (RC)

DNA follows the complementary base-pairing principle, meaning each DNA strand has a reverse
complement strand with equivalent genetic information. However, despite this theoretical equivalence,
many biologically important motifs (e.g., transcription factor binding sites) are non-palindromic. Rec-
ognizing both the forward and RC versions of such motifs (for instance, motifs like GATA and TATC)
is challenging, as it effectively requires the model to learn two distinct representations. Therefore,
explicitly integrating RC information allows the model to more robustly and comprehensively capture
DNA sequence patterns. Nonetheless, the utility of RC depends heavily on the specific biological
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Accuracy of JanusDNA with and without Mid-Attn across Dimensions on Nucleotide Transformer

#4 L

° o =
® © o

Accuracy
°
g

0.6 w/o Mid-Attn
. —— w/ Mid-Attn
/‘ f ‘.\‘ ® 32dim
05 /A = 72dim
oS A 128dim
0.4
N N
& & EEEFE T & &2 G FE 2
o L 8 8 R BT A4F & K& NS o &7 &
& O o o o 89 ¥ ¥ e S
L R RN & e & & & &
XA S QEFCIEEN
PN @ & ]
& o 8 Q
A\y e/ Q‘
KR <
K

Figure 6: Mid attention ablation results on Nucleotide Transformer.

context. For instance, genomic elements such as splice sites are strictly defined by a single DNA
strand, making RC inclusion potentially suboptimal or misleading.

Regarding computational overhead, RC is introduced only during inference by averaging the embed-
ding representations of a strand and its RC prior to decoding. Thus, the additional computational cost
is minimal, primarily involving an extra forward pass through the model for the RC strand.

To quantitatively assess the impact of incorporating RC, we conducted ablation experiments using the
NT benchmark. We fine-tuned JanusDNA models under consistent experimental conditions (learning
rate le-3, batch size 256), with and without RC during prediction. The results clearly indicate
that models utilizing RC generally outperform those without RC across most tasks. Notably, the
exception to this pattern was observed in splice site prediction tasks, where RC inclusion led to inferior
performance, consistent with the biological reality that splice sites are inherently strand-specific.

Table 5: Performance of JanusDNA with and without middle attention, with and without Re-
verse Complement on Nucleotide Transformer Benchmark. Top-1 accuracy (1) across 5-fold cross-
validation (CV) for different model variants. Best values per task within each group (left two columns
are JanusDNA without middle attention, right two columns are JanusDNA with middle attention)
are bolded. Error bars indicate the standard deviation across 5 random seeds used for CV.

JANUSDNA
TASKS W/ MID-ATTN W/O MID-ATTN
W/0 RC W/ RC W/0 RC W/ RC

H3 0.789+0.028 0.828+0.020 0.79540.026 0.830+40.015
H3K14AcC 0.68940.029 0.729+40.022 0.6624+0.015 0.7004+0.015
H3K36ME3 0.66140.021 0.70140.022 0.658+0.016 0.688+0.012
H3K4MEI 0.574+0.025 0.609+0.022 0.555+0.030 0.605+0.028
H3K4ME2 0.546+0.026 0.588+0.020 0.53240.020 0.581+0.024
H3K4ME3 0.6404+0.013 0.681+0.016 0.62540.015 0.67540.014
H3K79ME3 0.723+0.025 0.747+0.013 0.71040.020 0.74340.009
H3K9AC 0.638+0.023 0.673+0.014 0.631+0.016 0.658+0.020
H4 0.781+0.020 0.810+0.022 0.7754+0.019 0.813+0.011
H4Ac 0.653+0.023 0.696+0.019 0.62940.017 0.684+0.020
ENHANCERS 0.3824+0.035 0.396+0.033 0.37940.041 0.397+40.065
ENHANCERSTYPES 0.475+0.053 0.488+0.066 0.49040.046 0.492+40.096
PROMOTERALL 0.964+0.003 0.969+0.002 0.96240.003 0.97040.002
PROMOTERNOTATA 0.9614+0.004 0.969+0.004 0.9614+0.004 0.97040.005
PROMOTERTATA 0.946+0.012 0.954+0.010 0.9474+0.010 0.95340.019

SPLICESITESALL

0.961+0.003 0.9484+0.008

SPLICESITESACCEPTORS 0.928+40.010 0.90640.016

0.946+0.007 0.9224+0.019
0.932+0.014 0.90440.008

SPLICESITESDONORS 0.915+0.008 0.89340.006 0.921+0.009 0.87440.011

B.1.3 Janus and Casual Modeling

We conducted an ablation comparing Masked and Janus modeling using the same architecture as in
Figure[d] In order to further demonstrate the value of bidirectional modeling, we here conduct the
ablation experiments between Janus modeling and Casual modeling.
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Table 6: Comparasion of Janus models and Casual models on Last-Token prediction.

Janus Casual

size(M) 0.056 0.207 0.795 0.061 0.209 0.814
step(k)\dim 32 64 128 40 76 152

1 0428 0.439 0445 0421 0426 0434
2 0.445 0451 0460 0454 0441 0.453
3 0.450 0462 0472 0443 0447 0471
4 0.451 0466 0473 0443 0451 0.468
5 0.453 0470 0479 0454 0457 0.478
6 0.455 0473 0482 0451 0453 0.481
7 0.458 0.474 0484 0449 0457 0482
8 0459 0477 0488 0459 0465 0479
9 0.461 0479 0490 0453 0467 0.479
10 0.461 0480 0491 0459 0465 0.484

Table 7: Comparasion of Janus models and Casual models on Middle-Token prediction.

Janus Casual

size(M) 0.056 0.207 0.795 0.061 0.209 0.814
step(k)\dim 32 64 128 40 76 152

1 0428 0436 0.440 0.384 0.400 0.408
2 0.438 0454 0465 0429 0425 0.443
3 0437 0449 0467 0436 0446 0.454
4 0.443 0465 0471 0434 0451 0454
5 0444 0477 0477 0434 0449 0.451
6 0.456 0474 0482 0428 0442 0.446
7 0458 0471 0477 0438 0457 0.461
8 0453 0478 0478 0434 0455 0.461
9 0458 0481 0.485 0447 0458 0.465
10 0456 0482 0.488 0443 0456 0.465

Conducting a direct ablation with same architecture between Casual modeling and Janus modeling
is challenging due to inherent architectural differences. The core strength of Janus modeling lies in
its bidirectional context understanding, requiring a bidirectional architecture. Casual modeling, by
definition, is strictly unidirectional, and adapting it to a bidirectional architecture would conflict with
its fundamental principles.

However, we can still maintaint the most faireness by keeping models with same parameters. We
constructed Casual models with one layer of a single mamba encoder and a FlashAttention2 layer
with a causal attention mask, ensuring comparable model sizes to the Janus models. Following same
pre-training settings, we compared the two kinds of models in last-token prediction and middle-token
prediction. we expected similar performance for the prediction of the last token (where there is no
bidirectional information, so both models have exactly the same information to predict the last token),
whereas we expected Janus models to outperform Casual models for the prediction of a token in the
center of the sequence (where Janus benefits from the bidirectional context).

The results are presented in table [6] and table [7] We confirm that the Janus model consistently
outperforms the Casual models for tokens in the center of the sequence across all evaluated model
sizes. To our surprise, Janus models also slightly outperform the Casual models even on the last
token prediction task, suggesting Janus models indeed learn richer DNA representations through
bidirectional training.

B.1.4 Multilayer Perceptron as feature enhancer

The features fused by attention can be further enhanced through the addition of a Multi-Layer
Perceptron (MLP). To verify this, we conduct ablation experiments and name the JanusDNA models
equipped with an MLP as JanusDNA-MLP, distinguishing them from the original JanusDNA models
without the MLP attached after the feature fusion attention module. We perform the ablation
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experiments on both the Nucleotide Transformer Benchmark and the DNALONGBENCH Benchmark,
as shown in Table[8|and Table[3] The inclusion of the MLP leads to notable performance improvements
across both benchmarks.

Table 8: Performance of JanusDNA with and without MLP on Nucleotide Transformer Tasks.
Performance (1) across 10-fold CV for janusDNA and JanusDNA mlp variants. Metrics vary by task:
MCC for histone markers and enhancer annotation, F1-score for promoter annotation and splice site
acceptor/donor, and accuracy for splice site “all”. Best values per task are bolded, second best are
italicized. Since all models are approximately fewer than 2M activated parameters, we underline the
best value(s) among them. Error bars indicate the difference between the maximum and minimum
values across 10 random seeds used for CV.

JANUSDNA  JANUSDNA
MLP MLP
W/ MIDATTN W/O MIDATTN
(2.001M)  (2.009M)

JANUSDNA  JANUSDNA
W/ MID-ATTN W/O MIDATTN
(1.980M) (1.988M)

Histone Markers

H3 0.82140.021 0.824+0.012 0.835+0.009 0.831+0.023
H3K14AC 0.665+0.034 0.685+0.016 0.729+0.022 0.718+0.026
H3K36ME3 0.6584+0.024 0.670+£0.012 0.702+0.015 0.699+0.025
H3K4ME1 0.56340.041 0.571+0.018 0.615+0.035 0.616+0.018
H3K4ME2 0.50940.056 0.548+0.022 0.589+0.023 0.586+0.019
H3K4ME3 0.605+0.030 0.629+0.022 0.688+0.026 0.675+0.014
H3K79ME3 0.716+0.017 0.72740.023 0.747+0.013 0.743+0.009
H3K9AC 0.64140.024 0.639+0.019 0.673+0.014 0.6614+0.027
H4 0.809+0.021 0.816+0.008 0.812+0.011 0.813+0.013
H4Ac 0.637+0.060 0.653+0.034 0.698+0.013 0.705+0.023

Regulatory Annotation

ENHANCER 0.564+0.022 0.535+0.036 0.5594+0.042 0.542+0.044

ENHANCER TYPES 0.46240.049 0.470+0.025 0.503+0.038 0.49240.096

PROMOTER: ALL 0.969+40.002 0.97140.002 0.9704+0.002 0.970+0.003
NONTATA 0.97140.003 0.9714+0.002 0.971+0.004 0.9714+0.003

TATA 0.956+0.010 0.958+0.008 0.958+0.007 0.960+0.008
Splice Site Annotation
ALL 0.963+0.022 0.96040.009 0.967+0.005 0.943+0.020
ACCEPTOR 0.94940.020 0.939+0.022 0.95740.012 0.961+0.009
DONOR 0.94740.015 0.936+0.014 0.948+0.008 0.935+0.016

B.2 Formal Experiment
B.2.1 Pre-training

Architecture configuration We utilize Mamba, FFN, MoE blocks as the primary building blocks
for unidirectional representation, which are then followed by a bidirectional fusion layer. There are 8
layers in each unidirectional encoder and each layer consists of one Mamba block and one FEN block.
The MoE block is to replace the FFN block at a certain ratio, which is set to 0.5 in our experiments.
The number of experts is set to 16 and the dimension of FFN is set to 4 times the hidden dimension.
The bidirectional fusion layer is achieved by a FlexAttention layer [[26] with 4 attention heads.

Meanwhile, we also implement a version of the model with mid-attention, which replaces the Mamba
block at the fifth layer with a mid-attention layer. The mid-attention layer is implemented with
FlexAttention with 4 attention heads. The attention mask is set to half triangle to allow the model to
only attend to the tokens ahead of the current token to keep causality.

Pre-training setup To ensure a fair comparison with prior work, we pre-train our model on the
human reference genome (HG38 [32]) following the training setup described in [8]]. We use cross-
entropy loss for pre-training. The model is trained with a learning rate of 8 x 10~2, maintaining a
constant token count of 229 tokens per batch. Two sequence lengths are used: 1024 and 131072, with
corresponding batch sizes of 128 and 1, respectively, across 8 GPUs. Optimization is performed
using AdamW [45] with a weight decay of 0.1, 81 = 0.9, and 82 = 0.95. A cosine learning rate
scheduler is applied, incorporating a warmup phase for 10% of the training steps. The learning rate
starts at 1 x 107° and peaks at 1 x 10~*. The coefficient for the MoE auxiliary loss is set to 0.2. The
gradient clipping threshold is set to 1.0.

For the 1024-length model, training is conducted for 10,000 steps, while the 131072-length model is
trained for 50,000 steps.
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We pre-trained three scales of the model: 32, 72, and 144 hidden dimensions to keep the same
activated parameters for fair comparison with baseline models on different benchmarks. The hidden
dimensions of 32 and 72 are used for the 1024-length model, while the 144 hidden dimension is used
for the 131072-length model. The feedforward dimension is set to 4 times the hidden dimension, and
the number of attention heads is set to 8. The coefficient for the MoE auxiliary loss is set to 0.2, the
number of experts is set to 16. All hyperparameter settings are listed as Table[9]

Table 9: Hyperparameter settings for JanusDNA pretraining (select models).

JANUSDNA

W/ MIDATTN W/O MIDATTN
LAYERS 8 8 8 8 8
WIDTH 32 72 32 72 144
ACTIVATED PARAMS (M) 0.4221.980 0.428 1.989 7.664
TOTAL PARAMS (M) 1.798 8.947 1.804 8.956 35.533
MAX SEQ. LEN. 1024 1024 1024 1024 131072
BATCH SIZE 1024 1024 1024 1024 8
GLOBAL STEPS 10K 10K 10K 10K 50K
EXPERT NUMBER OF MOE 16 16 16 16 16
HEAD NUMBER OF ATTENTION 4 4 4 4 4
MULTIPLE NUMBER OF FFN WIDTH 4 4 4 4 4
COEFFICIENT OF AUXILIARY MOE LOSS 0.2 0.2 0.2 0.2 0.2
RUNTIME(H800 WITH EVALUATION EVERY 2K STEPS) 3H3M 3H7M 3H2M 3H8M 9H17M
OPTIMIZER ADAMW
OPTIMIZER MOMENTUM 81, B2=0.9,0.95
LEARNING RATE 8e ™3
LR SCHEDULER COSINE DECAY
WEIGHT DECAY (MODEL) 0.1

B.2.2 Benchmarks

Genomic Benchmark For the Genomic Benchmark tasks, we follow the experimental setup of
[8]] and report their results for comparison. To ensure a fair evaluation, we fine-tune 32-dimensional
models to match the activated parameter count of the baselines.

We apply 5-fold cross-validation, splitting the training set into 90/10 train/validation splits and using
early stopping based on validation performance with seeds of {1,2,3,4,5}. Models are fine-tuned
for 10 epochs with a batch size of 256.

For learning rate selection, we perform hyperparameter tuning over 1 x 1073,2 x 10~ as [8]], and
report the best-performing configuration across cross-validation, as summarized in Table[T0] We use
cross-entropy loss for fine-tuning. For JanusDNA, the coefficient for the MoE auxiliary loss is set to

0.2.
Table 10: JanusDNA models with and without mid-attention hyperparameter selection for learning

rate on genomic benchmarks for top-1 accuracy averaged over 5-fold cross-validation.

DATASET W/ MIDATTN W/O MIDATTN
MOUSE ENHANCERS le™3 2¢73
CODING VS. INTERGENOMIC le73 le3
HUMAN vS. WORM le3 le™3
HUMAN ENHANCERS COHN le73 le3
HUMAN ENHANCER ENSEMBL le73 le3
HUMAN REGULATORY le3 le™3
HUMAN OCR ENSEMBL le73 2e73
HUMAN NONTATA PROMOTERS le™3 le™3

Nucleotide Transformer Tasks For the Nucleotide Transformer tasks, we adopt the experimental
setup from [8] and report their results for comparison. To ensure a fair comparison, we fine-tune
72-dimensional models to match the activated parameter count of the baseline models.
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We use 10-fold cross-validation with seeds of {1,2,3,4,5,6,7,8,9,10}, splitting the dataset into
90/10 train/validation subsets and applying early stopping based on validation performance. Each
model is fine-tuned for 20 epochs.

We use cross-entropy loss for fine-tuning. We conduct hyperparameter tuning over the following
search space, the same as [8]]: learning rates in 1 x 1072, 2 x 10~ and batch sizes in 128, 256, 512.
For each task, we report the best-performing configuration across cross-validation, as summarized in
Table For JanusDNA, the coefficient for the MoE auxiliary loss is set to 0.2.

Table 11: JanusDNA Hyperparameter Selection for Nucleotide Transformer Tasks. Model with
Mid-Attention and Model without Mid-Attention fine-tuning hyperparameters chosen based on best
performance averaged over 10-fold cross-validation.

JANUSDNA
W/ MIDATTN W/0O MIDATTN

LR BATCH SIZE LR BATCH SIZE

H3 le3 256 273 128
H3K14AC 1e*§ 256 le™3 256
H3K36ME3 le™3 256 2e73 512
H3K4ME1 1le73 256 le™3 256
HISTONE H3K4ME2 le3 256 le™3 256
MARKERS H3K4ME3 le~3 256 le~3 256
H3K79ME3 1e73 256 le™3 256
H3K9AcC le™3 256 le™3 128
H4 1e73 256 le™3 256
H4AcC 1e73 256 le™3 256
ENHANCERS 1le 3 512 1le73 512
—3 -3
REGULATORY ENHANCERS TYPES 2e73 256 2e73 256
ANNOTATION PROMOTER ALL 16,3 512 1e73 128
PROMOTER NO TATA le 256 le 128
PROMOTER TATA 2e73 256 1le 3 128
-3 -3
SPLICE SITE SPLISCE SITES ACCEPTORS §e73 };2 §<373 };2
ANNOTATION PLICE SITES ALL 6_3 6_3
SPLICE SITES DONORS 2e 128 2e” " 128

DNALONGBENCH For the DNALONGBENCH eQTL tasks, we compare JanusDNA with
both the expert model Enformer and the state-of-the-art architecture Caduceus-PH. We ob-
tain the pre-trained weights of Caduceus-PH from Hugging Face: https://huggingface.co/
kuleshov-group/caduceus-ph_seqlen-1k_d_model-256_n_layer-4_lr-8e-3.

For all models, we extract the hidden state embeddings from the final layer and apply a pooling layer
to obtain a fixed-length representation for each input sequence. A linear classification head is then
used to map these representations to the target number of classes for each cell type.

To ensure comparability, we fine-tune the JanusDNA model with 144-dimensional embeddings,
matching the activated parameter count of Caduceus-PH. Fine-tuning is conducted for 3 epochs using
a learning rate of 4 x 10~ and a batch size of 8. We use cross-entropy loss for fine-tuning, and for
JanusDNA, the coefficient for the MoE auxiliary loss is set to 0.02. Training is distributed across
eight 80GB GPUs, with each GPU processing one batch. All models are fine-tuned and evaluated
using float32 precision to ensure stability and fairness in comparison. Due to limited computational
resources, we conduct a single run per sub-dataset using the same set of hyperparameters across all
experiments.

Transcription Factor Prediction (Mouse) We conducted experiments on non-human Genome
Understanding Evaluation (GUE) tasks [10]], focusing on transcription factor binding site prediction
in mouse genomes to evaluate its generalization capability.
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We followed DNABERT?2’s experimental setup, performing standard fine-tuning with a batch size
of 32. Unlike DNABERT?2’s 1000-epoch fine-tuning at a learning rate of 3e-5, we fine-tuned the
JanusDNA model for only 10 epochs at a learning rate of le-3.

Results, shown in Table@ it is very interesting to see that JanusDNA, with fewer active parameters,
can perform similarly to DNABERT?2 on these tasks, despite being pre-trained only on the human
reference genome. In future work, we plan to explore further how more diverse pre-training data
affects the model performance.

Table 12: Transcription Factor Prediction (Mouse). Performance (1) across various models. Metrics
are MCC for different categories (0-4). Best values per category are bolded. Given the disparity
in model size, we also underline the best value among models with fewer than 100M activated
parameters.

TRANSCRIPTION FACTOR PREDICTION (MOUSE)

MODEL ACTIVATED PARAMS 0 1 2 3 4

> 100M activated Param. Models

DNABERT-2 (PRE-TRAINED ON GUE) 117M 0.642 0.863 0.813 0.735 0.508
DNABERT-2 (NOT PRE-TRAINED ON GUE) 117M 0.568 0.848 0.793 0.665 0.527
NT-500M-HUMAN 480M 0.310  0.750  0.617  0.292  0.293
NT-500M-1000G 480M 0.393  0.755  0.647  0.331  0.340
NT-2500M-1000G 2537M 0.483  0.800  0.701  0.423  0.434
NT-2500M-MULTI 2537M 0.633  0.838  0.715  0.694  0.471
< 100M activated Param. Models

DNABERT (3-MER) 86M 0.423 0.791 0.699 0.554 0.420
DNABERT (4-MER) 86M 0.494 0.800 0.726 0.518 0.441
DNABERT (5-MER) 87M 0.425 0.793 0.622 0.499 0.403
DNABERT (6-MER) 89OM 0.444 0.789 0.714 0.449 0.425
JANUSDNA-72DIM 2.009M 0.619 0.850 0.875 0.843 0.502

B.3 Details of resources used

We use 80GB NVIDIA H100, A100, A800 GPUs for pre-training and fine-tuning.
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