
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE POLICY BACKBONE VIA SHARED NET-
WORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) has achieved impressive results across domains, yet
learning an optimal policy typically requires extensive interaction data, limiting
practical deployment. A common remedy is to leverage priors—such as pre-
collected datasets or reference policies—but their utility degrades under task mis-
match between training and deployment. While prior work has sought to address
this mismatch, it has largely been restricted to in-distribution settings. To address
this challenge, we propose Adaptive Policy Backbone (APB), a meta-transfer RL
method that inserts lightweight linear layers before and after a shared backbone,
thereby enabling parameter-efficient fine-tuning (PEFT) while preserving prior
knowledge during adaptation. Our results show that APB improves sample ef-
ficiency over standard RL and adapts to out-of-distribution (OOD) tasks where
existing meta-RL baselines typically fail.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated impressive ability to learn high-performing policies
across diverse domains, including gaming (Mnih et al., 2015; Vinyals et al., 2019; Berner et al.,
2019), robotics (Levine et al., 2016; Akkaya et al., 2019), traffic control (El-Tantawy et al., 2013),
and aligning large language models with human preferences (Stiennon et al., 2020). However, learn-
ing a high-performing policy in RL typically requires extensive data collection, thereby discouraging
practical deployment.

To alleviate the burden of extensive data collection, recent work has explored leveraging priors,
either via a pre-collected dataset (Levine et al., 2020) or a reference policy (Xie et al., 2021; Kalash-
nikov et al., 2018). In practice, however, the deployment task often differs from that represented by
the dataset or reference policy; such task mismatch can substantially diminish the utility of these pri-
ors. To leverage priors despite this mismatch, several approaches have been proposed in the context
of meta-RL (Wang et al., 2016; Duan et al., 2016; Finn et al., 2017; Rakelly et al., 2019), which aim
to leverage prior knowledge for efficient adaptation, either by (i) improving the sample efficiency of
standard RL or by (ii) enabling rapid adaptation to new tasks.

Despite progress on handling task mismatch, many methods still struggle with adapting to out-of-
distribution (OOD) tasks and thus fail to leverage prior knowledge, because they implicitly assume
that training and deployment tasks are drawn from the same distribution, which is rarely realistic.
For example, Finn et al. (2017) evaluates policy adaptation on HalfCheetah-vel, where training
tasks are reaching target velocities uniformly sampled from [0, 3] and, after training, the policy
is adapted to new targets drawn from the same range. However, one typically desires methods
that adapt effectively even when tasked with moving backward (negative target velocity), which is
fundamentally OOD. This gap highlights the need for methods that reliably adapt to tasks beyond
those encountered during training.

In this paper, we propose the Adaptive Policy Backbone (APB), a meta-transfer RL method for
sample-efficient adaptation on OOD tasks. To address the challenges posed by OOD tasks, we adopt
an initialization-based meta-RL paradigm that learns a meta-initialization and adapts via fine-tuning
at test time (Beck et al., 2023). As illustrated in Figure 1, APB consists of a backbone shared across
meta-training tasks, together with task-specific linear layers placed before and after it. After meta-
training the backbone, APB employs parameter-efficient fine-tuning (PEFT), enabling adaptation
by updating only the task-specific linear layers while preserving previously acquired knowledge in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: APB architecture: a shared backbone with task-specific linear layers.

the backbone. Prior work has investigated PEFT for meta-RL and has reported advantages over full
fine-tuning, but primarily within in-distribution settings (Zintgraf et al., 2019a; Raghu et al., 2019).
In contrast, we focus on OOD task adaptation and provide a theoretical analysis.

Our main claims are as follows. First, training only the pre- and post-backbone linear layers while
maintaining the backbone parameters is sufficient to adapt to the new task. To support our claim, we
present a theoretical analysis under a simple setting and provide empirical results on more complex
environments. The results show that APB can improve the sample efficiency over the standard RL
algorithms and adapts to OOD tasks where existing meta-RL methods typically fail. Second, APB
is capable of generalizing behavior on OOD tasks. To validate the generalization capability of APB,
we conduct a behavior cloning (BC) evaluation with OOD expert demonstrations whose trajectory
distribution is narrowly concentrated, a regime in which vanilla BC typically fails to generalize
behavior. From the perspective of leveraging backbone parameters trained on meta-training tasks
for enhanced sample efficiency, APB can be interpreted as transfer learning, while it may also be
regarded as meta-learning in terms of improving generalization to OOD tasks.

2 RELATED WORKS

Parameter-Efficient Fine-Tuning. Fine-tuning is a widely used approach to adapt pre-trained
models to downstream tasks by adjusting model parameters. However, full fine-tuning can be ineffi-
cient and often leads to catastrophic forgetting, where previously learned knowledge is overwritten
and performance deteriorates. Recently, parameter-efficient fine-tuning (PEFT) has emerged as a
promising alternative. PEFT enables adaptation to downstream tasks while mitigating catastrophic
forgetting, updating only a small subset of parameters and freezing the rest. Previously, PEFT has
been implemented by making only adapter parameters learnable (Zhang et al., 2023; Hu et al., 2022;
Sung et al., 2022; Houlsby et al., 2019), or by updating only the bias terms (Zaken et al., 2021), a
single layer (Lee et al., 2022; Zhu et al., 2023; Kumar et al., 2022), or a layer block (Peng et al.,
2024). Due to its effectiveness on downstream tasks, PEFT is utilized in various areas such as LLM
(Fu et al., 2023; Zhang et al., 2023; Hu et al., 2022; Houlsby et al., 2019; Zaken et al., 2021; Zhu
et al., 2023), vision (Lee et al., 2022; Sung et al., 2022; Kumar et al., 2022; Peng et al., 2024; Jia
et al., 2022; Jie & Deng, 2023; Wang et al., 2023), robot learning for sim2real (Truong et al., 2021;
Sharma et al., 2023), and meta-RL (Zintgraf et al., 2019a; Raghu et al., 2019).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Transfer Learning. Transfer learning (TL) is an approach for transferring knowledge learned in
a source domain to accelerate learning in a target domain. Because TL aims to transfer informative
representations that improve generalization, these ideas have been applied to meta-RL (Devin et al.,
2017; Borsa et al., 2018; Zintgraf et al., 2019a; Raghu et al., 2019). Devin et al. (2017) pre-train
modular policy components across tasks and dynamically reassemble them for new tasks. Zint-
graf et al. (2019a); Raghu et al. (2019) pre-train policies and adapt by fine-tuning only a subset of
parameters to enable fast adaptation. Borsa et al. (2018) leverage successor features to promote gen-
eralization across tasks. However, successor-feature methods can degrade under drastic changes in
the reward function across domains, and they typically assume shared transition dynamics (Lehnert
et al., 2017; Borsa et al., 2018).

Meta Learning. Meta-learning is a subfield of machine learning that aims to train models across a
variety of tasks such that they can rapidly solve new, unseen tasks. The objectives of meta-learning
include learning effective parameter initializations (Finn et al., 2017; Ravi & Larochelle, 2017;
Nichol et al., 2018), discovering task-specific update rules or learning algorithms (Santoro et al.,
2016; Munkhdalai & Yu, 2017; Mishra et al., 2017), and learning task similarity metrics (Koch
et al., 2015; Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018).

Meta-learning has recently been actively investigated in the context of RL, known as meta-RL. Wang
et al. (2016); Duan et al. (2016) propose recurrent approaches that encode experience to infer task-
specific dynamics. Finn et al. (2017) introduces Model-Agnostic Meta-Learning (MAML), which
aims to learn an initial set of parameters that can be quickly adapted to other tasks with a few gradient
steps. Several variants of MAML have subsequently been proposed (Nichol et al., 2018; Stadie et al.,
2018; Zintgraf et al., 2019a; Raghu et al., 2019; Song et al., 2019). Meanwhile, Rakelly et al. (2019);
Zintgraf et al. (2019b); Beukman et al. (2023); Liang et al. (2024) employ a context encoder to infer
task identity from transition history, enabling efficient posterior inference for adaptation. Recently,
to improve generalization over task distributions, Xu et al. (2022); Schmied et al. (2023); Wang et al.
(2024) utilize the transformer-based architecture (Vaswani et al., 2017).

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

We consider a Markov decision process (MDP) defined by the tuple (S,A, P, r, γ). S is the state
space, A is the action space, P (·|s, a) is the transition kernel over S, r : S × A → [rmin, rmax] is
the reward function, and γ ∈ (0, 1) is a discount factor that controls the weighting of future rewards.
At each time step t, given state st ∈ S, the agent chooses an action at ∈ A according to a (possibly
stochastic) policy π(a|s). The state then transitions from st to st+1 according to P (st+1|st, at), and
the agent receives a reward r(st, at). Moreover, the state-value function under policy π is defined as

vπ(st) = E ak∼π(·|sk)
sk+1∼P (·|sk,ak)

[∞∑
k=t

γk−tr(sk, ak)
∣∣∣ st]

The objective of RL is to learn a policy π that maximizes the expected return Es0∼ρ0 [vπ(s0)], where
ρ0 denotes the initial-state distribution.

Here, we formalize the meta-RL setting as follows. Let p(T) denote a distribution over tasks,
where each task Ti ∼ p(T) corresponds to an MDP (S,A, P, rT , γ). In this work, task variation
arises from differences in reward functions. During meta-training, we sample N number of tasks
{Ti}Ni=1 ∼ p(T), and interact with these tasks to learn shared parameters. At evaluation, a novel
task To ∼ q(T) is drawn from a distribution q(T) that differs from p(T) (i.e., OOD with respect to
p(T); e.g., supp (q) ̸⊆ supp (p)).

3.2 MATRIX EXPRESSION

Although the MDP considered in this paper has continuous spaces, we adopt a discrete setting
for matrix-based analysis and slightly overload notation to denote matrix representation. Under
policy π, define V π , Rπ and Pπ as the state-value vector, the expected reward vector, and the state

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

transition matrix, respectively, presented as follows:

V π =

 vπ(s1)
...

vπ(s|S|)

 ∈ R|S|×1, Rπ =

 Ea∼π(·|s1) [r(s1, a)]
...

Ea∼π(·|s|S|)

[
r(s|S|, a)

]
 ∈ R|S|×1

Pπ =

 Ea∼π(·|s1) [P (s1|s1, a)] · · · Ea∼π(·|s1)
[
P (s|S||s1, a)

]
...

. . .
...

Ea∼π(·|s|S|)

[
P (s1|s|S|, a)

]
· · · Ea∼π(·|s|S|)

[
P (s|S||s|S|, a)

]
 ∈ R|S|×|S|

Assuming sufficiently long or infinite-horizon episodes, V π can be expressed as:

V π = (I|S| − γPπ)−1Rπ

where I|S| ∈ R|S|×|S| is the identity matrix. Following Wang et al. (2007); Luan et al. (2019); Lim
& Lee (2024), let Π ∈ R|S|×|S||A| be the policy matrix with (Π) s, (s′,a) = π(a | s)1{s′ = s} and
the r ∈ R|S||A|×1 the state-action reward vector with r(s,a) = r(s, a). Then

Pπ = ΠP, Rπ = Πr

4 ADAPTIVE POLICY BACKBONE

We propose Adaptive Policy Backbone (APB), a simple yet effective meta-transfer RL method de-
signed to improve sample efficiency over standard RL and to enable adaptation to OOD tasks where
existing meta-RL methods often fail. We argue that updating only the first and last layers of the
policy network—while freezing the backbone to preserve prior knowledge—suffices for effective
adaptation to new tasks. The key intuition is that although each optimal policy is task-specific, poli-
cies share a common component induced by structural similarities in the underlying MDPs; this
shared structure reduces the need for extensive retraining on new tasks. Furthermore, it is well-
established that fine-tuning only a subset of parameters can significantly improve sample efficiency
and reduce training costs. Structurally, APB is analogous to D’Eramo et al. (2024), which uses a
backbone shared across training tasks together with task-specific nonlinear modules placed before
and after the backbone. While that line of work emphasizes how shared knowledge aids per-task
training, APB replaces the non-linear modules with linear layers for greater parameter efficiency and
targets test-time adaptation to OOD tasks in a meta-learning setting. To support our main claim, we
provide a theoretical analysis of the policy structure in a simple environment, and extend our study
to more complex environments through empirical experiments.

4.1 THEORETICAL STUDY OF THE POLICY STRUCTURE

We begin our analysis with a simple environment with finite state and action spaces.
Lemma 1. If V π = (I|S| − γPπ)−1Rπ holds, then using Pπ = ΠP and Rπ = Πr we have
V π = Π(γPV π + r). Consequently, the policy matrix Π can be expressed as

Π =
V π

(
γPV π + r

)⊤∥∥γPV π + r
∥∥2 + N with N(γPV π + r) = 0|S| (1)

where N ∈ R|S|×|S||A| has rows orthogonal to γPV π + r.
Lemma 2. Let Π1 and Π2 be the (optimal) policy matrices for task 1 and task 2, respectively, and
let A ∈ R|S|×|S| satisfy AV1 = V2. Then there exists B ∈ R|S||A|×|S||A| such that

AΠ1B = Π2 (2)

Given Π1, we can thus obtain Π2 by solving for appropriate matrices A and B. To relate Lemma 2
to our main claim, we adopt the following restrictive assumption.
Assumption 1. A is a permutation matrix (i.e., the two MDPs are isomorphic up to a permutation
of the state space).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Toy example demonstrating MDPs that are isomorphic under state permutation.

(a) Policy plot extracted
from matrix Π1

(b) Policy plot extracted
from matrix A2Π1B2.

(c) Policy plot extracted
from matrix A3Π1B3

(d) Policy plot extracted
from matrix A4Π1B4

Figure 3: Policy plots for different goal positions depicted by a red dot. An agent choose one of
the four actions(up, down, left, right) and when face the wall, it stay. Ai and Bi represent matrix
introduced in equation 16

An illustrative toy example is provided in Figure 2.
Theorem 1. Under Assumption 1, if each state s is represented as a one-hot row vector, then the
(optimal) policy for task 2 can be written as

π2(· | s) = h
(
π1

(
· |g(s)

))
(3)

where g : R|S| → R|S| is linear (e.g., g(s) = sA) and h : R|A| → R|A| is a (possibly state-
dependent) linear map.

Although such isomorphic MDPs are rare in practice, we later show empirically that our method
remains effective even beyond this restrictive case.

We parameterize the policy as a composition of linear and nonlinear maps:

π = foutlinear ◦ f ◦ f inlinear (4)

where f denotes a nonlinear backbone, and f inlinear/f
out
linear are input/output linear transforms. Be-

cause linear maps compose associatively, adding linear maps before and after π is equivalent to
adding linear maps immediately before and after the backbone. We henceforth absorb foutlinear into h
and f inlinear into g, and write

h ◦ π ◦ g =
(
h ◦ foutlinear

)
◦ f ◦

(
f inlinear ◦ g

)
=: h ◦ f ◦ g (5)

4.2 ANALYSIS OF META-TRAINING TASK COVERAGE AND ADAPTATION ERROR

We extend our analysis to evaluate adaptation performance on OOD tasks. Let Γtrain denote the set
of linear transforms (pre-backbone maps) associated with the meta-training tasks. We write

Ḡ := { g(s) : g ∈ Γtrain, s ∈ Smeta }

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

for the set of all transformed states observed during meta-training, where Smeta is the set of states vis-
ited under the meta-training policies {πt}Nt=1 (e.g., the union of the supports of their state-visitation
distributions). According to Theorem 1, for any policy backbone f , learning task-specific linear
layers gt (pre-backbone) and ht (post-backbone) yields a policy for a new task t:

πt(· | s) = ht
(
f
(
gt(s)

))
. (6)

However, meta-training yields an approximate backbone fmeta that is fitted only to a set of trans-
formed states g(s) ∈ Ḡ and is, in general, not reliable over the entire feature space G. In particular,

f∗
(
g(s)

)
≈ fmeta

(
g(s)

)
∀ g(s) ∈ Ḡ, (7)

where f∗ denotes the ideal backbone that is reliable over G. We assume that, as the diversity of
training tasks increases, Ḡ → G. For a test task t, let Xt := { gt(s) : s ∈ S } be the set of trans-
formed inputs encountered at adaptation time, and let XOOD

t := Xt \ Ḡ. We define the adaptation
error as ∑

x∈Xt

∥∥ht(f∗(x))− ht(fmeta(x)
)∥∥ , x = gt(s), (8)

where ∥ · ∥ denotes a vector norm (e.g., the ℓ2 norm).
Theorem 2. Suppose both backbone networks fmeta and f∗ are L-Lipschitz. Then, the adaptation
error is bounded as follows:∑

x∈Xt

∥∥ht(f∗(x))− ht(fmeta(x)
)∥∥ ≤ 2L∥ht∥op · |XOOD

t | · ϵmax (9)

where

• ∥ht∥op is the operator norm (e.g., spectral norm) of the linear map ht,

• XOOD
t = {x ∈ Xt : x /∈ Ḡ } is the set of test-time inputs not encountered during meta-

training,

• ϵmax = max
x∈XOOD

t

min
z∈Ḡ
∥x − z∥ denotes the maximum distance from an OOD input to the

meta-training support.

This bound implies that the adaptation error is controlled by both the number of OOD inputs and
their distance from the meta-training support, scaled by the Lipschitz constant of the backbone and
the operator norm of the head. As the diversity of meta-training tasks increases, the coverage of
Ḡ grows, thus reducing both |XOOD

t | and the typical values of ϵmax, which in turn tightens the
adaptation error bound for novel tasks.
Remark. Interestingly, we observe that a randomly initialized backbone often induces near-optimal
policies on meaningful tasks via suitable linear pre-/post-mappings. A plausible explanation is that
a randomly initialized policy may already be (near-)optimal for certain degenerate behavioral tasks;
consequently, by Theorem 1, such random initializations can be treated as backbone priors for other
tasks. Detailed results are demonstrated in Section A.5.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We conduct experiments in the MuJoCo control suite (Todorov et al., 2012) with specific tasks
such as reaching goals, or achieving target velocities or directions, which are widely used meta-
RL benchmark tasks adopted in previous studies (Finn et al., 2017; Zintgraf et al., 2019a; Raghu
et al., 2019; Song et al., 2019; Rakelly et al., 2019; Zintgraf et al., 2019b; Beukman et al., 2023;
Xu et al., 2022; Wang et al., 2024). While our primary focus is task variation induced by reward
functions, we also evaluate the algorithm under variations in transition dynamics. In contrast to most
prior approaches that assess adaptation primarily on in-distribution tasks, our method is designed to
enhance adaptability to OOD tasks, thereby broadening the practical applicability of meta-learning.
We mainly adopt the code used in Rakelly et al. (2019) with some modifications to implement OOD
test protocols. Detailed task specifications are provided in Section A.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Adaptive Policy Backbone (APB)

▷ Meta-training
Sample n meta-training tasks {T1, . . . , Tn} ∼ p(T)
Initialize policy: shared backbone parameters ψ, head parameters {ρhi }ni=1, tail parameters
{ρti}ni=1
Initialize Q-functions {ωi}ni=1
while not converged do

for i = 1 to n do
Roll out episode in Ti, store transitions in Bi
Compute critic loss Lcritic

i and actor loss Lactor
i

Update critic: ωi ← ωi − η∇ωiLcritic
i

Update actor head/tail: (ρhi , ρ
t
i)← (ρhi , ρ

t
i)− η∇(ρhi ,ρ

t
i)
Lactor
i

end for
Update backbone: ψ ← ψ − η∇ψ

(
1
n

∑n
i=1 Lactor

i

)
end while

▷ Meta-testing
Choose OOD task To ̸∼ p(T)
Initialize backbone ψ with pretrained parameters from meta-training (frozen)
Initialize head ρh, tail ρt, Q-function ω
while not converged do

for i = 1 to M do
Roll out episode with {ρh, ψ, ρt} in To, store transitions in B

end for
Compute critic loss Lcritic and actor loss Lactor

Update critic: ω ← ω − η∇ωLcritic

Update actor head/tail: (ρh, ρt)← (ρh, ρt)− η∇(ρh,ρt)Lactor

end while

We meta-train a shared backbone across meta-training tasks until convergence and, during OOD
adaptation, freeze it while adapting task-specific linear layers, using a standard TD3 policy module
(Fujimoto et al., 2018). We provide a pseudocode for APB in Algorithm 1, in whichM and η denote
the number of trajectories to obtain samples and the learning rate. All hyperparameters used in the
experiments are listed in Section A.3.

For the experiments comparing with meta-RL baselines, we evaluate our method against two well-
established paradigms: (i) parameterized policy-gradient (PPG) methods that adapt via gradient-
based fine-tuning of the parameters (MAML, ANIL, CAVIA; (Finn et al., 2017; Raghu et al., 2019;
Zintgraf et al., 2019a)) and (ii) black-box methods that adapt by online inference—they continu-
ally update a task-latent from the incoming context while keeping network weights fixed at test
time (PEARL, VariBAD; (Rakelly et al., 2019; Zintgraf et al., 2019b)). We also include the recent
transformer-based Meta-DT (Wang et al., 2024).

The experiments are designed to answer the following questions.

• Does APB improve sample efficiency over a standard RL algorithm?

• Does APB achieve superior adaptation performance on OOD tasks compared with existing
meta-RL baselines?

• Does meta-trained policy backbone generalize to OOD tasks?

5.2 EXPERIMENTAL RESULTS

Improvement of sample efficiency over a standard RL algorithm. One particular property of
the meta-RL algorithm is to learn new tasks better than standard RL algorithms (Beck et al., 2023).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Cheetah-vel (b) Cheetah-vel to Cheetah-dir (c) Ant-goal

(d) Ant-dir (e) Hopper-rand (f) Walker-rand

Figure 4: Experimental result comparing APB and the standard RL algorithm on the out-of-
distribution tasks. Each curve represents the average return over 10 random seeds, with the shaded
area indicating one standard deviation from the mean.

For this purpose, meta-RL learns priors from many tasks and leverages them to promote the learning
process. In our experiment, we compare APB against a strong standard RL baseline TD3 under
the same network capacity for fair comparison. Across most tasks, the proposed method achieves
(marginally) better performance than a standard RL algorithm, exhibiting faster convergence and/or
higher asymptotic average return for the same number of interactions. The results are demonstrated
in Figure 4 and detailed implementations are presented in Section A.6.

Superior adaptation performance compared with well-established Meta-RL methods. De-
spite fine-tuning parameters during adaptation, MAML and CAVIA show a negligible increase in
average return. ANIL also fine-tunes policy parameters but freezes the backbone during adaptation,
similarly to our proposed method. Black-box algorithms such as PEARL, VariBAD, and Meta-DT
fail to adapt under reward variation, whereas they show only slight yet consistent gains under tran-
sition variation. We hypothesize that this gap arises because transition variation induces only a mild
shift in the observation distribution (task semantics and rewards remain largely unchanged), whereas
reward variation changes the objective and drives policies into different regions of the state space,
yielding OOD observations that the context encoder was not trained to encode. Across all tasks, our
method shows consistent adaptation performance. The results are depicted in Figure 5.

Behavior cloning. To assess whether a pretrained policy structure genuinely generalizes to OOD
tasks, we perform behavior cloning (BC) (Pomerleau, 1988) on (near-)expert demonstrations col-
lected from OOD tasks. Prior work reports that imitation using expert data often fails to generalize
behavior because expert demonstrations cover only a narrow portion of the state–action space (Ross
& Bagnell, 2010); accordingly, we deliberately use demonstrations with limited coverage. We train
two policies via supervised learning on the same demonstrations: (i) a model that freezes the meta-
trained backbone and updates only the task-specific linear layers, and (ii) a randomly initialized
model with all parameters unfrozen and updated during training. At evaluation, we roll out each
policy on episodes whose horizon exceeds that of the demonstrations (Heval > Hdemo), forcing
extrapolation beyond the support of the demonstrations and thereby stressing OOD generalization.
As shown in Figure 6, the pretrained backbone improves generalization over the baseline on most
tasks. Details of the experimental setup are provided in Section A.4.

6 DISCUSSION

In this paper, we propose APB, a meta-transfer RL method for OOD task adaptation. Our main
claims are twofold: (i) updating only linear layers placed before and after a shared backbone—while

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Cheetah-vel (b) Cheetah-vel to Cheetah-dir (c) Ant-goal

(d) Ant-dir (e) Hopper-rand (f) Walker-rand

Figure 5: Experimental result comparing APB and the existing meta-RL baselines on the out-of-
distribution tasks. Each curve represents the average return over 10 random seeds, with the shaded
area indicating one standard deviation from the mean.

(a) Cheetah-vel (b) Cheetah-dir (c) Ant-goal (d) Ant-dir (e) Hopper-rand (f) Walker-rand

Figure 6: Experimental results on BC. Mean episodic return with 95% confidence intervals across
10 random seeds.

keeping the backbone fixed—suffices to adapt to new tasks, and (ii) APB is capable of generalizing
behavior on OOD tasks. We support these claims with a simple theoretical analysis and empirical
results on widely used meta-RL benchmarks.

Limitations. APB exhibits potential but also has several limitations. First, this study is limited
to state-based observations; extending APB to pixel-based observations (e.g., images) remains im-
portant future work. Second, although APB requires fewer trainable parameters than standard RL,
it does not yield a significant improvement in sample efficiency; further investigation into adapta-
tion/optimization schemes to accelerate learning is a worthwhile direction. Third, the current policy
parameterization (fixed backbone with linear pre-/post-layers) may be limited in expressiveness as
the number and diversity of tasks grow, implying a capacity–coverage trade-off. We expect that
more expressive architectures such as diffusion models (Ho et al., 2020) or transformers (Vaswani
et al., 2017) could address these limitations in future work.

REFERENCES

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shi-
mon Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028,
2023.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Michael Beukman, Devon Jarvis, Richard Klein, Steven James, and Benjamin Rosman. Dynamics
generalisation in reinforcement learning via adaptive context-aware policies. Advances in Neural
Information Processing Systems, 36:40167–40203, 2023.

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado Van Hasselt,
David Silver, and Tom Schaul. Universal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Sharing knowl-
edge in multi-task deep reinforcement learning. arXiv preprint arXiv:2401.09561, 2024.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning mod-
ular neural network policies for multi-task and multi-robot transfer. In 2017 IEEE international
conference on robotics and automation (ICRA), pp. 2169–2176. IEEE, 2017.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl 2̂: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Samah El-Tantawy, Baher Abdulhai, and Hossam Abdelgawad. Multiagent reinforcement learning
for integrated network of adaptive traffic signal controllers (marlin-atsc): methodology and large-
scale application on downtown toronto. IEEE transactions on Intelligent transportation systems,
14(3):1140–1150, 2013.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. On
the effectiveness of parameter-efficient fine-tuning. In Proceedings of the AAAI conference on
artificial intelligence, volume 37, pp. 12799–12807, 2023.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European conference on computer vision, pp. 709–727.
Springer, 2022.

Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning for lightweight adaptation on vision transformer.
In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp. 1060–1068, 2023.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on robot learning, pp. 651–
673. PMLR, 2018.

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2, pp. 1–30. Lille, 2015.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. arXiv preprint
arXiv:2202.10054, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and
Chelsea Finn. Surgical fine-tuning improves adaptation to distribution shifts. arXiv preprint
arXiv:2210.11466, 2022.

Lucas Lehnert, Stefanie Tellex, and Michael L Littman. Advantages and limitations of using suc-
cessor features for transfer in reinforcement learning. arXiv preprint arXiv:1708.00102, 2017.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Anthony Liang, Guy Tennenholtz, Chih-Wei Hsu, Yinlam Chow, Erdem Biyik, and Craig Boutilier.
Dynamite-rl: A dynamic model for improved temporal meta-reinforcement learning. Advances
in Neural Information Processing Systems, 37:141390–141416, 2024.

Han-Dong Lim and Donghwan Lee. Regularized q-learning. Advances in Neural Information Pro-
cessing Systems, 37:129855–129887, 2024.

Sitao Luan, Xiao-Wen Chang, and Doina Precup. Revisit policy optimization in matrix form. arXiv
preprint arXiv:1909.09186, 2019.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. arXiv preprint arXiv:1707.03141, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In International conference on machine
learning, pp. 2554–2563. PMLR, 2017.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning,
pp. 16828–16847. PMLR, 2022.

Zelin Peng, Zhengqin Xu, Zhilin Zeng, Lingxi Xie, Qi Tian, and Wei Shen. Parameter efficient fine-
tuning via cross block orchestration for segment anything model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3743–3752, 2024.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of maml. arXiv preprint arXiv:1909.09157, 2019.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
conference on learning representations, 2017.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp. 661–668. JMLR
Workshop and Conference Proceedings, 2010.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine learn-
ing, pp. 1842–1850. PMLR, 2016.

Thomas Schmied, Markus Hofmarcher, Fabian Paischer, Razvan Pascanu, and Sepp Hochreiter.
Learning to modulate pre-trained models in rl. Advances in Neural Information Processing Sys-
tems, 36:38231–38265, 2023.

Mohit Sharma, Claudio Fantacci, Yuxiang Zhou, Skanda Koppula, Nicolas Heess, Jon Scholz, and
Yusuf Aytar. Lossless adaptation of pretrained vision models for robotic manipulation. arXiv
preprint arXiv:2304.06600, 2023.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof Choromanski, Aldo Pacchiano, and Yunhao
Tang. Es-maml: Simple hessian-free meta learning. arXiv preprint arXiv:1910.01215, 2019.

Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
Sutskever. Some considerations on learning to explore via meta-reinforcement learning. arXiv
preprint arXiv:1803.01118, 2018.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in neural information processing systems, 33:3008–3021, 2020.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 1199–1208, 2018.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter: Parameter-efficient transfer learning for
vision-and-language tasks. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 5227–5237, 2022.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Joanne Truong, Sonia Chernova, and Dhruv Batra. Bi-directional domain adaptation for sim2real
transfer of embodied navigation agents. IEEE Robotics and Automation Letters, 6(2):2634–2641,
2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Tao Wang, Michael Bowling, and Dale Schuurmans. Dual representations for dynamic programming
and reinforcement learning. In 2007 IEEE International symposium on approximate dynamic
programming and reinforcement learning, pp. 44–51. IEEE, 2007.

Yaoming Wang, Bowen Shi, Xiaopeng Zhang, Jin Li, Yuchen Liu, Wenrui Dai, Chenglin Li,
Hongkai Xiong, and Qi Tian. Adapting shortcut with normalizing flow: An efficient tuning
framework for visual recognition. In 2023 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 15965–15974. IEEE, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhi Wang, Li Zhang, Wenhao Wu, Yuanheng Zhu, Dongbin Zhao, and Chunlin Chen. Meta-dt:
Offline meta-rl as conditional sequence modeling with world model disentanglement. Advances
in Neural Information Processing Systems, 37:44845–44870, 2024.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
ing sample-efficient offline and online reinforcement learning. Advances in neural information
processing systems, 34:27395–27407, 2021.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In international confer-
ence on machine learning, pp. 24631–24645. PMLR, 2022.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu,
Hongsheng Li, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-
init attention. arXiv preprint arXiv:2303.16199, 2023.

Ligeng Zhu, Lanxiang Hu, Ji Lin, and Song Han. Lift: Efficient layer-wise fine-tuning for large
model models. 2023.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International conference on machine learning, pp. 7693–7702.
PMLR, 2019a.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-
learning. arXiv preprint arXiv:1910.08348, 2019b.

A APPENDIX

A.1 PROOF

A.1.1 PROOF OF LEMMA 1

Lemma 1. If V π = (I|S| − γPπ)−1Rπ holds, then using Pπ = ΠP and Rπ = Πr we have
V π = Π(γPV π + r). Consequently, the policy matrix Π can be expressed as

Π =
V π

(
γPV π + r

)⊤∥∥γPV π + r
∥∥2 + N with N(γPV π + r) = 0|S| (10)

where N ∈ R|S|×|S||A| has rows orthogonal to γPV π + r.

Proof. From the definition,

V π = (I|S| − γPπ)−1Rπ = (I|S| − γΠP)−1Πr (11)

→(I|S| − γΠP)V π = Πr (12)

V π − γΠPV π = Πr (13)
Π(r + γPV π) = V π (14)

Equation equation 14 represents a linear system, which admits a general solution and a particular
solution. Therefore,

Π =
V π (γPV π + r)

⊤

∥γPV π + r∥2
+N, such that N(γPV π + r) = 0|S| (15)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.1.2 PROOF OF LEMMA 2

Lemma 2. Let Π1 and Π2 be the (optimal) policy matrices for task 1 and task 2, respectively, and
let A ∈ R|S|×|S| satisfy AV1 = V2. Then there exists B ∈ R|S||A|×|S||A| such that

AΠ1B = Π2 (16)

Proof. We start from the decomposition of Π1 and Π2:

Π1 =
V1 (γPV1 + r1)

⊤

∥γPV1 + r1∥2
+N1, (17)

Π2 =
V2 (γPV2 + r2)

⊤

∥γPV2 + r2∥2
+N2 (18)

Choose A so that AV1 = V2, and define

B =
(γPV1 + r1)(γPV2 + r2)

⊤

∥γPV2 + r2∥2
(19)

Then

AΠ1B = A
V1 (γPV1 + r1)

⊤

∥γPV1 + r1∥2
B +AN1B (20)

=
V2 (γPV1 + r1)

⊤

∥γPV1 + r1∥2
B +AN1B (21)

=
V2 (γPV2 + r2)

⊤

∥γPV2 + r2∥2
+AN1

(γPV1 + r1)(γPV2 + r2)
⊤

∥γPV2 + r2∥2︸ ︷︷ ︸
rows orthogonal to (γPV2+r2)

(22)

For the residual term, right-multiplying by (γPV2 + r2) yields

AN1
(γPV1 + r1)(γPV2 + r2)

⊤

∥γPV2 + r2∥2
(γPV2 + r2) = AN1(γPV1 + r1) (23)

= A0|S| = 0|S|, (24)

so its rows are orthogonal to (γPV2 + r2). Hence, setting

N2 := AN1
(γPV1 + r1)(γPV2 + r2)

⊤

∥γPV2 + r2∥2
(25)

gives

AΠ1B =
V2 (γPV2 + r2)

⊤

∥γPV2 + r2∥2
+N2 = Π2. (26)

A.1.3 PROOF OF THEOREM 1

Theorem 1. Under Assumption 1, if each state s is represented as a one-hot row vector, then the
(optimal) policy for task 2 can be written as

π2(· | s) = h
(
π1

(
· |g(s)

))
(27)

where g : R|S| → R|S| is linear (e.g., g(s) = sA) and h : R|A| → R|A| is a (possibly state-
dependent) linear map.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. Let π̃(s) be the extended form of policy π̃(s) : R1×|S| → R1×|S||A|, where only the entries
corresponding to state s are nonzero, representing the action probabilities. All other entries are zero.
For example, if |S| = 2, |A| = 2, and the input state is s1, then the policy network outputs

π̃(s1) = [π(a1|s1), π(a2|s1), 0, 0]

and for s2, the output is

π̃(s2) = [0, 0, π(a1|s2), π(a2|s2)]

Let EXT (·) be the policy extraction operator such that EXT (π̃(s)) = π(·|s). Since the state is
represented as a one-hot vector, we have:

sΠ = π̃(s) (28)

Because Π2 = AΠ1B, we have

π2(·|si) = EXT (π̃2(si)) (29)
= EXT (siΠ2) (30)
= EXT (siAΠ1B) (31)

Write siA = sk (i.e., A maps the row corresponding to si to that of sk). Then

π2(·|si) = EXT (skΠ1B) (32)
= EXT (π̃1(sk)B) (33)

Since π̃1(sk) has support only on the k-th state block, π̃1(sk)B depends solely on the k-th row
block of B. Hence, regardless of the specific extraction mechanism, applying EXT returns a |A|-
dimensional linear image of π1(· | sk); that is, there exists a matrix B′ ∈ R|A|×|A| such that

EXT
(
π̃1(sk)B

)
= π1(· | sk)B′ (34)

We define g by g(si) = sk (equivalently, siA = sk), and define h by h (π(·|s)) = π(·|s)B′. With
these definitions, we can express π2 as the composition h◦π1◦g, which completes the argument.

A.1.4 PROOF OF THEOREM 2

Theorem 2. Suppose both backbone networks fmeta and f∗ are L-Lipschitz. Then, the adaptation
error is bounded as follows:

∑
x∈Xt

∥∥ht(f∗(x))− ht(fmeta(x)
)∥∥ ≤ 2L∥ht∥op · |XOOD

t | · ϵmax (35)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof.∑
gt(s)∈G

∥∥∥∥ht(f∗(gt(s)))− ht(fmeta
(
gt(s)

))∥∥∥∥
=

∑
gt(s)∈G

∥∥∥∥ht(f∗(gt(s))− fmeta
(
gt(s)

))∥∥∥∥ (36)

≤ ∥ht∥op ·
∑

gt(s)∈G

∥∥∥f∗(gt(s))− fmeta
(
gt(s)

)∥∥∥ (37)

≤ ∥ht∥op ·
∑

gt(s)∈G

(∥∥∥f∗(gt(s))− f∗(ĝt(s) + ϵ(s)
)∥∥∥︸ ︷︷ ︸

≤L∥ϵ(s)∥

+
∥∥∥f∗(ĝt(s) + ϵ(s)

)
− fmeta

(
ĝt(s) + ϵ(s)

)∥∥∥︸ ︷︷ ︸
=0

+
∥∥∥fmeta

(
ĝt(s) + ϵ(s)

)
− fmeta

(
gt(s)

)∥∥∥︸ ︷︷ ︸
≤L∥ϵ(s)∥

) (38)

where ĝt(s) = argmin
g′(s)∈Ḡ

(
∥gt(s)− g′(s)∥

)
, ϵ(s) = gt(s)− ĝt(s)

≤ 2L∥ht∥op ·
∑

gt(s)∈Ḡ∁

∥ϵ(s)∥ (39)

≤ 2L∥ht∥op · |Ḡ∁| · ϵmax (40)

A.2 TASK DESCRIPTION

Table 1: Task description

Task
(objective) Meta train Meta test

Reward

Cheetah-vel
(Reaching velocity (v)) v ∼ U(0.0, 3.0) v = −2.0

Cheetah-vel to Cheetah-dir
(Going target direction) v ∼ U(0.0, 3.0) backward

Ant-goal
(Reaching goal position (x, y))

θ ∼ U(0, π)
x, y = 3 cos θ, 3 sin θ

θ = 1.5π
x, y = 3 cos θ, 3 sin θ

Ant-dir
(Going target direction (θ)) θ ∼ U(0, π) θ = 1.5π

Dynamics

Hopper-rand
(Going forward)
Walker-rand
(Going forward)

α ∼ U(−3.0, 2.1)
1.5α×body mass
1.5α×body inertia
1.3α×damping

α = 2.4
1.5α×body mass
1.5α×body inertia
1.3α×damping

Cheetah-vel task. The agent is required to reach a target velocity v using a cheetah model. During
meta-training, target velocities are uniformly sampled from U(0.0, 3.0), and in meta-test, the agent
is evaluated at v = −2.0.

Cheetah-vel to Cheetah-dir task. This task is designed to evaluate the generalization from the
Cheetah-vel to the Cheetah-dir setting. The agent is trained to move in randomly sampled target
velocities v ∼ U(0.0, 3.0) during meta-training and is tested in the backward direction during meta-
test.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Ant-goal task. The ant agent is required to reach a goal position (x, y) located on a semicircle of
radius 3. For meta-training, the target angle θ is sampled uniformly from [0, π] and the correspond-
ing goal is set as x = 3 cos θ, y = 3 sin θ. In meta-test, the agent is evaluated at θ = 1.5π, that is,
x = 3 cos θ, y = 3 sin θ.

Ant-dir task. In this task, the ant must move in a specified direction θ. During meta-training, the
direction is uniformly sampled from U(0, π). In meta-test, the agent is evaluated at a fixed direction
θ = 1.5π.

Hopper-rand task. The agent is required to move forward while adapting to variations in the dy-
namics. During meta-training, the body mass, inertia, and damping parameters are randomized ac-
cording to the factor α ∼ U(−3.0, 2.1), with each parameter scaled as 1.5α×body mass, 1.5α×body
inertia, and 1.3α×damping. In meta-test, the agent is evaluated with α = 2.4.

Walker-rand task. Similar to Hopper-rand task, the walker agent must move forward and adapt
to dynamic variations. During meta-training, mass, inertia, and damping are scaled with α ∼
U(−3.0, 2.1), and at meta-test, the parameters are set using α = 2.4.

A.3 HYPERPARAMETERS

Table 2: Hyperparameters for adaptation

Hyperparameter Value(s)

Number of trajectories 10
Parameter noise 0.00008 (Cheetah-dir); 0.005 (Cheetah-vel); 0.006 (Ant-goal);

0.00075 (Ant-dir); 0.007 (Hopper-rand); 0.03 (Walker-rand)
Policy initialization coefficient 0.07 (Ant-dir); 0.1 (Hopper-rand); 0.01 (Walker-rand); 0.001

(Others)
Reset episode 15 (Cheetah-vel); 25 (Ant-goal); 10 (Others)
Number of updates 1000 (Cheetah-dir, Ant-dir); 2000 (Others)
Batch size 512
Buffer size 200000
Learning rate 0.0001 (Actor); 0.05 (Critic)
Number of meta-train tasks 30

We provide brief explanations of several hyperparameters below:

• Number of trajectories: Number of trajectories sampled before running an update block.

• Parameter noise: Standard deviation of the parameter-perturbation noise applied during
data collection.

• Policy initialization coefficient: Scale factor for initializing the task-specific linear layers;
smaller coefficient keeps the layers near zero and stabilizes early adaptation.

• Reset episodes: To mitigate early overfitting, we reinitialize the task-specific parameters
every n episodes (the “reset” technique (Nikishin et al., 2022)).

• Number of updates: Number of gradient update steps performed after each data-collection
phase (i.e., after sampling ntraj trajectories).

A.4 BEHAVIOR CLONING

Demonstrations. We collect (near-)expert demonstrations Dt = {(s, a)}Ni=1 for each OOD test
task by rolling out a (near-)expert policy πexp. Each per-task dataset contains N = 100,000
state–action pairs (transitions) aggregated across multiple episodes. The demonstrations consist
of contiguous expert rollouts with episode horizon Hdemo and therefore concentrate mass on the
expert visitation distribution dπexp (narrow state–action support).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Policy parameterizations. We evaluate two models trained on the same demonstrations.

• APB-BC (ours). The meta-trained backbone fmeta is frozen. We learn only the task-specific
linear layers g (pre-backbone) and h (post-backbone). Both layers are initialized with scale
w from Table 2.

• Full model (baseline). Identical architecture but randomly initialized; all parameters are
unfrozen and updated during training.

Objective. Following standard continuous-control BC, we use a deterministic policy and minimize
the mean-squared error between actions and expert actions:

LBC(θ) =
1

|B|
∑

(s,a)∈B

∥∥πθ(s)− a∥∥22,
where B is a mini-batch. (For completeness, a stochastic alternative is the negative log-likelihood
LNLL(θ) = − 1

|B|
∑

log πθ(a | s), but we do not use it in our experiments.)

Optimization and preprocessing. We optimize with Adam (PyTorch), a mini-batch size of 2048,
using task-dependent learning rates:

LR =


5× 10−4, Walker-rand-params
1× 10−4, Hopper-rand-params
1× 10−3, All other tasks (Cheetah-dir, Cheetah-vel, Ant-goal, Ant-dir).

(41)

Evaluation. After training, we roll out each policy for episodes with horizon Heval > Hdemo

to stress extrapolation beyond the demonstration support (OOD generalization). Performance is
measured by episodic return. We report the mean across 10 random seeds and 95% confidence
intervals.

A.5 RANDOM INITIALIZATION FOR BACKBONE

Motivation. As suggested in Theorem 1, linear pre-/post-mappings can transport policies across
tasks. Empirically, we find that even a randomly initialized backbone can, with suitable linear
layers, induce near-optimal behavior on some meaningful tasks. Intuitively, a random backbone
implements a fixed random feature map; for certain “degenerate” behavioral objectives, a linear
head on top of such features can already be (near-)optimal. If so, the random backbone can serve as
a backbone prior for other tasks via task-specific linear layers.

Protocol. We randomly initialize a backbone, freeze all backbone parameters, and train only the
task-specific linear layers g (pre-backbone) and h (post-backbone). We refer to this variant as APB
(random init). Unless noted otherwise, we use the same adaptation budgets and per-task hyper-
parameters as in the main APB experiments (Table 2); layer scales are initialized with the policy
initialization coefficient from the table.

Results. Across all evaluated environments, as shown in Figure 7, APB (random init) yields com-
petent performance, although it does not attain the optimal policy. Notably, on ANT-GOAL the
method approaches near-optimal performance with only a small gap. These findings support our
remark that a randomly initialized backbone can function as a useful backbone prior when paired
with task-specific linear layers.

Practical takeaway. If meta-training is infeasible, APB (random init) is a surprisingly strong and
cheap baseline: use a sufficiently wide backbone, freeze it, and adapt only linear layers.

Reproducibility details. We use identical optimizers and update schedules as in the APB adap-
tation runs (per-task learning rates and update counts in Table 2); only the backbone source differs
(random vs. meta-trained).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Cheetah-vel (b) Cheetah-vel to Cheetah-dir (c) Ant-goal

(d) Ant-dir (e) Hopper-rand (f) Walker-rand

Figure 7: Experimental result comparing APB with pretrained backbone and APB with random
initialization on the out-of-distribution tasks. Each curve represents the average return over 10
random seeds, with the shaded area indicating one standard deviation from the mean.

A.6 PRACTICAL IMPLEMENTATION OF APB

During meta-training, a single policy backbone is shared across all tasks, with task-specific linear
layers placed before and after the backbone; each task also has its own Q-functions (critics). After
meta-training, we freeze the backbone and train new task-specific linear layers on the meta-test task
using the same optimization pipeline; unlike meta-training, only this small subset of policy param-
eters is updated at adaptation time. To encourage sufficiently rich exploration with few trainable
parameters, we consider two exploration protocols separately: (i) evolutionary-style parameter-
space perturbation (Plappert et al., 2017), and (ii) action-space Gaussian noise in the style of TD3
(noise added to the mean action) (Fujimoto et al., 2018). For a fair comparison with standard RL,
both APB and the standard RL baseline are evaluated under both exploration variants using identical
budgets; unless otherwise noted, Figure 4 reports, for each method, the better-performing variant on
each task. To mitigate early overfitting of the task-specific adapters, we also adopt a reset strategy
that periodically reinitializes these parameters every n episodes (Nikishin et al., 2022); the same
schedule is used for APB and the standard RL baseline. Unless otherwise stated, APB and the stan-
dard RL baseline share identical training budgets (environment steps, number of updates, batch size,
random seeds) and the same evaluation protocol.

A.7 IMPLEMENTATION OF META-RL BASELINES

We use the authors’ public implementations and their default hyperparameters for all baselines:
MAML (Finn et al., 2017), CAVIA (Zintgraf et al., 2019a), PEARL (Rakelly et al., 2019), VariBAD
(Zintgraf et al., 2019b), and Meta-DT (Wang et al., 2024). ANIL (Raghu et al., 2019) is implemented
by modifying our MAML code to freeze the feature backbone during adaptation (inner loop), while
keeping the head trainable; we otherwise reuse the same meta-training and adaptation hyperparam-
eters as in MAML. For a fair comparison, we keep the policy network size (hidden depth and units
per layer) identical across all methods.

19

	Introduction
	Related Works
	Preliminaries
	Problem Formulation
	Matrix Expression

	Adaptive Policy Backbone
	Theoretical study of the policy structure
	Analysis of Meta-Training Task Coverage and Adaptation Error

	Experiments
	Experimental Setup
	Experimental Results

	Discussion
	Appendix
	Proof
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2

	Task description
	Hyperparameters
	Behavior cloning
	Random initialization for backbone
	Practical implementation of APB
	Implementation of meta-RL baselines

