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ABSTRACT

Text generation commonly relies on greedy and beam decoding that limit the
search space and degrade output quality. Minimum Bayes Risk (MBR) decoding
can mitigate this problem by utilizing automatic evaluation metrics and model-
generated pseudo-references. Previous studies have conducted empirical analyses
to reveal the improvement by MBR decoding, and reported various observations.
However, despite these observations, the theoretical relationship between them re-
mains uncertain. To address this, we present a novel theoretical interpretation of
MBR decoding from the perspective of bias-diversity decomposition. We decom-
pose errors in the estimated quality of generated hypotheses in MBR decoding
into two key factors: bias, which reflects the closeness between utility functions
and human evaluations, and diversity, which represents the variation in the esti-
mated quality of utility functions. Our theoretical analysis reveals the difficulty in
simultaneously improving both bias and diversity, and highlights the effectiveness
of increasing diversity to enhance MBR decoding performance. This analysis
verifies the alignment between our theoretical insights and the empirical results
reported in previous work. Furthermore, to support our theoretical findings, we
propose a new metric, pseudo-bias, which approximates the bias term using gold
references. We also introduce a new MBR approach, Metric-augmented MBR
(MAMBR), which increases diversity by adjusting the behavior of utility func-
tions without altering the pseudo-references. Experimental results across multi-
ple NLP tasks show that the decomposed terms in the bias-diversity decompo-
sition correlate well with performance, and that MAMBR improves text genera-
tion quality by modifying utility function behavior. Our code will be available at
https://github.com/ [Anonymized].

1 INTRODUCTION

As demonstrated by the success of large language models (LLMs) (Brown et al., 2020; OpenAl
et al., [2024), text generation is one of the most fundamental tasks in Natural Language Processing
(NLP). Text generation commonly relies on greedy and beam searches, which heavily restrict the
search space when decoding texts from a model. This procedure, which only considers the model’s
predictions within a limited search space, can sometimes degrade the quality of the generated text.

Minimum Bayes Risk (MBR) decoding (Goel & Byrne, |2000) can mitigate this problem by using a
utility function, essentially an automatic evaluation metric, along with pseudo-references generated
by the model. MBR decoding was initially applied to speech recognition (Goel & Byrne, 2000)
and later to statistical machine translation (SMT) (Kumar & Byrne, [2002; [2004; |Duan et al., [ 2011).
Following these successes, MBR decoding has been expanded to various text generation tasks, in-
cluding neural machine translation (NMT) (Stahlberg et al., 2017), text summarization (Bertsch
et al.,[2023)), and image captioning (Borgeaud & Emerson, [2020).

Since MBR decoding has become an important inference technique in text generation, various em-
pirical studies have explored its characteristics. Miiller & Sennrich| (2021); [Freitag et al.| (2022a);
Fernandes et al.|(2022); |Amrhein & Sennrich|(2022) highlight the importance of using high quality
evaluation metrics that is robust and correlate well with human evaluations as utility functions. Jinnai
et al.|(2024a)); Heineman et al.|(2024) emphasize the importance of high-quality pseudo-references
that closely resemble human-created ones, while also stressing the significance of pseudo-reference
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diversity. Although these empirical findings cover various aspects in detail, a unified interpretation
remains challenging due to the lack of theoretical frameworks explaining the relationships behind
them.

To address this gap, we provide theoretical interpretations of MBR decoding through bias-diversity
decomposition (Krogh & Vedelsbyl 1994; Wood et al.,|2024). Our theoretical interpretation focuses
on errors in the estimated quality of hypotheses in MBR decoding. These errors are decomposed
into two critical factors: bias and diversity. The bias term represents the closeness between the
estimated quality produced by utility functions and human evaluations. The diversity term reflects
the variance in the estimated quality across different utility functions. Based on this interpretation,
we theoretically demonstrate the difficulty in improving both the bias and diversity terms simulta-
neously, and we highlight the effectiveness of increasing diversity in MBR decoding, verifying the
correspondence with empirically induced results from previous work.

To empirically verify our theoretical findings, we propose pseudo-bias, which approximates the bias
term using gold references. Furthermore, to explore the potential for increasing the diversity term
by adjusting the behavior of utility functions without varying the pseudo-references, we introduce a
new MBR approach: Metric-augmented MBR (MAMBR).

Our empirical analysis on machine translation, text summarization, and image captioning—using
pseudo-references generated by five different sampling methods—shows that the decomposed bias
and diversity terms correlate with performance, consistent with our theoretical analysis. Moreover,
using MAMBR demonstrates performance improvements by simply modifying the behavior of util-
ity functions.

2  MINIMUM BAYES RISK (MBR) DECODING

Minimum Bayes Risk (MBR) decoding (Goel & Byrne, 2000) estimates the quality of each hypoth-
esis h in a set H{ by comparing it with each pseudo-reference (evidence sample) y in a set of all
sequences () and its model predicted probability P(y|x) for a given input sequence z. This pro-
cess uses an evaluation metric, treated as a utility function fy(h,y), which calculates the similarity

between h and y to choose the best hypothesis hyes; in H as follows:

}Albest = argmax Z f9(h7 y)P(y‘.’E), (])
heH yeQ

where 0 represents the parameters of the evaluation metric used as the utility function fy(h,y).
Since calculating {2 is intractable, [Eikema & Aziz|(2020; 2022) replace ) with ||, a set of sampled
1y as follows:

A 1
hmbr = argmax — Zf@(hvy)v Yy~ P(y|$) (2)
nen Y|
yey
Here, instead of using the utility function fy(h,y), we can assume human-estimated quality (Naskar

et al, 2023 |Suzgun et al.| 2023} Jinnai et al., [2024a; |Ohashi et al.,|2024) denoted as fé(h). Under
this assumption, the ideal decoding, which fully relies on human-estimated results, is represented as
follows:

Rhuman = arg max fé(h). 3)
heH

In this paper, we focus on analyzing the differences between the internally estimated qualities for
each hypothesis by MBR decoding and those estimated by humans to better understand the charac-
teristics of MBR decoding (§3).

3 THEORETICAL ANALYSIS BASED ON BIAS-DIVERSITY DECOMPOSITION

3.1 EVALUATION DISCREPANCY

To measure the discrepancy between the human estimated quality, fé (h) and the MBR decoding es-
timated quality, Wl‘ >_yey fo(h, y), we define a |H|-dimensional vector u’ that represents estimated
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quality for each hypothesis based on the j-th pseudo-reference and also define u, the average vector
of all w’ as follows:

W=, uj:fhy u= u’. ()
uj [ ( 1) J |y| Z
|H]
Similarly, we can define a |+ |-dimensional vector, @ that represents the human estimated quality for

each hypothesis as follows:
Uy .
u= [] ;Ui = fy(hi). (&)

Ui

Here, by using Equations ] and [5} we can reformulate MBR decoding in Equation [2] and the ideal
decoding in Equation[3]as follows:

= fzmbr = arg max i;, 1) = ﬁhuman = arg max i;. (6)

hi h'i

Therefore, based on Equation [ we can investigate the discrepancy between the estimated quality
by MBR decoding and human through the comparison of u and @. In our work, to estimate the
discrepancy, we consider the prediction error of u to u by using Mean Squared Error (MSE) as
follows:

MSEG@,8) = o (i — 0. a)

3.2 BIAS-DIVERSITY DECOMPOSITION

Our goal is to reveal the characteristics of MBR decoding through theoretical analysis. To achieve
this, we focus on the bias and diversity underlying Equation [7]] Based on this approach, we can
induce the following decomposition:

Theorem 1. The quality estimation error for each hypothesis in MBR decoding, (1i; — ;)?, can be
decomposed to bias and diversity (ambiguity) terms (Krogh & Vedelsby, 1994) as follows:

|V |V

(1t — 1) MZ (hiy;)) |y|Z (hiry;)* - ®)

Bias Diversity

Proof. See Appendix [A] O

In Equation 8] two terms represent bias and diversity. Unlike the well-known bias-variance decom-
position (Geman et al.l |1992) that targets a single estimator which is u in our caseﬂ the second
term is negative, which is why it is referred to as diversity rather than variance (Wood et al.| [2024).
The bias term indicates how closely the utility function’s estimated quality for a hypothesis matches
human estimation. The diversity term reflects how different the utility function’s estimated qualities
are for each other. This decomposition emphasizes the importance of increasing the diversity term
while reducing the bias term to improve the quality estimation error, (i; — ii; )2, for each hypothesis.

While MBR decoding considers all hypotheses to rank and select the best one, Theorem|[T|addresses
only the quality estimation for each hypothesis. To bridge this gap, we decompose M SFE(a, u) that
accounts for all hypotheses. The following theorem addresses this broader perspective:

Theorem 2. The quality estimation error for all hypotheses in MBR decoding, MSE(a,u), can be
decomposed into bias and diversity terms for all hypotheses as follows:

|| |y | || |y |
MSE(a )
Bias for all hypotheses Diversity for all hypotheses

"This becomes MSE (i, u) = 7 174 (s — (g X5 1) + (g 52 w) — wa)?).



Under review as a conference paper at ICLR 2025

Proof. See Appendix [B] O

As in Theorem [T} Theorem [2] highlights the importance of increasing the diversity term while de-
creasing the bias term to improve the quality estimation in MBR decoding.

3.3 INTERPRETATION

The decompositions presented in Theorems |1| and [2] allow us to provide theoretical interpretations
for the empirically analyzed characteristics of MBR decoding and its extensions discussed in prior
studies.

3.3.1 CORRELATION TO HUMAN EVALUATION RESULTS

The bias term of the decomposition, (4; — fg(hi, y;))?, highlights the importance of considering the
closeness between the human-estimated quality, #;, and the quality estimated by the utility function,
fo(hi,y;), for improving the performance of MBR decoding. Specifically, since the utility function,
fo(hi,y;), is influenced by the pseudo-reference y;, the bias term underscores the significance of
considering the utility function’s correlation to human evaluation and the closeness between pseudo-
references and human-created references. Therefore, it emphasizes the importance of examining
both utility functions and sampling strategies for generating pseudo-references.

Quality of Evaluation Metrics. Our theoretical insight is supported by empirical findings (Miiller
& Sennrich, 2021 [Freitag et al.,[2022a}; [Fernandes et al.,[2022; |/ Amrhein & Sennrich,|[2022)), in which
the quality of evaluation metrics used as utility functions is crucial for performance improvement.

Quality of Pseudo-References. |Ohashi et al.| (2024); Jinnai et al| (2024a)) empirically show the
importance of selecting appropriate pseudo-references. Thus, our findings theoretically support
these empirically driven insights of these previous studies.

Challenges in the Real World. Our theoretical findings emphasize the necessity of directly reduc-
ing the bias term. However, this requires human evaluation of the combination of pseudo-references
and evaluation metrics, used as utility functions, for each hypothesis. This task is clearly challenging
due to the high cost of human evaluation. As a solution, we propose a method to approximate this
in §4.1|and evaluated its correlation with task-specific performance in

3.3.2 DIVERSITY OF AUTOMATIC EVALUATION RESULTS

Based on the diversity term of the decomposition, increasing diversity can contribute to performance
improvements by reducing each prediction error (@; — ii;)? of M SE(a, u) in MBR decoding. A key
insight here is that the diversity expressed by (@; — fo(hi,y;))? stems from the different estimated
qualities produced by each utility function fg(h;,y;). Thus, this diversity can be influenced by the
pseudo-reference 3; and/or the model parameters 6 of the evaluation metric.

Diversity of Pseudo-references. This finding supports the previous studies (Freitag et al., 2023a}
Jinnai et al.| 2024a}; Heineman et al.| |2024) that conclude the diversity of sampling methods is es-
sential for performance improvement of MBR decoding considering that the diversity of the pseudo-
references can indirectly contribute to increasing the diversity of fg(h;,y;) by each y;. Basically,
as Jinnai et al.|(2024a) introduce, reranking algorithms are more effective when the candidates are
diverse (Gimpel et al.| [2013} |L1 & Jurafskyl [2016} [L1 et al.| [2016]) owing to their diverse information
to make a consensus.

Diversity of Evaluation Metrics. We anticipate performance improvements by combining multiple
different evaluation metrics as utility functions to increase diversity. While this approach has been
shown to improve the quality estimation of generated texts (Glushkova et al., [2023)), to the best of
our knowledge, it has not yet been applied to MBR decoding.

Unexplored Aspect. Furthermore, the effect of increasing the diversity of estimated qualities from
utility functions by varying the evaluation metric’s model parameters 6 remains uncertain. To inves-
tigate this, we propose a method to adjust the diversity of estimated qualities by modifying € in
and compare its behavior with that of varying pseudo-references in
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3.3.3 MBR DECODING AS ENSEMBLE LEARNING

Our decomposition of MBR decoding aligns with ensemble learning, which is induced by Krogh &
Vedelsby| (1994). Thus, we can understand that the quality estimation by MBR decoding is a kind
of ensemble learning.

Quality Estimation. Our decomposition starts from the definition M SE(a,u) in Eq.[7} the error
between the estimated qualities from human evaluation and MBR decoding. We can actually observe
the reduction of errors as the improvement in quality score estimation of (Naskar et al.,|2023;|Cheng
& Vlachos| 2024) by ensembling utility functions that are similar to MBR decoding.

Weighted-voting. Furthermore, this viewpoint supports the validity of the previous work (Suzgun
et al., 2023} Bertsch et al., 2023)) that shows the interpretation of MBR decoding as soft-weighted
voting, a variant of ensemble learning. Different from our setting, soft-weighted voting restricts the
value range of voters (utility functions) from O to 1. Wood et al.| (2024)) shows that soft-weighted
voting can be converted to the decomposition of [Krogh & Vedelsby| (1994), equivalent to our de-
composition in Eq. [8] Therefore, weighted voting-based MBR decoding is similarly explained in
our decomposition.

Number of Pseudo-references. Generally, increasing the number of pseudo-references improves
performance but demands additional computational cost. |DeNero et al.| (2009); Eikema & Aziz
(2022);/Cheng & Vlachos| (2023)); Deguchi et al.|(2024b); [Vamvas & Sennrich| (2024); Trabelsi et al.
(2024) prune samples to speedup inference and maintain the original quality similar to the case of
pruning estimators in ensemble learning (Liu et al., 2004; Bonab & Can, [2016} [2019).

Considering an ensemble learning method, such as the Bayes optimal classifier (Mitchell,[1997)), and
assuming that Eq. [2] approximates the expectation by sampling 7;, we can explain the performance
improvement of increased pseudo-references by the law of large numbers and the success of the
pruning and weighted utility functions (Jinnai et al., 2024b) through importance sampling (Kloek &
Van Dijkl [1978). (See Appendix [C]for more details.)

3.3.4 BIAS AND DIVERSITY TRADE-OFF

At first glance, based on the interpretation in §3.3.T] and §3.3.2] decreasing bias while increasing
diversity seems to be the best strategy to improve quality estimation performance in MBR decoding,
which was investigated by Jinnai et al.|(2024a). To understand the validity of this strategy, we need
to focus on the bias-diversity trade-off (Krogh & Vedelsby,|1994).

Limitation of MBR Decoding. The bias-diversity trade-off highlights the difficulty of decreasing
bias while increasing diversity. In Eqs. [§] and [9] when the bias term approaches zero, i.e., each
fo(hi, y;) approaching to 4;, the diversity term also approaches zero. This theoretical fact indicates
that even if we can prepare high-quality evaluation metrics and high-quality pseudo-references that
correlate well with human behavior, there may be no performance improvement due to diminished
diversity.

Diversity Assists Inferior Methods. Conversely, when the evaluation metrics and pseudo-
references are inferior, we can expect performance improvements through increased diversity at
the cost of increased bias. This phenomenon can explain the sometimes competitive performance
of BLEU (Papinenti et al.| [2002) against COMET (Rei et al., [2020) in [Freitag et al.| (2022b), and
that of ancestral sampling (Robert, |1999) against other sampling methods in [Freitag et al.| (2023a);
Ohashi et al| (2024) using MBR decoding. However, unlike the case where decreased bias leads
to decreased diversity, increased bias does not guarantee increased diversity. Therefore, we must
carefully assess their diversity when using low-quality evaluation metrics and pseudo-references in
MBR decoding.

4 REMAINING PROBLEMS & SOLUTIONS

Our theoretical analysis covers various aspects of MBR decoding. However, for a comprehensive
analysis, we should investigate empirical results not addressed in previous work and bridge the gap
between theory and real-world applications. To this end, we provide the following solutions.
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4.1 PSEUDO-BIAS

As discussed in §3.3.1] the bias term suggests the importance of considering the correlation between
the results of human evaluation and the evaluation metric’s decisions based on pseudo-references
to improve the performance of MBR decoding. However, calculating the bias term requires human
evaluation, and conducting human evaluations for each setting is unrealistic and difficult. To address
this issue, we introduce pseudo-bias, an approximation of the bias term in our decomposition. By

using |J> |, the number of gold references ¢, pseudo-bias is defined as follows:

1Y [ 1Yl

|y| Z f€ hzayj |y| Z uz f0 hwyj)) ) Zf@ wyj (10)

Bias Pseudo-bias

This formulation is based on the premise that automatic evaluation metrics correlate to human eval-
uation when receiving human-created referencesﬂ Since we can calculate the diversity term without
any approximation, we compare pseudo-bias with diversity in terms of how they correlate with per-
formance.

4.2 METRIC-AUGMENTED MBR

The discussion in §3.3.2] shows the possibility of increasing the diversity of the utility function,
fo(hi,y;), by changing the evaluation metric’s model parameters, ¢, as well as by introducing di-
versity through pseudo-references. To this end, we propose a new method called Metric-augmented
Minimum Bayes Risk (MAMBR) decoding. In MAMBR, we employ different parameters for the
evaluation metric to enhance the diversity of utility functions. Letting © be a set of model parame-
ters, MAMBR is defined as follows:

hmambr = }LEH D)| ‘@| Z Zf@ h y (11)

0€O yey

When using MAMBR, we train evaluation metrics with different initial random seeds to generate ©
as a set of diverse model parameters.

5 EMPIRICAL ANALYSIS

We conduct empirical analysis corresponding to our theoretical analysis through experiments for a
comprehensive understanding of MBR decoding.

5.1 OVERALL SETTINGS

We target three different text generation tasks, machine translation, text summarization, and image
captioning to investigate the general performance of MBR decoding. In all tasks, we followed the
settings of Jinnai et al.| (2024b)) for generating samples. We used epsilon sampling (Hewitt et al.,
2022) to generate hypotheses’| For the generation of pseudo-references, we used various samphng
approaches: beam decoding, nucleus sampling (Holtzman et al., [2020) with p = 0.9, ancestral
sampling, top-k sampling (Fan et al.,2018)) with £ = 10, and epsilon sampling with € = 0.02. We
set the sampling size for hypotheses to 64. We chose the sampling size for pseudo-references from
{4, 8, 16, 32, 64}. We used the following datasets, modelsﬂ and evaluation metrics for each task:

Machine Translation We used the WMT19 English to German (En-De) and WMT19 English to
Russian (En-Ru) datasets (Barrault et al.l [2019). We used facebook/wmt19-en—-de for En-De

2For the pseudo-bias, we used COMET (Unbabel/wmt22-comet-da) and BERTScore with
microsoft/deberta-xlarge-mnli whose pearson correlations are 0.990 on the system-level task for
English to German (Freitag et al.}|2023b) and 0.7781 (https://github.com/Tiiiger/bert_score)
on WMT16 to English (Bojar et al.| [2016), respectively.

3Appendixincludes the results with hypotheses generated by different sampling methods.

*We used all models from https://huggingface.co/models (Wolf et all[2020).
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Figure 1: Correlation between measures in our decomposition and performance for each dataset.
The underlined scores indicate statistically significant results (p < 0.05)E|Note that the italic scores
at Avg. are not the target of the significance test.

and facebook/wmt19-en-ru for En-Ru, respectively. As the utility function and evaluation
metric, we used COMET with the model Unbabel /wmt22-comet—-da.

Text Summarization We used the SAMSum (Gliwa et all 2019) and XSum (Narayan
et all datasets, and used philschmid/bart-large—-cnn-samsum and
facebook/bart-large-xsum for generation in SAMSum and XSum, respectively. As
the utility function and evaluation metric, we used BERTScore (Zhang* et al.}[2020) with the model
microsoft/deberta-xlarge-mnli.

Image Captioning We used the MSCOCO dataset (Lin et al 2014) with the split of
[Karpathy & Fei-Fei| (2015) and the NoCaps dataset (Agrawal et al [2019). We used
Salesforce/blip2-flan-t5-xl-coco and Salesforce/blip2-flan-t5-x1 for
generation in MSCOCO and NoCaps, respectively. As the utility function and evaluation metric, we
used BERTScore with the model microsoft/deberta-xlarge-mnli. Since both datasets
have multiple references, we report their average scores.

Our implementation of the generation part is based on the released code of [Jinnai et al. (]2024b[ﬂ
and the MBR decoding part is based on the toolkit, mbrs by Deguchi et al.| (2024a)°} We generate
samples on NVIDIA GeForce RTX 3090 and perform MBR decoding on an NVIDIA RTX A6000.

5.2 CORRELATION OF BIAS AND DIVERSITY TO PERFORMANCE

To verify our theoretical decomposition, we investigate the correlation of bias and diversity to per-
formance on each dataset. For this purpose, we approximately compute the bias term by using our
pseudo-bias in Furthermore, we investigate the importance of whether to consider the entire
candidate (Eq. ﬁone best candidate (Eq. [g).

Settings We compared the following measures in our decomposition: OVERALL BIAS, the first
term of Eq. [9]for all hypotheses; ONE BEST BIAS, the first term of Eq. [§] for the one best result by
MBR decoding; OVERALL DIVERSITY, the second term of Eq. [9| for all hypotheses; ONE BEST
DIVERSITY, the second term of Eq. [§| for the one best result by MBR decoding; OVERALL MSE,
indicating errors for all hypotheses based on Eq. |9} and ONE BEST MSE, indicating errors for the
one best result by MBR decoding based on Eq. g For the comparison, we calculated Spearman’s
rank correlation and Pearson correlation between these measures and the performance based on the
results of five different sampling methods with five different sampling sizes on each dataset (see
§5.1). Since lower bias and MSE are better for performance, we took their negative values in the
correlation calculation. Moreover, we report averaged correlation across all datasets by Fisher z-

transformation (Corey et al, [T998).

Results  Figure [T shows the correlation between the measures and performance for each dataset.
These results show that MSE for both overall and one best results correlates well with the perfor-
mance for each dataset in Spearman’s rank correlation, indicating the importance of considering
quality estimation in MBR decoding, as in Eqgs. [§|and[0] On the other hand, the decomposed bias

Shttps://github.com/CyberAgentAILab/model-based-mbr
Shttps://github.com/naist-nlp/mbrs

"We used Student’s t-test l, 1908) for both spearman and pearson correlations.
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Figure 2: The relationship between bias, diversity, and performance in MBR decoding. The x-axis
shows the number of used pseudo-references. (1) indicates higher scores are better whereas (|)
indicates lower scores are better.

and diversity show different tendencies. ONE BEST BIAS, which considers the one best result, is
important for bias, whereas OVERALL DIVERSITY, which considers overall results, is important for
diversity. This result is reasonable given an assumption that MBR decoding aims to select texts that
are close to human-created ones. Based on this assumption, we can say that diversity supports the se-
lection by considering the importance of all hypotheses not covered by One Best Bias. In contrast to
the results in Spearman’s rank correlation, the coefficients of Pearson’s correlation decrease. Based
on these results, we can conclude that the measures, i.e., ONE BEST BIAS, OVERALL DIVERSITY,
ONE BEST MSE and OVERALL MSE, correlate well with the rank in performance, but they are
difficult to precisely capture subtle differences of values. (See Appendix [D]for further details.)

5.3 BIAS AND DIVERSITY TRADE-OFF

To investigate the bias-diversity trade-off in more detail, we followed the setup described in §5.2}
We plotted the results for each dataset using different sampling methods in Figure 2] The results
show that while ancestral sampling exhibits the highest bias, except in the case of the SAMSum



Under review as a conference paper at ICLR 2025

Table 1: Results of MAMBR with ancestral sampling. Bold font indicates the best result.

WMT19 En-De WMT19 En-Ru
Num. of Samples 4 8 16 32 64 4 8 16 32 64
857 859 859 859 859 874 874 875 815 875

857 86.0 86.0 859 859 874 874 875 875 87.6
858 86.0 860 86.0 860 874 874 875 875 87.6
858 86.0 86.0 860 86.1 874 875 876 87.6 87.6

SAMSum XSum
Num. of Samples 4 8 16 32 64 4 8 16 32 64
286 29.1 295 295 297 542 552 557 56.0 56.1

288 296 299 299 301 542 552 557 561 56.2
28.7 295 299 298 302 542 552 558 56.1 56.2
28.7 295 298 299 301 543 553 558 56.1 56.2

MSCOCO NoCaps
Num. of Samples 4 8 16 32 64 4 8 16 32 64
1 549 558 563 565 568 429 453 468 478 48.6

2 549 558 564 566 568 432 456 472 483 489
4 549 56.0 564 567 569 433 456 473 484 49.0
8 549 560 565 568 569 435 457 474 485 49.0

Num. of Models

|-

Num. of Models

o |-

Num. of Models

Table 2: Results of MAMBR with epsilon sampling. Notations are the same as Table

WMT19 En-De WMT19 En-Ru
Num. of Samples 4 8 16 32 64 4 8 16 32 64

1 859 861 862 862 862 873 8.6 877 877 877
Num. of Models 2 86.0 86.1 86.1 862 863 873 876 87.7 877 877
4 860 861 862 862 863 874 876 877 817 817
8 860 862 863 863 864 874 877 877 877 878
SAMSum XSum
Num. of Samples 4 8 16 32 64 4 8 16 32 64

275 279 283 284 285 549 557 561 563 564

2777 281 285 28.6 28.7 549 557 561 563 56.5
. 282 285 286 286 549 557 561 564 565
276 282 286 28.6 287 549 558 562 564 56.5

MSCOCO NoCaps
Num. of Samples 4 8 16 32 64 4 8 16 32 64
552 559 563 565 567 444 467 485 49.1 495

552 559 563 565 567 444 468 486 492 49.6
. 56.0 563 56.6 568 445 469 48.7 493 49.7
553 561 563 56.6 568 44.6 47.0 487 494 49.7

Num. of Models

| =
N
2
|

Num. of Models

SIS
W
W
NS}

dataset, it sometimes outperforms other sampling methods owing to its greater diversity. Focusing
on top-k sampling, which has the lowest bias, again excluding the SAMSum dataset, we can observe
that the reduction in bias tends to limit the increase in diversity. This finding supports our previously
noted bias-diversity trade-off in MBR decoding. However, as evidenced by the performance of beam
decoding, which has the lowest diversity, the importance of bias and diversity varies depending on
the target dataset. Therefore, while our theoretical analysis effectively explains the performance
tendencies in MBR decoding, it remains essential to consider task-specific features carefully to
achieve further performance improvements. (See Appendix [E|for further details.)

5.4 EFFECTIVENESS OF METRIC-AUGMENTED MBR

We investigate the possibility of improving performance of MAMBR in Eq. [TT| by changing auto-
matic evaluation metric’s model parameters.
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Table 3: Results of MAMBR with beam decoding. Notations are the same as Table

WMT19 En-De WMT19 En-Ru
Num. of Samples 4 8 16 32 64 4 8 16 32 64
852 854 856 857 858 865 868 870 871 871

853 855 857 858 858 865 868 869 871 87.1
853 855 857 858 858 866 869 87.0 871 87.2
853 855 857 858 859 865 868 87.0 871 87.2

SAMSum XSum
Num. of Samples 4 8 16 32 64 4 8 16 32 64
27.6 287 292 293 297 538 54.0 542 542 544

27.8 289 292 294 297 538 539 541 542 544
27.8 289 292 294 297 538 54.0 542 542 544
278 289 292 294 297 538 540 542 542 544

MSCOCO NoCaps
Num. of Samples 4 8 16 32 64 4 8 16 32 64
1 554 557 559 561 563 482 488 494 499 502

2 554 558 559 561 563 482 488 494 499 503
4 555 557 559 561 563 482 488 495 499 50.2
8§ 555 557 559 561 563 482 488 495 499 502

Num. of Models

|-

Num. of Models

o |-

Num. of Models

Settings To prepare the set of model parameters, we trained eight models by varying their initial
seeds. We trained Unbabel/wmt22-comet—-da on the Direct Assessments (DA) task (Graham
et al.l 2013), using the WMT 2017 to 2020 datasets (Bojar et al., [2017; 2018} |Barrault et al.| 2019
2020) for training and the WMT 2021 dataset (Akhbardeh et al.l [2021) for validation in COMET.
Additionally, we trained microsoft/deberta-large onthe MNLI dataset from GLUE (Wang
et al., [2018) for BERTScore. During inference, to control model diversity, we selected the top-n
models based on their proximity to the median validation scores, with n chosen from 1, 2, 4, 8.
We aimed to explore the relationship between the diversity caused by pseudo-references and model
parameters, focusing on sampling strategies with varying levels of diversity: ancestral sampling,
epsilon sampling, and beam decoding.

Results Tables [T} 2] and [3] respectively show the MAMBR results with pseudo-references from
ancestral sampling, epsilon sampling, and beam decoding. In ancestral and epsilon sampling, the
best and moderately diversified sampling strategies (as shown in Figure[2)), we observe performance
improvement as the number of models increases. On the other hand, in the lowest diversity method,
beam decoding, performance improvement is limited. These results suggest that MAMBR can im-
prove performance by enhancing the diversity of evaluation metrics, although the diversity of the
sampling strategy itself remains important. (See Appendix [F|for further details.)

6 CONCLUSION

This work provides a unified theoretical interpretation of Minimum Bayes Risk (MBR) decoding
through the lens of bias-diversity decomposition. By decomposing the errors in quality estimation
in MBR decoding into bias and diversity, we highlight the trade-off between improving these two
factors, with an emphasis on the benefits of increasing diversity. Our theoretical insights align with
previous empirical results, and we further investigate aspects not covered by these empirical findings
through the introduction of the pseudo-bias metric and the development of the Metric-augmented
MBR (MAMBR) approach. Experimental results across multiple tasks demonstrate the validity of
our theoretical findings and the effectiveness of our approach in improving text generation quality.
These findings bridge the gap between empirical observations and theoretical understanding of MBR
decoding, offering new insights for optimizing text generation. (See Appendix [H|for the limitations
of our work.)
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7 REPRODUCIBILITY STATEMENT

We performed our experiments by running publicly available models, facebook /wmt19-en-de,
facebook/wmtl9-en-ru, philschmid/bart-large-cnn-samsum, facebook/
bart-large-xsum, Salesforce/blip2-flan-t5-xl-coco, and Salesforce/
blip2-flan-t5-x1 in HuggingFace Transformers (Wolf et al) [2020) on the publicly
available datasets, WMT19 English to German (Barrault et al. [2019), WMTI19 English
to Russian (Barrault et al., 2019), SAMSum (Gliwa et all [2019), XSum (Narayan et al.
2018), MSCOCO (Lin et all 2014; |Karpathy & Fei-Fei, [2015), and NoCaps (Agrawal
et al| 2019), respectively with utilizing the publicly available MBR decoding toolkit, mbrs
(Deguchi et al.| [2024a) as described in §5.1] In addition, we will release our code at
https://github.com/naist-nlp/mbr-bias—diversity.
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C INTERPRETATION AS ENSEMBLE LEARNING

When || is large enough to satisfy the law of large numbers, we can induce the following expecta-
tion in MBR decoding by using a model’s prediction, P(y|x):

arg max Z fo(h,y)P(ylz) @7
heH
yeN
=argmax Epy.)[fo (R, y)] (28)
heH
1
zargmafofa(h»y)7 yu- sy~ Plyle) @9)
heH |y‘ yeY

Since this expectation is based on P(y|z), we can understand the importance of increasing the
number of pseudo-references to induce a reliable P(y|z).

Theorem 3. When fo(h,y) is normalized as a probability Py(hly), Equation |27|is equivalent to
Bayes Optimal Classifier (BOC) in Mitchell| (1997).

Proof. Self-evident by the following reformulation:
argmax Y fo(h,y)P(y|a) = argmax Y Py(hly)P(y|z) (30)
heH 2 heH 20
O
Theorem 4. When fo(h,y) is normalized as a probability Py(h|y), Equation@ is equivalent to the
Gibbs algorithm in\Mitchell (1997)) that approximates BOC by sampling.

Proof. Self-evident by the following reformulation:
1

argmax—Zfe(h,y), Y1, Yy~ Pylo) €2))
=N
yey
:argmaXZPe(h|y), Y, 5 Yy P(ylz) (32)
hen =5

O

Hence, we can understand that MBR decoding represented as Eqs. and [29] approximates the
ensemble learning method, BOC. In this interpretation, since P(y|x) is a prior of BOC, we can also
understand that MBR approximately uses the model-predicted probability as its prior.

When pruning unnecessary y in the BOC formulation of Equation [30} because the sum of Py(hly)
for all h is always 1, we can determine the importance of y based solely on P(y|x). Since we can ar-
bitrarily choose P(y|x) during sampling, we understand that pruning methods select the importance
of each y as a prior in BOC. Note that utility functions are not always normalized; therefore, there
is a gap between this interpretation and the actual MBR decoding. Addressing this gap remains an
open problem.

In practice, directly drawing samples from P(y|x) is intractable. Therefore, we must use approxi-
mate search methods, which are commonly influenced by left-to-right decoding and threshold val-
ues. These factors can lead to unreachable states and biases, as seen in greedy or beam decoding
and other sampling approaches. Letting P’ (y|x) denote the model’s prediction with the approximate
search, we can similarly induce the following expectation:

1
arg max f@ haya Y, Y NP/yw (33)
e 7 2 Jolhy) i
~argmax Ep(yo)[fo(h,y)] )
heH

Unfortunately, due to P’(y|x), Equation 34] deviates from Equation 28] To precisely predict Eq.
using samples from P’(y|x), we can consider the following theorem:
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Theorem 5. When |Y| is enough large to satisfy the law of large numbers, by using importance
sampling, we can induce Eq.[28|from P’ (y|z).

Proof.

ar%ér;[apr(ym[fa(hay)] (35)
_ p h, 36
argg{ax%j (yl) fo(h, ) (0)

P'(y|z)
_ p h, 37
R S PO ()

, P(y|x)

_ p h, 38
T -
P(y|z) '
~ h’ —_—, Sttty NP 39
ar%g{axygeyfg( y)P’(y|x) Y1 Y|y (ylz) (39

O

Apart from the fact that even precisely calculating P’ (y|x) is also difficult, we can induce the fol-
lowing theorem:

Theorem 6. When || is enough large to satisfy the law of large numbers and P'(y|x) equals a
discrete uniform distribution U (0, |)|), Equation|39|is equivalent to Model-based MBR (MBMBR)
of Jinnai et al.| (2024D)).

Proof.
P(y|z) /
h, , Joe ~ P 40
R Y D By v P “
1

—argmax — > fo(h,y)P(ylz), 1,y ~UO,V]) 41

nen Y15,
—argmax » _ fo(h,y)P(ylz), i,y ~UO,[Y)) (42)

heH
yey

O

From Theorem|[6] we can understand that MBMBR is an effective approach when sampling methods
are unreliable. Based on the interpretation from the viewpoint of BOC, Equation 42| estimates the
importance for each y through prior P(y|z), which can be used for pruning y.

Even though our interpretation can explain the pruning of pseudo-references based on priors in BOC,
pruning hypotheses are out-of-scope of this interpretation.

D CORRELATION OF BIAS AND DIVERSITY TO PERFORMANCE

We further investigate whether our analysis in §5.2is consistent when metrics used in MBR decoding
and performance evaluation are different.

Settings Based on the inherited settings from we changed the performance evaluation met-
rics, COMET and BERTScore to BLEURT (Sellam et al., |2020) and chrF++ (Popovic] [2015j
2017). We used BLEURT on single sentence generation tasks, WMT19 En-De and En-Ru, XSum,
MSCOCO, and NoCaps. Since SAMSum is a multiple-sentence generation task and BLEURT can-
not handle it, we used chrF++ instead.
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Figure 3: Correlation between measures in our decomposition and performance for each dataset
when using different metrics in decoding and performance evaluation. The notations are the same
as Figure[T]

Results Figure E| shows the correlation. Similar to the results in @ the measures, i.e., ONE
BEST BIAS, OVERALL DIVERSITY, and ONE BEST MSE in Spearman’s rank correlation correlate
well with the rank in performance, even though these correlation values are degraded by different
evaluation metrics from decoding time. The lower correlation values in Pearson’s correlation than
Spearman’s rank correlation also show similar tendencies in §5.2]and indicate the difficulty of pre-
cisely estimating the performance values from these measures. From these results, we can confirm
that correlation tendencies are consistent when changing the performance evaluation metrics.

E BIAS AND DIVERSITY TRADE-OFF

Similar to Appendix [D} we further investigate whether our analysis in §5.3is consistent when metrics
used in MBR decoding and performance evaluation are different.

Settings We inherited the setting of Appendix [D| Thus, COMET and BERTScore used in MBR
decoding are replaced with BLEURT and chrF++ in performance evaluation.

Results  Figure ] shows the results. We can see the changed performances in the subfigures of
the rightmost column. The entire tendencies of beam decoding are almost the same as Figure [2]
excluding the case of the performance drop in SAMSum, whose evaluation metric is changed from
BERTScore to chrF++. However, this behavior is reasonable considering the highest One Best
Bias and lowest Overall Diversity of beam decoding in SAMSum. This result shows the
possibility of adopting bias and diversity in a metric to the estimation of performance in other eval-
uation metrics. On the other hand, these relationships are not always consistent as represented in the
uncorrelated values on NoCaps that permit diversified generation by its 10 gold references.

F BIAS AND DIVERSITY OF MAMBR

Figures 3] [6] and [7] show the bias and diversity corresponding to the results in Tables [T} 2} and [3]
respectively. The results show that MAMBR actually increases the diversities in WMT19 En-De and
En-Ru and SAMSum but not in the other dataset. Thus, this improvement depends on the datasets.
On the other hand, we can see the improvement of bias in some cases. This is reasonable because
using multiple metric models itself is an ensembling approach and can contribute to performance
improvement.

G EXPERIMENTAL RESULTS ON THE FIRST 1000 EXAMPLES

To consider more detailed configurations and reveal the possibility of more efficient investigation,
we conducted additional evaluation using only the first 1000 examples for each dataset based on the

setting of Jinnai et al.| (2024b).
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Figure 4: The relationship between bias, diversity, and performance in MBR decoding when using
different metrics in decoding and performance evaluation. The notations are the same as FigureEl

G.1

HYPOTHESES GENERATED BY DIFFERENT SAMPLING STRATEGIES

Figures|[8]to[I2] present the bias and diversity decomposition plots for different hypothesis generation
strategies. The results indicate that differences in the generated hypotheses influence performance
in some cases, whereas the overall tendencies of the sampling strategy used for generating pseudo-
references remain similar despite these variations.

G.2

MAMBR

Tables [ to [6] show the MAMBR results for the first 1000 lines. From these results, we observe a
similar trend to those obtained when the dataset is fully used, as described in §5.4] Similarly, Figures
[[3] to[T5] demonstrate that the results are nearly identical to those obtained when the dataset is fully
utilized.
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Figure 5: The relationship between bias, diversity, and performance in MAMBR decoding with
pseudo-references generated by ancestral sampling. The notations are the same as Figure@

H LIMITATION

Although our bias-diversity decomposition for MBR decoding can explain the behavior of pseudo-
references and utility functions, a theoretical explanation for the effectiveness of the used hypotheses
is a model-side behavior and thus beyond the scope of our analysis. Therefore, corresponding to this
limitation, we conduct a limited empirical analysis presented in Appendix [G.1] similar to previous
works (Eikema & Aziz| [2020; Fernandes et al.| 2022 [Freitag et al.| 2023a).
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Figure 6: The relationship between bias, diversity, and performance in MAMBR decoding with
pseudo-references generated by epsilon sampling. The lines indicate the score for each number of
used metric models. Other notations are the same as Figure @
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Figure 7: The relationship between bias, diversity, and performance in MAMBR decoding with
pseudo-references generated by beam decoding. The notations are the same as Figure@
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Figure 8: The relationship between bias, diversity, and performance on the first 1000 lines of each
dataset in MBR decoding with hypotheses generated by beam decoding. The notations are the same
as Figure[2}
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Figure 9: The relationship between bias, diversity, and performance on the first 1000 lines of each
dataset in MBR decoding with hypotheses generated by nucleus sampling. The notations are the
same as Figure 2}
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Figure 10: The relationship between bias, diversity, and performance on the first 1000 lines of each
dataset in MBR decoding with hypotheses generated by ancestral sampling. The notations are the
same as Figure [2}
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Figure 11: The relationship between bias, diversity, and performance on the first 1000 lines of each
dataset in MBR decoding with hypotheses generated by top-k sampling. The notations are the same
as Figure 2}
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Figure 12: The relationship between bias, diversity, and performance on the first 1000 lines of each
dataset in MBR decoding with hypotheses generated by epsilon sampling. The notations are the
same as Figure 2}
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Table 4: Results of MAMBR with samples generated by ancestral sampling. Notations are the same
as Table

WMT19 En-De WMT19 En-Ru
Num. of Samples 4 8 16 32 64 4 8 16 32 64
845 847 848 850 851 858 86.1 863 865 865

845 848 850 851 852 858 861 863 864 86.5
84.6 848 850 851 852 858 861 864 865 86.6
847 848 850 851 853 858 86.1 863 865 86.6

SAMSum XSum
Num. of Samples 4 8 16 32 64 4 8 16 32 64
1 286 291 295 295 297 533 541 550 551 552

2 288 296 299 299 301 532 542 55.0 553 553
4 2877 295 299 298 302 533 542 550 553 553
8 287 295 298 299 30.1 534 543 550 552 553

MSCOCO NoCaps
Num. of Samples 4 8 16 32 64 4 8 16 32 64
548 558 56.1 564 56.6 432 453 469 482 49.0

548 558 562 564 566 434 457 472 487 49.1
548 559 564 565 568 438 458 475 488 495
549 559 563 56.6 568 439 459 474 490 495

Num. of Models

o | =

Num. of Models

Num. of Models

o | -

Table 5: Results of MAMBR with samples generated by epsilon sampling. Notations are the same
as Table[T]

WMT19 En-De WMT19 En-Ru
Num. of Samples 4 8 16 32 64 4 8 16 32 64
852 854 856 856 856 867 870 871 870 871

853 855 856 857 857 867 870 871 871 871
853 855 856 857 857 867 870 871 870 871
853 856 857 857 858 867 871 871 870 872

SAMSum XSum
Num. of Samples 4 8 16 32 64 4 8 16 32 64
275 279 283 284 285 541 551 551 554 555

27.7 281 285 28.6 287 541 552 551 554 554
27.7 282 285 28.6 286 541 552 552 555 55.6
276 282 28.6 28.6 287 542 552 553 554 55.6

MSCOCO NoCaps
Num. of Samples 4 8 16 32 64 4 8 16 32 64
550 558 56.0 564 566 450 469 486 495 498

550 557 561 564 56.6 450 47.1 489 495 50.1
550 559 562 56.6 567 452 472 489 498 502
551 558 562 565 568 452 472 490 498 503

Num. of Models

o -

Num. of Models

o | -

Num. of Models

om0 =
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Table 6: Results of MAMBR with samples generated by beam decoding. Notations are the same as
Table[T}

WMT19 En-De WMT19 En-Ru
Num. of Samples 4 8 16 32 64 4 8 16 32 64
851 853 854 854 853 86.7 869 869 869 869

85.1 854 855 854 854 86.7 868 869 869 87.0
2 854 855 854 854 86.7 868 869 869 869
852 855 855 855 855 866 869 869 869 869

SAMSum XSum
Num. of Samples 4 8 16 32 64 4 8 16 32 64
27.6 287 292 293 297 528 528 531 532 533

27.8 289 292 294 297 527 529 530 532 534
278 289 292 294 297 528 528 530 532 533
27.8 289 292 294 297 527 529 531 532 533

MSCOCO NoCaps
Num. of Samples 4 8 16 32 64 4 8 16 32 64
1 553 555 559 560 562 485 490 496 501 505

2 553 555 558 561 562 485 490 498 502 505
4 553 555 558 560 563 485 49.1 497 502 50.5
8 553 555 558 561 562 485 492 497 503 50.5

Num. of Models

o e -
=]
wn
[

Num. of Models

o n | =

Num. of Models
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Figure 13: The relationship between bias, diversity, and performance on the first 1000 lines of each
dataset in MBR decoding with pseudo-references generated by ancestral sampling. The notations
are the same as Figure @
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Figure 14: The relationship between bias, diversity, and performance on the first 1000 lines of each
dataset in MBR decoding with pseudo-references generated by epsilon sampling. The notations are
the same as Figure [6]
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Figure 15: The relationship between bias, diversity, and performance on the first 1000 lines of each
dataset in MBR decoding with pseudo-references generated by beam decoding. The notations are

the same as Figure [6]
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