
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MODR: MIXTURE-OF-DEPTH-RECURRENT TRANS-
FORMERS FOR TEST-TIME REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models have demonstrated superior reasoning capabilities by
generating step-by-step reasoning in natural language before deriving the final
answer. Recently, Geiping et al. (2025) introduced 3.5B-Huginn as an alterna-
tive to this paradigm, a depth-recurrent Transformer that increases computational
depth per token by reusing a recurrent block in latent space. Despite its perfor-
mance gains with increasing recurrences, this approach is inadequate for tasks de-
manding exploration and adaptivity, a limitation arising from its single, chain-like
propagation mechanism. To address this, we propose a novel dynamic multi-
branches routing approach for Huginn, termed as Mixture-of-Depth-Recurrent
(MoDr) Transformer, which enables effective exploration of the solution space
by shifting chain-like latent reasoning into a LoRA-based multi-branch dynamic
relay mode with a learnable hard-gate routing. Meanwhile, we introduce an
auxiliary-loss-free load balancing strategy to mitigate the potential routing col-
lapse. Our empirical results reveal that MoDr achieves average accuracy improve-
ments of +7.2% and +2.48% over the original Huginn model and its fine-tuned
variant, respectively, across various mathematical reasoning benchmarks and im-
provements of +21.21% and +1.52% on commonsense reasoning benchmarks.

1 INTRODUCTION

Transformer-based large language models (LLMs) (Achiam et al., 2023; Team et al., 2023; Liu et al.,
2024) have achieved striking performance gains in a wide variety of reasoning tasks (Gao et al.,
2023; Srivastava et al., 2023; Rein et al., 2024). To enhance the reasoning capabilities of LLMs,
many studies have focused on scaling both model size (Wei et al., 2022a) and test-time computation
(Ji et al., 2025). However, much of this success comes at the cost of significant computational and
memory resources during training and deployment, and is accompanied by high latency as the model
verbalizes excessively long intermediate reasoning (referred to as “deep thinking”) before delivering
a final response.

Recent developments in latent reasoning, which leverage recurrent or looped-based methods, have
shown potential to improve inference efficiency apart from scaling model size and employing ex-
plicit thinking (Dehghani et al., 2019; Gao et al., 2024; Chen et al., 2025; Geiping et al., 2025).
Among these, Geiping et al. (2025) proposed a 3.5B depth-recurrent transformer, dubbed Huginn,
which explicitly disentangles the transformer into a three-stage Prelude/Loop/Coda structure (as
shown in Figure 1(a)), in order to reuse the rumination module (Loop) multiple times in the latent
space to increase the computational depth per token. While the recurrent layers achieve low memory
and latency alongside excellent reasoning performance, its single recurrent reasoning module limits
the adaptability of the reasoning trajectory.

From the perspective of thought structure, the chain structure (Wei et al., 2022b) significantly en-
hances the reasoning capabilities of LLMs compared to directly providing the answer. Subsequently,
the tree structure (Yao et al., 2023) further strengthens the model’s ability to explore and backtrack
by introducing hierarchical search. Furthermore, the graph structure (Besta et al., 2024), by in-
corporating loops and N-to-1 connections, facilitates sub-problem aggregation and self-verification.
Inspired by these, we hypothesize that a single recurrent reasoning module analogous to the chain
structure, inherently limits the scope of exploration. This prompts us to explore the question: How

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

...S0 S1

ST

R R R

P C
e e e

Prelude Recurrent Block (Loop) CodaS0	~�(0, �2��∙ℎ)

Depth-Recurrent Huginn Model

Question ...

...Answer

S0

ST

P C

...

...Answer

Router Multi-Branch 
Recurrent Module

Mixture-of-Depth-Recurrent Transformer (Ours)

e e e

Reasoning Steps 
e Input Injection 

(a) (b)

...
branch 1

R1 R1 R1

...
branch 2

branch N

R2 R2 R2

RN RN RN

...
...

RP C

Static Reasoning Process Dynamic Reasoning Process
Question

Figure 1: Comparison of (a) vanilla Huginn (Geiping et al., 2025) model and (b) MoDr (ours)
reasoning patterns. Unlike Huginn, where each reasoning step relies on a single recurrent module,
our proposed MoDr employs a dynamic routing mechanism to adaptively select the most suitable
recurrent branch for the current context input, thereby predicting the next token.

can we construct a depth-recurrent Huginn model with an adaptive exploration-rumination module
while avoiding extra resource burdens?

To address this, we propose an innovative approach, Mixture-of-Depth-Recurrent (MoDr) Trans-
former, which conceptualizes the reasoning process as a dynamic relay exploration for each token in
a combinatorial solution space. See Figure 1(b) and 2 for illustration. Specifically, we first introduce
several block-wise low-rank adapters (LoRAs (Hu et al., 2022)) as versatile exploration branches.
Each branch is integrated with the shared rumination recurrent module (Loop). Considering that
different contextual inputs may have diverse computational demands for reasoning path exploration,
a hard-gate routing mechanism is then employed to comprehensively consider the hidden state infor-
mation of the context and automatically decide which branch is responsible for predicting the next
token. Inspired by Wang et al. (2024), we utilize an auxiliary-loss-free load balancing strategy to
mitigate the risk of routing collapse (Shazeer et al., 2017). Empirically, our comprehensive exper-
iments across a wide range of mathematical and commonsense reasoning benchmarks validate the
effectiveness of the MoDr approach.

Contributions. Overall, the contributions of this paper are summarized as follows.

• We find that the inherent limitation of existing depth-recurrent Huginn model lies in its ru-
mination module (the ‘Loop’), which adopts a single, chain-like propagation mechanism.
This design weakens the diversity and exploration capability of the model’s reasoning tra-
jectories within the latent space.

• We introduce Mixture-of-Depth-Recurrent (MoDr) Transformer, a novel extension of the
depth-recurrent Huginn architecture designed to shift latent reasoning into a multi-branch
dynamic relay exploration mode with negligible resource overhead.

• We conduct extensive experiments on a wide variety of mathematical and common-
sense reasoning benchmarks, demonstrating that MoDr achieves competitive performance.
Specifically, compared to the vanilla Huginn model and its fine-tuned variant, MoDr
achieves average accuracy improvements of +7.2% and +2.48% on mathematical tasks,
and +21.21% and +1.52% on commonsense tasks, respectively.

2 BACKGROUND

To scale test-time computation while reducing both training and deployment computational over-
head, a prevailing line of research is to enable depth adaptivity in Transformers through recurrent
depth and looped layers. Starting from the Universal Transformer (Dehghani et al., 2019), which
pioneered dynamic recurrence over layers to iteratively refine sequence representations, this design
paradigm has demonstrated that depth-adaptive reasoning is a promising substitute for the traditional

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

fixed-depth transformer architecture. Subsequently, research on the Looped Transformers has exhib-
ited strong generalization across diverse tasks, including programmable computing (Giannou et al.,
2023), data fitting (Yang et al., 2023), and arithmetic reasoning (Saunshi et al., 2025). In addition to
adopting monolithic recurrent designs, AlgoFormer (Gao et al., 2024) and Depth-Recurrent Huginn
(Geiping et al., 2025) proposed a three-stage Prelude/Loop/Coda structure, which can be formulated
as:

f “ fhead ˝ fcoda ˝ fR ˝ ¨ ¨ ¨ ˝ fr ˝ ¨ ¨ ¨ ˝ f1
loooooooooooomoooooooooooon

T iterations

˝fprelude ˝ fembed, (1)

with R hidden layers involved in the Loop for T times. Note that fpre and fcoda could have more
than one hidden layer. The modularization of this architecture can provide high efficiency and
adaptability while generalizing across a broader range of applications. In addition, depth-recurrent
transformers increase computational depth per token by reusing intermediate layers, which can be
viewed as “deep thinking” in the continuous latent space to facilitate reasoning. We discuss more
related works in Appendix A.1.

2.1 PRELIMINARY: DEPTH-RECURRENT HUGINN

We first briefly outline the architecture of the base model, termed Huginn, which is a 3.5B scalable
recurrent decoder-only transformer (depicted in Figure 1(a)). The model is primarily structured
around three functional modules: (1) 2 prelude blocks, which are responsible for embedding input
context into a latent space; (2) 4 recurrent blocks, which sequentially process the output from the
prelude module; (3) 2 coda blocks, which decode from the latent space to predict the next token.
Notably, all blocks follow standard transformer layer design, and each layer contains a multi-head
causal self-attention mechanism.

Concretely, given a sequence of tokens x “ rx1, x2, ..., xns, where xi P R|V |, n denotes the length
of the input context, and |V | represents the size of the vocabulary. Unlike the forward pass of a
standard Transformer, the model explicitly separates its computation flow into input encoding P
(prelude module), iterative implicit reasoning R (recurrent module), and output decoding C (coda
module). These modules ultimately produce output probabilities p P Rnˆ|V | as follows:

e “ Ppxq, (2)

s0 „ N p0, σ2In¨hq, (3)
st “ Rpe, st´1q for t P t1, 2, ..., T u, (4)
p “ CpsT q, (5)

where s0 is a random Gaussian vector serving as the initial state of the recurrent module, σ is
some standard deviation, and h is the hidden dimension. During the T recurrent steps, the model
repeatedly applies the core unit R, which takes the latent state st´1 and the embedded input e as
input, and outputs the updated latent state st. Although this model only includes 8 trainable blocks
(i.e., 2P + 4R + 2C), it allows for an infinitely deep transformer in the limit as T Ñ 8. Note that
while the depth-recurrent Huginn gains efficiency by using recurrent states in the latent space instead
of generating explicit reasoning steps, its reliance on a single recurrent module for all reasoning steps
fundamentally constrains its reasoning capabilities and flexibility.

3 METHODOLOGY

To enable adaptive latent space reasoning, in this work, we propose an innovative approach, Mixture-
of-Depth-Recurrent (MoDr) Transformer, which fine-tunes the existing Huginn model to transform
its single, chain-like latent reasoning process into a multi-branch, dynamic reasoning pathway. This
section outlines the architecture and methodology of MoDr, as illustrated in Figure 2. Specifi-
cally, we first integrate multiple low-rank adapters (LoRAs) to construct distinct recurrent reasoning
branches, all of which share the weights of the original recurrent blocks in the Huginn model (§3.1).
Then, we present a hard-gate routing mechanism that takes into account the hidden state informa-
tion of the current context to select which branch will predict the next token (§3.2). To alleviate the
load imbalance among different branches, we adopt an auxiliary-loss-free load balancing strategy to
mitigate uneven load distribution across branches during training (§3.3).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Prelude

Multi-Branch 
Recurrent Module

Coda

R + R + R + R +...

Router
hard gates

weight

+

Shared
Recurrent

Blocks A

B
+

+0.2 -0.1 -0.2 +0.0 +0.1

Loss-Free Branch Bias Updating

Branch 1 Branch 2 Branch 3 Branch N

(a)
(b)

(c)

(d)

T TT T

Frozen Trained

Figure 2: The architecture of the Mixture-of-Depth-Recurrent (MoDr) Transformer. MoDr consists
of N recurrent branches, which are formed by combining the original recurrent blocks of Huginn
with different LoRAs, with the weights of the original recurrent blocks shared across all branches. In
addition, a hard-gate routing mechanism dynamically selects the appropriate branch for the current
input information. During fine-tuning, only the LoRA branches and the router are trained, and an
auxiliary-loss-free balancing mechanism ensures even load distribution across different branches.

3.1 LORA-BASED MULTI-BRANCH RECURRENT MODULE

As discussed above, Huginn broadly follows the design of standard transformer layers. Accordingly,
the architecture of Huginn’s core recurrent blocks is built upon the standard transformer “sandwich”
structure, which sequentially stacks a multi-head causal attention layer (Attn) and a multilayer per-
ceptron (MLP), with each sub-layer featuring a residual connection and layer normalization (LN).
Let zl P Rnˆh denote the hidden state output by the l-th recurrent block. For each recurrent step
t P t1, 2, ..., T u, the hidden state zlt is computed as:

ẑlt “ LNpAttnpLNpzl´1
t q|Wlq ` zl´1

t q, (6)

zlt “ LNpMLPpLNpẑltq|Wlq ` ẑltq, (7)

where Wl denotes the parameters of the l-th recurrent block. As originally proposed, our objective
is to construct an adaptive exploration-rumination module. Here, a key challenge arises: how can we
break free from the single, chain-like forward propagation constraints inherent in existing recurrent
architecture?

To address this, we propose to utilize different branches to dynamically take turns to predict the next
token according to the current context information, until the end of reasoning. Full fine-tuning with
multiple initialized instances of a recurrent module in Huginn can enhance diversity and exploration
within the model’s latent reasoning trajectories. However, this approach incurs substantial compu-
tational and memory overhead. To mitigate these costs, MoDr integrates multiple low-rank adapters
(LoRAs) to create distinct recurrent reasoning branches, with the weights of the original recurrent
blocks being shared across all branches, as shown in Figure 2(c). During training, only the LoRA
weights of all branches are fine-tuned. This design yields two primary advantages: (1) the backbone
model is frozen to preserve its world knowledge, and (2) LoRA introduces negligible computational
or memory overhead owing to its minimal number of trainable parameters. Therefore, the output
hidden state zlt of each recurrent branch is computed as follows:

ẑlj,t “ LNpAttnpLNpzl´1
j,t q|Wl,∆Wl

jq ` zl´1
j,t q, (8)

zlj,t “ LNpMLPpLNpẑlj,tq|Wl,∆Wl
jq ` ẑlj,tq, (9)

where t∆Wl
juNj“1 denotes the trained LoRA module parameters for N recurrent branches. Specifi-

cally, for a base feature transformation z “ W0x, our modified forward pass yields:

z “ W0x `
α

r
∆Wx “ W0x `

α

r
BAx, (10)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where B P Rhˆr and A P Rrˆk with rank r ! minph, kq for h and k being the dimensions of the
original parameter matrix W0. The scaling factor α controls the adaptation magnitude.

3.2 HARD-GATE BRANCH ROUTING STRATEGY

Inspired by sparely-gated Mixture-of-Experts (MoE) (Shazeer et al., 2017) and switch Transformer
(Fedus et al., 2022), we design a learnable hard-gate routing network to determine which candi-
date recurrent branch will predict the next token according to the hidden state information. In our
method, the hidden state information h P Rnˆh derives from two aspects: (1) the output e of the
prelude blocks, and (2) the recurrent state s. We utilize an adapter matrix: R2h Ñ Rh to map the
concatenation of e and s into the hidden dimension h.

Let Wrouter P RNˆh denote the trainable weight matrix of a routing network, where N is the number
of candidate recurrent branches. As depicted in Figure 2(b), our design employs a Top-1 hard-gate
router. This router selects the single branch that achieves the highest average confidence score across
the tokens, as determined by the current context information. The process is detailed below:

u “ Wrouterh
J, u P RNˆn, (11)

r “ σp
1

n

n
ÿ

i“1

puiqq, r P RN , (12)

ζ “ argmaxjprjq, j P t1, 2, ..., Nu, (13)

g “ rj , if j “ ζ, (14)

where ζ is the index of the selected recurrent branch, g is a scalar score, and σ is a nonlinear
activation function like sigmoid or softmax. After that, all current hidden states zlj,t of the selected

branch are weighted as zl,
1

j,t “ g ¨ zlj,t.

During inference, for each newly generated token, the hard-gate router dynamically selects which
recurrent branch will perform the “deep thinking” based on the contextual information from the pre-
vious reasoning steps. This next-token prediction process resembles a “relay race” across different
branches. For an illustration, see Figure 1(b).

3.3 AUXILIARY-LOSS-FREE LOAD BALANCE

To prevent imbalanced training among branches caused by routing collapse (Shazeer et al., 2017),
we introduce a load balancing strategy from a sequence-wise perspective. Existing studies typically
employ an auxiliary loss (Lepikhin et al., 2020; Fedus et al., 2022) to address load imbalance in the
MoE system during training. However, evidence suggests that a large auxiliary loss could introduce
significant conflicting gradients into training, thereby degrading model performance (Wang et al.,
2024). To overcome this challenge, we introduce a loss-free balancing approach to directly adjusts
the gate scores of candidate branches based on their individual load conditions.

As illustrated in Figure 2(d), we add a bias term tbiu
N
i“1 to the original gating score triu

N
i“1 of each

candidate branch. The branch selection and the final weight score are then computed as follows:

r̂ “ r ` b, r̂ P RN , (15)

ζ̂ “ argmaxjpr̂jq, j P t1, 2, ..., Nu, (16)

g “ rj , if j “ ζ̂, (17)

where ζ̂ denotes the index of the selected recurrent branch after the bias term adjustment routing
strategy. Note that the corresponding weight score g does not involve the bias term bj .

To adjust the per-branch bias bi (i P t1, 2, ..., Nu) during training, each bias bi is first initialized to
0. For each batch, the number of assigned samples ci per branch and their average number c̄i are
counted. Then, the load violation error ei is computed, and the bias bi is updated as follows:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ei “ c̄i ´ ci, (18)
bi “ bi ` η ˚ signpeiq, (19)

where η is the update rate of the bias term, and signp¨q is a sign function. This auxiliary-loss-free
load balancing strategy not only enables load balancing across branches but also prevents the direct
incorporation of noisy gradients into the model.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed MoDr, with a focus on mathematical
reasoning tasks. We present additional experiments for commonsense reasoning tasks in Appendix
A.2. All experiments are conducted on a single NVIDIA Tesla H100 GPU with 80GB of VRAM.

4.1 EXPERIMENTAL SETUP

Datasets. We conduct our experiments on six mathematical reasoning tasks: (1) GSM8K (Cobbe
et al., 2021), a dataset of high quality grade school math word problems. (2) MAWPS (Koncel-
Kedziorski et al., 2016) dataset, a curated online repository of arithmetic and algebra word prob-
lems. (3) AQuA (Ling et al., 2017) dataset, focusing on algebraic word problems. (4) Mul-
tiArith (Roy & Roth, 2016), containing multi-step mathematical word problems. (5) AddSub
(Hosseini et al., 2014), a dataset of addition and subtraction arithmetic word problems. (6) Sin-
gleEq (Koncel-Kedziorski et al., 2015), covering grade-school algebra word problems. Regarding
the above datasets, only GSM8K, MAWPS, and AQuA provide training sets, whereas MultiArith,
AddSub, and SingleEq serve as three out-of-domain benchmarks to evaluate the models’ robust-
ness. To enhance the reasoning capabilities of the fine-tuned models, particularly their step-by-step
rationales, we employed Qwen2.5-Math-7B-Instruct 1 to generate chain-of-thought reasoning steps
for the training sets. To ensure data quality, we removed samples with incorrect answers. Table 1
summarizes the detailed statistics of the datasets. The accuracy is the evaluation metric used across
all benchmarks to measure the correctness of the predicted answers.

Table 1: Statistics of Mathematical Reasoning Datasets.

Dataset In Domain Out of Domain
GSM8K MAWPS AQuA MultiArith AddSub SingleEq

Answer Type Number Number Option Number Number Number
# Train Sample 7130 1826 609 - - -
# Test Sample 1319 238 254 600 395 508

Baselines. We primarily compare against the following baselines: First, the vanilla Huginn model
(Geiping et al., 2025), which constitutes our base architecture for MoDr. Second, we introduce
a LoRA-based supervised fine-tuning (SFT) variant of this base model, termed Huginn-SFT, us-
ing hyperparameters identical to those of MoDr. Furthermore, we evaluate a multi-branch Huginn
model without a router (i.e., using random branch selection) to assess the router’s contribution to
performance.

Settings. For all experiments in this section, we use the AdamW optimizer with a learning rate of
4e-5, weight decay of 1e-4, and betas set to (0.9,0.95). We clip gradients with a threshold of 0.2
and employ a cosine learning rate schedule with 10% warmup. Models are trained using a batch
size of 4 and a sequence length of 512, and the number of epochs matches the number of recurrent
branches. To scale the depth-recurrent architecture, we train with a mean recurrence value of 32.
To reduce computational and memory costs during training, we truncate backpropagation through
time (BPTT) to the last 8 iterations of the recurrent unit. For all low-rank adapters associated with
each branch, both the rank and the scaling factor are configured to be 16. These adapters activate
the q, k, v, o projections in attention layers of the recurrent blocks. Regarding the branch routing
and load balancing strategies, we use a sigmoid nonlinear activation function and set the bias term’s
update rate to 0.001.

1https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

43
44
45
46
47
48
49
50

Ac
cu

ra
cy

 (%
)

43.59

49.43 49.89
GSM8K (In-Domain)

72

74

76

78

80

Ac
cu

ra
cy

 (%
)

71.85

78.15

80.67
MAWPS (In-Domain)

27
28
29
30
31
32
33
34

Ac
cu

ra
cy

 (%
)

27.95

30.71

33.07

AQuA (In-Domain)

60

62

64

66

68

70

Ac
cu

ra
cy

 (%
)

62.02

66.74

69.22

Average

78
80
82
84
86
88
90
92

Ac
cu

ra
cy

 (%
)

79.83

87.17

91.17

MultiArith (Out-of-Domain)

70

72

74

76

78

80

Ac
cu

ra
cy

 (%
)

71.90

74.68

79.24

AddSub (Out-of-Domain)

75
76
77
78
79
80
81
82
83

Ac
cu

ra
cy

 (%
)

76.97

80.31
81.30

SingleEq (Out-of-Domain)

Methods
Huginn
Huginn-SFT
DR-MoR (Ours)

Figure 3: Performance comparison of MoDr with baseline methods on in-domain and out-of-domain
mathematical reasoning benchmarks. The “Average” represents the overall mean of the six mathe-
matical datasets.

4.2 MAIN RESULTS

4.2.1 MATHEMATICAL REASONING

In this experiment, MoDr is equipped with four LoRA-based recurrent branches and a hard-gate
router. Its trainable parameters constitute less than 0.2% of the base Huginn model. Our baseline,
Huginn-SFT, is a conventional single-branch model fine-tuned on the same datasets and settings.
Figure 3 presents a comparison between the baseline models and our proposed MoDr. The results
demonstrate that this multi-branch architecture significantly boosts reasoning capabilities with a
negligible parameter overhead. Notably, across six mathematical reasoning datasets, MoDr achieves
average accuracy improvements of +7.2% and +2.48% over the vanilla Huginn model and its fine-
tuned variant, respectively. This advantage stems from the fact that MoDr can dynamically route the
hidden state from the prelude module to the most suitable branch for next-token prediction, thereby
enhancing the adaptability of the reasoning trajectory.

To assess robustness, we split the six benchmarks into three in-domain (ID) (i.e., GSM8K, MAWPS,
and AQuA) and three out-of-domain (OOD) (i.e., MultiArith, AddSub, and SingleEq) tasks. We can
also observe that MoDr exhibits a superior performance relative to all baseline models, irrespective
of the domain setting. Specifically, MoDr excels even more on out-of-domain datasets (i.e., outper-
forming the original Huginn and Huginn-SFT by +6.75% and +1.78% on the ID, and by +7.67%
and +3.18% on the OOD, respectively), suggesting strong generalization. Overall, these results well
demonstrate the effectiveness of our proposed MoDr.

4.2.2 COMMONSENSE REASONING

We also evaluated MoDr on various commonsense reasoning benchmarks. As reported in Figure
6 of Appendix A.2, our findings reveal that MoDr achieves the most significant performance gains
over both the vanilla Huginn and the Huginn-SFT models. This indicates the broad applicability of
MoDr for boosting LLM’s performance. See Appendix A.2 for more details.

4.3 ABLATION STUDY

Impact of Router. We investigated the impact of dynamic routing from two perspectives. On one
hand, during inference, we deliberately disabled the router in MoDr and employed random branch
selection (referred to as MoDr w/o Router). On the other hand, we directly fine-tuned a model
without a router, the 4-branch Huginn, which also uses random branch selection in both the training
and inference stages (referred to as No Router). As shown in Table 2, MoDr with dynamic routing
demonstrates superior inference performance over both router-free models across all mathematical
benchmarks.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison among three configurations: a 4-branch Huginn model without a
router (i.e., using random branch selection), a MoDr model with a router, and a MoDr model with
a disabled router (i.e., it also uses a random strategy to select a branch per token). The top score in
each column is in bold.

Method In Domain Out of Domain Average
GSM8K MAWPS AQuA MultiArith AddSub SingleEq

No Router (random) 50.72 79.41 31.89 90.17 75.70 76.57 67.41

MoDr w/ Router (Ours) 49.89 80.67 33.07 91.17 79.24 81.30 69.22
ë w/o Router (random) 48.60 77.73 29.92 89.17 74.68 78.35 66.41

Table 3: Performance comparison between a 4-branch MoDr with dynamic routing and its four indi-
vidual branches (Branch-(b), b P t1, 2, 3, 4u). Avg.Br-(1„4) denotes the average score of branches
1 to 4. The top score in each column is in bold, and the second-highest is underlined.

Method In Domain Out of Domain Average
GSM8K MAWPS AQuA MultiArith AddSub SingleEq

MoDr (Ours) 49.89 80.67 33.07 91.17 79.24 81.30 69.22

ë Branch-(1) 50.19 75.63 35.43 91.67 71.39 75.98 66.72
ë Branch-(2) 48.07 79.37 34.65 89.17 75.19 80.71 67.86
ë Branch-(3) 47.84 80.25 28.35 92.50 77.97 80.71 67.94
ë Branch-(4) 49.66 74.37 26.77 86.83 70.13 78.15 64.32

ë Avg.Br-(1„4) 48.94 77.41 31.30 90.04 73.67 78.89 66.71

In addition, two observations are worth noting: (1) No Router performs best on GSM8K, but only
marginally. This can be attributed to the fact that GSM8K’s extensive training data (74.52%) thor-
oughly trains the model branches in all setups. (2) The performance of No Router is better than that
of MoDr w/o Router but is still inferior to that of the standard MoDr with its router. This further
underscores the positive role of dynamic routing in branch selection during inference.

Impact of Single Branch. To validate the effectiveness of dynamic routing for multi-branch infer-
ence, we conducted an ablation study by evaluating each individual branch of the 4-branch MoDr
independently on all mathematical tasks. The results, presented in Table 3, demonstrate that the av-
erage accuracy of MoDr with dynamic routing is superior to that of any individual branch and even
exceeds their collective average. Notably, MoDr with dynamic routing does not achieve the top rank
on every benchmark. Specifically, it ranked first on the MAWPS, AddSub, and SingleEq datasets,
second on GSM8K, and third on AQuA and MultiArith. This performance variation implies that
different branches may have developed specialized capabilities for distinct scenarios during train-
ing. Although dynamic routing strategy fails to select the optimal inference trajectory in certain
cases, it effectively leverages the strengths of each branch across a wide range of scenarios, lead-
ing to superior overall performance compared to any individual branch or their simple average.
This confirms the critical role of a multi-branch dynamic routing framework in developing effective
depth-recurrent reasoning models.

0 1000 2000 3000 4000 5000 6000 7000 8000
Step

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ba
la

nc
e 

En
tro

py

= 0 (Avg.Acc=68.66)
= 0.001 (Avg.Acc=69.22)

Figure 4: The impact of update rate on training load
balance. Lower entropy makes it easier for the router to
choose the same branch.

Impact of Load Balance. An unbalanced
branch load can lead to routing collapse
(Shazeer et al., 2017), causing an imbalance
in branch utilization and diminishing computa-
tional efficiency. To mitigate this, we employ
a load balancing strategy governed by the up-
date rate η in Eq. 19, which controls the con-
vergence rate of the branch biases tbiu

N
i“1 to a

suitable bias. To evaluate this strategy, we con-
ducted an ablation study by comparing a model
with the strategy enabled (η=0.001) against a
baseline without it (η=0). We introduce a met-
ric called balance entropy to quantify the degree

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

of load balance as follows:

Hbalance “ ´
ÿ

brPUniquepΩq

Countpbrq

|Ω|
log2

Countpbrq

|Ω|
, (20)

where Ω is the set of branches selected by the router within a batch, and br is an element of this set.
A higher entropy indicates a more balanced load distribution. As shown in Figure 4, the model with
η=0 (without load balance) converges to a limited subset of branches, resulting in their dispropor-
tionate over-utilization. In contrast, the model with η=0.001 ensures a more even distribution of the
training load across all branches, which ultimately leads to superior generalization performance.

4.4 ANALYSIS OF THE NUMBER OF BRANCHES

1 2 3 4 8 12
Number of Branches

67.0

67.5

68.0

68.5

69.0

69.5

Av
er

ag
e 

Ac
cu

ra
cy

 (%
)

Figure 5: The changes of average performance
under different recurrent branch numbers.

The number of recurrent branches is a critical hyper-
parameter, influencing both the search space size and
computational resource allocation. To investigate its
impact, we conducted a series of experiments where
we varied the number of branches while keeping all
other settings constant. To guarantee a fair compar-
ison, the total number of training epochs was scaled
proportionally with the number of branches, ensur-
ing that each branch received an equivalent amount
of computation. The results, as shown in Figure 5,
reveal a clear trend: average performance across all
benchmarks consistently improves as more branches
are added. This positive correlation between branch
count and performance validates the effectiveness of our dynamic multi-branch architecture. How-
ever, we also observe that the performance gains begin to diminish beyond four branches, suggesting
that this configuration offers the best trade-off between performance and computational cost.

4.5 CASE STUDY

We check some cases of the reasoning processes of MoDr. We find that at different reasoning steps
during inference, MoDr dynamically invokes diverse branches to predict the next token based on
the available context state, which is consistent with our hypothesis. Due to space limitations, more
details are shown in Appendix A.3.

5 CONCLUSION

In this paper, we introduce the Mixture-of-Depth-Recurrent (MoDr) Transformer, a novel dynamic
routing framework that advances the depth-recurrent Huginn model. The vanilla Huginn model’s
reasoning flexibility is constrained by its reliance on a single, chain-like propagation mechanism
within the rumination recurrent module. MoDr addresses this limitation by incorporating multi-
ple LoRA branches and employing a hard-gate router to dynamically select the most appropriate
branch for next-token prediction. Extensive experiments across a diverse set of mathematical and
commonsense reasoning benchmarks demonstrate that MoDr can significantly improves upon the
performance of the existing Huginn model while incurring negligible computational overhead.

5.1 LIMITATIONS & FUTURE WORK

MoDr offers a dynamic multi-branch framework for the depth-recurrent Huginn model (Geiping
et al., 2025), designed to enhance the exploration capability and adaptivity of its rumination recurrent
module (Loop) within the latent space. By leveraging LoRAs as distinct branches, our approach
avoids significant computational overhead. However, for practical deployment, MoDr necessitates
an efficient KV cache strategy, which remains a key challenge and a primary direction for future
work. Inspired by (Geiping et al., 2025; Bae et al., 2025), we identify two promising solutions: (1)
caching KV pairs from the most recent k recurrent iterations under a fixed budget, or (2) caching the
initial KV pairs and sharing them across all recurrent branches for subsequent reasoning steps.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr
Harutyunyan, Ziwei Ji, Aaron Courville, et al. Mixture-of-recursions: Learning dynamic recur-
sive depths for adaptive token-level computation. arXiv preprint arXiv:2507.10524, 2025.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 17682–17690, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yilong Chen, Junyuan Shang, Zhenyu Zhang, Yanxi Xie, Jiawei Sheng, Tingwen Liu, Shuohuan
Wang, Yu Sun, Hua Wu, and Haifeng Wang. Inner thinking transformer: Leveraging dynamic
depth scaling to foster adaptive internal thinking. arXiv preprint arXiv:2502.13842, 2025.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep
mixture of experts. arXiv preprint arXiv:1312.4314, 2013.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Yihang Gao, Chuanyang Zheng, Enze Xie, Han Shi, Tianyang Hu, Yu Li, Michael K Ng, Zhen-
guo Li, and Zhaoqiang Liu. Algoformer: An efficient transformer framework with algorithmic
structures. arXiv preprint arXiv:2402.13572, 2024.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning, pp. 11398–11442. PMLR, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang Xu, Aoxue Li, Dit-Yan Yeung, James T
Kwok, and Yu Zhang. Mixture of cluster-conditional lora experts for vision-language instruction
tuning. arXiv preprint arXiv:2312.12379, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pp. 523–533, 2014.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Gagan Jain, Nidhi Hegde, Aditya Kusupati, Arsha Nagrani, Shyamal Buch, Prateek Jain, Anurag
Arnab, and Sujoy Paul. Mixture of nested experts: Adaptive processing of visual tokens. Ad-
vances in Neural Information Processing Systems, 37:58480–58497, 2024.

Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Kai Yao, Jia Xu, Linjian Mo, and Min Zhang. Test-time
compute: from system-1 thinking to system-2 thinking. arXiv preprint arXiv:2501.02497, 2025.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for Com-
putational Linguistics, 3:585–597, 2015.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
Mawps: A math word problem repository. In Proceedings of the 2016 conference of the north
american chapter of the association for computational linguistics: human language technologies,
pp. 1152–1157, 2016.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhengmao Ye, Zhiyuan Cheng, Yinghao Tang, Yan
Zhang, Lei Duan, Jie Zuo, Cal Yang, et al. Mixlora: Enhancing large language models fine-
tuning with lora-based mixture of experts. arXiv preprint arXiv:2404.15159, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Ziyue Li, Yang Li, and Tianyi Zhou. Skip a layer or loop it? test-time depth adaptation of pretrained
llms. arXiv preprint arXiv:2507.07996, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task relation-
ships in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 1930–1939, 2018.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416,
2025.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Sheng Shen, Zhewei Yao, Chunyuan Li, Trevor Darrell, Kurt Keutzer, and Yuxiong He. Scaling
vision-language models with sparse mixture of experts. arXiv preprint arXiv:2303.07226, 2023.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
chain-of-thought into continuous space via self-distillation. arXiv preprint arXiv:2502.21074,
2025.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adri Garriga-Alonso, et al. Beyond the imita-
tion game: Quantifying and extrapolating the capabilities of language models. Transactions on
machine learning research, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load
balancing strategy for mixture-of-experts. arXiv preprint arXiv:2408.15664, 2024.

Xiaoqiang Wang, Suyuchen Wang, Yun Zhu, and Bang Liu. System-1.5 reasoning: Traversal in
language and latent spaces with dynamic shortcuts. arXiv preprint arXiv:2505.18962, 2025.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
better at learning learning algorithms. arXiv preprint arXiv:2311.12424, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 RELATED WORK

A.1.1 TEST-TIME REASONING

Recent advances have demonstrated that large language models emerge with remarkable reasoning
capabilities. In particular, Chain-of-Thought (CoT) reasoning (Wei et al., 2022b; Kojima et al.,
2022) with few-shot or even zero-shot examples further achieves superior performance. These
prompting techniques explicitly elicit intermediate reasoning steps before the model generates its
final answers. Furthermore, several studies have further unlocked the potential of CoT when inte-
grated with reinforcement learning-based fine-tuning (Jaech et al., 2024; Guo et al., 2025), uncov-
ering significant “aha-moments” in model behavior. Alternatively, a compelling counterpart is to
prompt LLMs that perform reasoning in latent space without verbal narrative. A strategy of this line
is to explore auto-regressive latent reasoning by progressively replacing CoT tokens with continuous
representations through multi-stage training (Hao et al., 2024), or compressing CoT tokens into con-
tinuous space via self-distillation in a single stage (Shen et al., 2025). Another line of work focuses
on loop-based architectures, which iteratively refine hidden states in a single forward pass by recur-
rently propagating information across layers (Dehghani et al., 2019; Chen et al., 2025; Geiping et al.,
2025). In addition, to achieve test-time depth adaptation, recent studies have explored methods for
dynamically allocating computation in latent space. These methods learn to adapt to inputs of vary-
ing complexity by adjusting recursive depths (Bae et al., 2025; Chen et al., 2025), creating shortcuts
(Wang et al., 2025), or combining both approaches (Li et al., 2025). Orthogonal to these works, we
focus on developing versatile recurrent branches that can handle diverse contextual inputs, thereby
improving the adaptability of the reasoning trajectory.

A.1.2 PARAMETER-EFFICIENT FINE-TUNING

Supervised fine-tuning of large language models is a common practice for adaptation to various
specific downstream tasks. However, as model parameters scale up, the computational cost of full
fine-tuning becomes a significant challenge. To mitigate this, parameter-efficient fine-tuning (PEFT)
methods (Houlsby et al., 2019; Li & Liang, 2021; Hu et al., 2022) have emerged over time. Low-
rank adaptation (LoRA) (Hu et al., 2022) enables plug-and-play adaptation of pretrained LLMs
by freezing initial model weights and fine-tuning a small set of low-rank matrices. For instance,
(Gou et al., 2023) proposed a mixture of cluster-conditional LoRA experts to activate task-specific
adapters based on instruction clusters. (Li et al., 2024) enhanced model performance by utilizing in-
dependent attention-layer LoRA adapters. Compared to full fine-tuning, this paradigm offers a more
flexible and efficient solution with constrained computational resources. As for our approach, we
integrate LoRAs as diverse exploration branches instead of simply copying the backbone recurrent
module, thereby expanding model capacity and avoiding additional overhead.

A.1.3 MULTI-BRANCH NETWORKS AND DYNAMIC ROUTING

Given that diverse inputs could have different computational demands, it is intuitive to perform in-
ference with dynamic pathways tailored to each sample. Recent studies, such as MoCLE (Gou et al.,
2023) and MoNE (Jain et al., 2024), aim to enhance model performance by maintaining multiple
sub-networks and a learnable routing mechanism. The paradigm of Mixture-of-Experts (MoE) not
only provides a promising solution for managing computational costs but also results in remark-
able performance improvements. In conventional soft MoE (Eigen et al., 2013; Ma et al., 2018),
the weights predicted by the router are adopted to dynamically aggregate the representations of all
branches (“experts”). In contrast, hard MoE models (Shen et al., 2023; Guo et al., 2025) dynami-
cally activate the branches with the highest or top-k confidence. While effective, these methods often
encounter load imbalance, potentially leading to routing collapse (Shazeer et al., 2017). Therefore,
introducing auxiliary balancing strategies (Fedus et al., 2022; Wang et al., 2024) is essential during
the training phase. Inspired by these works, MoDr combines a hard-gate routing mechanism and an
auxiliary-loss-free load balancing strategy to adaptively select the most suitable recurrent branch for
the next reasoning step, thereby improving robustness while retaining performance.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 EXPERIMENTS FOR COMMONSENSE REASONING

A.2.1 EXPERIMENTAL SETUP

Datasets. We conduct our experiments on six commonsense reasoning tasks: (1) PIQA (Bisk et al.,
2020), a dataset focused on physical commonsense question answering. (2) HellaSwag (Zellers
et al., 2019), a commonsense natural language interface (NLI) dataset. (3) WinoGrande (Sak-
aguchi et al., 2021), a dataset for commonsense reasoning involving pronoun disambiguation and
sentence completion. (4) ARC-E and (5) ARC-C (Clark et al., 2018), the Easy and Challenge sets
of the ARC dataset, which contains genuine grade-school level, multiple-choice science questions.
(6) OBQA (Mihaylov et al., 2018), a dataset requiring multi-step reasoning, the use of additional
common knowledge, and rich text comprehension. The detailed statistics of the datasets are outlined
in Table 4. To facilitate fine-tuning in the domain of commonsense reasoning, we adopt the Com-
monsense170K 2 dataset constructed by Hu et al. (2023), and conduct evaluations on the individual
testing dataset for each task.

Other Protocols. For the evaluation metric, comparison methods, and settings, we maintain consis-
tency with the experiments on mathematical reasoning tasks (See §4.1).

Table 4: Statistics of Commonsense Reasoning Datasets.

Dataset PIQA HellaSwag WinoGrande ARC-E ARC-C OBQA

Answer Type Option Option Option Option Option Option
# Train Sample 16.1K 39.9K 63.2K 1.1K 2.3K 5.0K
# Test Sample 1830 10042 1267 2376 1172 500

A.2.2 RESULTS AND ANALYSIS

Figure 6 illustrates a comparison of our proposed MoDr against the baseline models (i.e., vanilla
Huginn and Huginn-SFT) on six commonsense reasoning tasks. MoDr demonstrates consistent
performance gains over its competitors across most commonsense tasks, with the exception of
HellaSwag, where it underperforms Huginn-SFT by 0.83%. In terms of average accuracy, MoDr
achieves improvements of +21.21% and +1.52% over vanilla Huginn and Huginn-SFT, respectively.
Overall, these results further verify MoDr’s effectiveness on commonsense reasoning tasks.

75
76
77
78
79
80
81
82

Ac
cu

ra
cy

 (%
)

75.79

79.11
79.71

PIQA

65.0
67.5
70.0
72.5
75.0
77.5
80.0
82.5

Ac
cu

ra
cy

 (%
)

64.67

80.98 80.15

HellaSwag

57.5
60.0
62.5
65.0
67.5
70.0
72.5
75.0
77.5

Ac
cu

ra
cy

 (%
)

57.77

74.35
75.93

WinoGrande

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

57.17

76.86 78.38

Average

67.5
70.0
72.5
75.0
77.5
80.0
82.5
85.0
87.5

Ac
cu

ra
cy

 (%
)

69.49

84.05 85.52

ARC-E

40
45
50
55
60
65
70

Ac
cu

ra
cy

 (%
)

37.71

68.26 70.56
ARC-C

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

37.60

74.40
78.40

OBQA

Methods
Huginn
Huginn-SFT
MoDr (Ours)

Figure 6: Performance comparison of MoDr with baseline methods on commonsense reasoning
benchmarks. The Huginn results are reported by (Geiping et al., 2025). The “Average” represents
the overall mean of the six commonsense datasets.

2https://huggingface.co/datasets/zwhe99/commonsense 170k

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 CASE STUDY

We present three cases as follows.

Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week?

Answer: To determine the total number of meters James runs in a week, we need to follow these steps:

1. Calculate the number of sprints James runs in a week.

2. Determine the total distance run in one sprint.

3. Multiply the number of sprints by the total distance run in one sprint to find the total distance run in a week.

First, let's calculate the number of sprints James runs in a week. He runs 3 sprints 3 times a week. Therefore, the total number of sprints is:

\[ 3 \times 3 = 9 \]

Next, we need to determine the total distance run in one sprint. Each sprint is 60 meters. So, the total distance run in one week is:

\[ 9 \times 60 = 540 \]

Thus, the total number of meters James runs in a week is:

\[ \boxed{540} \]

（GSM8K）

Figure 7: Case study: The dynamic trajectories of text tokens across various reasoning branches in
MoDr, color-coded as 1 , 2 , 3 , and 4 , for a test instance from GSM8K.

Question: Lana was unboxing some of her old winter clothes. She found 3 boxes of clothing and inside each box there were 3 scarves 

and 4 mittens. How many pieces of winter clothing did Lana have total?

Answer: To determine the total number of pieces of winter clothing Lana has, we need to follow these steps:

1. Calculate the number of scarves in the boxes.

2. Calculate the number of mittens in the boxes.

3. Add the number of scarves and mittens together.

First, let's calculate the number of scarves in the boxes. Each box contains 3 scarves, and there are 3 boxes. Therefore, the total number of 

scarves is:

\[ 3 \text{ boxes} \times 3 \text{ scarves per box} = 9 \text{ scarves} \]

Next, let's calculate the number of mittens in the boxes. Each box contains 4 mittens, and there are 3 boxes. Therefore, the total number 

of mittens is:

\[ 3 \text{ boxes} \times 4 \text{ mittens per box} = 12 \text{ mittens} \]

Now, we add the number of scarves and mittens together to find the total number of pieces of winter clothing:

\[ 9 \text{ scarves} + 12 \text{ mittens} = 21 \text{ pieces of winter clothing} \]

Thus, the total number of pieces of winter clothing Lana has is:

\[ \boxed{21} \]

（MultiArith）

Figure 8: Case study: The dynamic trajectories of text tokens across various reasoning branches in
MoDr, color-coded as 1 , 2 , 3 , and 4 , for a test instance from MultiArith.

From these cases, we have two interesting findings:

• During each inference process, not all branches participate throughout the entire lifecycle.
This is shown in the first two cases.

• Branch 2 handles most of the upfront analysis and planning, while Branches 1, 3, and
4 focus on detailed reasoning and reaching conclusions. This is demonstrated across all
cases.

This in turn, corroborates our hypothesis: distinct contextual inputs necessitate different computa-
tional demands, a dynamic mechanism for invoking specialized branches should be employed for
next-token prediction.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Question: Mika had 20 stickers. She bought 26 stickers from a store in the mall and got 20 stickers for her birthday. Then Mika gave 6 

of the stickers to her sister and used 58 to decorate a greeting card. How many stickers does Mika have left?

Answer: To determine how many stickers Mika has left, we need to follow these steps:

1. Start with the initial number of stickers Mika had.

2. Add the number of stickers she bought.

3. Add the number of stickers she received for her birthday.

4. Subtract the number of stickers she gave to her sister.

5. Subtract the number of stickers she used to decorate a greeting card.

Let's go through each step in detail:

1. Mika initially had 20 stickers.

2. She bought 26 stickers. So, the total number of stickers she has after buying is:

   \[ 20 + 26 = 46 \]

3. She received 20 stickers for her birthday. So, the total number of stickers she has after receiving the birthday stickers is: 

   \[ 46 + 20 = 66 \]

4. She gave 6 stickers to her sister. So, the total number of stickers she has left after giving stickers to her sister is:

   \[ 66 - 6 = 60 \]

5. She used 58 stickers to decorate a greeting card. So, the total number of stickers she has left after decorating the greeting 

    card is:

    \[ 60 - 58 = 2 \]

Therefore, the number of stickers Mika has left is \boxed{2}.

（SingleEq）

Figure 9: Case study: The dynamic trajectories of text tokens across various reasoning branches in
MoDr, color-coded as 1 , 2 , 3 , and 4 , for a test instance from SingleEq.

A.4 ADDITIONAL EXPERIMENTS FOR CODE GENERATION

A.4.1 EXPERIMENTAL SETUP

To evaluate the model’s code capabilities, we fine-tuned it on the CodeFeedback-Filtered-
Instruction3 (Zheng et al., 2024) dataset. After cleaning the data to remove invalid entries, we
obtained a final training set of 79K samples. For evaluation, we used the HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) test sets, adopting Pass@1 as the evaluation metric. The base-
line methods and experimental settings were kept consistent with those used for the mathematical
reasoning tasks (see Section 4.1).

A.4.2 RESULTS AND ANALYSIS

Figure 10 presents the pass@1 scores on the HumanEval and MBPP benchmarks. As shown, our
proposed MoDr achieves substantial and consistent improvements over all baselines in average per-
formance, suggesting its potential for scalability. These results demonstrate that MoDr effectively
extends the reasoning capabilities of the depth-recurrent Huginn model across a wide range of tasks,
achieved by constructing a dynamic-routing, multi-branch mechanism within its recurrent rumina-
tion module.

Figure 10: Performance (Pass@1) comparison of MoDr with baseline methods on code generation.
The “Average” represents the overall mean of the HumanEval and MBPP datasets.

3https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.5 EVALUATION DETAILS

We conducted evaluation experiments on all models using the following system prompts. In all
experiments, the temperature of the models was set to 0.0001, and the max tokens parameter
was set to 1024. The number of steps for the recurrent module was set to 16. In particular, the
AQuA dataset sometimes fails to follow the specified instructions for the final answer (e.g., placing
a numerical value in a box rather than the corresponding option), we also manually double-checked
the gold answers.

Evaluation Prompt for Mathematical Reasoning Tasks

System: Please reason step by step, and put your final answer within $zboxed{}$.
User: {Question}
Assistant:

Evaluation Prompt for Commonsense Reasoning Tasks

System: Below is an instruction that describes a task. Write a response that appropriately completes the
request.
User:
### Instruction: {Instruction}

### Response:
Assistant:

Evaluation Prompt for Code Generation Tasks

System: You are an exceptionally intelligent coding assistant that consistently delivers accurate and reli-
able responses to user instructions.
User:
// For Humaneval
### Instruction: Read the following function signature and docstring, and fully implement the func-
tion described. Your response should only contain the code for this function.

Function signature: {Example}

### Response:

// For MBPP
### Instruction: {Test}

Example Test Cases: {Test List}

### Response:
Assistant:

A.6 FINE-TUNING EXAMPLES

The following are example questions and solutions from the mathematical reasoning, commonsense
reasoning, and code generation datasets used for fine-tuning in our experiments.

A.6.1 MATHEMATICAL REASONING TASKS

GSM8K

System: Please reason step by step, and put your final answer within $zboxed{}$.
User: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How
many clips did Natalia sell altogether in April and May?
Assistant: To determine the total number of clips Natalia sold in April and May, we start by finding
out how many clips she sold in May. According to the problem, Natalia sold half as many clips in May
as she did in April. Since she sold 48 clips in April, we calculate the number of clips sold in May as
follows:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Clips sold in May “
48

2
“ 24

Next, we add the number of clips sold in April to the number of clips sold in May to find the total
number of clips sold over the two months:

Total clips sold “ Clips sold in April ` Clips sold in May “ 48 ` 24 “ 72

Therefore, the total number of clips Natalia sold in April and May is 72 .

AQuA

System: Please reason step by step, and put your final answer within $zboxed{}$.
User: Carrie likes to buy t-shirts at the local clothing store. They cost $9.95 each. One day, she bought
20 t-shirts. How much money did she spend? The options are: A)$150 B)$248.75 C)$199 D)$171.6
E)$190
Assistant: To determine how much money Carrie spent on t-shirts, we need to multiply the cost of one
t-shirt by the number of t-shirts she bought. The cost of one t-shirt is $9.95, and she bought 20 t-shirts.
Let’s perform the multiplication step-by-step:
1. Multiply the cost of one t-shirt by the number of t-shirts:

9.95 ˆ 20

2. To make the multiplication easier, we can break it down:

9.95 ˆ 20 “ p10 ´ 0.05q ˆ 20

3. Use the distributive property to multiply:

p10 ´ 0.05q ˆ 20 “ 10 ˆ 20 ´ 0.05 ˆ 20

4. Calculate each part separately:
10 ˆ 20 “ 200

0.05 ˆ 20 “ 1

5. Subtract the second result from the first:

200 ´ 1 “ 199

Therefore, Carrie spent C dollars.

MAWPS

System: Please reason step by step, and put your final answer within $zboxed{}$.
User: For the fifth grade play, the chairs have been put into 27 rows with 16 chairs in each row. How
many chairs have been put out for the play ?
Assistant: To determine the total number of chairs put out for the play, we need to multiply the number
of rows by the number of chairs in each row. Here are the steps:
1. Identify the number of rows: 27 2. Identify the number of chairs in each row: 16 3. Multiply the
number of rows by the number of chairs in each row: 27 ˆ 16
Now, let’s perform the multiplication:

27 ˆ 16 “ 27 ˆ p10 ` 6q “ p27 ˆ 10q ` p27 ˆ 6q

First, calculate 27 ˆ 10:

27 ˆ 10 “ 270

Next, calculate 27 ˆ 6:

27 ˆ 6 “ 162

Now, add the two results together:

270 ` 162 “ 432

Therefore, the total number of chairs put out for the play is 432 .

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.6.2 COMMONSENSE REASONING TASKS

PIQA

System: Below is an instruction that describes a task. Write a response that appropriately completes
the request.
User:
### Instruction: Please choose the correct solution to the question: When boiling butter, when
it’s ready, you can
Solution1: Pour it onto a plate
Solution2: Pour it into a jar
Answer format: solution1/solution2
### Response:
Assistant: the correct answer is solution2 .

HellaSwag

System: Below is an instruction that describes a task. Write a response that appropriately completes
the request.
User:
### Instruction: Please choose the correct ending to complete the given sentence: Removing ice
from car: Then, the man writes over the snow covering the window of a car, and a woman wearing
winter clothes smiles. then
Ending1: , the man adds wax to the windshield and cuts it. Ending2: , a person board a ski lift, while
two men supporting the head of the person wearing winter clothes snow as the we girls sled. Ending3:
, the man puts on a christmas coat, knitted with netting. Ending4: , the man continues removing the
snow on his car.
Answer format: ending1/ending2/ending3/ending4
### Response:
Assistant: the correct answer is ending4 .

WinoGrande

System: Below is an instruction that describes a task. Write a response that appropriately completes
the request.
User:
### Instruction: Please choose the correct answer to fill in the blank to complete the given
sentence: Ian volunteered to eat Dennis’s menudo after already having a bowl because despised eating
intestine.
Option1: Ian Option2: Dennis Answer format: option1/option2
### Response:
Assistant: the correct answer is option2 .

ARC-E

System: Below is an instruction that describes a task. Write a response that appropriately completes
the request.
User:
### Instruction: Please choose the correct answer to the question: Which factor will most likely
cause a person to develop a fever?
Answer1: a leg muscle relaxing after exercise Answer2: a bacterial population in the bloodstream
Answer3: several viral particles on the skin Answer4: carbohydrates being digested in the stomach
Answer format: answer1/answer2/answer3/answer4
### Response:
Assistant: the correct answer is answer2 .

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

ARC-C

System: Below is an instruction that describes a task. Write a response that appropriately completes
the request.
User:
### Instruction: Please choose the correct answer to the question: George wants to warm his
hands quickly by rubbing them. Which skin surface will produce the most heat?
Answer1: dry palms Answer2: wet palms Answer3: palms covered with oil Answer4: palms covered
with lotion
Answer format: answer1/answer2/answer3/answer4
### Response:
Assistant: the correct answer is answer1 .

OBQA

System: Below is an instruction that describes a task. Write a response that appropriately completes
the request.
User:
### Instruction: Please choose the correct answer to the question: The sun is responsible for
Answer1: puppies learning new tricks Answer2: children growing up and getting old Answer3: flowers
wilting in a vase Answer4: plants sprouting, blooming and wilting
Answer format: answer1/answer2/answer3/answer4
### Response:
Assistant: the correct answer is answer4 .

A.6.3 CODE GENERATION TASKS

CodeFeedback

System: You are an exceptionally intelligent coding assistant that consistently delivers accurate and
reliable responses to user instructions.
User:
### Instruction: Write a recursive function that calculates the factorial of a given number in
Python. The function should handle negative numbers as well. Additionally, the function should only
accept non-negative integers as input and raise a ValueError for any other input. The function should
also check if the given number is a prime number, and if so, return the factorial of the next prime
number greater than the given number.
### Response:
Assistant: Here’s a recursive function in Python that calculates the factorial of a given number, handles
negative numbers, and raises a ValueError for any non-negative integers:
‘‘‘python

def factorial(n):
if not isinstance(n, int) or n < 0:

raise ValueError("Input must be a non-negative integer")
if n <= 1:

return 1
else:

return n * factorial(n-1)

‘‘‘

21


	Introduction
	Background
	Preliminary: Depth-Recurrent Huginn

	Methodology
	LoRA-Based Multi-Branch Recurrent Module
	Hard-Gate Branch Routing Strategy
	Auxiliary-Loss-Free Load Balance

	Experiments
	Experimental Setup
	Main Results
	Mathematical Reasoning
	Commonsense Reasoning

	Ablation Study
	Analysis of the Number of Branches
	Case Study

	Conclusion
	Limitations & Future Work

	Appendix
	Related Work
	Test-Time Reasoning
	Parameter-Efficient Fine-Tuning
	Multi-Branch Networks and Dynamic Routing

	Experiments for Commonsense Reasoning
	Experimental Setup
	Results and Analysis

	Case Study
	Additional Experiments for Code Generation
	Experimental Setup
	Results and Analysis

	Evaluation Details
	Fine-Tuning Examples
	Mathematical Reasoning Tasks
	Commonsense Reasoning Tasks
	Code Generation Tasks



