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ABSTRACT

Large Language Models have demonstrated superior reasoning capabilities by
generating step-by-step reasoning in natural language before deriving the final
answer. Recently, Geiping et al. (2025) introduced 3.5B-Huginn as an alterna-
tive to this paradigm, a depth-recurrent Transformer that increases computational
depth per token by reusing a recurrent block in latent space. Despite its perfor-
mance gains with increasing recurrences, this approach is inadequate for tasks de-
manding exploration and adaptivity, a limitation arising from its single, chain-like
propagation mechanism. To address this, we propose a novel dynamic multi-
branches routing approach for Huginn, termed as Mixture-of-Depth-Recurrent
(MoDr) Transformer, which enables effective exploration of the solution space
by shifting linear latent reasoning into a LoRA-based multi-branch dynamic relay
mode with a learnable hard-gate routing. Meanwhile, we introduce an auxiliary-
loss-free load balancing strategy to mitigate the potential routing collapse. Our
empirical results reveal that MoDr achieves average accuracy improvements of
+7.2% and +2.48% over the original Huginn model and its fine-tuned variant, re-
spectively, across various mathematical reasoning benchmarks and improvements
of +21.21% and +1.52% on commonsense reasoning benchmarks.

1 INTRODUCTION

Transformer-based large language models (LLMs) (Achiam et al., 2023; Team et al., 2023; Liu et al.,
2024) have achieved striking performance gains in a wide variety of reasoning tasks (Gao et al.,
2023; Srivastava et al., 2023; Rein et al., 2024). To enhance the reasoning capabilities of LLMs,
many studies have focused on scaling both model size (Wei et al., 2022a) and test-time computation
(Ji et al., 2025). However, much of this success comes at the cost of significant computational and
memory resources during training and deployment, and is accompanied by high latency as the model
verbalizes excessively long intermediate reasoning (referred to as “deep thinking”) before delivering
a final response.

Recent developments in latent reasoning, which leverage recurrent or looped-based methods, have
shown potential to improve inference efficiency apart from scaling model size and employing ex-
plicit thinking (Dehghani et al., 2019; Gao et al., 2024b; Chen et al., 2025; Geiping et al., 2025).
Among these, Geiping et al. (2025) proposed a 3.5B depth-recurrent transformer, dubbed Huginn,
which explicitly disentangles the transformer into a three-stage Prelude/Loop/Coda structure (as
shown in Figure 1(a)), in order to reuse the rumination module (Loop) multiple times in the latent
space to increase the computational depth per token. While the recurrent layers achieve low memory
and latency alongside excellent reasoning performance, its single recurrent reasoning module limits
the adaptability of the reasoning trajectory.

From the perspective of thought structure, the chain structure (Wei et al., 2022b) significantly en-
hances the reasoning capabilities of LLMs compared to directly providing the answer. Subsequently,
the tree structure (Yao et al., 2023) further strengthens the model’s ability to explore and backtrack
by introducing hierarchical search. Furthermore, the graph structure (Besta et al., 2024), by in-
corporating loops and N-to-1 connections, facilitates sub-problem aggregation and self-verification.

: Correspondence to: {bochen.lyu, z.zhu}@soton.ac.uk.
Code is available at: https://github.com/zhangxjohn/MoDr.
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Figure 1: Comparison of (a) vanilla Huginn (Geiping et al., 2025) model and (b) MoDr (ours)
reasoning patterns. Unlike Huginn, where each reasoning step relies on a single recurrent module,
our proposed MoDr employs a dynamic routing mechanism to adaptively select the most suitable
recurrent branch for the current context input, thereby predicting the next token. During inference, in
Huginn, each token is generated by a fixed recurrent module, whereas in MoDr, tokens are produced
dynamically through a sequential relay of multiple recurrent branches.

Inspired by these works, we hypothesize that a single recurrent reasoning module analogous to the
chain structure inherently limits the scope of exploration. This inspires us to explore the question:
How can we construct a depth-recurrent Huginn model with an adaptive exploration-rumination
module while avoiding extra resource burdens?

To this end, we propose an innovative approach, Mixture-of-Depth-Recurrent (MoDr) Transformer,
which conceptualizes the reasoning process as a dynamic relay exploration for each token in a com-
binatorial solution space (see Figure 1(b) and 2 for illustration). Specifically, we first introduce
several block-wise low-rank adapters (LoRAs (Hu et al., 2022)) as versatile exploration branches.
Each branch is integrated with the shared rumination recurrent module (Loop). Considering that
different contextual inputs may have diverse computational demands for reasoning path exploration,
a hard-gate routing mechanism is then employed to comprehensively consider the hidden state in-
formation of the context, and automatically decide which branch is for predicting the next token.
In addition, we utilize an auxiliary-loss-free load balancing strategy to mitigate the risk of routing
collapse (Shazeer et al., 2017), inspired by Wang et al. (2024). Empirically, our comprehensive
experiments across a wide range of mathematical and commonsense reasoning benchmarks validate
the effectiveness of the MoDr approach.

Contributions.

• We find that the inherent limitation of existing depth-recurrent Huginn model lies in its ru-
mination module (the ‘Loop’), which adopts a single, chain-like propagation mechanism.
This design weakens the diversity and exploration capability of the model’s reasoning tra-
jectories within the latent space.

• We introduce Mixture-of-Depth-Recurrent (MoDr) Transformer, a novel extension of the
depth-recurrent Huginn architecture designed to shift latent reasoning into a multi-branch
dynamic relay exploration mode with negligible resource overhead.

• We conduct extensive experiments on a wide variety of mathematical and common-
sense reasoning benchmarks, demonstrating that MoDr achieves competitive performance.
Specifically, compared to the vanilla Huginn model and its fine-tuned variant, MoDr
achieves average accuracy improvements of +7.2% and +2.48% on mathematical tasks,
and +21.21% and +1.52% on commonsense tasks, respectively.
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2 BACKGROUND

To scale test-time computation while reducing both training and deployment computational over-
head, a prevailing line of research is to enable depth adaptivity in Transformers through recurrent
depth and looped layers. Starting from the Universal Transformer (Dehghani et al., 2019), which
pioneered dynamic recurrence over layers to iteratively refine sequence representations, this design
paradigm has demonstrated that depth-adaptive reasoning is a promising substitute for the tradi-
tional fixed-depth transformer architecture. Subsequently, research on the Looped Transformers has
exhibited strong generalization across diverse tasks, including programmable computing (Giannou
et al., 2023), data fitting (Yang et al., 2023), and arithmetic reasoning (Saunshi et al., 2025). In addi-
tion to adopting monolithic recurrent designs, AlgoFormer (Gao et al., 2024b) and Depth-Recurrent
Huginn (Geiping et al., 2025) proposed a three-stage Prelude/Loop/Coda structure, which can be
formulated as:

f “ fhead ˝ fcoda ˝ fR ˝ ¨ ¨ ¨ ˝ fr ˝ ¨ ¨ ¨ ˝ f1
loooooooooooomoooooooooooon

T iterations

˝fprelude ˝ fembed, (1)

with R hidden layers involved in the Loop for T times. Note that fpre and fcoda could have more
than one hidden layer. The modularization of this architecture can provide high efficiency and
adaptability while generalizing across a broader range of applications. In addition, depth-recurrent
transformers increase computational depth per token by reusing intermediate layers, which can be
viewed as “deep thinking” in the continuous latent space to facilitate reasoning.

2.1 PRELIMINARY: DEPTH-RECURRENT HUGINN

We first outline the architecture of the base model, termed Huginn, which is a 3.5B scalable recurrent
decoder-only transformer (Figure 1(a)). The model is primarily structured around three functional
modules: (1) 2 prelude blocks, which are responsible for embedding input context into a latent
space; (2) 4 recurrent blocks, which sequentially process the output from the prelude module; (3)
2 coda blocks, which decode from the latent space to predict the next token. Notably, all blocks
follow standard transformer layer design, and each layer contains a multi-head causal self-attention
mechanism.

Concretely, given a sequence of tokens x “ rx1, x2, ..., xns, where xi P R|V |, n denotes the length
of the input context, and |V | represents the size of the vocabulary. Unlike the forward pass of a
standard Transformer, the model explicitly separates its computation flow into input encoding P
(prelude module), iterative implicit reasoning R (recurrent module), and output decoding C (coda
module). These modules ultimately produce output probabilities p P Rnˆ|V | as follows:

e “ Ppxq, (2)

s0 „ N p0, σ2In¨hq, (3)
st “ Rpe, st´1q for t P t1, 2, ..., T u, (4)
p “ CpsT q, (5)

where s0 is a random Gaussian vector serving as the initial state of the recurrent module, σ is
some standard deviation, and h is the hidden dimension. During the T recurrent steps, the model
repeatedly applies the core unit R, which takes the latent state st´1 and the embedded input e as
input, and outputs the updated latent state st. Although this model only includes 8 trainable blocks
(i.e., 2P + 4R + 2C), it allows for an infinitely deep transformer in the limit as T Ñ 8. Note that
while the depth-recurrent Huginn gains efficiency by using recurrent states in the latent space instead
of generating explicit reasoning steps, its reliance on a single recurrent module for all reasoning steps
fundamentally constrains its reasoning capabilities and flexibility.

2.2 DYNAMIC ROUTING AND PARAMETER-EFFICIENT FINE-TUNING

Recent studies have established Mixture-of-Experts (MoE) as a prominent architecture for scaling
LLMs (Liu et al., 2024; Yang et al., 2025). Its key feature is that MoE models can dynamically
select the most suitable expert from multiple candidates for different inputs. This approach achieves
a favorable trade-off between model capability and computational efficiency while maintaining a
nearly constant number of FLOPs per token for each expert (Zoph et al., 2022). Instead of applying
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Figure 2: The architecture of the Mixture-of-Depth-Recurrent (MoDr) Transformer. MoDr consists
of N recurrent branches, which are formed by combining the original recurrent blocks of Huginn
with different LoRAs, with the weights of the original recurrent blocks shared across all branches. In
addition, a hard-gate routing mechanism dynamically selects the appropriate branch for the current
input information. During fine-tuning, only the LoRA branches and the router are trained, and an
auxiliary-loss-free balancing mechanism ensures even load distribution across different branches.

MoE directly during pre-training, methods such as MoELORA (Luo et al., 2024), MOLA(Gao et al.,
2024a), and MIXLORA (Li et al., 2024) enhance multi-task generalization by integrating multiple
LoRA adapters as layer-wise experts within transformer sub-layers during fine-tuning. Furthermore,
LoTA (Panda et al., 2024) mitigates destructive interference by optimizing a sparse sub-network of
the model. As noted earlier, the inflexibility of Huginn in generating each token stems from its
rigid recurrent module. To address this flaw, we propose MoDr, a novel MoE+LoRA architecture
that departs from the conventional layer-wise paradigm. Instead, MoDr integrates block-wise low-
rank adapters directly into Huginn’s recurrent module and couples them with a dynamic routing
mechanism. This design fundamentally enhances the adaptability and richness of the model’s rea-
soning trajectories, establishing a new direction for adaptive reasoning in recurrent-depth models.
We discuss more related works in Appendix A.1.

3 METHODOLOGY

To enable adaptive latent space reasoning, in this work, we propose an innovative approach, Mixture-
of-Depth-Recurrent (MoDr) Transformer, which fine-tunes the existing Huginn model to establish a
multi-branch, dynamic reasoning pathway. This section outlines the architecture and methodology
of MoDr, as illustrated in Figure 2. Specifically, we first integrate multiple low-rank adapters (Lo-
RAs) to construct distinct recurrent reasoning branches, all of which share the weights of the original
recurrent blocks in the Huginn model (§3.1). Then, we present a hard-gate routing mechanism that
takes into account the hidden state information of the current context to select which branch will
predict the next token (§3.2). To alleviate the load imbalance among different branches, we adopt
an auxiliary-loss-free load balancing strategy to mitigate uneven load distribution across branches
during training (§3.3).

3.1 LORA-BASED MULTI-BRANCH RECURRENT MODULE

As discussed above, Huginn broadly follows the design of standard transformer layers. Accordingly,
the architecture of Huginn’s core recurrent blocks is built upon the standard transformer “sandwich”
structure, which sequentially stacks a multi-head causal attention layer (Attn) and a multilayer per-
ceptron (MLP), with each sub-layer featuring a residual connection and layer normalization (LN).
Let zl P Rnˆh denote the hidden state output by the l-th recurrent block. For each recurrent step
t P t1, 2, ..., T u, the hidden state zlt is computed as:

ẑlt “ LNpAttnpLNpzl´1
t q|Wlq ` zl´1

t q, (6)

zlt “ LNpMLPpLNpẑltq|Wlq ` ẑltq, (7)
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where Wl denotes the parameters of the l-th recurrent block. As originally proposed, our objective
is to construct an adaptive exploration-rumination module. Here, a key challenge arises: how can we
break free from the rigidly sequential forward propagation constraints inherent in existing recurrent
architecture?

To address this, we propose to utilize different branches to dynamically take turns to predict the next
token according to the current context information, until the end of reasoning. Full fine-tuning with
multiple initialized instances of a recurrent module in Huginn can enhance diversity and exploration
within the model’s latent reasoning trajectories. However, this approach incurs substantial compu-
tational and memory overhead. To mitigate these costs, MoDr integrates multiple low-rank adapters
(LoRAs) to create distinct recurrent reasoning branches, with the weights of the original recurrent
blocks being shared across all branches, as shown in Figure 2(c). During training, only the LoRA
weights of all branches are fine-tuned. This design yields two primary advantages: (1) the backbone
model is frozen to preserve its world knowledge, and (2) LoRA introduces negligible computational
or memory overhead owing to its minimal number of trainable parameters. Therefore, the output
hidden state zlt of each recurrent branch is computed as follows:

ẑlj,t “ LNpAttnpLNpzl´1
j,t q|Wl,∆Wl

jq ` zl´1
j,t q, (8)

zlj,t “ LNpMLPpLNpẑlj,tq|Wl,∆Wl
jq ` ẑlj,tq, (9)

where t∆Wl
juNj“1 denotes the trained LoRA module parameters for N recurrent branches. Specifi-

cally, for a base feature transformation z “ W0x, our modified forward pass yields:

z “ W0x `
α

r
∆Wx “ W0x `

α

r
BAx, (10)

where B P Rhˆr and A P Rrˆk with rank r ! minph, kq for h and k being the dimensions of the
original parameter matrix W0. The scaling factor α controls the adaptation magnitude.

3.2 HARD-GATE BRANCH ROUTING STRATEGY

Inspired by sparely-gated Mixture-of-Experts (MoE) (Shazeer et al., 2017) and switch Transformer
(Fedus et al., 2022), we design a learnable hard-gate routing network to determine which candi-
date recurrent branch will predict the next token according to the hidden state information. In our
method, the hidden state information h P Rnˆh derives from two aspects: (1) the output e of the
prelude blocks, and (2) the recurrent state s. We utilize an adapter matrix: R2h Ñ Rh to map the
concatenation of e and s into the hidden dimension h.

Let Wrouter P RNˆh denote the trainable weight matrix of a routing network, where N is the number
of candidate recurrent branches. As depicted in Figure 2(b), our design employs a Top-K hard-gate
router. For the sake of clarity, we use Top-1 as an example to illustrate this. This router selects the
single branch that achieves the highest average confidence score across the tokens, as determined by
the current context information. The process is detailed below:

u “ Wrouterh
J, u P RNˆn, (11)

r “ σp
1

n

n
ÿ

i“1

puiqq, r P RN , (12)

ζ “ argmaxjprjq, j P t1, 2, ..., Nu, (13)

g “ rj , if j “ ζ, (14)

where ζ is the index of the selected recurrent branch, g is a scalar score, and σ is a nonlinear
activation function like sigmoid or softmax. After that, all current hidden states zlj,t of the selected

branch are weighted as zl,
1

j,t “ g ¨ zlj,t.
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During inference, for each newly generated token, the hard-gate router dynamically selects which
recurrent branch will perform the “deep thinking” based on the contextual information from the pre-
vious reasoning steps. This next-token prediction process resembles a “relay race” across different
branches. For an illustration, see Figure 1(b).

3.3 AUXILIARY-LOSS-FREE LOAD BALANCE

To prevent imbalanced training among branches caused by routing collapse (Shazeer et al., 2017),
we introduce a load balancing strategy from a sequence-wise perspective. Existing studies typically
employ an auxiliary loss (Lepikhin et al., 2020; Fedus et al., 2022) to address load imbalance in the
MoE system during training. However, evidence suggests that a large auxiliary loss could introduce
significant conflicting gradients into training, thereby degrading model performance (Wang et al.,
2024). To overcome this challenge, we introduce a loss-free balancing approach to directly adjusts
the gate scores of candidate branches based on their individual load conditions.

As illustrated in Figure 2(d), we add a bias term tbiu
N
i“1 to the original gating score triu

N
i“1 of each

candidate branch. The branch selection and the final weight score are then computed as follows:

r̂ “ r ` b, r̂ P RN , (15)

ζ̂ “ argmaxjpr̂jq, j P t1, 2, ..., Nu, (16)

g “ rj , if j “ ζ̂, (17)

where ζ̂ denotes the index of the selected recurrent branch after the bias term adjustment routing
strategy. Note that the corresponding weight score g does not involve the bias term bj .

To adjust the per-branch bias bi (i P t1, 2, ..., Nu) during training, each bias bi is first initialized to
0. For each batch, the number of assigned samples ci per branch and their average number c̄i are
counted. Then, the load violation error ei is computed, and the bias bi is updated as follows:

ei “ c̄i ´ ci, (18)
bi “ bi ` η ˚ signpeiq, (19)

where η is the update rate of the bias term, and signp¨q is a sign function. This load balancing
strategy not only enables load balancing across branches but also prevents the direct incorporation
of noisy gradients into the model.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed MoDr, with a focus on mathematical
reasoning tasks. We present additional experiments for commonsense reasoning tasks in Appendix
A.2. All experiments are conducted on a single NVIDIA Tesla H100 GPU with 80GB of VRAM.

4.1 EXPERIMENTAL SETUP

Datasets. We conduct our experiments on six mathematical reasoning tasks: (1) GSM8K (Cobbe
et al., 2021), a dataset of high quality grade school math word problems. (2) MAWPS (Koncel-
Kedziorski et al., 2016) dataset, a curated online repository of arithmetic and algebra word prob-
lems. (3) AQuA (Ling et al., 2017) dataset, focusing on algebraic word problems. (4) Mul-
tiArith (Roy & Roth, 2016), containing multi-step mathematical word problems. (5) AddSub
(Hosseini et al., 2014), a dataset of addition and subtraction arithmetic word problems. (6) Sin-
gleEq (Koncel-Kedziorski et al., 2015), covering grade-school algebra word problems. Regarding
the above datasets, only GSM8K, MAWPS, and AQuA provide training sets, whereas MultiArith,
AddSub, and SingleEq serve as three out-of-domain benchmarks to evaluate the models’ robust-
ness. To enhance the reasoning capabilities of the fine-tuned models, particularly their step-by-step
rationales, we employed Qwen2.5-Math-7B-Instruct 1 to generate chain-of-thought reasoning steps

1https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct
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for the training sets. To ensure data quality, we removed samples with incorrect answers. Table 1
summarizes the detailed statistics of the datasets. The accuracy is the evaluation metric used across
all benchmarks to measure the correctness of the predicted answers.

Table 1: Statistics of Mathematical Reasoning Datasets.

Dataset In Domain Out of Domain
GSM8K MAWPS AQuA MultiArith AddSub SingleEq

Answer Type Number Number Option Number Number Number
# Train Sample 7130 1826 609 - - -
# Test Sample 1319 238 254 600 395 508

Baselines. We primarily compare against the following baselines: First, the vanilla Huginn model
(Geiping et al., 2025), which constitutes our base architecture for MoDr. Second, we introduce
a LoRA-based supervised fine-tuning (SFT) variant of this base model, termed Huginn-SFT, us-
ing hyperparameters identical to those of MoDr. Furthermore, we evaluate a multi-branch Huginn
model without a router (i.e., using random branch selection) to assess the router’s contribution to
performance.

Settings. For all experiments in this section, we use the AdamW optimizer with a learning rate of
4e-5, weight decay of 1e-4, and betas set to (0.9, 0.95). We clip gradients with a threshold of 0.2
and employ a cosine learning rate schedule with 10% warmup. Models are trained using a batch
size of 4 and a sequence length of 512, and the number of epochs matches the number of recurrent
branches. To scale the depth-recurrent architecture, we train with a mean recurrence value of 32.
To reduce computational and memory costs during training, we truncate backpropagation through
time (BPTT) to the last 8 iterations of the recurrent unit. For all low-rank adapters associated with
each branch, both the rank and the scaling factor are configured to be 16. These adapters activate
the q, k, v, o projections in attention layers of the recurrent blocks. Regarding the branch routing
and load balancing strategies, we use a sigmoid nonlinear activation function and set the bias term’s
update rate to 0.001. Among the routed branches, a single branch is activated per token.

4.2 MAIN RESULTS

4.2.1 MATHEMATICAL REASONING

In this experiment, MoDr is equipped with four LoRA-based recurrent branches and a hard-gate
router. Its trainable parameters constitute less than 0.2% of the base Huginn model. Our baseline,
Huginn-SFT, is a conventional single-branch model fine-tuned on the same datasets and settings.
Figure 3 presents a comparison between the baseline models and our proposed MoDr. The results
demonstrate that this multi-branch architecture significantly boosts reasoning capabilities with a
negligible parameter overhead. Notably, across six mathematical reasoning datasets, MoDr achieves
average accuracy improvements of +7.2% and +2.48% over the vanilla Huginn model and its fine-
tuned variant, respectively. This advantage stems from the fact that MoDr can dynamically route the
hidden state from the prelude module to the most suitable branch for next-token prediction, thereby
enhancing the adaptability of the reasoning trajectory.

To assess robustness, we split the six benchmarks into three in-domain (ID) (i.e., GSM8K, MAWPS,
and AQuA) and three out-of-domain (OOD) (i.e., MultiArith, AddSub, and SingleEq) tasks. We can
also observe that MoDr exhibits a superior performance relative to all baseline models, irrespective
of the domain setting. Specifically, MoDr excels even more on out-of-domain datasets (i.e., outper-
forming the original Huginn and Huginn-SFT by +6.75% and +1.78% on the ID, and by +7.67%
and +3.18% on the OOD, respectively), suggesting strong generalization. Overall, these results well
demonstrate the effectiveness of our proposed MoDr.

4.2.2 COMMONSENSE REASONING

We also evaluated MoDr on various commonsense reasoning benchmarks. As reported in Figure
7 of Appendix A.2, our findings reveal that MoDr achieves the most significant performance gains
over both the vanilla Huginn and the Huginn-SFT models. This indicates the broad applicability of
MoDr for boosting LLM’s performance. See Appendix A.2 for more details.
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Figure 3: Performance comparison of MoDr with baseline methods on in-domain and out-of-domain
mathematical reasoning benchmarks. The “Average” represents the overall mean of the six mathe-
matical datasets.

4.3 ABLATION STUDY

Impact of Router. We investigated the impact of dynamic routing from two perspectives. On one
hand, during inference, we deliberately disabled the router in MoDr and employed random branch
selection (referred to as MoDr w/o Router). On the other hand, we directly fine-tuned a model
without a router, the 4-branch Huginn, which also uses random branch selection in both the training
and inference stages (referred to as No Router). As shown in Table 2, MoDr with dynamic routing
demonstrates superior inference performance over both router-free models across all mathematical
benchmarks.

In addition, two observations are worth noting: (1) No Router performs best on GSM8K, but only
marginally. This can be attributed to the fact that GSM8K’s extensive training data (74.52%) thor-
oughly trains the model branches in all setups. (2) The performance of No Router is better than that
of MoDr w/o Router but is still inferior to that of the standard MoDr with its router. This further
underscores the positive role of dynamic routing in branch selection during inference.

Table 2: Performance comparison among three configurations: a 4-branch Huginn model without a
router (i.e., using random branch selection), a MoDr model with a router, and a MoDr model with
a disabled router (i.e., it also uses a random strategy to select a branch per token). The top score in
each column is in bold.

Method In Domain Out of Domain Average
GSM8K MAWPS AQuA MultiArith AddSub SingleEq

No Router (random) 50.72 79.41 31.89 90.17 75.70 76.57 67.41

MoDr w/ Router (Ours) 49.89 80.67 33.07 91.17 79.24 81.30 69.22
ë w/o Router (random) 48.60 77.73 29.92 89.17 74.68 78.35 66.41

Impact of Single Branch. To validate the effectiveness of dynamic routing for multi-branch infer-
ence, we conducted an ablation study by evaluating each individual branch of the 4-branch MoDr
independently on all mathematical tasks. The results, presented in Table 3, demonstrate that the av-
erage accuracy of MoDr with dynamic routing is superior to that of any individual branch and even
exceeds their collective average. Notably, MoDr with dynamic routing does not achieve the top rank
on every benchmark. Specifically, it ranked first on the MAWPS, AddSub, and SingleEq datasets,
second on GSM8K, and third on AQuA and MultiArith. This performance variation implies that
different branches may have developed specialized capabilities for distinct scenarios during train-
ing. Although dynamic routing strategy fails to select the optimal inference trajectory in certain
cases, it effectively leverages the strengths of each branch across a wide range of scenarios, lead-

8



Published as a conference paper at ICLR 2026

Table 3: Performance comparison between a 4-branch MoDr with dynamic routing and its four indi-
vidual branches (Branch-(b), b P t1, 2, 3, 4u). Avg.Br-(1„4) denotes the average score of branches
1 to 4. The top score in each column is in bold, and the second-highest is underlined.

Method In Domain Out of Domain Average
GSM8K MAWPS AQuA MultiArith AddSub SingleEq

MoDr (Ours) 49.89 80.67 33.07 91.17 79.24 81.30 69.22

ë Branch-(1) 50.19 75.63 35.43 91.67 71.39 75.98 66.72
ë Branch-(2) 48.07 79.37 34.65 89.17 75.19 80.71 67.86
ë Branch-(3) 47.84 80.25 28.35 92.50 77.97 80.71 67.94
ë Branch-(4) 49.66 74.37 26.77 86.83 70.13 78.15 64.32

ë Avg.Br-(1„4) 48.94 77.41 31.30 90.04 73.67 78.89 66.71

ing to superior overall performance compared to any individual branch or their simple average.
This confirms the critical role of a multi-branch dynamic routing framework in developing effective
depth-recurrent reasoning models.

0 1000 2000 3000 4000 5000 6000 7000 8000
Step

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ba
la

nc
e 

En
tro

py

= 0 (Avg.Acc=68.66)
= 0.001 (Avg.Acc=69.22)

Figure 4: The impact of update rate on training load
balance. Lower entropy makes it easier for the router to
choose the same branch.

Impact of Load Balance. An unbalanced
branch load can lead to routing collapse
(Shazeer et al., 2017), causing an imbalance
in branch utilization and diminishing computa-
tional efficiency. To mitigate this, we employ
a load balancing strategy governed by the up-
date rate η in Eq. 19, which controls the con-
vergence rate of the branch biases tbiu

N
i“1 to a

suitable bias. To evaluate this strategy, we con-
ducted an ablation study by comparing a model
with the strategy enabled (η=0.001) against a
baseline without it (η=0). We introduce a met-
ric called balance entropy to quantify the degree
of load balance as follows:

Hbalance “ ´
ÿ

brPUniquepΩq

Countpbrq

|Ω|
log2

Countpbrq

|Ω|
, (20)

where Ω is the set of branches selected by the router within a batch, and br is an element of this set.
A higher entropy indicates a more balanced load distribution. As shown in Figure 4, the model with
η=0 (without load balance) converges to a limited subset of branches, resulting in their dispropor-
tionate over-utilization. In contrast, the model with η=0.001 ensures a more even distribution of the
training load across all branches, which ultimately leads to superior generalization performance.

4.4 SENSITIVITY ANALYSIS OF RECURRENT BRANCH NUMBERS

1

1 2 3 4 8 12
Number of Branches

67.0

67.5

68.0

68.5

69.0

69.5

Av
er

ag
e 

Ac
cu

ra
cy

 (%
)

Figure 5: The changes of average performance
under different recurrent branch numbers.

The number of recurrent branches is a critical hyper-
parameter, influencing both the search space size and
computational resource allocation. To investigate its
impact, we conducted a series of experiments where
we varied the number of branches while keeping all
other settings constant. To guarantee a fair compar-
ison, the total number of training epochs was scaled
proportionally with the number of branches, ensur-
ing that each branch received an equivalent amount
of computation. The results, as shown in Figure 5,
reveal a clear trend: average performance across all
benchmarks consistently improves as more branches
are added. This positive correlation between branch
count and performance validates the effectiveness of
our dynamic multi-branch architecture. However, we also observe that the performance gains be-
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gin to diminish beyond four branches, suggesting that this configuration offers the best trade-off
between performance and computational cost.

4.5 QUANTITATIVE ANALYSIS OF BRANCH ROUTING

Figure 6: The changes of average performance under
different recurrent branch numbers.

To gain insights into the routing selection dis-
tribution across different tasks, we conducted a
frequency analysis on six mathematical reason-
ing benchmarks, as shown in Figure 6. The re-
sults reveal two key observations. First, the rout-
ing distribution is highly sensitive to the specific
dataset. On complex, multi-step reasoning tasks
like MultiArith, Branch-3 is activated at a signif-
icantly higher frequency (46.72%) than on other
tasks. In contrast, for the multiple-choice ques-
tion set AQuA, Branch-4 emerges as the second
most utilized branch (33.16%). This indicates
that the router dynamically allocates computa-
tional resources in response to the unique de-
mands of each task. Second, the branches exhibit a clear division of labor. Branch-2 serves as
a “generalist,” consistently handling the majority of computations across all benchmarks. The re-
maining branches function as “specialists.” For instance, Branch-3 is predominantly activated for
complex arithmetic tasks (MAWPS, AddSub), whereas Branch-4 is more engaged in tasks requiring
distinct reasoning patterns, such as those in AQuA. This non-uniform distribution provides strong
quantitative evidence that the branches have learned distinct, non-redundant functions.

4.6 CASE STUDY

We check some cases of the reasoning processes of MoDr. We find that at different reasoning steps
during inference, MoDr dynamically invokes diverse branches to predict the next token based on
the available context state, which is consistent with our hypothesis. Due to space limitations, more
details are shown in Appendix A.3.

5 CONCLUSION

In this paper, we introduce the Mixture-of-Depth-Recurrent (MoDr) Transformer, a novel dynamic
routing framework that advances the depth-recurrent Huginn model. The vanilla Huginn model’s
reasoning flexibility is constrained by its reliance on a single, chain-like propagation mechanism
within the rumination recurrent module. MoDr addresses this limitation by incorporating multi-
ple LoRA branches and employing a hard-gate router to dynamically select the most appropriate
branch for next-token prediction. Extensive experiments across a diverse set of mathematical and
commonsense reasoning benchmarks demonstrate that MoDr can significantly improves upon the
performance of the existing Huginn model while incurring negligible computational overhead.

5.1 LIMITATIONS & FUTURE WORK

MoDr offers a dynamic multi-branch framework for the depth-recurrent Huginn model (Geiping
et al., 2025), designed to enhance the exploration capability and adaptivity of its rumination recurrent
module (Loop) within the latent space. By leveraging LoRAs as distinct branches, our approach
avoids significant computational overhead. However, for practical deployment, MoDr necessitates
an efficient KV cache strategy, which remains a key challenge and a primary direction for future
work. Inspired by (Geiping et al., 2025; Bae et al., 2025), we identify two promising solutions: (1)
caching KV pairs from the most recent k recurrent iterations under a fixed budget, or (2) caching the
initial KV pairs and sharing them across all recurrent branches for subsequent reasoning steps.
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A APPENDIX

A.1 RELATED WORK

A.1.1 TEST-TIME REASONING

Recent advances have demonstrated that large language models emerge with remarkable reasoning
capabilities. In particular, Chain-of-Thought (CoT) reasoning (Wei et al., 2022b; Kojima et al.,
2022) with few-shot or even zero-shot examples further achieves superior performance. These
prompting techniques explicitly elicit intermediate reasoning steps before the model generates its
final answers. Furthermore, several studies have further unlocked the potential of CoT when inte-
grated with reinforcement learning-based fine-tuning (Jaech et al., 2024; Guo et al., 2025), uncov-
ering significant “aha-moments” in model behavior. Alternatively, a compelling counterpart is to
prompt LLMs that perform reasoning in latent space without verbal narrative. A strategy of this line
is to explore auto-regressive latent reasoning by progressively replacing CoT tokens with continuous
representations through multi-stage training (Hao et al., 2024), or compressing CoT tokens into con-
tinuous space via self-distillation in a single stage (Shen et al., 2025). Another line of work focuses
on loop-based architectures, which iteratively refine hidden states in a single forward pass by recur-
rently propagating information across layers (Dehghani et al., 2019; Chen et al., 2025; Geiping et al.,
2025). In addition, to achieve test-time depth adaptation, recent studies have explored methods for
dynamically allocating computation in latent space. These methods learn to adapt to inputs of vary-
ing complexity by adjusting recursive depths (Bae et al., 2025; Chen et al., 2025), creating shortcuts
(Wang et al., 2025), or combining both approaches (Li et al., 2025). Orthogonal to these works, we
focus on developing versatile recurrent branches that can handle diverse contextual inputs, thereby
improving the adaptability of the reasoning trajectory.

A.1.2 PARAMETER-EFFICIENT FINE-TUNING

Supervised fine-tuning of large language models is a common practice for adaptation to various
specific downstream tasks. However, as model parameters scale up, the computational cost of full
fine-tuning becomes a significant challenge. To mitigate this, parameter-efficient fine-tuning (PEFT)
methods (Houlsby et al., 2019; Li & Liang, 2021; Hu et al., 2022) have emerged over time. Low-
rank adaptation (LoRA) (Hu et al., 2022) enables plug-and-play adaptation of pretrained LLMs
by freezing initial model weights and fine-tuning a small set of low-rank matrices. For instance,
(Gou et al., 2023) proposed a mixture of cluster-conditional LoRA experts to activate task-specific
adapters based on instruction clusters. (Li et al., 2024) enhanced model performance by utilizing in-
dependent attention-layer LoRA adapters. Compared to full fine-tuning, this paradigm offers a more
flexible and efficient solution with constrained computational resources. As for our approach, we
integrate LoRAs as diverse exploration branches instead of simply copying the backbone recurrent
module, thereby expanding model capacity and avoiding additional overhead.

A.1.3 MULTI-BRANCH NETWORKS AND DYNAMIC ROUTING

Given that diverse inputs could have different computational demands, it is intuitive to perform in-
ference with dynamic pathways tailored to each sample. Recent studies, such as MoCLE (Gou et al.,
2023) and MoNE (Jain et al., 2024), aim to enhance model performance by maintaining multiple
sub-networks and a learnable routing mechanism. The paradigm of Mixture-of-Experts (MoE) not
only provides a promising solution for managing computational costs but also results in remark-
able performance improvements. In conventional soft MoE (Eigen et al., 2013; Ma et al., 2018),
the weights predicted by the router are adopted to dynamically aggregate the representations of all
branches (“experts”). In contrast, hard MoE models (Shen et al., 2023; Guo et al., 2025) dynami-
cally activate the branches with the highest or top-k confidence. While effective, these methods often
encounter load imbalance, potentially leading to routing collapse (Shazeer et al., 2017). Therefore,
introducing auxiliary balancing strategies (Fedus et al., 2022; Wang et al., 2024) is essential during
the training phase. Inspired by these works, MoDr combines a hard-gate routing mechanism and an
auxiliary-loss-free load balancing strategy to adaptively select the most suitable recurrent branch for
the next reasoning step, thereby improving robustness while retaining performance.
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A.2 EXPERIMENTS FOR COMMONSENSE REASONING

A.2.1 EXPERIMENTAL SETUP

Datasets. We conduct our experiments on six commonsense reasoning tasks: (1) PIQA (Bisk et al.,
2020), a dataset focused on physical commonsense question answering. (2) HellaSwag (Zellers
et al., 2019), a commonsense natural language interface (NLI) dataset. (3) WinoGrande (Sak-
aguchi et al., 2021), a dataset for commonsense reasoning involving pronoun disambiguation and
sentence completion. (4) ARC-E and (5) ARC-C (Clark et al., 2018), the Easy and Challenge sets
of the ARC dataset, which contains genuine grade-school level, multiple-choice science questions.
(6) OBQA (Mihaylov et al., 2018), a dataset requiring multi-step reasoning, the use of additional
common knowledge, and rich text comprehension. The detailed statistics of the datasets are outlined
in Table 4. To facilitate fine-tuning in the domain of commonsense reasoning, we adopt the Com-
monsense170K 2 dataset constructed by Hu et al. (2023), and conduct evaluations on the individual
testing dataset for each task.

Other Protocols. For the evaluation metric, comparison methods, and settings, we maintain consis-
tency with the experiments on mathematical reasoning tasks (See §4.1).

Table 4: Statistics of Commonsense Reasoning Datasets.

Dataset PIQA HellaSwag WinoGrande ARC-E ARC-C OBQA

Answer Type Option Option Option Option Option Option
# Train Sample 16.1K 39.9K 63.2K 1.1K 2.3K 5.0K
# Test Sample 1830 10042 1267 2376 1172 500

A.2.2 RESULTS AND ANALYSIS

Figure 7 illustrates a comparison of our proposed MoDr against the baseline models (i.e., vanilla
Huginn and Huginn-SFT) on six commonsense reasoning tasks. MoDr demonstrates consistent
performance gains over its competitors across most commonsense tasks, with the exception of
HellaSwag, where it underperforms Huginn-SFT by 0.83%. In terms of average accuracy, MoDr
achieves improvements of +21.21% and +1.52% over vanilla Huginn and Huginn-SFT, respectively.
Overall, these results further verify MoDr’s effectiveness on commonsense reasoning tasks.
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Figure 7: Performance comparison of MoDr with baseline methods on commonsense reasoning
benchmarks. The Huginn results are reported by (Geiping et al., 2025). The “Average” represents
the overall mean of the six commonsense datasets.

2https://huggingface.co/datasets/zwhe99/commonsense 170k
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A.3 CASE STUDY

We present three cases as follows.

Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week?

Answer: To determine the total number of meters James runs in a week, we need to follow these steps:

1. Calculate the number of sprints James runs in a week.

2. Determine the total distance run in one sprint.

3. Multiply the number of sprints by the total distance run in one sprint to find the total distance run in a week.

First, let's calculate the number of sprints James runs in a week. He runs 3 sprints 3 times a week. Therefore, the total number of sprints is:

\[ 3 \times 3 = 9 \]

Next, we need to determine the total distance run in one sprint. Each sprint is 60 meters. So, the total distance run in one week is:

\[ 9 \times 60 = 540 \]

Thus, the total number of meters James runs in a week is:

\[ \boxed{540} \]

（GSM8K）

Figure 8: Case study: The dynamic trajectories of text tokens across various reasoning branches in
MoDr, color-coded as 1 , 2 , 3 , and 4 , for a test instance from GSM8K.

Question: Lana was unboxing some of her old winter clothes. She found 3 boxes of clothing and inside each box there were 3 scarves 

and 4 mittens. How many pieces of winter clothing did Lana have total?

Answer: To determine the total number of pieces of winter clothing Lana has, we need to follow these steps:

1. Calculate the number of scarves in the boxes.

2. Calculate the number of mittens in the boxes.

3. Add the number of scarves and mittens together.

First, let's calculate the number of scarves in the boxes. Each box contains 3 scarves, and there are 3 boxes. Therefore, the total number of 

scarves is:

\[ 3 \text{ boxes} \times 3 \text{ scarves per box} = 9 \text{ scarves} \]

Next, let's calculate the number of mittens in the boxes. Each box contains 4 mittens, and there are 3 boxes. Therefore, the total number 

of mittens is:

\[ 3 \text{ boxes} \times 4 \text{ mittens per box} = 12 \text{ mittens} \]

Now, we add the number of scarves and mittens together to find the total number of pieces of winter clothing:

\[ 9 \text{ scarves} + 12 \text{ mittens} = 21 \text{ pieces of winter clothing} \]

Thus, the total number of pieces of winter clothing Lana has is:

\[ \boxed{21} \]

（MultiArith）

Figure 9: Case study: The dynamic trajectories of text tokens across various reasoning branches in
MoDr, color-coded as 1 , 2 , 3 , and 4 , for a test instance from MultiArith.

From these cases, we have two interesting findings:

• During each inference process, not all branches participate throughout the entire lifecycle.
This is shown in the first two cases.

• Branch 2 handles most of the upfront analysis and planning, while Branches 1, 3, and
4 focus on detailed reasoning and reaching conclusions. This is demonstrated across all
cases.

This in turn, corroborates our hypothesis: distinct contextual inputs necessitate different computa-
tional demands, a dynamic mechanism for invoking specialized branches should be employed for
next-token prediction.
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Question: Mika had 20 stickers. She bought 26 stickers from a store in the mall and got 20 stickers for her birthday. Then Mika gave 6 

of the stickers to her sister and used 58 to decorate a greeting card. How many stickers does Mika have left?

Answer: To determine how many stickers Mika has left, we need to follow these steps:

1. Start with the initial number of stickers Mika had.

2. Add the number of stickers she bought.

3. Add the number of stickers she received for her birthday.

4. Subtract the number of stickers she gave to her sister.

5. Subtract the number of stickers she used to decorate a greeting card.

Let's go through each step in detail:

1. Mika initially had 20 stickers.

2. She bought 26 stickers. So, the total number of stickers she has after buying is:

   \[ 20 + 26 = 46 \]

3. She received 20 stickers for her birthday. So, the total number of stickers she has after receiving the birthday stickers is: 

   \[ 46 + 20 = 66 \]

4. She gave 6 stickers to her sister. So, the total number of stickers she has left after giving stickers to her sister is:

   \[ 66 - 6 = 60 \]

5. She used 58 stickers to decorate a greeting card. So, the total number of stickers she has left after decorating the greeting 

    card is:

    \[ 60 - 58 = 2 \]

Therefore, the number of stickers Mika has left is \boxed{2}.

（SingleEq）

Figure 10: Case study: The dynamic trajectories of text tokens across various reasoning branches in
MoDr, color-coded as 1 , 2 , 3 , and 4 , for a test instance from SingleEq.

A.4 ADDITIONAL EXPERIMENTS FOR CODE GENERATION

A.4.1 EXPERIMENTAL SETUP

To evaluate the model’s code capabilities, we fine-tuned it on the CodeFeedback-Filtered-
Instruction3 (Zheng et al., 2024) dataset. After cleaning the data to remove invalid entries, we
obtained a final training set of 79K samples. For evaluation, we used the HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) test sets, adopting Pass@1 as the evaluation metric. The base-
line methods and experimental settings were kept consistent with those used for the mathematical
reasoning tasks (see Section 4.1).

A.4.2 RESULTS AND ANALYSIS

Figure 11 presents the pass@1 scores on the HumanEval and MBPP benchmarks. As shown, our
proposed MoDr achieves substantial and consistent improvements over all baselines in average per-
formance, suggesting its potential for scalability. These results demonstrate that MoDr effectively
extends the reasoning capabilities of the depth-recurrent Huginn model across a wide range of tasks,
achieved by constructing a dynamic-routing, multi-branch mechanism within its recurrent rumina-
tion module.

Figure 11: Performance (Pass@1) comparison of MoDr with baseline methods on code generation.
The “Average” represents the overall mean of the HumanEval and MBPP datasets.

3https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction

18



Published as a conference paper at ICLR 2026

A.5 COMPARISON TO STANDARD TRANSFORMER MODELS OF SIMILAR SIZE

As depicted in Table 5, we compare our proposed MoDr with several open-weight standard Trans-
former models of similar scale. It is worth noting that some of the open-weight baselines are trained
on more computational resources (10-15x). The open-weight models results are reported by (Geip-
ing et al., 2025). These results further validate the advantages of our proposed multi-branch dynamic
routing mechanism within the depth-recurrent transformer architecture.

Table 5: Performance comparison of MoDr with standard transformer models of similar size on
commonsense reasoning benchmarks. The top score in each column is in bold.

Model Param Tokens PIQA HellaSwag WinoGrande ARC-E ARC-C OBQA Average

Pythia-2.8B 2.8B 0.3T 73.29 59.17 57.85 58.00 32.51 35.40 52.70
OLMo-7B 7B 2.75T 80.69 77.76 67.17 74.28 43.43 41.60 64.16
Qwen2.5-3B 3B 18T 78.18 55.02 67.80 77.23 44.54 29.40 58.70
Llama3.2-3B 3B 9T 76.77 55.20 69.22 74.58 42.58 31.00 58.30
Llama-3.1-8B 8B 15T 80.20 59.99 73.72 81.73 51.02 33.00 63.28

Huginn-3.5B 3.5B 0.8T 75.79 64.67 57.77 69.49 37.71 37.60 57.17
MoDr (Ours) 3.5B 0.8T 79.71 80.15 75.93 85.52 70.56 78.40 78.38

A.6 COMPARISON TO COT, MAJORITY VOTING, AND FULL FINE-TUNING

For a comprehensive performance evaluation, we also compared our proposed MoDr against sev-
eral widely-used baselines, including few-shot Chain-of-Thought (CoT) prompting, Majority Vot-
ing (MV), and full fine-tuning (Full-FT). For the CoT and MV baselines, we adopted an eight-shot
prompting configuration. As shown in Table 6, the results indicate that MoDr demonstrates signifi-
cant performance advantages over all the baselines.

Furthermore, we made two key findings. First, compared to zero-shot prompting with the “reason
step by step” instruction, the few-shot prompting does not improve the performance of the Huginn
model. This may be attributed to the model’s latent reasoning mechanism, which appears to respond
better to implicit guidance. Second, we found that the performance of full fine-tuning remains
suboptimal despite the convergence of the training loss curve. This suggests that LoRA fine-tuning
is a more stable and effective fine-tuning method for the Huginn model.

Table 6: Performance of MoDr against baselines on mathematical reasoning benchmarks. We com-
pare against eight-shot Chain-of-Thought (CoT), CoT with Majority Voting (CoT-MV), and Full
Fine-Tuning (Full-FT). The best score in each column is bold.

Method In Domain Out of Domain Average
GSM8K MAWPS AQuA MultiArith AddSub SingleEq

CoT 37.23 72.69 27.95 76.33 74.18 73.03 60.24
CoT-MV 37.76 79.41 29.53 81.17 79.49 74.02 63.56
Full-FT 6.67 50.00 6.69 78.83 65.32 47.83 42.56

MoDr (Ours) 49.89 80.67 33.07 91.17 79.24 81.30 69.22

A.7 EXPANDED RESULTS OF CHALLENGING REASONING BENCHMARK

We conducted additional evaluation on the Super-GPQA (Du et al., 2025) benchmark, a composite
dataset curated to be challenging across approximately 285 graduate disciplines. As shown in Table
7, our MoDr achieves the best performance and significantly outperforms the base Huginn model,
which performs nearly at a random level. This demonstrates the effectiveness of our proposed
MoDr even on this out-of-domain challenging benchmark. However, we also acknowledge that the
absolute performance of both Huginn-SFT and MoDr on this highly challenging dataset is not yet
satisfactory. We attribute this to two main factors: first, the relatively small scale of the base Huginn-
3.5B model; second, the limited pre-training corpus of 0.8T tokens compared to the 10T+ tokens
typically used for modern LLMs. These limitations likely constrain the performance of MoDr on
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highly challenging reasoning tasks. Therefore, exploring the mixture-depth recurrent architecture on
more advanced Recurrent Transformer models to achieve better generalization remains a promising
direction for future research.

Table 7: Performance on Super-GPQA benchmark. The best score in each column is bold.

Benchmark Random Huginn Huginn-SFT MoDr (Ours)

Super-GPQA 10.59 10.63 14.07 14.40

A.8 ANALYSIS OF TOP-K ROUTER

MoDr is flexible enough to support Top-K routing, in addition to its default Top-1 hard-gate router.
To validate the impact of the number of routing branches (Top-K) on MoDr ’s performance, we
conducted an ablation study on the Top-1 and Top-2 routing configurations. The results, shown
in Table 8, indicate that Top-2 routing improves performance on most datasets, suggesting that
aggregating information from multiple experts is beneficial. However, we observed a significant
performance drop on the AQuA dataset. This highlights a trade-off: while Top-K routing enhances
performance across diverse tasks, it may introduce instability or sub-optimal routing on certain
benchmarks.

Table 8: Impact of the number of routing branches (Top-K) on the performance of MoDr. The top
score in each column is in bold.

Method Top-K GSM8K MAWPS AQuA MultiArith AddSub SingleEq Average

MoDr 1 49.89 80.67 33.07 91.17 79.24 81.30 69.22
2 50.27 84.45 28.35 96.67 85.82 84.06 71.60

A.9 PERFORMANCE COMPARISON WITH SAME TRAINING DURATION

To further validate the advantages of LoRA+MoE, we conducted additional experiments to evaluate
the contribution of the proposed design. Specifically, we fine-tuned Huginn-SFT, MoDr (Top-1),
and MoDr (Top-2) under the same training budget. The results, detailed in Table 9, demonstrate that
MoDr with Top-1 and Top-2 routing outperforms the Huginn-SFT baseline by +0.25% and +3.03%,
respectively. Notably, the Top-2 variant exhibits superior multi-branch dynamic reasoning capabil-
ities. These findings confirm that MoDr achieves substantial improvements with the same training
duration, reinforcing our central claim: the performance gains are attributed to the LoRA+MoE
design rather than increased training time.

Table 9: Performance comparison with Huginn-SFT on mathematical reasoning benchmarks. The
top score in each column is in bold.

Method Top-K MAWPS AQuA MultiArith AddSub SingleEq Average

Huginn-SFT - 80.25 31.50 93.17 77.97 81.30 72.84

MoDr 1 80.67 33.07 91.17 79.24 81.30 73.09
2 84.45 28.35 96.67 85.82 84.06 75.87

A.10 DETAILS FOR EXPERIMENTS

In Table 10, we report the computational efficiency and resource requirements of different methods.
From this table, it is evident that our MoDr introduces only a modest number of additional train-
able parameters compared to Huginn-SFT, resulting in a comparable FLOPs count. Importantly, its
deployment memory and inference speed remain on par with the baseline methods. This demon-
strates that our proposed dynamic routing and multi-branch architecture improves performance at
no additional cost to deployment memory or inference speed.
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Table 10: Details for Experiments.

Metric Huginn Huginn-SFT MoDr (Ours)
Trainable Parameters 3.56B 2.03M 8.13M
TFLOPs 35.00 35.55 35.60
Training Memory N/A 54GB 54GB
Deployment Memory 13GB 13GB 13GB
Training Duration N/A 3h 58min 16h 26min
Inference Speed 15 token/s 14 token/s 13 token/s

A.11 EVALUATION DETAILS

We conducted evaluation experiments on all models using the following system prompts. In all
experiments, the temperature of the models was set to 0.0001, and the max tokens parameter
was set to 1024. The number of steps for the recurrent module was set to 16. In particular, the
AQuA dataset sometimes fails to follow the specified instructions for the final answer (e.g., placing
a numerical value in a box rather than the corresponding option), we also manually double-checked
the gold answers.

Evaluation Prompt for Mathematical Reasoning Tasks

System: Please reason step by step, and put your final answer within $zboxed{}$.
User: {Question}
Assistant:

Evaluation Prompt for Commonsense Reasoning Tasks

System: Below is an instruction that describes a task. Write a response that appropriately completes the
request.
User:
### Instruction: {Instruction}

### Response:
Assistant:

Evaluation Prompt for Code Generation Tasks

System: You are an exceptionally intelligent coding assistant that consistently delivers accurate and reli-
able responses to user instructions.
User:
// For Humaneval
### Instruction: Read the following function signature and docstring, and fully implement the func-
tion described. Your response should only contain the code for this function.

Function signature: {Example}

### Response:

// For MBPP
### Instruction: {Test}

Example Test Cases: {Test List}

### Response:
Assistant:

A.12 FINE-TUNING EXAMPLES

The following are example questions and solutions from the mathematical reasoning, commonsense
reasoning, and code generation datasets used for fine-tuning in our experiments.
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A.12.1 MATHEMATICAL REASONING TASKS

GSM8K

System: Please reason step by step, and put your final answer within $zboxed{}$.
User: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How
many clips did Natalia sell altogether in April and May?
Assistant: To determine the total number of clips Natalia sold in April and May, we start by finding
out how many clips she sold in May. According to the problem, Natalia sold half as many clips in May
as she did in April. Since she sold 48 clips in April, we calculate the number of clips sold in May as
follows:

Clips sold in May “
48

2
“ 24

Next, we add the number of clips sold in April to the number of clips sold in May to find the total
number of clips sold over the two months:

Total clips sold “ Clips sold in April ` Clips sold in May “ 48 ` 24 “ 72

Therefore, the total number of clips Natalia sold in April and May is 72 .

AQuA

System: Please reason step by step, and put your final answer within $zboxed{}$.
User: Carrie likes to buy t-shirts at the local clothing store. They cost $9.95 each. One day, she bought
20 t-shirts. How much money did she spend? The options are: A)$150 B)$248.75 C)$199 D)$171.6
E)$190
Assistant: To determine how much money Carrie spent on t-shirts, we need to multiply the cost of one
t-shirt by the number of t-shirts she bought. The cost of one t-shirt is $9.95, and she bought 20 t-shirts.
Let’s perform the multiplication step-by-step:
1. Multiply the cost of one t-shirt by the number of t-shirts:

9.95 ˆ 20

2. To make the multiplication easier, we can break it down:

9.95 ˆ 20 “ p10 ´ 0.05q ˆ 20

3. Use the distributive property to multiply:

p10 ´ 0.05q ˆ 20 “ 10 ˆ 20 ´ 0.05 ˆ 20

4. Calculate each part separately:
10 ˆ 20 “ 200

0.05 ˆ 20 “ 1

5. Subtract the second result from the first:

200 ´ 1 “ 199

Therefore, Carrie spent C dollars.

MAWPS

System: Please reason step by step, and put your final answer within $zboxed{}$.
User: For the fifth grade play, the chairs have been put into 27 rows with 16 chairs in each row. How
many chairs have been put out for the play ?
Assistant: To determine the total number of chairs put out for the play, we need to multiply the number
of rows by the number of chairs in each row. Here are the steps:
1. Identify the number of rows: 27 2. Identify the number of chairs in each row: 16 3. Multiply the
number of rows by the number of chairs in each row: 27 ˆ 16
Now, let’s perform the multiplication:

27 ˆ 16 “ 27 ˆ p10 ` 6q “ p27 ˆ 10q ` p27 ˆ 6q
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First, calculate 27 ˆ 10:
27 ˆ 10 “ 270

Next, calculate 27 ˆ 6:
27 ˆ 6 “ 162

Now, add the two results together:
270 ` 162 “ 432

Therefore, the total number of chairs put out for the play is 432 .

A.12.2 COMMONSENSE REASONING TASKS

PIQA

System: Below is an instruction that describes a task. Write a response that appropriately completes
the request.
User:
### Instruction: Please choose the correct solution to the question: When boiling butter, when
it’s ready, you can
Solution1: Pour it onto a plate
Solution2: Pour it into a jar
Answer format: solution1/solution2
### Response:
Assistant: the correct answer is solution2 .

HellaSwag

System: Below is an instruction that describes a task. Write a response that appropriately completes
the request.
User:
### Instruction: Please choose the correct ending to complete the given sentence: Removing ice
from car: Then, the man writes over the snow covering the window of a car, and a woman wearing
winter clothes smiles. then
Ending1: , the man adds wax to the windshield and cuts it. Ending2: , a person board a ski lift, while
two men supporting the head of the person wearing winter clothes snow as the we girls sled. Ending3:
, the man puts on a christmas coat, knitted with netting. Ending4: , the man continues removing the
snow on his car.
Answer format: ending1/ending2/ending3/ending4
### Response:
Assistant: the correct answer is ending4 .

WinoGrande

System: Below is an instruction that describes a task. Write a response that appropriately completes
the request.
User:
### Instruction: Please choose the correct answer to fill in the blank to complete the given
sentence: Ian volunteered to eat Dennis’s menudo after already having a bowl because despised eating
intestine.
Option1: Ian Option2: Dennis Answer format: option1/option2
### Response:
Assistant: the correct answer is option2 .

ARC-E

System: Below is an instruction that describes a task. Write a response that appropriately completes
the request.
User:
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### Instruction: Please choose the correct answer to the question: Which factor will most likely
cause a person to develop a fever?
Answer1: a leg muscle relaxing after exercise Answer2: a bacterial population in the bloodstream
Answer3: several viral particles on the skin Answer4: carbohydrates being digested in the stomach
Answer format: answer1/answer2/answer3/answer4
### Response:
Assistant: the correct answer is answer2 .

ARC-C

System: Below is an instruction that describes a task. Write a response that appropriately completes
the request.
User:
### Instruction: Please choose the correct answer to the question: George wants to warm his
hands quickly by rubbing them. Which skin surface will produce the most heat?
Answer1: dry palms Answer2: wet palms Answer3: palms covered with oil Answer4: palms covered
with lotion
Answer format: answer1/answer2/answer3/answer4
### Response:
Assistant: the correct answer is answer1 .

OBQA

System: Below is an instruction that describes a task. Write a response that appropriately completes
the request.
User:
### Instruction: Please choose the correct answer to the question: The sun is responsible for
Answer1: puppies learning new tricks Answer2: children growing up and getting old Answer3: flowers
wilting in a vase Answer4: plants sprouting, blooming and wilting
Answer format: answer1/answer2/answer3/answer4
### Response:
Assistant: the correct answer is answer4 .

A.12.3 CODE GENERATION TASKS

CodeFeedback

System: You are an exceptionally intelligent coding assistant that consistently delivers accurate and
reliable responses to user instructions.
User:
### Instruction: Write a recursive function that calculates the factorial of a given number in
Python. The function should handle negative numbers as well. Additionally, the function should only
accept non-negative integers as input and raise a ValueError for any other input. The function should
also check if the given number is a prime number, and if so, return the factorial of the next prime
number greater than the given number.
### Response:
Assistant: Here’s a recursive function in Python that calculates the factorial of a given number, handles
negative numbers, and raises a ValueError for any non-negative integers:
‘‘‘python

def factorial(n):
if not isinstance(n, int) or n < 0:

raise ValueError("Input must be a non-negative integer")
if n <= 1:

return 1
else:

return n * factorial(n-1)

‘‘‘
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