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Abstract

We introduce the dueling teams problem, a new online-learning setting in which
the learner observes noisy comparisons of disjoint pairs of k-sized teams from a
universe of n players. The goal of the learner is to minimize the number of duels
required to identify, with high probability, a Condorcet winning team, i.e., a team
which wins against any other disjoint team (with probability at least 1/2). Noisy
comparisons are linked to a total order on the teams. We formalize our model by
building upon the dueling bandits setting (Yue et al., 2012) and provide several
algorithms, both for stochastic and deterministic settings. For the stochastic setting,
we provide a reduction to the classical dueling bandits setting, yielding an algorithm
that identifies a Condorcet winning team withinO((n+k log(k))max(log logn,log k)

∆2 )
duels, where ∆ is a gap parameter. For deterministic feedback, we additionally
present a gap-independent algorithm that identifies a Condorcet winning team
within O(nk log(k) + k5) duels.

1 Introduction

Multi-arm bandits (MAB) is a classical model of decision making under uncertainty. In spite of
the simplicity of the model, it already incorporates the essential tradeoff between exploration and
exploitation. In MAB, the learner performs actions and can only observe rewards of the actions
performed. One of the main tasks in MAB is best arm identification, where the goal is to identify a
near-optimal action while minimizing the number of actions executed. The MAB model has numerous
practical applications, including online advertising, recommendation systems, clinical trials, and
more. (See Slivkins (2019); Lattimore & Szepesvári (2020) for more background).

One weakness of the MAB model is the assumption that real-valued rewards are always available. In
many applications, it is more natural to compare two actions and observe which one of them is better
rather than give every single action a numerical reward. For example, recommendation systems often
suggest two items and obtain only their relative preference as feedback (e.g., by a click on one of
them). This leads very naturally to the well-known model of dueling bandits (Yue et al., 2012), where
the learner selects a pair of actions each time and observes the binary “winner” of a duel between the
two. (See Busa-Fekete et al. (2018) for a survey on extensions of the dueling bandit model).

In this work we are interested in the case that the learner has to select two disjoint teams for a duel,
which are k-sized subsets of the actions (which we call players). This appears naturally in sports
or online games, where the goal is to pick one of the best teams from a set of players by observing
the outcomes of matches (say, to be a school representative team, or to sponsor for tournaments).
Examples include doubles tennis, basketball, and the online game League of Legends, where each
match requires two disjoint teams of players to compete. Similar phenomena appear in working
environments, where different R&D teams compete on implementing a project. Another example
could be online advertisements where multiple products are bundled to a display ad and a customer
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can click on any of two presented bundles, e.g., some online games offer in-app bundle purchases,
and the information regarding sales of different bundles can improve the bundles’ composition.

Our basic model is the following. We have a universe of n players, and at each iteration the learner
selects two disjoint teams for a duel and observes the winner. For any two different teams, there
exists an unknown stationary probability that determines the winner of a duel between them. The
requirement that dueling teams need to be disjoint is in accordance with the situation in games, where
a single person cannot play for both teams. The goal of the learner is to minimize the number of duels
required to identify, with high probability, a Condorcet winning team, i.e., a team which wins against
any other disjoint team (with a probability of at least 1/2). We assume these probabilities are linked
to a strict total order on all teams, which implies the existence of a Condorcet winning team, yet it is
typically not unique. We make two minimal and natural assumptions on this total order on teams:
that it is consistent to some total order among the players, and that team probabilistic comparisons
hold Strong Stochastic Transitivity, a common assumption in dueling bandit settings.

Our consistency assumption implies that the best team is the team of top-k players, and this also a
Condorcet winning team. However, not all relations between players are deducible for the learner. In
particular, even achieving accurate estimations of the latent winning probabilities between all disjoint
teams might not suffice to separate the top-k players from the rest. Consider for example an instance
with four players 1 ≻ 2 ≻ 3 ≻ 4 where k = 2 and the total order among the teams is lexicographical,
i.e., 12 ≻ 13 ≻ 14 ≻ 23 ≻ 24 ≻ 34. Assume that each of the three feasible duels is won by the team
containing player 1 with a fixed probability γ > 1/2. Then, the learner has no chance of detecting the
team 12 as the top-k team. However, any of the teams 12, 13 and 14 is a Condorcet winning team.

Our main target is to present algorithms for which the number of duels is bounded by a polynomial in
the number of players n and the team size k, although the number of teams is exponential in k, i.e.,
Ω((n/k)k) and the number of valid duels is Ω(2k( n

2k )
2k). Even if one were to accept an exponential

number of arms, a direct reduction to the standard dueling bandits setting would not be feasible as not
all pairs of teams are comparable in our model. In particular, duels of the form (S ∪ {a}, S ∪ {b}),
which would yield a signal regarding the relation between players a and b, are forbidden. The inherent
difficulty of our endeavor comes from two limitations: (1) Not all the relations between two single
players are deducible, (see example above), and (2) even for pairs of players with deducible relation,
having Ω(2k( n

2k )
2k) valid duels and the same amount of (latent) winning probabilities makes the

task of deducing their relations hard.

We start by giving a full characterization of the deducible pairwise relations between players, namely
relations that can be detected by an unlimited amount of duels. Our characterization implies that
every deducible players relation has one of two types of witnesses, which are constant-size sets
of duels that prove their relation. Once we find a witness for one pair of players, it can often
be transformed to a witness for other pairs of players. Building upon this characterization, we
introduce a parameter ∆a,b which captures the distinguishability of any two players a and b and
takes a value of 0 whenever the pair is not deducible. Assuming ∆ := ∆k,k+1 > 0, where k and
k + 1 are kth and (k + 1)th best players, we give a reduction to the classic dueling bandits problem.
Combining this reduction with a high-probability top-k identification algorithm for the dueling
bandits setting (e.g., Mohajer et al. (2017); Ren et al. (2020)) yields a similar sample complexity
upper bound, e.g., this implies a high-probability top-k identification algorithm for dueling teams
with O(∆−2(n+ k log(k))max(log log n, log k)) duels.

Interestingly, it turns out that the deterministic case, i.e., when winning probabilities are in {0, 1},
constitutes a challenging special case of our problem where ∆ can be particularly small, or even 0.
To overcome this issue we design delicate algorithms which are independent of ∆. On a high level, a
preprocessing procedure first excludes as many bad players as possible. To do so, it runs a method for
identifying pairwise relations between players which performs only a small number of duels, but has
little control over the pair for which the relation is uncovered. For general total orders this implies
an algorithm requiring O(nk log(k) + 2O(k)) duels. For the natural case of additive linear orders,
we present a more elaborated approach for detecting a Condorcet winning team within the reduced
instance, resulting in an algorithm that performs O(nk log(k) + k5) duels.

We introduce our model in Section 2, give a characterization of deducible relations in Section 3, and
discuss the stochastic and deterministic setting in Sections 4 and 5, respectively. In Section 6 we
provide a discussion including a lower bound and a regret bound. Algorithms and (full) proofs are
relegated to Sections A-D in the appendix, and Section E characterizes additive linear total orders.
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1.1 Related Work

MAB best arm or subset identification single arm identification was initiated in Even-Dar et al.
(2006) and later studied in many works including Bubeck et al. (2011); Kaufmann et al. (2016);
Chen et al. (2017). This setting was extended by Kalyanakrishnan & Stone (2010) for multiple arms
identification (i.e., top k arms), using a single arm samples. Other works that address the objective of
top−k identification include Chen et al. (2014); Zhou et al. (2014); Bubeck et al. (2013).

Dueling bandits The work of Yue et al. (2012) lay down the framework of non-parametric bandit
feedback under total order among arms, strong stochastic transitivity, and stochastic triangle inequality
assumptions and were followed by many subsequent works (For more, see a survey, Busa-Fekete
et al. (2018).) In particular, some subsequent works target the task of identifying the top k players in
this setting Mohajer et al. (2017); Ren et al. (2020).

Dueling bandits with sets of actions One line of dueling bandits extension consider the case where
the learner selects a subset of actions and observes the outcomes of all duels between all pairs of
actions in the subset (Brost et al., 2016; Sui et al., 2017), or the winner of the subset Saha & Gopalan
(2018); Ren et al. (2018). As a consequence, these settings give the learner strictly more information
than the dueling bandits setting. In contrast, feedback in our setting reveals less information.

MAB with multiple actions selection There are works in which the learner selects a (sometimes
fixed-sized) subset of actions at each iteration, and observes either all of the individual selected arms
rewards (semi-bandit feedback) or an aggregated form of the rewards (full-bandit feedback), and the
task is to detect to best arm or the top k. These include combinatorial bandits Cesa-Bianchi & Lugosi
(2012), top-k Rejwan & Mansour (2020), linear bandit and routing Awerbuch & Kleinberg (2008),
and more. The main difference between combinatorial bandits and our setting is the feedback.

Comparison models Noisy pairwise comparison models, especially for sorting and ranking, have a
long history which dates backs to the 1950’s (For more, see a survey, Pelc (2002).). Specifically, the
mathematical problem Counterfeit coin was introduced in the form of a puzzle (Grossman, 1945):
given a pile of 12 coins, determine which coins has a different weight (and therefore counterfeit)
using balance scales while minimizing the number of measurements. The problem was followed by
numerous generalizations (see Guy & Nowakowski (1995)). While this problem is restricted to coins
with two different weights, our setting can be seen as a variant with multiple weights. Finally, a PAC
related comparison-based model was studied in Balcan et al. (2016).

2 The Dueling Teams Problem

We formalize our problem as follows. Let n, k ∈ N with 1 ≤ k ≤ n
2 . We denote the set of players by

[n] := {1, . . . , n} and call any set of k distinct players a team. Moreover, we assume the existence of
an underlying strict total order among all teams, and denote it by ≻. We also refer to ≻ as the ground
truth order. In particular, for any two teams A and B either A ≻ B holds, in which case we say that
A is better than B, or vice versa, and this relation is transitive. Additionally, we require the total
order among the teams to be consistent with a total order among players and formalize this in the
consistency assumption at the end of this section.

In each round, the learner selects an ordered pair of two disjoint teams, A and B to perform a duel,
and receives a noisy binary feedback about which team is better. Note that in contrast to the usual
dueling bandits setting, our setting does not allow duels of the form (A,A), as selecting teams with
mutual players for a duel is not an option. We denote the (directly) observable part of ≻ by ≻obs, i.e.,
A ≻obs B iff A and B are disjoint teams and A ≻ B. Note that ≻obs is not transitive.

We write A > B if team A is the random winner of duel (A,B). The probability Pr[A > B] is
stationary and denoted by PA,B = Pr[A > B]. In each duel of team A against team B the outcome
A > B is sampled independently from a Bernoulli distribution with parameter PA,B = 1− PB,A.
We assume that the probabilistic comparisons are linked to the total order among the teams, i.e.,
A ≻ B implies PA,B > 1/2, and that PA,B exists for every pair of teams (not only disjoint ones).
In the deterministic setting, it holds that PA,B ∈ {0, 1} for any teams A ̸= B. In other words,
A ≻obs B iff the outcome of each duel (A,B) is A > B, and for two disjoint teams A and B the
learner can observe whether A ≻obs B or B ≻obs A by performing a single duel.

3



A team A is a Condorcet winning team2 if A ≻obs B for all teams B such that A ∩B = ∅. From our
assumption on ≻ , there always exists a Condorcet winning team, but it is not necessarily unique.
The learner’s goal is to minimize the number of duels required to identify, with high probability in
the stochastic setting and with probability 1 in the deterministic case, a Condorcet winning team.

In the following we formalize two more assumptions we impose on our model, the former affects the
linking of the probabilities to the strict total order ≻, the latter restricts the total order ≻ itself.

Strong stochastic transitivity (SST) Similarly to the dueling bandits settings in Yue et al. (2012),
we assume strong stochastic transitivity. Namely, for every triplet of different teams A ≻ B ≻ C it
holds that PA,C ≥ max{PA,B , PB,C}.
Consistency We assume that the total order ≻ is consistent to a total order among single players.
More precisely, we say that ≻ satisfies consistency3 if for every two players a, b ∈ [n] either of the
following holds true:

(i) S ∪ {a} ≻ S ∪ {b} for all S ⊆ [n] \ {a, b}, |S| = k − 1.

(ii) S ∪ {b} ≻ S ∪ {a} for all S ⊆ [n] \ {a, b}, |S| = k − 1.

The consistency assumption lets us derive a relation among the single players, by defining a ≻ b iff
S ∪ {a} ≻ S ∪ {b} holds for some S. By team relation transitivity, ≻ implies a total order on [n].
Whenever we write a ≻ b for some players a, b ∈ [n] this is short-hand notation for S∪{a} ≻ S∪{b}
for all subsets S ⊆ [n] \ {a, b} of size k− 1. Though the consistency assumption might appear strong
at first sight, dropping it would render the model intractable as the order among the teams would be
independent of the players’ identities. Namely, there is no linkage to the composition of the teams.4

For notational convenience, we assume without loss of generality that 1 ≻ 2 ≻ · · · ≻ n and write
A∗

m for the set of players containing the top m players, i.e., A∗
m = [m]. In particular, the consistency

assumption yields that A∗
k is a Condorcet winning team. However, though the ground truth ranking

induces a total order among the players, the learner might not be able to deduce the entire order. In
the following we give a characterization of the deducible part of the ground truth order ≻.

3 Witnesses: A Characterization of Deducible Relations

In this section we provide a high level description of the complete characterization of all the pairwise
relations between single players that can be deduced via team duels. We refer the reader to the full
description of the characterization, which appears in Appendix A. Though single players relations
cannot be sampled via feasible team duels directly as intersected teams cannot duel each other, we
show a sufficient and necessary condition for deducible relations in the form of a constant number of
winning probabilities of observable (feasible) duels. We refer to pairs of sets of players participating
in such duels as witnesses.

We denote by Pobs the set of all tuples (P ′,≻′), where each P ′ is a team winning probability
matrix that satisfy SST w.r.t. ≻′, which is a consistent strict total order on teams, and both P ′

and ≻′ are compatible with the winning probabilities of observable duels and each other, i.e.,
{P ′

A,B = PA,B | A and B are disjoint teams} and P ′
A,B = 1−P ′

B,A > 1/2 iff A ≻′ B. We remark
that it follows directly from the definition of Pobs that (P,≻) ∈ Pobs, where P is the ground truth
winning probability matrix and ≻ the ground truth total order.

We denote by Cobs the set of strict total orders ≻′ for which there exists a tuple (P ′,≻′) ∈ Pobs.
Intuitively, a total order≻′ is in Cobs if there exists an instance (P ′,≻′) that has≻′ as its ground truth
total order, follows our assumptions and is compatible with the observable part of (P,≻). Lastly, we
define A ≻∗ B if and only if A ≻′ B for all ≻′∈ Cobs, where A and B are not necessarily disjoint.
We refer to ≻∗ as the deducible relation. For single player relations, we define a ≻∗ b if and only if

2The name is motivated by the fact that such a team is a weak Condorcet winner for the relation ≻obs.
3Consistency is also reminiscent of separable preferences from economic theory (Breton & Sen, 1999).
4For example, the following instance would be possible: Players n − k, ..., n are the k ‘intuitively worst

players’ (i.e., they lose in almost all duels) but together they form the best team (and a unique Condorcet winning
team), and players 1, ..., k are the ‘intuitively best players’ and form the second best team in the linear order
among teams. In such a model any algorithm would need to iterate over all teams. In other words, the problem
becomes a dueling bandits problem with Ω((n/k)k) arms.
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there exists S ⊆ [n] \ {a, b} such that S ∪ {a} ≻′ S ∪ {b} for all ≻′∈ Cobs. We stress that we only
use Pobs and Cobs for analysis and never compute them.

Next, we define two sets of potential witnesses that have a simple structure and, in some cases, allow
us to deduce single players relation: (1) A potential subsets witnesses set, denoted by Sa,b, that
contains all pairs (S, S′) such that S and S′ are disjoint subsets of [n] \ {a, b} and both are of size
k − 1, and (2) A potential subset-team witnesses set, denoted by Ta,b, that contains all pairs (S, T )
where S and T are disjoint subsets of [n] \ {a, b}, such that S is of size k − 1 and T is of size k (and
is therefore a team). Below, we define under which conditions a potential witness is indeed a witness.

Definition 3.1. An element (S, S′) ∈ Sa,b is a subsets witness for a ≻ b if PS∪{a},S′∪{b} >
PS∪{b},S′∪{a}. An element (S, T ) ∈ Ta,b is a subset-team witness for a ≻ b if PS∪{a},T > PS∪{b},T .

We capture the set of the elements of Sa,b that are subsets witnesses for a ≻ b by S∗a,b and analogously,
T ∗
a,b = {(S, T ) ∈ Ta,b | (S, T ) is a subset-team witness for a ≻ b}. It might be the case that
S∗a,b ∪ T ∗

a,b is empty, in particular this holds when b ≻ a. It is also possible that both S∗a,b ∪ T ∗
a,b and

S∗b,a ∪ T ∗
b,a are empty, in which case we will show that the relation between players in a and b cannot

be deduced. The following theorem implies that the other direction is also true.

Theorem 3.2. Let a, b ∈ [n]. Then, a ≻∗ b if and only if S∗a,b ∪ T ∗
a,b ̸= ∅.

Proof sketch. Assume that S∗a,b ∪ T ∗
a,b ̸= ∅. We show that a ≻∗ b by using SST, the fact that ≻

is a consistent strict total order, and an exhaustive case analysis. For the sake of illustration we
present only one case here, namely, that (S, S′) ∈ S∗a,b and that both (1) S ∪ {a} ≻ S′ ∪ {b}
and (2) S ∪ {b} ≻ S′ ∪ {a} hold. Assume for contradiction that a ≻∗ b does not hold. It thus
follows that there exists an order, ≻′∈ Cobs for which b ≻′ a holds. Let P ′

A,B be the corresponding
winning probabilities. Then, using consistency of ≻′ and (1) respectively, we get S ∪ {b} ≻′

S ∪ {a} ≻′ S′ ∪ {b} and from SST P ′
S∪{b},S′∪{b} ≥ P ′

S∪{a},S′∪{b} > 1/2. In addition, applying
consistency again, it follows that S ∪ {b} ≻ S′ ∪ {b} ≻ S′ ∪ {a}. Applying SST once more we
get P ′

S∪{b},S′∪{a} ≥ P ′
S∪{b},S′∪{b} ≥ P ′

S∪{a},S′∪{b}, a contradiction to (S, S′) ∈ S∗a,b (since this
implies PS∪{a},S′∪{b} > PS∪{b},S′∪{a}).

For the other direction we start by defining Da as the set of observable duels (A,B) such that a ∈ A.
Moreover, we define a permutation π on the set of teams, which simply exchanges the players a
and b when present. We then show that a ≻ b implies PA,B ≥ Pπ(A),π(B) for all (A,B) ∈ Da.
Moreover, we show that a ≻∗ b implies that there exists (A,B) ∈ Da with PA,B > Pπ(A),π(B) as
follows. Assume not. Then we show that the relation ≻′ defined by A ≻′ B iff π(A) ≻′ π(B) is
included in Cobs. However, a ≻∗ b implies that for any S ⊆ [n] \ {a, b} of size k − 1 it holds that
S∪{a} ≻∗ S∪{b}which implies (i) S∪{a} ≻ S∪{b} as well as (ii) S∪{a} ≻′ S∪{b}. Applying
the definitions of ≻′ and π, statement (ii) implies S ∪ {b} = π(S ∪ {a}) ≻ π(S ∪ {b}) = S ∪ {a}
and hence yields a contradiction to (i). Finally, take some (A,B) ∈ Da with PA,B > Pπ(A),π(B). If
b ∈ B, then (A \ {a}, B \ {b}) ∈ S∗a,b, otherwise (A \ {a}, B) ∈ T ∗

a,b.

For the sake of brevity, we introduce the set Xa,b which combines the pairs from Sa,b and Ta,b into a
set of triples. Formally, Xa,b = {(S, S′, T ) | (S, S′) ∈ Sa,b, (S, T ) ∈ Ta,b}. We say that (S, S′, T )
is a witness for a ≻ b if (S, S′) ∈ S∗a,b or (S, T ) ∈ T ∗

a,b, and denote (S, S′, T ) ∈ X ∗
a,b.

4 Stochastic Setting

In this section we focus on algorithms identifying, with high probability, the top-k team, which is in
particular a Condorcet winning team. The main idea is to utilize the results from the previous section
to reduce the dueling teams setting to the classic dueling bandits setting (Yue et al. (2012)). To this
end we will introduce our gap parameter, ∆, which intuitively captures how easy it is to prove the
relationship between the top k and the top (k + 1) player. We start by defining, for any element
(S, S′, T ) ∈ Xa,b, a random variable Xa,b(S, S

′, T ) that combines the outcomes of four duels that
helps determining whether (S, S′, T ) is a witness for a ≻∗ b. Formally,

Xa,b(S, S
′, T ) =

(
1[S ∪ {a} > S′ ∪ {b}]− 1[S ∪ {b} > S′ ∪ {a}]

+ 1[S ∪ {a} > T ]− 1[S ∪ {b} > T ]
)
/4.
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Observe that Xa,b(S, S
′, T ) can take values from {−1/2,−1/4, 0, 1/4, 1/2}, thus

E[Xa,b(S, S
′, T )] ∈ [−1/2, 1/2]. Moreover, we have the following properties:

1. For every (S, S′, T ) ∈ Xa,b, it holds that E[Xa,b(S, S
′, T )] > 0 ⇐⇒ (S, S′, T ) ∈ X ∗

a,b.

2. If E[Xa,b(S, S
′, T )] = 0 for every (S, S′, T ) ∈ Xa,b, then Theorem 3.2 implies that the pairwise

relation between players a, b cannot be deduced.

Building upon the random variables Xa,b(S, S
′, T ), which are defined for a fix pair of players, a, b,

and for each element in Xa,b, we define a single random variable Xa,b by picking a random triplet
(S, S′, T ) ∈ Xa,b and returning a realization of Xa,b(S, S

′, T ). For convenience, whenever we write
E[Xa,b] we mean E(S,S′,T )∼Xa,b

[Xa,b]. Using the probabilistic method, we obtain the following
theorem, which then brings us to the definition of a gap parameter for our problem.
Theorem 4.1. For every two players a, b ∈ [n] it holds that a ≻∗ b if and only if E[Xa,b] > 0.

Gap parameter We define our gap parameter by ∆ := E[Xk,k+1]. Another interpretation for ∆ is
that ∆ = 1/2(α+β−1), where α ∈ [0, 1] is the probability that the top k player wins against the top
k + 1 player, when the two players are placed with a random potential subsets witness from Sk,k+1

(i.e., disjoint random subsets of k − 1 players) and β ∈ [0, 1] captures the difference in winning
probabilities when k and k + 1 are placed with a random potential subset-team witness from Tk,k+1

(i.e., two disjoint random subsets of sizes k − 1 and k). Within Appendix B we show that for k = 1,
this gap is at least of the same order as the gap parameter for the classical dueling bandit setting.

In the following we show that our gap parameter does not just help us to distinguish between
the top k and (k + 1) players, but also allows us to distinguish other players in A∗

k and players
from [n] \ A∗

k. To this end, we show in Lemma 4.2 that the expectations E[Xa,b] satisfy strong
stochastic transitivity w.r.t. the ground truth total order on players. We note that most elements
(S, S′, T ) ∈ Xa,b hold E[Xa,c(π(S), π(S

′), π(T ))] ≥ E[Xa,b(S, S
′, T )] (and analogously for Xb,c),

where π is a permutation exchanging players b and c, but, surprisingly, this is not true in general. By
carefully constructing a charging scheme, we manage to show that this holds in expectation over all
elements of Xa,b, and derive strong stochastic transitivity for the distinguishabilities of players.
Lemma 4.2. For a triplet of players a ≻ b ≻ c it holds that

E[Xa,c] ≥ max{E[Xa,b],E[Xb,c]}.

This also yields the following theorem, which paves the way for our reduction in what follows.
Theorem 4.3. For any a, b ∈ [n] with a ∈ A∗

k, b /∈ A∗
k it holds that E[Xa,b] ≥ E[Xk,k+1] = ∆.

Thus, if ∆ > 0 and for a team A it holds that E[Xa,b] ≥ ∆ for all a ∈ A, b ∈ [n] \A, then A = A∗.

The reduction We now outline the gap-dependent algorithm. The results we have derived in Section
3 will allow us to deduce, with high probability, whether a distinguishability of a given pair of players
is at least ∆, and if so determine which is the better player. Intuitively, this is done by performing
O( 1

∆2 ) team duels. We use E[Xa,b] as a proxy for the distinguishability between two single players,
a, b, taking advantage of the fact that if their relation is deducible, then E[Xa,b] ̸= 0 and in this case
E[Xa,b] > 0 iff a ≻ b. Similar to the dueling bandits setting, even though |E[Xa,b]| < ∆ for some
pairs of players, identifying A∗

k with high probability is possible.

Since we cannot directly sample Xa,b, we will instead sample uniformly at random a triplet of sets,
(S, S′, T ) from Xa,b. Using (S, S′)(∈ Sa,b) and (S, T )(∈ Ta,b), we can then perform all the duels
required for an unbiased sample of Xa,b(S, S

′, T ), which is by itself a sampling of Xa,b. Given
any dueling teams instance, we define a dueling bandits instance as follows: for every two players
a, b ∈ [n], we define the probability that a wins in a (singles) duel against b as

Pa,b = 1/2 + E[Xa,b]. (1)

Clearly, 1 − Pa,b = Pb,a, Pa,b ∈ [0, 1] and Pa,b > 1/2 implies a ≻ b. In addition, Theorem 4.1
implies that a is better than b in this dueling bandits instance iff a ≻∗ b. So whenever a dueling bandits
algorithm is asking for a duel query, (a, b), we can make an independent sample of Xa,b by randomly
drawing a triplet (S, S′, T ) ∈ Xa,b and returning a random sampling of Xa,b(S, S

′, T ) + 1/2. In
cases where the realization of Xa,b(S, S

′, T ) + 1/2 is in {1/4, 1/2, 3/4}, we assign a as the duel
winner if the result of flipping a coin with bias Xa,b(S, S

′, T ) + 1/2 is 1. We formalize this idea in
the sub-procedure singlesDuel (in the appendix), that simulates a duel for classical dueling bandits
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settings using team duels. Notice that, by Lemma 4.2, the probabilities Pa,b defined in (1) satisfy SST
with respect to the total order among the players induced by the ground truth order ≻. In addition,
the feedback of each single player duel we perform is time-invariant, thus all the non-parametric
assumptions for dueling bandits settings apply here. The reduction allows us to identify the top-k
players using any dueling bandit algorithm with the same goal that works for total order on arms that
satisfy SST, and a gap between the top k and (k + 1) arms as assumptions. We formalize this below.
Theorem 4.4. Given any dueling teams instance with n and k (namely, PA,B for every two teams
that hold strict total order, SST, and consistency), we have that the dueling bandit instance defined
by (1) satisfies SST with respect to the ground truth order among players ≻ and for any two players
a ≻ b it holds that Pa,b ≥ 1/2. Moreover, Pk,k+1 = 1/2 + ∆.

Using the above theorem we can use any dueling bandit algorithm for top-k identification to solve our
problem. Mohajer et al. (2017) provide an algorithm that returns the top-k players with probability ex-
ceeding 1− (log n)−c0 with sample complexity at most c1∆−2

k,k+1(n+k log k)max (log log n, log k)
in expectation, where c0 and c1 are universal positive constants and ∆k,k+1 is the distinguishability
between the k and the (k+ 1) best players (see Algorithm 2 and Theorem 1 in Mohajer et al. (2017)).

Ren et al. (2020) show an algorithm that returns the top-k players with probability at least 1 − δ
with sample complexity O(

∑
i∈[n](∆

−2
i (log(n/δ) + log log∆−1

i )), where ∆i = 1i≻k+1 ·∆i,k+1 +

1k≻i ·∆k,i and k, k + 1 are the top k and the top (k + 1) players, respectively (see Algorithm 5 and
Theorem 8 in Ren et al. (2020))5. These algorithms, together with Theorem 4.1 allow us to derive the
following theorem.
Theorem 4.5. There exists an algorithm that returns A∗

k with probability exceeding 1− (log n)−c0

with sample complexity at most c1(n + k log k)max (log logn,log k)
∆2 in expectation, where c0 and

c1 are universal positive constants. In addition, there exists an algorithm that returns A∗
k with

probability at least 1− δ with sample complexity O(
∑

i∈[n](∆
−2
i (log(n/δ) + log log∆−1

i )), where
∆i = 1i≻k+1 ·E[Xi,k+1]+1k≻i ·E[Xk,i] and i denotes the top i player, thus ∆i ≥ ∆ for all i ∈ [n].

5 Deterministic Setting

In Section 4 we showed the existence of algorithms that identify the top-k team with a number of
duels that depends on ∆. But what if ∆ is very small or even 0? One reason for that can be that all
relevant probabilities (e.g., P{k}∪S,T , P{k+1}∪S,T ) are very close to 1/2 for all (S, S′, T ) ∈ X ∗

k,k+1.
Then, a high number of duels to identify A∗

k is unavoidable and giving upper bounds in dependence of
a gap parameter very much resembles the literature on dueling bandits, where a gap between the top k
and k+1 players is often a parameter of the sample complexity (e.g., Mohajer et al. (2017)). Another
reason for ∆ to be small is that the number of witnesses for k ≻ k + 1 is small. We overcome this
issue by designing ∆-independent algorithms, assuming deterministic feedback, i.e., PA,B ∈ {0, 1}
for all pairs of teams (A,B). In this setting, (S, T ) ∈ T ∗

a,b if and only if S∪{a} ≻obs T ≻obs S∪{b},
and (S, S′) ∈ S∗a,b if and only if S ∪ {a} ≻obs S

′ ∪ {b} and S′ ∪ {a} ≻obs S ∪ {b}. In the appendix
(Section C) we show that our results extend to a slightly stochastic environment.

The limitation of the set of witnesses makes the task of identifying a Condorcet winning team in the
deterministic setting surprisingly hard. For general total orders, a crucial difficulty lies in proving
that a given team is indeed Condorcet winning. Nevertheless, we are able to get the following result:
Theorem 5.1. For deterministic feedback, there exists an algorithm that performs O(kn log(k) +
k2 log(k)25k) duels and outputs a Condorcet winning team.

For the natural special case of additive total orders we obtain a significantly better upper bound. A
total order ≻ is additive total, if there exist values for the players denoted by v(x), x ∈ [n] such
that A ≻ B iff

∑
a∈A v(a) >

∑
b∈B v(b). In Section E of the appendix we give a sufficient and

necessary condition for a total order to be additive. For additive total orders we present an algorithm
that identifies a Condorcet winning team after polynomial many duels and also outputs a proof.
Theorem 5.2. For deterministic feedback and additive total orders, there exists an algorithm that
finds a Condorcet winning team within O(kn log(k) + k5) duels.

5We remark that Ren et al. (2020) also assume Stochastic triangle inequality which we do not, however it is
only used to derive a lower bound.
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Both algorithms rely on the same preprocessing procedure called ReducePlayers which reduces the
number of players from n toO(k). At the heart of this procedure is a subroutine called Uncover. After
describing Uncover and ReducePlayers, we prove Theorem 5.1. Towards proving Theorem 5.2, we
introduce two more subroutines, namely NewCut and Compare, which are crucial for identifying and
proving a Condorcet winning team within the smaller instance. Finally, Algorithm CondorcetWinning
combines all components and proves Theorem 5.2. While all algorithms are formalized in Appendix
C, we give sketches thereof and theorems stating their input and output below.

The Uncover Subroutine Given two disjoint teams A ≻ B, the Uncover subroutine finds a pair
of players a ∈ A and b ∈ B and a subsets witness for their relation, i.e., an element from S∗a,b.
To understand the idea of the subroutine, consider some arbitrary ordering of the elements in A
and B, respectively, i.e., A = {a1, . . . , ak} and B = {b1, . . . , bk}. Then, iteratively exchange the
elements a1 and b1, a2 and b2, resulting in sets A0 = A,B0 = B,A1 = {b1, a2, . . . , ak}, B1 =
{a1, b2, . . . , bk}, A2 = {b1, b2, a3, . . . , ak}, and so on. Since A0 ≻ B0 but A0 = Bk ≻ Ak = B0

holds, there needs to be some earliest point in time i ≤ k for which Bi ≻ Ai is true. This implies
ai ≻ bi as ({a1, . . . , ai−1, bi+1, . . . , bk}, {b1, . . . , bi−1, ai+1, . . . , ak}) is a subsets witness.

While the above sketched subroutine is simple, it performs k duels in the worst case. We refine this
idea by a binary search approach, decreasing the number of duels to log(k).

Lemma 5.3. Let A and B be two disjoint teams with A ≻ B. After performing O(log(k)) duels,
Uncover returns (a, b) with a ∈ A, b ∈ B and (S, S′) ∈ S∗a,b, and thus a ≻ b.

We remark that Lemma C.2 in the appendix is a slightly stronger version of the above lemma which
allows us to partition A and B into two subsets each, A = A(1) ∪A(2) and B = B(1) ∪B(2). Under
some circumstances, we can then guarantee that Uncover reveals the pairwise comparison between
two players a ≻ b, where a is from A(1) and b is from B(1).

Reducing the Number of Players to O(k) The fact that we can eliminate some players from [n]
and still find (and prove) a Condorcet winning team is due to the following observation.

Observation 5.4. Let R ⊆ [n] such that A∗
2k ⊆ R. Let Â ⊆ R be a team such that Â ≻ A for all

teams A ⊆ R \ Â. Then, Â is a Condorcet winning team.

The procedure ReducePlayers reduces the set of players [n] to some subset R ⊆ [n] guaranteeing
that A∗

2k ⊆ R and |R| < 6k. The algorithm maintains a dominance graph D = (V,E) on the set of
players. More precisely, the nodes of D are the players, i.e., V = [n], and there exists an arc from
node a to node b if the algorithm has proven that a ≻ b. The set V<2k is the subset of the players
having an indegree smaller than 2k in D. The high level idea of the algorithm is the following: It
starts with the empty dominance graph D = ([n], ∅). Then, it iteratively identifies pairwise relations
of the players with help of Uncover and adds the respective arcs to the graph. By adding more and
more arcs to D, the set of nodes V<2k shrinks while A∗

2k ⊆ V<2k is always guaranteed. At some
point, the algorithm cannot identify any more pairwise relations and returns V<2k. How does the
algorithm identify pairwise relations? At any point it tries to find a matching between 2k players, say
{(a1, b1), . . . , (ak, bk)} with the constraint that, for all i ∈ [k], none of the arcs (ai, bi) or (bi, ai)
is present within the graph D yet, and then applies Uncover on the sets A = {a1, . . . , ak} and
B = {b1, . . . , bk}. In the proof of Lemma 5.5 we show that, as long as |V<2k| ≥ 6k − 1, the
algorithm can find such a matching. With the help of Lemma 5.5, we then prove Theorem 5.1.

Lemma 5.5. Given the set of players [n], ReducePlayers returns R ⊆ [n] with |R| ≤ 6k − 2 and
A∗

2k ⊆ R. ReducePlayers performs O(nk log(k)) duels and runs in time O(n2k2).

Proof sketch (of Theorem 5.1). Let D be the dominance graph at the end of ReducePlayers. Then,
the learner selects a k-sized subset of V<2k, call it Â, with the property that there is no arc from
any node in V<2k \ Â towards some node in Â. Then, the learner tests Â against all possible teams
containing players from V<2k \ Â, which are O(25k) many. If Â wins all of these duels, then Â is a
Condorcet winning team by Observation 5.4. However, if there exists A ≻ Â, then, by the choice
of Â, there does not exist any arc from A towards Â. Hence, by calling the subroutine Uncover for
two arbitrary orderings of A = {a1, . . . , ak} and Â = {â1, . . . , âk}, the learner will identify one
additional arc. This procedure can be repeated O(k2) times and thus shows Theorem 5.1.
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Figure 1: Illustration of the proof technique of algorithm CondorcetWinning1. In the left illustration,
the solid black line indicates that all players left to it were proven to be better than all players right
to it. The dashed line marked with “k” indicates that the sets to its left contain k players in total.
However, this line does not indicate proven relations, i.e., players from X are not necessarily better
than players from Y . The right figure illustrates the proof for X ∪U1 ∪U2 being Condorcet winning.

Subroutines NewCut and Compare The NewCut subroutine takes as input a subset of the players
R ⊆ [n], a pair a, b ∈ R, and a witness proving that a ≻ b, i.e., (S, T ′) ∈ S∗a,b ∪ T ∗

a,b. That means,
T ′ can be either of size k − 1 or k, and S and T ′ are not required to be subsets of R. The subroutine
outputs a partition of R into two non-empty sets U and L with U ▷ L, which is short-hand notation
for u ≻ ℓ for any u ∈ U and ℓ ∈ L. The subroutine starts by initiating the set U = {a} and redefines
R = R \ {a, b}. At all times, U contains only players u for which the algorithm has found a witness
for u ≻ b. These witnesses are stored in a listW , and it is checked whether they can be modified to
become witnesses for x ≻ b for any other element in x ∈ R. This modification is done by applying
permutations on the set of subsets of the players, similarly as in the proof of Theorem 3.2 and Lemma
4.2. If the algorithm finds a witness for x ≻ b, then x is added to U and removed from R. The new
witness is also stored inW . This process ends when either R is empty or all witnesses inW have
been checked. At this point it holds that U ▷ R ∪ {b}, and the algorithm returns (U,L := R ∪ {b}).
Lemma 5.6. Let R ⊆ [n], a, b ∈ R and (S, T ′) ∈ S∗a,b ∪ T ∗

a,b. Then, NewCut(R, (a, b), (S, T ′))
returns a partition of R into U and L such that U ▷ L, a ∈ U and b ∈ L. The number of duels
performed by NewCut and its running time can be bounded by O(|R|2).

From now on we assume additive linear orders. The compare subroutine is crucial for obtaining upper
bounds for differences between values of players’ subsets. It is used in the following situation. Let
(a, b) be a pair of players and (S, S′) ∈ S∗a,b be a witness for a ≻ b. Then, it can be easily shown that
v(a)− v(b) > |v(S)− v(S′)|. We will be interested in the question whether a similar relation holds
for two subsets of S and S′, namely, C ⊆ S and D ⊆ S′ of equal size. The compare subroutine
checks whether such a relation holds by performing two additional duels. If it returns True, then
v(a)− v(b) > |v(C)− v(D)|. Otherwise, there can be found a pair c ∈ C and d ∈ D and a witness
for their relation by one call to the Uncover subroutine. This observation is formalized below.
Lemma 5.7. Let a ≻ b be two players, (S, S′) ∈ S∗a,b and C ⊆ S,D ⊆ S′ with |C| = |D|. If
Compare((a, b), (S, S′), (C,D)) returns True, then v(a)− v(b) > |v(C)− v(D)|. Otherwise, one
call to Uncover returns c ∈ C and d ∈ D together with a witness for their relation.

Algorithm CondorcetWinning The algorithm maintains a partition of the players into a weak
ordering, i.e., T = {T1, . . . , Tℓ} with T1 ▷ T2 ▷ · · · ▷ Tℓ. We introduce the short-hand notation
T≤j =

⋃
m∈[j] Tm and T<j =

⋃
m∈[j−1] Tm. After the application of the preprocessing procedure

ReducePlayers, this partition consists of one set, namely T = {T1}, where |T1| ∈ O(k) and A∗
2k ⊆

T1. At any point in the execution of the algorithm, we are especially interested in two indices, namely
ik ∈ [ℓ] such that |T<ik | < k < |T≤ik | and similarly i2k ∈ [ℓ] such that |T<i2k | < 2k < |T≤i2k |. 6

Observe that all players from T<ik are guaranteed to be among the top-k players. On the other hand,
among the players from Tik some belong to A∗

k and others do not. The main idea of the algorithm is
then the following: Take a prefix of T of size k, i.e., this team contains the set of players T<ik and
is a subset of the players in T≤ik , and either prove that this prefix is a Condorcet Winning team, or
refine the partition T and repeat the process. The refinement is done by splitting one element of T ,
say Ti, into two non-empty sets, T 1

i ▷ T 2
i , and re-indexing the sets within T . This is done with the

help of Uncover and NewCut. Clearly, this increases the number of sets in the partition T by one.
6In case one of these indices does not exist, it implies that we have either identified the set A∗

k or A∗
2k. In the

first case we have found a Condorcet winning team and in the second case Observation 5.4 implies that we can
find one by performing one additional duel. For the sake of brevity we disregard this case from now on.
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We provide two different algorithms, namely CondorcetWinning1 for the case ik = i2k and Con-
dorcetWinning2 when ik ̸= i2k. Unsurprisingly, the latter case requires a strictly less sophisticated
approach, which is why we focus on CondorcetWinning1 in the following.

The algorithm starts by partitioning the set T<ik into two sets U1 and U2, where U1 is a prefix of
T<ik of size |T≤ik | − 2k. It partitions the set Tik into five sets X,Y,W1,W2, and Z. In particular it
is known that (U1 ∪ U2) ▷ (X ∪ Y ∪W1 ∪W2 ∪ Z) but no relation among any pair in Tik is known.
Regarding the sizes of the sets it holds that |Ui| = |Wi| for i ∈ {1, 2}, |X| = |Y | = k − |U1| − |U2|
and |U1| = |Z|. The main aim of the algorithm will be to define 0 < ϵ1 < ϵ2 and prove that the
following statements are true:

(i) |v(X)− v(Y )| < ϵ1

(ii) |v(a)− v(b)| < ϵ2 for all a ∈ Y ∪W1 ∪W2 and b ∈ Z, and
(iii) there exist u1, . . . , u|Z|+1 ∈ U1 ∪ U2 as well as w1, . . . , w|Z|+1 ∈W1 ∪W2 such that

(a) v(u1)− v(w1) ≥ ϵ1 and
(b) v(ui)− v(wi) ≥ ϵ2 for all i ∈ {2, . . . , |Z|+ 1}.

With these statements we show that U1 ∪ U2 ∪X is a Condorcet winning team. More precisely, we
show v(U1 ∪ U2 ∪X)− v(W1 ∪W2 ∪ Y ) > |Z| · ϵ2 and v(W1 ∪W2 ∪ Y )− v(B∗) > −|Z| · ϵ2,
where B∗ is the best response7 towards U1 ∪U2 ∪X . See Figure 1 for an illustration of the argument.

It remains to sketch how the algorithm defines ϵ1, ϵ2 and proves (i)− (iii). For simplicity assume
U1 ▷U2. The algorithm then attempts to do the following steps: (1) Find a witness for players ū ∈ U2

and w̄ ∈ W2, using Uncover. (2) Use Compare, to prove that |v(X) − v(Y )| < v(ū) − v(w̄) and
|v(a)−v(b)| < v(ū)−v(w̄) holds for all players a ∈W1∪W2∪Y and b ∈ Z. (3) Repeat step (2) by
replacing w̄ with any player of W1. If one of the steps (1)-(3) fails, we show that the partition T can
be refined. Otherwise, we show that (i)− (iii) hold for ϵ1 = v(ū)− v(w∗

1) and ϵ2 = v(ū)− v(w∗
2),

where w∗
1 and w∗

2 are the best and second best players from W1 ∪ {w̄}, respectively. The following
Lemma concludes the proof sketch of Theorem 5.2.
Lemma 5.8. For every instance with O(k) players, after performing O(k5) many duels, Con-
dorcetWinning1 has identified a Condorcet winning team. CondorcetWinning2 identifies a Condorcet
winning team after O(k2 log(k)) duels.

6 Extensions and Discussion

Below, we discuss several implications of our results as well as directions for future work.

Regret bound In this paper we provided algorithms to identify, with high probability, a Condorcet
winning team. Another common performance metrics for the dueling bandits setting is (e.g., weak)
regret. We define a regret in our setting w.r.t. A∗

k. This is reasonable since SST implies that
PA∗

k,B
≥ PĀ,B for every Condorcet winning team Ā and any team B. Then, for time horizon T we

denote by (At, Bt) the selected duel at time t and define the regret to be

RT =

T∑
t=1

min {PA∗
k,At
− 1/2, PA∗

k,Bt
− 1/2}.

This definition is based on weak regret for dueling bandits, as defined in Yue et al. (2012). Within
Appendix D, we derive a regret bound of RT = O(n(∆−2(log(T ) + log log∆−1)).

Checking Condorcet winners beyond additive linear orders The question how many duels are
necessary to prove or disprove that a given team is Condorcet winning remains open for total orders
that are not additive linear, even if n ∈ O(k). Nevertheless, our algorithm from Theorem 5.1 shows
that a polynomial upper bound for this number would imply the existence of an algorithm with a
polynomial number of duels. More formally: Let q be the number of duels required to check whether
a given team is a Condorcet winning team within an instance with O(k) players. Then, there exists
an algorithm that identifies a Condorcet winning team within O(kn log(k) + k2log(k)q) duels.

Lower bounds For both settings, we can show a lower bound of n− 2k duels in order to identify a
Condorcet winning team. We refer to Appendix D for a formal statement and a proof.

7We call B∗ a best response towards U1∪U2∪X , if B∗ contains the best k players from [n]\(U1∪U2∪X).
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