
NeuroBE: Escalating NN Approximations to Bucket Elimination

Sakshi Agarwal, Kalev Kask, Alex Ihler, Rina Dechter
University of California, Irvine

{sakshia1, kkask, ihler, dechter}@ics.uci.edu

Abstract

A major limiting factor in graphical model inference is
the complexity of computing the partition function. Exact
message-passing algorithms such as Bucket Elimination (BE)
require exponentially high levels of memory to compute the
partition function, therefore approximations are necessary. In
this paper, we build upon a recently introduced methodol-
ogy called Deep Bucket Elimination (DBE) that uses classi-
cal Neural Networks (NNs) to approximate messages gener-
ated by BE when buckets have large memory requirements.
The main feature of our new scheme called NeuroBE is
that it customizes the architecture and learning of the NNs to
the message size and its distribution. We also explore a new
loss function for training taking into account the estimated
message cost distribution. Our experiments demonstrate that
these enhancements provide significant improvements over
DBE in both time and accuracy. We also study the impact
of the messages local errors on the global accuracy of the es-
timate of the partition function.

Introduction
Two of the critical goals of probabilistic modeling are the
compact representation of probability distributions and the
efficient computation of their marginals and modes. Proba-
bilistic graphical models, such as Markov networks (Pearl
1988; Darwiche 2009; Dechter 2013) provide a framework
to represent distributions compactly as normalized products
or factors : P (X) = 1

Z

∏
α fα(Xα), where X is a set of

variables, each potential fα is a function over a subset Xα

of the variables (its scope) and Z =
∑

X

∏
α fα(Xα) is the

partition function. Computing the partition function, or per-
forming inference, is still exponential in the induced width
of the model’s graph even for distributions that admit a com-
pact representation.

The partition function Z is defined by two types of oper-
ations: sums and products. It can be evaluated efficiently if∑

X

∏
α fα(Xα) can be reorganized using the distributive

law along a variable ordering (Dechter 2003). This orga-
nization can be described using buckets as data structures,
one for each variable in the ordering. When a bucket is
processed, its associated variable is removed by creating a
bucket output function, also called a message, that is passed

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to a subsequent bucket. The complexity of computing this
function is exponential in its number of arguments, called
scope or the bucket’s width. Overall, Bucket Elimination
(BE) (Dechter 1999a), is time and memory exponential in
the induced-width of the model’s graph along the ordering.
A common approach for approximating BE is to approxi-
mate each bucket message with a surrogate fnction when-
ever it cannot be computed exactly, that is, when its width is
too high.

Such schemes that bound the time and space complexity
of BE include the (weighted) mini-bucket scheme (Dechter
and Rish 2003; Liu and Ihler 2012) and generalized belief
propagation schemes (Yedidia, Freeman, and Weiss 2000;
Mateescu et al. 2010). Our recent approach, Deep Bucket
Elimination (DBE) (Razeghi et al. 2021), approximates each
bucket function with a neural network (NN). While this ap-
proach is inherently time consuming requiring the indepen-
dent training of many NNs to compute the partition function
of a single problem, it has yielded more accurate approxima-
tions on several benchmarks. Unlike its main competition of
weighted bucket-elimination it can improve with time even
with bounded memory, providing a potential anytime frame-
work for reasoning. Yet, DBE’s original design can be im-
proved significantly as we show in this paper.

Contributions. We present NeuroBE, a re-design of
DBE, that addresses it’s one size fits all policy by customiz-
ing the NN construction and training sample size to each
bucket separately, in proportion to it’s message size. We also
consider a new loss function for training that takes into ac-
count the distribution of messages. We compare NeuroBE
with DBE and with other approximation schemes of BE.
Lastly, we provide an analysis of the global error associated
with the estimated partition function, relating it to the local
errors associated with individual messages.

The paper is organized as follows. We first provide a back-
ground to BE and DBE; then we present NeuroBE fol-
lowed by error analysis; lastly, we demonstrate the efficiency
of NeuroBE empirically.

Related work. As noted, approximating and bounding
Bucket Elimination has been carried out extensively over
the years for all probabilistic queries. Well known is the
Mini-Bucket Elimination scheme (Dechter and Rish 2003)
and its variants, such as Weighted Mini-Bucket Elimination

(WMBE), augmented with message-passing cost-shifting
(Liu and Ihler 2011).

Neural network approximation to BE was introduced in
(Razeghi et al. 2021). The idea is closest in spirit to the
Neuro-Dynamic Programming scheme as outlined in (Bert-
sekas and Tsitsiklis 1996) where the cost-to-go functions
(similar to messages) generated by dynamic programming
can be approximated by NNs. This is also highly related
to Deep Reinforcement Learning (DRL) (Mnih et al. 2015)
where, in the absence of a model, the value function is ap-
proximated by neural networks learned from temporal tra-
jectories.

Recently, Graph Neural Networks (GNNs) (Scarselli et al.
2009) are used to learn messages following the message-
passing reasoning methods in graphical models (Abboud,
Ceylan, and Lukasiewicz 2020; Yoon et al. 2018; Heess, Tar-
low, and Winn 2013). However, (Yoon et al. 2018; Heess,
Tarlow, and Winn 2013) is restricted to small instances
(i.e., ∼40 variables) and (Abboud, Ceylan, and Lukasiewicz
2020) tackles problems with a known polynomial-time ap-
proximation. GNN based methods derive a supervised end-
to-end learning algorithm which generalize across different
problem instances. In contrast, we consider a different class
of algorithms, where we confine learning to within a prob-
lem instance only.

Background
A graphical model can be defined by a 3-tuple M =
(X,D,F), where X = {Xi : i ∈ V, V = {1, ..., n}} is
a set of n variables indexed by V and D = {Di : i ∈ V }
is the set of finite domains for each Xi (i.e. each Xi can
only assume values in Di, and each Di is finite). Each func-
tion fα ∈ F is defined over a subset of the variables called
its scope, Xα, where α ⊆ V are the indices of variables
in its scope and Dα denotes the Cartesian product of their
domains, so that fα : Dα → R≥ 0.

The primal graph of a graphical model associates each
variable with a node. An edge between node i and node
j is created if and only if there is a function containing
Xi and Xj in its scope. Figure 1a shows a primal graph
of a graphical model with variables indexed from A to G
with functions over pairs of variables that are connected
by an edge. Graphical models can be used to represent a
global function, often a probability distribution, defined by
Pr(X) ∝

∏
α fα(Xα). An important task is to compute the

normalizing constant, also known as the partition function
Z =

∑
X

∏
α fα(Xα).

Bucket Elimination
Bucket Elimination (BE) (Dechter 1999b) is a universal ex-
act algorithm for probabilistic inference. It is a variable elim-
ination algorithm that can answer a wide-range of queries,
including the partition function ranging from constraint sat-
isfaction, to pure combinatorial optimization (e.g., Most
Probable Explanation (MPE/MAP)), and weighted counting
(Partition Function, Probability of Evidence).

Given a variable ordering d, BE (presented in Algorithm
1, omitting steps 9-12) creates a bucket tree where each node

A" B"

C"D"

E"

F"

G"

(a) A primal Graph

(b) Bucket Elimination example

Figure 1: (a) A primal graph of a GM with 7 variables. (b)
Illustration of BE with an ordering A B C E D F G.

is a bucket representing a variable in the ordering d. Figure
1b shows a bucket tree for the primal graph in Figure 1a
along an ordering. Each bucket in this tree contains a set of
the model’s functions depending on the given order of pro-
cessing. For example, Bucket G in Figure 1b has functions
{f(A,G), f(F,G)}, an exhaustive set of model’s functions
with variable G in its scope. There is an arc from a bucket,
say Bc, to a parent bucket, Bp, if Xp is the latest variable
in bucket Bc’s message scope along the ordering (constants
are placed in B1). In the same example, there is an arc from
Bucket G to Bucket F.

BE then, performs inference along the bucket tree as a
1-iteration message-passing algorithm (bottom-up). It pro-
cesses each bucket from leaves to the root passing messages
from child (c) to parent (p). For a child variable Xc, it con-
siders all the functions in bucket Bc. This includes the origi-
nal functions in the graphical model as well as the messages
received by processing previous variables. It then marginal-
izes Xc out from the product of functions in Bc generating
a new, so called, bucket function or message, denoted λc→p,
or λc for short:

λc =
∑
Xc

∏
fα∈Bc

fα (1)

The λc function is placed in Bp, the bucket of Xp. Once
all the variables are processed, BE outputs all the messages
and the exact value of Z by taking the product of all the con-
stant present in the bucket of the first variable. We illustrate
BE message flow on our example problem in Figure 1b.

Complexity. Both the time and space complexity of BE
are exponential in the induced width, which is the size of

the largest number of variables in the scope of any message
in a graph (Dechter 2013). Clearly, BE becomes impractical
if the induced width is large.

Deep Bucket Elimination
Given a variable ordering d, Deep Bucket Elimination (DBE)
(Razeghi et al. 2021), approximates each message gener-
ated in the bucket tree by training a NN when the scope of
any bucket message (Sc) is high (> i-bound). For exam-
ple, in figure 1b, if we use an i-bound = 2, instead of send-
ing an exact function from the bucket of D to the bucket
of C, λD→C(A,B,C), DBE sends a NN approximation
µθ,D→C(A,B,C) with parameters θ, as we describe next.

Let Bc be a bucket with width wc > i-bound and out-
put message λc(Sc) with scope Sc. DBE then, constructs
a fully-connected feed-forward NN having wc nodes in the
input layer. This is followed by L hidden layers with a con-
stant h hidden nodes per layer with ReLU activation func-
tion. Finally, the output layer contains one node with a real-
valued output. Subsequently, DBE generates a training set
{(sn, λc(sn))} of size N, where sn denotes a configuration
over Sc sampled uniformly at random and λc(sn) is the mes-
sage value defined in Eq. 1. The NN parameters, θ, are then
trained to minimize the mean square error loss:

L(θ) =
1

N

N∑
n=1

(λc(sn)− µθ,c(sn))
2

where sn is the nth sample in the training set and µθ,c(sn) is
the NN output. Once training is complete, DBE passes the
trained NN µθ,c(sn) to its parent bucket. Typically, during
its course, DBE may approximate many bucket messages
in order to compute the partition function Z.

However, it often requires a large training sample size
per message to achieve desired performance. This leads to
a substantial increase in the algorithm’s time and memory
requirements. Therefore, to make DBE efficient, we re-
design the message approximation procedure, elaborated in
the following section.

NeuroBE
We rename DBE to NeuroBE acknowledging the use
of shallow neural networks (2 layers) to approximate each
message. Algorithm 1 presents NeuroBE. Similar to DBE,
NeuroBE first creates a bucket tree along a given ordering
in line 2. While processing each bucket along the ordering,
if it’s width ≤ i−bound, then the message, µ∗

c→p, is com-
puted exactly in line 7. Otherwise, the message is approxi-
mated using a NN in line 10. Note that in either case, if a
bucket contains a NN function, then computing µ∗ in Line
7 or in NN-train function (Algorithm 2) requires evaluating
the trained NN. Finally, line 14 calculates the partition func-
tion using the functions in bucket B1.

Note that we denote µ∗
c→p as the exact message computed

in a bucket while reserve the notation λc→p to the messages
computed by exact BE. We do this to distinguish the exact
local computation of a message that may be based on inexact
functions in the bucket from the globally exact messages λ

Algorithm 1: NeuroBE
Input: Graphical model M = (X,D,F), Ordering d =
X1, ..., Xn

Parameters: i-bound i, #layers L, constants b, η
Output: the partition function constant and bucket mes-
sages

1: for c in n...1 do
2: (initialize buckets and form a bucket-tree) put all un-

placed functions mentioning Xc in Bc.
3: end for
4: for c in n...1 do
5: Let Xp be the parent variable of Xc in the bucket-tree
6: if width(Bc) ≤ i then
7: µ∗

c→p ←
∑

Xc

∏
fα∈Bc

fα
8: else
9: (denote by µ∗

c→p the function
∑

Xc

∏
fα∈Bc

fα)
10: µθc,c→p ← NN-train (µ∗

c→p, L, b, η)
11: end if
12: Put µ∗

c→p or µθc,c→p in Bp

13: end for
14: Z =

∑
X0

∏
fα∈B1

fα
15: return Z and All messages generated

computed by BE. In the latter, each bucket function is com-
puted exactly and also all the functions in a bucket are exact.
Hence, we refer to µ∗

c as the local exact message. Further,
we denote µθc,c→p as the NN approximations of the local
exact message, µ∗

c→p.
The difference between NeuroBE and DBE is solely

in the individual message approximation scheme, NN -
train. As noted before, DBE often uses a constant, large
sized training set for each message approximation. A sim-
ple brute-force reduction of the sample size only to reduce
training time, may lead to overfitting. Hence NeuroBE cus-
tomizes the NN architecture and its training set size to the
message complexity (see (Vapnik 1999)).

NN Architecture selection
It is obvious that the NN size should be dependant on the di-
mensionality of the message function. In our case, the func-
tion’s scope size is the induced-width, w. We propose to ad-
just the NN size by making the number of hidden units, h,
a function of w while keeping the number of layers, L, con-
stant. We select h = b · w, where b is a constant satisfying
b ≥ 1. Figure 2 illustrates an example NN model with an
input layer of size w and 2 hidden layers with dimension h,
varying linearly with b. When b = 1 all layers are of the
same size w. Through such a rule, NeuroBE fits NN to
message size. We now quantify the capacity of such NNs
and apply it to determine it’s train sample sizes.

NN complexity. The pseudo-dimension (Pollard 1984;
Anthony and Bartlett 2002) is used to estimate the expres-
sive power or complexity of NNs in regression problems.
Bounds to the pseudo-dimension of such NNs with ReLU
activation functions is provided by (Bartlett et al. 2019).
We use the lower bound as a proxy to estimate the pseudo-

Figure 2: For a bucket of width w, we illustrate a NN archi-
tecture with L layers and #bw hidden-units with b ≥ 1.

dimension (ρc) of the NN approximating a message µ∗
c hav-

ing width wc, yielding (see appendix for derivation):

ρc(wc) ∝ (L ∗ b ∗ wc)
2log[(b ∗ wc)] (2)

We use the above equation as a correlation between the com-
plexity of the candidate NN and the width of the message µ∗

c
it approximates.

Sample Complexity As suggested in (Vapnik 1999). we
choose a sample size (N) that is proportional to the pseudo-
dimension (Eq. 2) of each NN:

N = η ∗ (L ∗ b ∗ w)2log(b ∗ w) (3)

where η is a constant, and w is the number of arguments
to the estimated function. We will use N(w) to emphasize
that N varies with w. The sample size N(w) often exceeds
memory limits for higher width buckets with even the sim-
plest NN architecture (L = 1, b = 1). Hence, we thresh-
old sample size per bucket to 1000k. In general, for high
induced-width problems, we keep η small to favour training
NNs with small sample sizes. However, for problems with
small induced-width, we let η take high values.

Learning NNs
For training a NN, DBE generated samples in a bucket uni-
formly at random and used the mean square error as the loss
function. We wondered whether generating the samples in a
non-uniform distribution, in a way that is related to the mes-
sage distribution, would be more effective. Alternatively, we
asked if a loss function that is dependant on the actual mes-
sage values should be used. To that end we define the distri-
bution, Fc(S), of an output message µ∗

c(S) by:

Fc(s) =
µ∗
c(s)∑

s∈D(S) µ
∗
c(s)

, (4)

where the denominator is summed over each configuration s
from the set of all possible configurations D(S) over scope

Algorithm 2: NN-train(µ∗
c ,L,b, η, #epochs)

Input: µ∗
c message on a set of variables X

Parameters: L: # layers in NN, #epochs, η, b: constants
Output: µθc,c: NN message approximation, ϵ̂: an estimated
bucket error bound, ϵ̂avg: estimated average bucket error

1: wc ← scope(µ∗
c)

2: #h← b ∗ wc

3: Initialize NN µθc,c with L layers, #h hidden-units
4: N ← sample-size(wc, η, L, b)
5: trainSet, valSet, testSet← generate-samples(µ∗

c , N)
6: p=1, error val = +∞, µθ ← µθc,c

7: while p ≤#epochs and ¬ early stopping(error val) do
8: µθc,c ← µθ

9: for traini in batches(trainSet) do
10: µθ traini← NN(traini,µθ)
11: loss← w.m.s.e(traini, µθ traini)
12: µθ ← optimize(Adam, loss, θ)
13: end for
14: µθ val← NN(valSet,µθ)
15: error val← w.m.s.e(valSet, µθ val)
16: p← p+ 1
17: end while
18: error← log(testSet \ NN(testSet,µθc,c))
19: ϵ̂c ←max(error), ϵ̂avgc ← avg(error)
20: return µθc,c, ϵ̂c, ϵ̂avgc

S. However, since sampling from Fc(S) is hard we sam-
pled from the uniform distribution, but changed our loss to a
weighted estimate of the mean square error (w.m.s.e):

L(θc) =
1

Nc

∑
s∈D(S)

(µ∗
c(s)− µθc(s))

2 F̂ (s)

Û(s)
(5)

where c is an index to the bucket, s is a uniformly sampled
configuration in scope Sc and µθc(s) is the approximated
message value computed by the NN; F̂ (s) is the probability
of s following the message distribution (eq 4), and Û(s) is
the probability of s according to the uniform distribution.

Algorithm 2 describes this learning procedure. For a
bucket Bc of variable Xc having local exact output message
µ∗
c ; Algorithm NN-train, using its input parameters L, b, η

constructs a NN with L layers and b · wc hidden units (line
3). It then determines it’s training sample size N (line 4) us-
ing Eq. 3. A major step occurs next (line 5) where it creates
the training, validation and testing sets by generating sam-
ples uniformly from the domain of the function scope S as
follows. For each sample configuration s, and a variable Xc,
we compute it’s target value µ∗(s), as:

µ∗(s) =
∑

x∈DXc

∏
f∈Bc

f(s, x)

If the bucket Bc contains a trained NN, then this step re-
quires evaluating that NN. Lines 9-12 then trains the NN
parameters by dividing the train set into batches. Line 10
shows the function NN(data,µθ) as the output computed by

the NN µθc on input set data. Line 11 computes the w.m.s.e
between the target values in the train set and the NN out-
put, µθ train. The NN parameters (θc) are then updated us-
ing the Adam optimizer (Kingma and Ba 2014) (line 12).
After each epoch, the current trained model is evaluated on
a holdout validation set (line 14-15). We stop training when
either the maximum limit #epochs is reached or the vali-
dation error meets our early stopping criteria, that is if the
validation error increases for two consecutive epochs. Once
training is complete, we compute the maximum and average
log relative errors between the target and NN approximated
messages over a test set (lines 18-19). In the next section,
we use this to analyse error propagation in NeuroBE. The
NN -train procedure then returns the approximated mes-
sage µθc,c along with it’s estimated error.

Complexity. Clearly, the time and space complexity for
learning a single message in NeuroBE is linear in the sam-
ple size. In contrast to DBE, here the sample size is cus-
tomized to the message complexity, or bucket width.

Error Analysis
We next analyse the relationship between the local errors
contributed by each approximated message and the global
partition function error.
Definition 1 (local and global bucket errors). Let λc be the
(global) exact message generated in Bc by the exact BE al-
gorithm, µ∗

c be the local exact message in Bc computed by
the functions in it and µc = NN -train(µ∗

c) be its NN ap-
proximation. Then, the Local Bucket Error is the function

Ec = logµ∗
c − logµc

The Global Bucket Error is

Gc = logλc − logµc

The above error corresponds to a log of the relative errors.
We use log relative error here because bounding the global
error as a function of the local errors turned out to be eas-
ier. Note that the true partition function, Z∗ = λ1. So, the
global bucket error G1 is the error in the estimated partition
function, thus measuring NeuroBE’s performance.
Theorem 1. Assume a bucket-chain along an ordering d
and let Bc be a bucket along the chain. Let Ec(x) =
lnµ∗

c(x) − lnµc(x) as defined above and let ϵc =
maxs∈D(Sc)|Ec(s)|, where Sc is the scope of outgoing mes-
sage from Bc and D(Sc) is the set of all possible configura-
tions on Sc. Then,

Ec = lnλc − lnµc ≤
n−c∑
k=0

ϵc+k

In particular, since λ1 = Z, the partition function

E1 = lnZ − lnµ1 ≤
n−1∑
k=0

ϵ1+k (6)

For the proof see the Appendix.
Calculating ec is hard because it involves computing the

local bucket error Ec over all configurations in the scope of

the bucket. Therefore, we calculate the maximum error over
a sampled test set in steps 18-19 of algorithm 2 as ϵ̂c. Ad-
ditionally, we calculate the average local bucket error, ϵ̂avgc
over the same test set. According to Eq. 6, summing over all
bucket error bounds, ϵ̂c, bounds the global error of the es-
timated partition function. Clearly, this bound is very lose.
We therefore also use the average local bucket error, ϵ̂avg
to give us some additional information on the global error
empirically. In the next section we evaluate NeuroBE and
provide some information on local vs global errors.

Experiments
Experiment Setup

We ran experiments comparing NeuroBE against the
Weighted Mini Bucket Elimination scheme (WMBE)
(Dechter and Rish 2003; Liu and Ihler 2012) and DBE
(Razeghi et al. 2021). Following the methodology in DBE,
we evaluated NeuroBE on instances selected from three
well-known benchmarks from the UAI repository used in
(Kask et al. 2020), i.e. grids (vision domain), pedigree
(genetic linkage analysis) and DBNs. We targeted diverse
benchmarks (in structure and level of determinism) and
aimed for different levels of hardness. Thus, in each bench-
mark, we distinguish between problems that can be solved
exactly, which we call ”easy”, and those that cannot be
solved, called ”hard”. We also distinguish benchmarks that
possess determinism, namely have a high proportion of zero
probabilities, a feature which can impact training. We ran-
domly selected 14 instances from Grids, with easy ones (i.e.,
width 20-30) and hard ones (i.e., 1600 variables, width 55), 6
from pedigrees, which posses high level of determinism and
6 from DBNs, totalling 25 instances. To trigger bucket mes-
sage approximations, we used i-bound=10 for easy prob-
lems and at most i-bound=20 for hard ones.

For problems with determinism, such as pedigree, the
structure of the NN in NeuroBE is the same as that of a
MaskedNet in DBE ((Razeghi et al. 2021)), varying only
the number of hidden units per layer.

NNs architecture Here, we show how the NN architecture
and sample size is tuned across the different benchmarks.
We keep the #layers fixed (=2) across all benchmarks. We
then pick a random problem instance from each benchmark
to fix the hyper-parameters regulating the NN architectures
and sample sizes. For each problem instance with it’s width
w∗, we first keep h = w and the number of samples corre-
sponding to w∗

2 roughly around 300k for hard problems and
100k for easy problems as a heuristic and derive a value for
η from equation 3. Keeping η fixed and then again, varying
h ∈ [w, 5w], we pick the value of h which gives the small-
est average error to estimate the partition function for each
representative problem instance. We then use this configura-
tion for varying NN architecture and sample size for the rest
of the problem instances in that benchmark. In particular,
we selected h = 3w and Navg ∈ [149k, 350k] for pedi-
grees; h = {3w, 5w} and Navg ∈ [80k, 180k] for DBN;
h = w and Navg ∈ [12k, 121k] for grid-easy; and h = w
and Navg ∈ [60k, 209k] for grid-hard.

(a) pedigree

(b) Grid-hard

(c) Grid-easy

(d) DBN

Figure 3: Results on performance of NeuroBE against DBE and WMB. k:domain size, #v:variables, w:induced width, #NB: number of
buckets that are trained with NNs, #h: number of hidden units per layer (reported maximum #h for NeuroBE), N : number of training
samples (reported minimum, average and maximum #N for NeuroBE), error: L1 error for referenced and estimated log(Z) (reported
minimum, average, and standard deviation over 5 runs for DBE and NeuroBE), time: average time taken to get the estimated error:. *Note:
Here, referenced Z is approximated by (Kask et al. 2020)

Figure 4: Comparing m.s.e and w.m.s.e loss function with Neu-
roBE on pedigrees. #NB: # buckets trained, Navg: average sam-
ples, avg error: average global error, stdev: standard deviation on
global error (over 5 runs).

Training NNs. Bucket output messages can either have very
small values (eg. exp(−11)) as in the pedigree benchmarks
(and possess determinism) or can be very large (eg. exp(51))
as for grids and DBNs. To handle large values in messages of
non-deterministic benchmark domains, we use log transfor-
mations to handle overflow issues. In addition, we normal-
ize the input and output values for NNs across benchmarks
to be in [−1, 1] and [0, 1] respectively to accelerate training
(Cun, Kanter, and Solla 1991)). As per algorithm 2, we cre-
ate the training set of size N(wc) (Eq 3), validation set of
size N(wc)

9 , and test set of size 50k. We then train the net-
work using the Adam optimizer with a learning rate of 0.001
and a batch-size of 256 across all benchmarks.

Performance measures We evaluate the performance of
NeuroBE using: error = |logeZ − logeẐ| where Ẑ is the
generated estimate of the partition function, Z. When the
exact Z is not available (for hard Grid benchmark), Z∗ is a
surrogate to Z, which is obtained using an advanced sam-
pling scheme for a duration of 100 ∗ 1hr (Kask et al. 2020).

Results
Figure 3 compares NeuroBE against DBE and WMB
over the 3 benchmarks. We report the results over 5 runs
for each instance of both NeuroBE and DBE due to
stochasticity of their behavior. The first few columns show
the problem statistics for instances in the respective bench-
marks (pedigree, DBN and grids). We then show wmb error.
For NeuroBE, we report the average and maximum #train-
ing samples, (Nmax, Navg) and maximum #hidden units,
(hmax) across all buckets of the instance. We also report the
average time (in hours), the average error, minimum error
and standard deviation over the 5 runs.

Pedigrees We see a consistent decrease in both average
error and standard deviation for the partition function es-
timates with NeuroBE when compared to DBE, being
≥5 times more accurate than DBE for 5 out of the 6 in-
stances. It achieves this better estimates with less time, since
it uses far less training samples. Also NeuroBE outper-
forms WMB on 5 instances (≥5 times more accurate for
4 instances). Here DBE yields either a similar accuracy as
WMB or even a worse one (instances 3,5,6).

Grids. Here too we observe that NeuroBE outperforms
DBE in accuracy as reflected by the average error and

standard deviation, even though it uses far less time. In
most cases we see a reduction in time by a factor of 2 or
more (IDs 1,3,4,5 from grid-easy and IDs 1,2,3,4,6,7 from
grid-hard) still producing a far better estimate. For 2 in-
stances, however, (easy #2, hard #5) we see slightly worse
performance than DBE. NeuroBE and DBE outperform
WMB across all problem instances.

DBN We report results for the DBN benhcmark for 2 i-
bounds. For i-bound=20, NeuroBE achieves a higher accu-
racy than DBE with far less time (instances 3,5,6). It is su-
perior to wmb on instances 2,3. However, WMB performs
better on instance 1,4 & 6, as the induced-width is closer to
the i-bound and is comparable to DBE in accuracy, yet it
takes half of the time. For i-bound=10, NeuroBE shows
better accuracy than WMB for all three instances. It out-
performs DBE on instances 2,3.

Overall, compared with DBE, NeuroBE is faster on 11
grid + DBN instances by a factor of 2; 6 times more accu-
rate on 4 easy grid instances; more accurate on 5 grid-hard
instances by a factor of 2 and 5 times more accurate on 5
pedigree instances.

The impact of loss functions. Overall, on most of the in-
stances of Grids and DBNs we did not observe a significant
impact of weighted loss function on the quality of training
(results are not explicitly shown). Yet, for pedigree instances
we did observe a significant impact. We suspect this for
pedigrees because the NN outputs are messages (i.e., they
do not undergo log transformation) and the weights in the
w.m.s.e reflect the message distribution. Figure 4 compares
the w.m.s.e and m.s.e loss for pedigrees. We observe that
with w.m.s.e loss, NeuroBE shows better performance on
all instances (for instance 2, training with w.m.s.e is 20 times
more accurate).

How local errors impacts the global error. Figure 5 re-
ports some statistics on local bucket errors (Def. 1) and test
w.m.s.e across buckets for 4 Grid problem instances; We
also show the global errors estimated by Eq. 6; and the em-
pirical global errors averaged over 5 runs. We report the re-
sults for 2 sets of average sample size Navg = {60k, 150k}.
1) We observe a consistent decrease in the local bucket and
global errors when more samples are given. However, in-
stance 4 shows an increase in the empirical global error,
which we account to stochastic behaviour. 2) We also ob-
serve a direct correlation between the estimated local bucket
errors and empirical average global errors across instances.
For example, the average local bucket error for instance 1
is 1.67 with an empirical global error of 24.01; instance 2
shows an average local bucket error of 0.784 with 21.15
as the empirical global error. Note that both errors simul-
taneously decrease for instance 2. This trend continues for
instance 3, where the local bucket error is 0.336 while the
global error is 5.05. We observe such a correlation of the
empirical average global errors on the estimated local bucket
errors across all instances, which is affirmative.

Time & accuracy. Figure 6 shows the expected relationship
between time and accuracy on a few problem instances. We
depict the average error of our partition function estimate

Figure 5: Statistics of Local & bucket errors compared with global error over 5 runs for 4 grid-hard instances having w=55 with i−bound=20,
where h=w, # buckets trained, #NB = 308 for two different scales of smaples sizes. test wmse is the w.m.s.e of the learned NN over the
test set; local bucket error is the average L1 error for logλ approximations over all buckets; estimated bounds is the bound obtained in eq 9;
empirical error is the average global error over 5 runs.

(a) pedigree

(b) Grid-hard

(c) Grid-easy

(d) DBN

Figure 6: Performance of NeuroBE when increasing # samples
&/or NN complexity. Navg: average samples, t(h): average time,
Error: global error (reported average and standard deviation over
5 runs; except instance 7 from grid-hard(#runs=2)).

(what we call global error), and standard deviation (over 5
runs) and the computation time for 2 different NN architec-
ture and their associated sample sizes. As expected we see

that increasing the NN and sample sizes increases the time
and accuracy for pedigrees. For grid-hard instances, we just
increased the sample sizes for the same architecture where
h = w, and observe that the average error is reduced by
about a factor of 3. Instances from grid-easy and DBN show
a similar improvement in performance with a larger NN and
a corresponding larger training sample size. This shows that
the algorithm has an anytime characteristics, as it can im-
prove its performance by controlling the size of the approx-
imating NN matched by a suitable sample size for training.

Conclusion & Future Work
In this work we advance our earlier theme of using the power
of Neural networks to approximate the class of bucket-
elimination algorithms that is at the heart to probabilistic
reasoning. The central aim of our paper is to improve the effi-
ciency of such schemes by enhancing its NN training aspect.
NeuroBE’s main new design feature is that it customizes the
NN architectures and the training samples to the messages,
thus achieving higher accuracy often with less time when
compared to DBE. We presented NeuroBE and illustrated,
on challenging instances over three benchmarks that it can
be far more accurate and requires less time compared with
its earlier version of Deep Bucket Elimination DBE and is
also superior to weighted mini-bucket WMB that cannot im-
prove its accuracy once their memory is exhausted.

Future Work. While NeuroBE adjusts the NN archi-
tectures according to a bucket’s scope, it keeps the #layers
fixed and seeks for user inputs for such variations. We will
explore how to fine-tune NN capacity dynamically during
training. Since the number of buckets trained have a direct
effect on NeuroBE’s accuracy and time performance, we
will explore reducing the number of trained functions by
training a single function per union of buckets, which yield a
cluster in a tree-decomposition (Dechter 2013). This can sig-
nificantly reduce the number of trained functions at the cost
of more time for sample generation, a trade-off we plan to
study. We will also explore the task of parameter sharing and
thus, training of multiple bucket functions simultaneously.

References
Abboud, R.; Ceylan, I.; and Lukasiewicz, T. 2020. Learn-
ing to reason: Leveraging neural networks for approximate

DNF counting. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, 3097–3104.
Anthony, M.; and Bartlett, P. L. 2002. Neural Network
Learning - Theoretical Foundations. Cambridge University
Press. ISBN 978-0-521-57353-5.
Bartlett, P. L.; Harvey, N.; Liaw, C.; and Mehrabian, A.
2019. Nearly-tight VC-dimension and Pseudodimension
Bounds for Piecewise Linear Neural Networks. Journal of
Machine Learning Research, 20(63): 1–17.
Bertsekas, D. P.; and Tsitsiklis, J. N. 1996. Neuro-dynamic
programming, volume 3 of Optimization and neural compu-
tation series. Athena Scientific. ISBN 1886529108.
Cun, Y. L.; Kanter, I.; and Solla, S. A. 1991. Eigenvalues
of covariance matrices: Application to neural-network learn-
ing. Phys. Rev. Lett., 66: 2396–2399.
Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press.
Dechter, R. 1999a. Bucket Elimination: A Unifying Frame-
work for Reasoning. Artif. Intell., 113(1-2): 41–85.
Dechter, R. 1999b. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence, 113: 41–85.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann Publishers.
Dechter, R. 2013. Reasoning with probabilistic and deter-
ministic graphical models: Exact algorithms. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning, 7(3):
1–191.
Dechter, R.; and Rish, I. 2003. Mini-buckets: A Gen-
eral Scheme for Bounded Inference. Journal of the ACM
(JACM), 50(2): 107–153.
Heess, N.; Tarlow, D.; and Winn, J. 2013. Learning to Pass
Expectation Propagation Messages. In NIPS, volume 26,
3219–3227.
Kask, K.; Pezeshki, B.; Broka, F.; Ihler, A. T.; and Dechter,
R. 2020. Scaling Up AND/OR Abstraction Sampling. In
Proceedings of IJCAI 2020, 4266–4274.
Kingma, D. P.; and Ba, J. 2014. Adam: A Method for
Stochastic Optimization.
Liu, Q.; and Ihler, A. 2012. Belief Propagation for Struc-
tured Decision Making. In Proceedings of the 28th Confer-
ence on Uncertainty in Artificial Intelligence, 523–532.
Liu, Q.; and Ihler, A. T. 2011. Bounding the Partition Func-
tion using Holder’s Inequality. In Proceedings of the 28th In-
ternational Conference on Machine Learning, ICML 2011,
Bellevue, Washington, USA, June 28 - July 2, 2011, 849–
856.
Mateescu, R.; Kask, K.; Gogate, V.; and Dechter, R. 2010.
Join-Graph Propagation Algorithms. J. Artif. Intell. Res.
(JAIR), 37: 279–328.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann.
Pollard, D. 1984. Convergence of Stochastic Processes.
Springer-Verlag.
Razeghi, Y.; Kask, K.; Lu, Y.; Baldi, P.; Agarwal, S.; and
Dechter, R. 2021. Deep Bucket Elimination. In Zhou, Z.-H.,
ed., Proceedings of the Thirtieth International Joint Confer-
ence on Artificial Intelligence, IJCAI-21, 4235–4242. Inter-
national Joint Conferences on Artificial Intelligence Organi-
zation. Main Track.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2009. The Graph Neural Network Model.
Trans. Neur. Netw., 20(1): 61–80.
Vapnik, V. N. 1999. The Nature of Statistical Learning The-
ory. Springer, second edition. ISBN 0387987800.
Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2000. Gener-
alized Belief Propagation. In (NIPS) 2000, 689–695. MIT
Press.
Yoon, K.; Liao, R.; Xiong, Y.; Zhang, L.; Fetaya, E.; Urta-
sun, R.; Zemel, R. S.; and Pitkow, X. 2018. Inference in
probabilistic graphical models by Graph Neural Networks.

Appendix
Estimating the pseudo-dimension of a NN:
In our work, we use NN architectures with ReLU activation
functions. To construct a NN with L layers and a variable
#hidden-units per layer to model a specific bucket message
λc, we pick the rule h = b ∗wc where wc is the width and b
is a constant. By doing this, the #parameters in the NN is :

|θc| = (L−1)∗ b2 ∗w2
c + b∗w2

c +(L+1)∗ b∗wc+1 (7)

We make use of the lower bound of pseudo-dimension
for NNs with ReLU activation functions from the work in
(Bartlett et al. 2019) to get:

ρc = |θc| ∗ Llog(|θc|/L) (8)
By substituting (7) in (8) and ignoring all linear in wc

terms we get that ρc(wc) can be dominated by:

→ ρc(wc) ∝ (L ∗ b ∗ wc)
2log[(b ∗ wc)]

Estimating error in partition function:
Theorem. 1 Let Bc be a bucket in a bucket chain along an
ordering d; let Bc contain the original functions as ϕc and
µc+1 as the message passed to it from the previous bucket;
let λc be the (global) exact message generated in Bc, µ∗

c
be the local exact message in Bc and µc = APP (µ∗

c) its
approximation (e.g., by a trained neural network). Let Ec =
lnµ∗

c − lnµc and and ϵc = maxBc |Ec|. Then,

lnλc − lnµc ≤
n−c∑
k=2

ϵc+k

In particular, since λ1 = Z, the partition function

lnZ − lnµ1 ≤
n−1∑
k=1

ϵ1+k (9)

Proof. We will next derive the recursion, starting at the first
processed bucket Bn and going down in order. Remember
throughout that lnµ∗

n−i =
∑

Xn−i
ln(elnϕn−i+lnµn−i+1)

For Bn λn = µ∗
n, therefore

lnλn − lnµn = lnµ∗
n − lnµn = En

For Bn−1, by definition

lnλn−1 − lnµn−1 = ln
∑
Xn−1

elnϕn−1+lnλn − lnµn−1

Substituting lnλn from Bn

= ln
∑
Xn−1

e[(lnϕn−1+lnµn)+En] − lnµn−1

= ln[
∑
Xn−1

e(lnϕn−1+lnµn)eEn]− lnµn−1

If maxscope(µ∗
n)
|En| = ϵn, then,

≤ ln[eϵn
∑
Xn−1

e(lnϕn−1+lnµn)]− lnµn−1

≤ ϵn + ln
∑
Xn−1

e(lnϕn−1+lnµn) − lnµn−1

Since ln
∑

Xn−1
elnϕn−1+lnµn = lnµ∗

n−1 we get

lnλn−1 − lnµn−1 ≤ ϵn + lnµ∗
n−1 − lnµn−1 (10)

or equivalently,

lnλn−1 − lnµn−1 ≤ ϵn + En−1 (11)

Moving to Bn−2, by definition:

lnλn−2 − lnµn−2 = ln
∑
Xn−2

elnϕn−2+lnλn−1 − lnµn−2

(12)
Substituting lnλn−1 from Eq. (10) we get

lnλn−2−lnµn−2 ≤ ln
∑
Xn−2

elnϕn−2+[lnµn−1+ϵn+En−1]−lnµn−2

≤ ln
∑
Xn−2

elnϕn−2+µn−1eϵn+En−1 − lnµn−2

Taking maxscope(µ∗
n−1)

En−1 = ϵn−1,

≤ lneϵn+ϵn−1

∑
Xn−2

elnϕn−2+µn−1 − lnµn−2

≤ ϵn + ϵn−1 + ln
∑
Xn−2

elnϕn−2+µn−1 − lnµn−2

≤ ϵn + ϵn−1 + lnµ∗
n−2 − lnµn−2

yielding,

lnλn−2 − lnµn−2 ≤ En−2 + ϵn−1 + ϵn (13)

Moving to bucket Bn−3, by definition

lnλn−3 − lnµn−3 = ln
∑
Xn−3

elnϕn−3+lnλn−2 − lnµn−3

Substituting for λn−2 from Eq. (13) we get with some alge-
bra

lnλn−3 − lnµn−3

≤ ln
∑
Xn−3

elnϕn−3+[lnµn−2+En−2+ϵn−1+ϵn] − lnµn−3

yielding

lnλn−3 − lnµn−3 ≤ En−3 + ϵn−2 + ϵn−1 + ϵn

and so on. Clearly the emerging expression for bucket Bc is

lnλc − lnµc ≤ Ec + ϵc+1 + ϵc+2 + ... (14)
or,

lnλc − lnµc ≤ Ec +

n−c−1∑
k=0

ϵc+1+k (15)

The general transition from n−i to n−i−1 can be easily
followed to complete the inductive proof.

Assuming that we control the derivation of µc for each Bc

to ensure that Ec = lnµ∗
c − lnµc ≤ ϵc and substituting in

the expression we get from Eq. (15) that

lnλc − lnµc ≤ ϵc +

n−c−1∑
k=0

ϵc+1+k ≤ (n− c+ 1) ∗ ϵ (16)

