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ABSTRACT

Diffusion and flow-matching models have demonstrated impressive performance
in generating diverse, high-fidelity images by learning transformations from noise
to data. However, their reliance on multi-step sampling requires repeated neural
network evaluations, leading to high computational cost. We propose FlowFit, a
family of generative models that enables high-quality sample generation through
both single-phase training and single-step inference. FlowFit learns to approximate
the continuous flow trajectory between latent noise zy and data z; by fitting a
basis of functions parameterized over time ¢ € [0, 1] during training. At inference
time, sampling is performed by simply evaluating the flow only at the terminal
time ¢ = 1, avoiding iterative denoising or numerical integration. Empirically,
FlowFit outperforms prior diffusion-based single-phase training methods achieving
superior sample quality.

1 INTRODUCTION

In recent years, iterative denoising methods such as diffusion models (23} [10; [24) and flow matching
(135 14) have achieved remarkable success across a wide range of generative modeling tasks, including
image synthesis, molecular generation, and audio modeling. These methods define a generative
process as the solution to a learned differential equation that progressively transforms simple noise
into complex data through a series of small, structured updates. Their strong empirical performance
stems from their ability to model complex distributions with stable training dynamics and flexible
architectures. However, a key limitation of these approaches lies in their sampling efficiency. Since
generation is performed by solving a differential equation, typically through numerical integration,
these methods often require hundreds of sequential function evaluations at inference time. This
iterative sampling procedure can be computationally expensive, slow, and memory-intensive, limiting
their practicality in real-time or resource-constrained settings. In this work, we aim to retain the
modeling flexibility and training benefits of diffusion-based methods while enabling efficient single-
step generation.

While recent work has explored accelerating inference in diffusion models through distillation, these
approaches typically follow a two-stage training paradigm. In such methods, a pre-trained diffusion
model is first learned through standard iterative training, and then a separate model is trained to
mimic its behavior in fewer steps, usually by generating a large synthetic dataset of intermediate
trajectories (17;[13)) or propagating through a series of teacher and student networks (185 121). This
introduces additional complexity, increases memory requirements, and may limit generalization due
to reliance on a fixed teacher.

In contrast, we propose FlowFit, a unified, end-to-end training approach that learns to generate
samples in one step from the outset. Our method directly parameterizes the entire flow using a
basis function expansion, enabling the model to learn global transport trajectories in a compact and
structured manner. Once trained, sampling from the model requires only evaluating the learned flow
at terminal time ¢ = 1, given a source point xy ~ f (see examples in Figure [T)).

A key insight motivating our approach is that a smooth transformation, such as a flow trajectory,
can be directly fitted using the initial value and all its time derivatives. By fitting the trajectory
using a set of basis functions anchored at the initial point, we capture the flow’s global behavior and
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Figure 1: Comparison Between Multi-Step Flow Matching and Single-Step FlowFit Generation.
The top row shows images generated using a standard flow-matching model with 128 denoising steps,
while the bottom row displays outputs from our single-step FlowFit model. Each column uses the
same initial noise vector for a fair comparison. FlowFit produces high-fidelity samples even with a
single forward pass, offering up to 128 x faster sampling than traditional diffusion and flow-matching
approaches while maintaining high image quality.

bypass the need for iterative integration. This allows us to retain the expressive modeling capacity of
continuous-time methods while achieving orders-of-magnitude faster sampling.

We train the model to ensure that the trajectory is consistent with a learned velocity field through a
combination of Conditional Flow Matching and a trajectory-velocity consistency loss. Additionally,
we introduce a progressive training strategy that improves stability and alignment between the flow
and velocity in early training stages.

Our main contributions can be summarized as follows

* We propose a novel formulation for flow modeling via basis function fitting. FlowFit, a new
generative modeling framework that directly parameterizes continuous-time flows using
a residual expansion over fixed basis functions. This allows the model to represent entire
flow trajectories with a compact, structured parameterization. To the best of our knowledge,
FlowFit is the first to propose such a formulation.

* We demonstrate that FlowFit achieves sample quality better or on par with existing single
step diffusion-based approaches .

2 RELATED WORK

We review prior research efforts aimed at accelerating diffusion-based generative models through
single-step sampling. Existing approaches generally fall into two categories: those based on multi-
stage distillation and those relying on direct, single-phase training.

2.1 TwO-PHASE TRAINING APPROACHES

A common strategy for improving inference efficiency involves distilling multi-step diffusion models
into simpler one-step samplers. These techniques typically follow a two-phase process: a full
diffusion model is trained first, and then a lightweight student model is optimized to mimic its
behavior over fewer denoising steps.

Several works adopt this paradigm by simulating the full denoising trajectory to generate supervision
pairs, as seen in knowledge distillation and rectified flows (14). While effective, these methods
are computationally intensive due to the need for full reverse-time ODE evaluations. To mitigate this,
more recent efforts introduce bootstrapping mechanisms that shorten the ODE simulation path (95 28)).



Under review as a conference paper at ICLR 2026

Additionally, researchers have explored a variety of loss functions beyond the traditional L2 objective,
including adversarial criteria (22) and distributional matching techniques (30; [29). Progressive
distillation (215 [15 [18) offers a multi-stage solution, wherein a sequence of student models is trained
with progressively larger time steps. This hierarchical approach reduces the dependency on costly
long-path bootstrap samples. The most similar distillation method to ours is the Physics-Informed
Neural Network (27)(PINN). However, there are two key distinctions. First, PINN is a two-stage
distillation method that relies on a pre-trained diffusion model, whereas our approach is trained
end-to-end in a single stage, eliminating the need for separate distillation. Second, PINN adopts a
diffusion-based formulation and uses a single network to jointly model space and time, requiring
numerical approximation of flow derivatives, while our method is based on flow matching and
decouples time and space via a basis parametrization, allowing exact derivatives of the flow map to
be computed analytically and at no extra cost. A concurre

FlowFit diverges from these frameworks by eliminating the need for both pretraining and distillation.
Instead, it adopts a unified, end-to-end training scheme that learns a single-step generator directly,
simplifying both the implementation and training pipeline.

2.2 SINGLE-PHASE TRAINING APPROACHES

Only a limited number of methods have been developed for one-step generation via single-stage
training. Among the first of its kind, Consistency Models (26; 25} [16; [3; |8) learn to map noisy
inputs directly to their clean counterparts in a single forward pass. Although originally designed for
distillation, they have also been extended to an end-to-end training setup. iCT (25)) and sCT (16) refine
Consistency Models by altering the training procedure, leading to gains in sample quality and stability.
sLST (3) and ECT (8) propose enhanced optimization strategies for consistency models including an
improved loss formulation, training schedules and reguralization techniques to stabilize learning and
significantly boost sample quality while maintaining fast, few-step generation. In contrast, Shortcut
Models (6) formulate generation as a process conditioned jointly on the current noise level and the
chosen step size, which makes the method adaptable to different inference-time compute budgets.
Shortcut models (6) introduce a flexible generative approach that allows conditioning on both the
input noise level and the desired step size, enabling inference under various computational constraints.
IMM (31) is a training-based single-step generative method that matches low-order moments of the
target transition distributions at each step. By focusing on these statistics, it enables efficient one or
few-step sampling without relying on pre-trained models or multi-stage distillation.

A concurrent work, Mean Flows (7), proposes a one-step generative modeling framework that learns
the average flow along the trajectory. In contrast, our approach is orthogonal: we explicitly fit the
flow using a basis of functions, enabling a flexible and exact representation of the full generative
trajectory.

To the best of our knowledge, FlowFit is the first method to directly aim for a single-step generative
model using a basis of functions.

3  PRELIMINARY: DIFFUSION AND FLOW MATCHING

Recent advances in generative modeling have led to the development of methods such as diffusion
models (23} 105 24) and flow-matching approaches (13 14), which learn a continuous-time transfor-
mation from a simple noise distribution to a complex data distribution. These models typically define
the generative process through an ordinary differential equation (ODE), where the time-dependent
dynamics are learned to guide samples from noise toward data.

In this work, we adopt the flow-matching formulation based on the optimal transport objective
introduced by (14), as it offers a simple and effective framework for learning such dynamics. While
diffusion models and flow-matching approaches are often studied separately, recent perspectives,
such as that of (12)), highlight that flow matching can be interpreted as a deterministic special case
of diffusion modeling. Accordingly, we treat the two paradigms as closely related and use the
terminology interchangeably where appropriate.

Flow Matching provides a supervised learning framework for modeling deterministic, continuous-
time flows that transport a base distribution pq (e.g., standard Gaussian) into a target distribution i1
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(e.g., data distribution). Drawing from optimal transport and neural ODEs, it directly learns a velocity
field that defines a transport trajectory between paired samples.

Let ¢ ~ po be a sample from the source distribution and x; ~ p; its corresponding target. The
model learns a time-dependent velocity field vy (z, t) such that solving the associated ODE transforms
1o into . Formally, the flow is described by

d
awt(x) = w (Y4 ()),
¢U(x) =7,

where u; : [0,1] x R — R is a neural network parameterizing the velocity field, and 1 () is the
flow map at time ¢.

ey

A common training strategy is to supervise the model using velocity information along linear paths
between x and x4, evaluated at intermediate points (1 — t)xg + tx;. The corresponding ground-truth
velocity at such a point is simply z; — xg.

The model is then trained to match this known velocity at intermediate points. The Conditional Flow
Matching (CFM) objective function is defined as

L(G) = EIONMD, T1~py, t~U[0,1] HV(.) ((1 - t)xo + tzq, t) - (331 - xO)H2:| . 2

This loss guides the model to predict the instantaneous velocity field that aligns with the linear flow
between samples. Notably, this avoids the need for computing density functions or score gradients,
distinguishing it from traditional diffusion models.

Once training is complete, sample generation begins by drawing an initial point zg ~ L, typically
from a standard Gaussian distribution. This point is then transformed toward the data distribution by
solving the learned ODE defined by the velocity field vy (x,t). In practice, this continuous-time flow
is discretized and approximated using numerical integration methods such as Euler’s method, where
the sample is updated iteratively over a sequence of small time steps fromt =0to ¢ = 1.

4 FLOWFIT: DIRECT FLOW PARAMETERIZATION VIA BASIS FUNCTION
FITTING

In this section, we introduce FlowFit, a novel approach for modeling continuous-time flows via
basis function fitting. Specifically, we aim to directly parameterize the flow ;(x) using a basis of
functions that are conditioned on both the initial point zy and the time parameter ¢. Thus, the goal is
to model the mapping (xq,t) — ¢ (x) = x4, where 1 () is the flow at time ¢, and x; represents the
transformed point at time ¢.

To this end, we approximate the true flow ¢4 (x) with a learnable function vy (z, t)[ﬂ, parameterized
via neural networks and basis functions. For simplicity, we use the notation x, interchangeably with
both ¢, (x) and g (x0, t), with the dependence on z( and ¢ understood implicitly. This allows us to
define the transformation in terms of a set of basis functions, which we leverage to approximate the
flow dynamics. Importantly, this representation enables efficient single-step generation by evaluating
the learned trajectory at t = 1, and requires only the initial sample x¢ ~ pg at inference time.

4.1 TRAJECTORY PARAMETERIZATION

We approximate the continuous flow trajectory using the time-dependent formulation

K
Yolzo,t) =0+ Y fok(wo)(y(t) — 1 (0)),

=1
o(20,0) = w0,

3

where

'In the general case, we aim to learn (o, ¢, t), where c denotes any form of conditioning (e.g., class
labels). For simplicity of derivation, we omit c.
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o {y(t)} | are fixed scalar basis functions (e.g., polynomial or Fourier),
* for: R? — R are neural networks that produce the coefficients,
* 0 denotes all learnable parameters.
We note that this parametrization satisfies the boundary condition g (¢, t ~ 0) & xg, by construc-

tion. A natural question is whether the trajectory ¢ (x, t) can be approximated arbitrarily well using
the basis expansion above.

4.2 THEORETICAL JUSTIFICATION FOR BASIS FUNCTION FLOW MODELING

A key question in FlowFit is whether the proposed basis expansion reliably approximates the target
flow. The following proposition confirms that this is indeed the case.

Proposition 1 (Universal Approximation of Flow Trajectories Using a Basis of Functions). Let
¥ 1 (R? % [0,1]) — R be a continuous trajectory from an initial point x to a target point ;. Then,
for any & > 0, there exists a sufficiently large integer N > 0, a set of basis functions {~(t)}}¥,, and

coefficients {W;(z)}, such that
<Z ’71 z )

We include a proof in the appendix [A] for completeness.

<e, Vtel0,1].

4.3 FLOWFIT TRAINING

We jointly train two models: vy, which parameterizes the flow trajectory, and vg/, which models the
time-dependent velocity field. To ensure that the learned trajectory 1g(zo, t) evolves in alignment
with the correct transport dynamics, we supervise it by matching its time derivative to a known target
velocity field. Taking the derivative of the basis function parameterization gives

d d
W (2o, t Zf@k o) % (t). “4)

Simultaneously, the velocity model vy (z, t) is trained using the standard Conditional Flow Matching
(CEM) objective. In this setup, a source point zy is randomly sampled from the base distribution
1o and a target point x; is independently sampled from the data distribution p1. The model is then
trained to match the ground-truth velocity v(zg, 21,t) = 1 — x¢ at intermediate points along the
linear interpolation between zo and ;. The loss is given by

Lerm(0') = Eagmpo, w1mpn, tettfo,1] | Ve (1= )20 + tzy,t) — (1 — IO)HQ} : %)

To align the basis-induced flow with the learned velocity field, we require that the velocity induced
by the basis-function trajectory matches the prediction of the velocity model at the corresponding
location along the flow

dipg

7 —— (o, t) = v (o (x0,1),1). (6)

We formalize this requirement with a loss that enforces matching the flow derivative to the velocity

2
] ; (N

where sg[-] denotes the stop-gradient. This loss encourages the parameterized trajectory to follow
a velocity field that is internally consistent with the learned dynamics, improving the alignment
between the path and the underlying transport vector field.

d
Ederivative(‘g) = ]Ezo~,uo, t~U[0,1] U’ %(xov t) — Vg (Sg[wG (370, t)]7 t)

Despite the fact that 1)g(x, t) may initially provide limited information early in training, we observe
that the propagation loss remains robust and effective. This eliminates the need for manually
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Algorithm 1 Training FlowFit Algorithm 2 Sampling
1: Initialize 0, 0’, time window oy < 0 1: Sample zg ~ po
2: Initialize 19 (., t) as in Equation 3] 2: Return z1 = ¢g(xg,t = 1)

3: for each training step do

4:  Sample xg ~ po, 1 ~ p1,t ~UJ0, 1]

5:  Train vy, with CFM:

6: Ty = (1 — t).l?o + txq

7: ming: ﬁCFM(QI) = HUg/ (SNCt,t) - (Il — 330)”2

8: Update 6’

9:  Train ¢y with consistency loss:

10: Compute ¥ (xo, ), % (z0,t) using Equation
11 ming Laerivaive(0) = || 252 (w0, t) — vor (1o (w0, 1), 1) |2
12: Update 6

13:  Increase oy toward 1

14: end for

scheduling ¢, thereby simplifying the training process and enhancing both stability and usability, all
without sacrificing performance.

We emphasize that training the velocity vy is independent of training 1y, allowing both to be trained
jointly and in parallel. Consequently, the effective training time nearly matches that of a single
generative model.

The full training algorithm and the corresponding sampling procedure are outlined in Algorithm|I]
and

4.4  SINGLE-STEP GENERATION

At inference time, the model generates samples from the target distribution p; by drawing z¢ ~ pg
and evaluating the fitted trajectory at terminal time:

1 = Yo(xo,t = 1). ®)

This enables fast and deterministic generation without iterative integration, in contrast to diffusion or
traditional flow-based models.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate our method alongside a range of established baselines under consistent training conditions.
To ensure fairness, all models are trained from scratch using an identical implementation and share the
same backbone architecture, the DiT-B diffusion transformer (19). Our evaluation includes two tasks:
unconditional image generation on the CelebAHQ-256 dataset (15) and a comparison with class-
conditional generation on ImageNet-256 (5). For ImageNet experiments, we use the classifier-free
guidance (CFG) (11)) is employed to enhance conditional generation. For the experiments reported
in Table[6] we use the AdamW optimizer. We use a Polynomial basis with order 8. All models are
trained and sampled in the latent space provided by the sd-vae—-ft-mse autoencoder (20). Further
implementation details are provided in Appendix [C}] We release the full code in the supplementary
materials.

5.2 BASELINE APPROACHES

For comparison, we consider several end-to-end generative modeling approaches under the evaluation
protocol of (6). Consistency Models (26) learn one-step generation by training on empirical pairs
(z¢, T¢45), with time discretization granularity refined progressively during training. Improved
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Table 1: Comparison of various training objectives applied to the same architecture (DiT-B). We
report FID-50k scores (lower is better) for 128, 4, and 1-step denoising. FlowFit achieves high-quality
samples using a single training phase and a one-step inference process. Results in parentheses indicate
settings beyond the intended use of the corresponding objective.

Single-stage methods CelebAHQ-256 ImageNet-256 (Class-Conditional)
128-Step  4-Step  1-Step | 128-Step  4-Step 1-Step
Diffusion (10) 23.0 (123.4) (132.2) 39.7 (464.5) (467.2)
Flow Matching (13)) 7.3 (63.3) (280.5) 17.3 (108.2) (324.8)
CT (26) 53.7 19.0 33.2 42.8 43.0 69.7
iCT (25) - - 21.7 - - 433
sCT (16) - - 19.3 - - 41.6
Shortcut Models (6)) 6.9 13.8 20.5 15.5 28.3 40.3
IMM (31) - - 19.5 - - 41.4
sLST (3) - - 18.8 - - 39.9
ECT (8) - - 20.7 - - 40.6
FlowFit (ours) - - 14.1 - - 344

variants such as iCT (25) and sCT (16)) modify the optimization strategy to enhance training stability
and overall sample quality. Shortcut Models (6)) instead condition the generator jointly on the current
noise level and the chosen step size, allowing adaptive sampling under different computational
budgets. Another relevant approach is Live Reflow (6), which jointly trains on both flow-matching
objectives and distillation-based targets. However, because it requires generating new targets via full
denoising at every iteration, this method incurs significant computational overhead.

5.3 EVALUATION PROTOCOL

We follow the evaluation framework established in (6). Each model generates 50k samples for
computing the FID-50k score. Our method is evaluated using a single-step sampler, while the
baseline models are assessed under 128-step, 4-step, and 1-step variants. FID-50k is calculated using
statistics from the full dataset, with no compression applied to the generated samples. All images are
resized to 299 x 299 via bilinear interpolation and normalized to the [—1, 1] range. During inference,
we apply the Exponential Moving Average (EMA) of the model parameters to improve stability and
performance.

5.4 COMPARISON

Table 6] highlights that FlowFit delivers high-quality generations in the single sampling step. Notably,
it surpasses all other single-phase training methods in one-step generation performance. Figure[3]
show example generations at 256x256 resolution on CelebA-HQ. Additional qualitative results are
presented in Appendix [B]

5.5 SEMANTIC STRUCTURE IN THE LATENT SPACE OF FLOWFIT

To assess whether FlowFit gives rise to a semantically meaningful and smooth latent space, we
perform an interpolation experiment in the input noise domain. We begin by selecting pairs of
Gaussian noise vectors 2 and x3, and interpolate between them using a variance-preserving scheme
zf = naz{ + V1 —n2z) with n € [0, 1]. Each interpolated point 2§ is then processed through the
trained model to generate the corresponding output. Figure [2] shows representative results from this
interpolation. Even though no explicit smoothness constraints or regularization terms are imposed
during training, the outputs exhibit continuous and visually coherent changes. The interpolated
generations preserve high-level semantics while gradually morphing between endpoints, indicating
that FlowFit captures an underlying latent structure that supports semantically consistent transitions.
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Figure 2: Latent Space Interpolation. All images shown are generated by the model. Each row
illustrates the result of applying one-step denoising to intermediate samples obtained by variance-
preserving interpolation between two independent Gaussian noise vectors.

Table 2: Impact of the chosen polynomial basis order on image quality when training FlowFit on
CelebAHQ-256 using a batch size of 64 and 400,000 training iterations..

Basis Order {t*}2_, {tF}_, {t*}5_,
FID (}) 18.2 15.9 14.1

6 ABLATIONS

6.1 EFFECT OF BASIS ORDER

We investigate how the order of the polynomial basis affects image quality. Table[2]reports results for
different basis orders under identical training conditions: order 2 with basis functions {¢*}?_,, order
4 with basis functions {t*}#_,, and order 8 with basis functions {t*}§_,. Our results indicate that
higher-order bases consistently yield improved image quality.

Table 5: Effect of the DiT backbone architecture on image quality when training FlowFit on
CelebAHQ-256 using a batch size of 64 and 400,000 training iterations.

DiT-B DiT-L DiT-XL
FID 14.1 10.7 6.2

6.2 EFFECT OF THE BASIS TYPE

We evaluate the influence of the basis function type on generation quality while keeping the ex-
pansion order fixed. Specifically, we use {t*}5_, for the polynomial basis and {cos(2k7t)}3_, U
{sin(2knt)}{_, for the trigonometric basis. As reported in Table the polynomial basis yields a
better FID score of 14.1 compared to the trigonometric basis (16.3).

6.3 EFFECT OF STOP GRADIENT IN EQUATIONlZ[) DURING TRAINING

In Table ] we report the FID scores of generated images when training with and without gradient
stopping. We observe that disabling gradient stopping results in an additional computational overhead
and lower image quality.

6.4 EFFECT OF THE NETWORK BACKBONE

Table 3 reports the effect of the DiT backbone architecture on image quality when training FlowFit
on CelebA-HQ. We observe that increasing the model capacity consistently improves performance:
using DiT-L instead of DiT-B reduces the FID from 14.1 to 10.7, while DiT-XL further lowers it to
6.2. These results demonstrate that FlowFit benefits from larger backbones, achieving higher-quality
samples with increased model capacity.



Under review as a conference paper at ICLR 2026

Table 3: Impact of the basis nature using the same expansion order.

Basis  Polynomial Trigonometric
FID | 14.1 16.3

Table 4: Effect of applying gradient stopping at training (as in Equation EI) for CelebAHQ-256.

w/o stopping gradient  w/ stopping gradient
FID | 52.4 14.1

7 LIMITATIONS AND FUTURE WORK

While FlowFit demonstrates strong performance, it has certain limitations. A key drawback is that
the current design is restricted to single-step inference. Another potential improvement would be
to use a single network instead of two during training. A promising direction for future research is
to generalize the framework to a unified model architecture that supports flexible sampling with a
variable number of inference steps.

Due to computational constraints, we explore the method up to order 8 in this work. It would be
interesting to investigate higher-order expansions and assess their impact. Another potential direction
is to explore alternative basis functions in the formulation.

Figure 3: Unfiltered samples generated using FlowFit on the unconditional CelebA-HQ dataset at a
resolution of 256x256. These images were produced in a single forward pass using a DiT-B model
trained for 400,000 iterations.

8 REPRODUCIBILITY STATEMENT

To support reproducibility, we provide a complete implementation of our method, including training
and evaluation scripts, as part of the supplementary materials.

9 CONCLUSION

We introduce FlowFit, a novel generative model that enables single-step sampling. The key idea is a
new formulation of flow modeling through basis function fitting, which allows the model to learn the
generative trajectory efficiently. As a result, FlowFit achieves fast, high-quality generation making it
a practical solution for single-step generative modeling.
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Table 6: Comparison of the distillation version of our method with some sample distillation
methodswhen using the same architecture (DiT-B). We report FID-50k scores (lower is better) for
128, 4, and 1-step denoising.

Distillation methods CelebAHQ-256 ImageNet-256 (Class-Conditional)
128-Step  4-Step  1-Step \ 128-Step  4-Step 1-Step
Progressive Distillation (302.9) (251.3) 14.8 (201.9)  (142.5) 35.6
Consistency Distillation 59.5 39.6 38.2 132.8 98.01 136.5
Reflow 16.1 18.4 23.2 16.9 32.8 44.8
Ours (Distillation) - - 134 - - 31.6

A THEORETICAL JUSTIFICATION FOR BASIS FUNCTION FLOW MODELING

A key question in FlowFit is whether the proposed basis expansion reliably approximates the target
flow. The following proposition confirms that this is indeed the case.

Proposition 2 (Universal Approximation of Flow Trajectories). Let 1 : (R? x [0,1]) — R? be a
continuous trajectory from an initial point x to a target point 1. Then, for any € > 0, there exists
a sufficiently large integer N > 0, a set of basis functions {~(t)}~_;, and coefficients {W;(z)} ¥ ;

such that =
N
||¢(Iat) - (Z Yi(t) - Wz‘(@)

Proof. The results is immediately obtained by applying the Stone—Weierstrass theorem (45 2) because
R? and [0, 1] are both locally compact Hausdorff spaces, and the basis functions and the coefficients
are all continuous. O

<e, Vte|0,1].

B QUALITATIVE SAMPLES

Figures [4] and [3] present sample outputs from models trained on CelebA-HQ (unconditional) and
ImageNet (class-conditioned), respectively, using our proposed training procedure.

C IMPLEMENTATION DETAILS

D TRAINING DETAILS

Table [7] provides detailed training configurations corresponding to the results reported in Table 1
(main paper) Across all experiments, we train models using a latent representation obtained from the
sd-vae-mse-ft encoder with a downsampling factor of 8, mapping (256 x 256 x3) images to a
(32x32 x4) latent space. For CelebA-HQ, we use a batch size of 64 and train for 400k steps, while
for ImageNet we use a batch size of 256 and train for 800k steps. The ImageNet model additionally
employs classifier-free guidance with a scale of 1.5 and a class-dropout probability of 0.1, whereas the
CelebA-HQ model is trained without guidance. We use AdamW with a learning rate of (5 x 107?),
zero weight decay, and maintain an exponential moving average of parameters with decay 0.999
for evaluation. The backbone architecture uses a hidden size of 768, patch size of 2, 12 layers, 12
attention heads, and an MLP expansion ratio of 4. All experiments use a progressive step size of
(6t = 0.01).
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Figure 4: Unfiltered samples generated on the unconditional CelebA-HQ dataset at a resolution of
256x256. These images were produced in a single forward pass using a DiT-B model trained for
400,000 iterations.
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Figure 5: Unfiltered samples generated on the unconditional ImageNet dataset at a resolution of
256x256. These images were produced in a single forward pass using a DiT-B model trained for
800,000 iterations.
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Batch Size 64 (CelebA-HQ), 256 (Imagenet)
Training Steps 400,000 (CelebA-HQ), 800,000 (Imagenet)
Latent Encoder sd-vae-mse-ft

Latent Downsampling 8 (256x256x3 to 32x32x4)
Classifier Free Guidance 0 (CelebA-HQ), 1.5 (Imagenet)
Class Dropout Probability 0 (CelebA-HQ), 0.1 (Imagenet)
EMA Parameters Used For Evaluation? | Yes

EMA Ratio 0.999

Optimizer AdamW

Learning Rate 0.00004

Weight Decay 0.0

Hidden Size 768

Patch Size 2

Number of Layers 12

Attention Heads 12

MLP Hidden Size Ratio 4

Basis Polynomial

Basis order 8

Table 7: Default hyperparameter settings used during training.
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