

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 END-TO-END ONE-STEP FLOW MATCHING VIA FLOW FITTING

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion and flow-matching models have demonstrated impressive performance in generating diverse, high-fidelity images by learning transformations from noise to data. However, their reliance on multi-step sampling requires repeated neural network evaluations, leading to high computational cost. We propose FlowFit, a family of generative models that enables high-quality sample generation through both single-phase training and single-step inference. FlowFit learns to approximate the continuous flow trajectory between latent noise x_0 and data x_1 by fitting a basis of functions parameterized over time $t \in [0, 1]$ during training. At inference time, sampling is performed by simply evaluating the flow only at the terminal time $t = 1$, avoiding iterative denoising or numerical integration. Empirically, FlowFit outperforms prior diffusion-based single-phase training methods achieving superior sample quality.

1 INTRODUCTION

In recent years, iterative denoising methods such as diffusion models (23; 10; 24) and flow matching (13; 14) have achieved remarkable success across a wide range of generative modeling tasks, including image synthesis, molecular generation, and audio modeling. These methods define a generative process as the solution to a learned differential equation that progressively transforms simple noise into complex data through a series of small, structured updates. Their strong empirical performance stems from their ability to model complex distributions with stable training dynamics and flexible architectures. However, a key limitation of these approaches lies in their sampling efficiency. Since generation is performed by solving a differential equation, typically through numerical integration, these methods often require hundreds of sequential function evaluations at inference time. This iterative sampling procedure can be computationally expensive, slow, and memory-intensive, limiting their practicality in real-time or resource-constrained settings. In this work, we aim to retain the modeling flexibility and training benefits of diffusion-based methods while enabling efficient **single-step generation**.

While recent work has explored accelerating inference in diffusion models through distillation, these approaches typically follow a two-stage training paradigm. In such methods, a pre-trained diffusion model is first learned through standard iterative training, and then a separate model is trained to mimic its behavior in fewer steps, usually by generating a large synthetic dataset of intermediate trajectories (17; 13) or propagating through a series of teacher and student networks (18; 21). This introduces additional complexity, increases memory requirements, and may limit generalization due to reliance on a fixed teacher.

In contrast, we propose FlowFit, a unified, **end-to-end training** approach that learns to generate samples in one step from the outset. Our method directly parameterizes the entire flow using a basis function expansion, enabling the model to learn global transport trajectories in a compact and structured manner. Once trained, sampling from the model requires only evaluating the learned flow at terminal time $t = 1$, given a source point $x_0 \sim \mu_0$ (see examples in Figure 1).

A key insight motivating our approach is that a smooth transformation, such as a flow trajectory, can be directly fitted using the initial value and all its time derivatives. By fitting the trajectory using a set of basis functions anchored at the initial point, we capture the flow's global behavior and

Figure 1: **Comparison Between Multi-Step Flow Matching and Single-Step FlowFit Generation.** The top row shows images generated using a standard flow-matching model with 128 denoising steps, while the bottom row displays outputs from our single-step FlowFit model. Each column uses the same initial noise vector for a fair comparison. FlowFit produces high-fidelity samples even with a single forward pass, offering up to $128\times$ faster sampling than traditional diffusion and flow-matching approaches while maintaining high image quality.

bypass the need for iterative integration. This allows us to retain the expressive modeling capacity of continuous-time methods while achieving orders-of-magnitude faster sampling.

We train the model to ensure that the trajectory is consistent with a learned velocity field through a combination of Conditional Flow Matching and a trajectory-velocity consistency loss. Additionally, we introduce a progressive training strategy that improves stability and alignment between the flow and velocity in early training stages.

Our main contributions can be summarized as follows

- We propose a novel formulation for flow modeling via basis function fitting. FlowFit, a new generative modeling framework that directly parameterizes continuous-time flows using a residual expansion over fixed basis functions. This allows the model to represent entire flow trajectories with a compact, structured parameterization. To the best of our knowledge, FlowFit is the first to propose such a formulation.
- We demonstrate that FlowFit achieves sample quality better or on par with existing single step diffusion-based approaches .

2 RELATED WORK

We review prior research efforts aimed at accelerating diffusion-based generative models through single-step sampling. Existing approaches generally fall into two categories: those based on multi-stage distillation and those relying on direct, single-phase training.

2.1 TWO-PHASE TRAINING APPROACHES

A common strategy for improving inference efficiency involves distilling multi-step diffusion models into simpler one-step samplers. These techniques typically follow a two-phase process: a full diffusion model is trained first, and then a lightweight student model is optimized to mimic its behavior over fewer denoising steps.

Several works adopt this paradigm by simulating the full denoising trajectory to generate supervision pairs, as seen in knowledge distillation (17) and rectified flows (14). While effective, these methods are computationally intensive due to the need for full reverse-time ODE evaluations. To mitigate this, more recent efforts introduce bootstrapping mechanisms that shorten the ODE simulation path (9; 28).

108 Additionally, researchers have explored a variety of loss functions beyond the traditional L2 objective,
 109 including adversarial criteria (22) and distributional matching techniques (30; 29). Progressive
 110 distillation (21; 1; 18) offers a multi-stage solution, wherein a sequence of student models is trained
 111 with progressively larger time steps. This hierarchical approach reduces the dependency on costly
 112 long-path bootstrap samples. The most similar distillation method to ours is the Physics-Informed
 113 Neural Network (27)(PINN). However, there are two key distinctions. First, PINN is a two-stage
 114 distillation method that relies on a pre-trained diffusion model, whereas our approach is trained
 115 end-to-end in a single stage, eliminating the need for separate distillation. Second, PINN adopts a
 116 diffusion-based formulation and uses a single network to jointly model space and time, requiring
 117 numerical approximation of flow derivatives, while our method is based on flow matching and
 118 decouples time and space via a basis parametrization, allowing exact derivatives of the flow map to
 119 be computed analytically and at no extra cost. A concurre

120 FlowFit diverges from these frameworks by eliminating the need for both pretraining and distillation.
 121 Instead, it adopts a unified, end-to-end training scheme that learns a single-step generator directly,
 122 simplifying both the implementation and training pipeline.

123

124 2.2 SINGLE-PHASE TRAINING APPROACHES

125

126 Only a limited number of methods have been developed for one-step generation via single-stage
 127 training. Among the first of its kind, Consistency Models (26; 25; 16; 3; 8) learn to map noisy
 128 inputs directly to their clean counterparts in a single forward pass. Although originally designed for
 129 distillation, they have also been extended to an end-to-end training setup. iCT (25) and sCT (16) refine
 130 Consistency Models by altering the training procedure, leading to gains in sample quality and stability.
 131 **sLST (3) and ECT (8) propose enhanced optimization strategies for consistency models including an**
 132 **improved loss formulation, training schedules and regularization techniques to stabilize learning and**
 133 **significantly boost sample quality while maintaining fast, few-step generation.** In contrast, Shortcut
 134 Models (6) formulate generation as a process conditioned jointly on the current noise level and the
 135 chosen step size, which makes the method adaptable to different inference-time compute budgets.
 136 Shortcut models (6) introduce a flexible generative approach that allows conditioning on both the
 137 input noise level and the desired step size, enabling inference under various computational constraints.
 138 **IMM (31) is a training-based single-step generative method that matches low-order moments of the**
 139 **target transition distributions at each step. By focusing on these statistics, it enables efficient one or**
 140 **few-step sampling without relying on pre-trained models or multi-stage distillation.**

141 A concurrent work, Mean Flows (7), proposes a one-step generative modeling framework that learns
 142 the average flow along the trajectory. In contrast, our approach is orthogonal: we explicitly fit the
 143 flow using a basis of functions, enabling a flexible and exact representation of the full generative
 144 trajectory.

145 To the best of our knowledge, FlowFit is the first method to directly aim for a single-step generative
 146 model using a basis of functions.

147

148 3 PRELIMINARY: DIFFUSION AND FLOW MATCHING

149

150 Recent advances in generative modeling have led to the development of methods such as diffusion
 151 models (23; 10; 24) and flow-matching approaches (13; 14), which learn a continuous-time transfor-
 152 mation from a simple noise distribution to a complex data distribution. These models typically define
 153 the generative process through an ordinary differential equation (ODE), where the time-dependent
 154 dynamics are learned to guide samples from noise toward data.

155

156 In this work, we adopt the flow-matching formulation based on the optimal transport objective
 157 introduced by (14), as it offers a simple and effective framework for learning such dynamics. While
 158 diffusion models and flow-matching approaches are often studied separately, recent perspectives,
 159 such as that of (12), highlight that flow matching can be interpreted as a deterministic special case
 160 of diffusion modeling. Accordingly, we treat the two paradigms as closely related and use the
 161 terminology interchangeably where appropriate.

162 Flow Matching provides a supervised learning framework for modeling deterministic, continuous-
 163 time flows that transport a base distribution μ_0 (e.g., standard Gaussian) into a target distribution μ_1

(e.g., data distribution). Drawing from optimal transport and neural ODEs, it directly learns a velocity field that defines a transport trajectory between paired samples.

Let $x_0 \sim \mu_0$ be a sample from the source distribution and $x_1 \sim \mu_1$ its corresponding target. The model learns a time-dependent velocity field $\mathbf{v}_\theta(x, t)$ such that solving the associated ODE transforms μ_0 into μ_1 . Formally, the flow is described by

$$\begin{cases} \frac{d}{dt} \psi_t(x) = \mathbf{u}_t(\psi_t(x)), \\ \psi_0(x) = x, \end{cases} \quad (1)$$

where $\mathbf{u}_t : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ is a neural network parameterizing the velocity field, and $\psi_t(x)$ is the flow map at time t .

A common training strategy is to supervise the model using velocity information along linear paths between x_0 and x_1 , evaluated at intermediate points $(1-t)x_0 + tx_1$. The corresponding ground-truth velocity at such a point is simply $x_1 - x_0$.

The model is then trained to match this known velocity at intermediate points. The Conditional Flow Matching (CFM) objective function is defined as

$$\mathcal{L}(\theta) = \mathbb{E}_{x_0 \sim \mu_0, x_1 \sim \mu_1, t \sim \mathcal{U}[0, 1]} \left[\|\mathbf{v}_\theta((1-t)x_0 + tx_1, t) - (x_1 - x_0)\|^2 \right]. \quad (2)$$

This loss guides the model to predict the instantaneous velocity field that aligns with the linear flow between samples. Notably, this avoids the need for computing density functions or score gradients, distinguishing it from traditional diffusion models.

Once training is complete, sample generation begins by drawing an initial point $x_0 \sim \mu_0$, typically from a standard Gaussian distribution. This point is then transformed toward the data distribution by solving the learned ODE defined by the velocity field $\mathbf{v}_\theta(x, t)$. In practice, this continuous-time flow is discretized and approximated using numerical integration methods such as Euler's method, where the sample is updated iteratively over a sequence of small time steps from $t = 0$ to $t = 1$.

4 FLOWFIT: DIRECT FLOW PARAMETERIZATION VIA BASIS FUNCTION FITTING

In this section, we introduce FlowFit, a novel approach for modeling continuous-time flows via basis function fitting. Specifically, we aim to directly parameterize the flow $\psi_t(x)$ using a basis of functions that are conditioned on both the initial point x_0 and the time parameter t . Thus, the goal is to model the mapping $(x_0, t) \mapsto \psi_t(x) = x_t$, where $\psi_t(x)$ is the flow at time t , and x_t represents the transformed point at time t .

To this end, we approximate the true flow $\psi_t(x)$ with a learnable function $\psi_\theta(x_0, t)$ ¹, parameterized via neural networks and basis functions. For simplicity, we use the notation x_t interchangeably with both $\psi_t(x)$ and $\psi_\theta(x_0, t)$, with the dependence on x_0 and t understood implicitly. This allows us to define the transformation in terms of a set of basis functions, which we leverage to approximate the flow dynamics. Importantly, this representation enables efficient single-step generation by evaluating the learned trajectory at $t = 1$, and requires only the initial sample $x_0 \sim \mu_0$ at inference time.

4.1 TRAJECTORY PARAMETERIZATION

We approximate the continuous flow trajectory using the time-dependent formulation

$$\begin{cases} \psi_\theta(x_0, t) = x_0 + \sum_{k=1}^K f_{\theta, k}(x_0)(\gamma_k(t) - \gamma_k(0)), \\ \psi_\theta(x_0, 0) = x_0, \end{cases} \quad (3)$$

where

¹In the general case, we aim to learn $\psi_\theta(x_0, c, t)$, where c denotes any form of conditioning (e.g., class labels). For simplicity of derivation, we omit c .

- $\{\gamma_k(t)\}_{k=1}^K$ are fixed scalar basis functions (e.g., polynomial or Fourier),
- $f_{\theta,k} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ are neural networks that produce the coefficients,
- θ denotes all learnable parameters.

We note that this parametrization satisfies the boundary condition $\psi_\theta(x_0, t \approx 0) \approx x_0$, by construction. A natural question is whether the trajectory $\psi(x, t)$ can be approximated arbitrarily well using the basis expansion above.

4.2 THEORETICAL JUSTIFICATION FOR BASIS FUNCTION FLOW MODELING

A key question in FlowFit is whether the proposed basis expansion reliably approximates the target flow. The following proposition confirms that this is indeed the case.

Proposition 1 (Universal Approximation of Flow Trajectories Using a Basis of Functions). *Let $\psi : (\mathbb{R}^d \times [0, 1]) \rightarrow \mathbb{R}^d$ be a continuous trajectory from an initial point x_0 to a target point x_1 . Then, for any $\varepsilon > 0$, there exists a sufficiently large integer $N > 0$, a set of basis functions $\{\gamma_i(t)\}_{i=1}^N$, and coefficients $\{W_i(x)\}_{i=1}^N$ such that*

$$\left\| \psi(x, t) - \left(\sum_{i=1}^N \gamma_i(t) \cdot W_i(x) \right) \right\| < \varepsilon, \quad \forall t \in [0, 1].$$

We include a proof in the appendix A for completeness.

4.3 FLOWFIT TRAINING

We jointly train two models: ψ_θ , which parameterizes the flow trajectory, and $v_{\theta'}$, which models the time-dependent velocity field. To ensure that the learned trajectory $\psi_\theta(x_0, t)$ evolves in alignment with the correct transport dynamics, we supervise it by matching its time derivative to a known target velocity field. Taking the derivative of the basis function parameterization gives

$$\frac{d\psi_\theta}{dt}(x_0, t) = \sum_{k=1}^K f_{\theta,k}(x_0) \frac{d\gamma_k}{dt}(t). \quad (4)$$

Simultaneously, the velocity model $v_{\theta'}(x, t)$ is trained using the standard Conditional Flow Matching (CFM) objective. In this setup, a source point x_0 is randomly sampled from the base distribution μ_0 and a target point x_1 is independently sampled from the data distribution μ_1 . The model is then trained to match the ground-truth velocity $\tilde{v}(x_0, x_1, t) = x_1 - x_0$ at intermediate points along the linear interpolation between x_0 and x_1 . The loss is given by

$$\mathcal{L}_{\text{CFM}}(\theta') = \mathbb{E}_{x_0 \sim \mu_0, x_1 \sim \mu_1, t \sim \mathcal{U}[0,1]} \left[\|v_{\theta'}((1-t)x_0 + tx_1, t) - (x_1 - x_0)\|^2 \right]. \quad (5)$$

To align the basis-induced flow with the learned velocity field, we require that the velocity induced by the basis-function trajectory matches the prediction of the velocity model at the corresponding location along the flow

$$\frac{d\psi_\theta}{dt}(x_0, t) \approx v_{\theta'}(\psi_\theta(x_0, t), t). \quad (6)$$

We formalize this requirement with a loss that enforces matching the flow derivative to the velocity

$$\mathcal{L}_{\text{derivative}}(\theta) = \mathbb{E}_{x_0 \sim \mu_0, t \sim \mathcal{U}[0,1]} \left[\left\| \frac{d\psi_\theta}{dt}(x_0, t) - v_{\theta'}(\text{sg}[\psi_\theta(x_0, t)], t) \right\|^2 \right], \quad (7)$$

where $\text{sg}[\cdot]$ denotes the stop-gradient. This loss encourages the parameterized trajectory to follow a velocity field that is internally consistent with the learned dynamics, improving the alignment between the path and the underlying transport vector field.

Despite the fact that $\psi_\theta(x_0, t)$ may initially provide limited information early in training, we observe that the propagation loss remains robust and effective. This eliminates the need for manually

270

271

272

Algorithm 1 Training FlowFit

273

- 1: Initialize $\theta, \theta', \text{time window } \alpha_t \leftarrow 0$
- 2: Initialize $\psi_\theta(\cdot, t)$ as in Equation 3
- 3: **for** each training step **do**
- 4: Sample $x_0 \sim \mu_0, x_1 \sim \mu_1, t \sim \mathcal{U}[0, 1]$
- 5: **Train** $v_{\theta'}$ **with CFM:**
- 6: $\tilde{x}_t = (1-t)x_0 + tx_1$
- 7: $\min_{\theta'} \mathcal{L}_{\text{CFM}}(\theta') = \|v_{\theta'}(\tilde{x}_t, t) - (x_1 - x_0)\|^2$
- 8: Update θ'
- 9: **Train** ψ_θ **with consistency loss:**
- 10: Compute $\psi_\theta(x_0, t), \frac{d\psi_\theta}{dt}(x_0, t)$ using Equation 4
- 11: $\min_\theta \mathcal{L}_{\text{derivative}}(\theta) = \left\| \frac{d\psi_\theta}{dt}(x_0, t) - v_{\theta'}(\psi_\theta(x_0, t), t) \right\|^2$
- 12: Update θ
- 13: Increase α_t toward 1
- 14: **end for**

286

287

scheduling t , thereby simplifying the training process and enhancing both stability and usability, all without sacrificing performance.

290

291

292

We emphasize that training the velocity $v_{\theta'}$ is independent of training ψ_θ , allowing both to be trained *jointly* and *in parallel*. Consequently, the effective training time nearly matches that of a single generative model.

293

294

The full training algorithm and the corresponding sampling procedure are outlined in Algorithm 1 and 2.

295

296

4.4 SINGLE-STEP GENERATION

297

At inference time, the model generates samples from the target distribution μ_1 by drawing $x_0 \sim \mu_0$ and evaluating the fitted trajectory at terminal time:

300

$$x_1 = \psi_\theta(x_0, t = 1). \quad (8)$$

301

302

This enables fast and deterministic generation without iterative integration, in contrast to diffusion or traditional flow-based models.

305

306

5 EXPERIMENTS

307

308

5.1 EXPERIMENTAL SETUP

309

We evaluate our method alongside a range of established baselines under consistent training conditions. To ensure fairness, all models are trained from scratch using an identical implementation and share the same backbone architecture, the DiT-B diffusion transformer (19). Our evaluation includes two tasks: unconditional image generation on the CelebAHQ-256 dataset (15) and a comparison with class-conditional generation on ImageNet-256 (5). For ImageNet experiments, we use the classifier-free guidance (CFG) (11) is employed to enhance conditional generation. For the experiments reported in Table 6, we use the AdamW optimizer. We use a Polynomial basis with order 8. All models are trained and sampled in the latent space provided by the `sd-vae-ft-mse` autoencoder (20). Further implementation details are provided in Appendix C. We release the full code in the supplementary materials.

319

320

5.2 BASELINE APPROACHES

321

322

323

For comparison, we consider several end-to-end generative modeling approaches under the evaluation protocol of (6). Consistency Models (26) learn one-step generation by training on empirical pairs $(x_t, x_{t+\delta})$, with time discretization granularity refined progressively during training. Improved

270

271

272

Algorithm 2 Sampling

273

- 1: Sample $x_0 \sim \mu_0$
- 2: **Return** $x_1 = \psi_\theta(x_0, t = 1)$

274

275

276

277

278

279

280

281

282

283

284

285

286

287

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

5 EXPERIMENTS

308

309

5.1 EXPERIMENTAL SETUP

310

311

312

313

314

315

316

317

318

319

320

321

5.2 BASELINE APPROACHES

322

323

324
 325 **Table 1: Comparison of various training objectives applied to the same architecture (DiT-B).** We
 326 report FID-50k scores (lower is better) for 128, 4, and 1-step denoising. FlowFit achieves high-quality
 327 samples using a single training phase and a one-step inference process. Results in parentheses indicate
 328 settings beyond the intended use of the corresponding objective.

329 330 331 332 333 334 335 336 337 338 339 340	330 331 332 333 334 335 336 337 338 339 340			330 331 332 333 334 335 336 337 338 339 340		
	330 331 332 333 334 335 336 337 338 339 340	330 331 332 333 334 335 336 337 338 339 340	330 331 332 333 334 335 336 337 338 339 340	330 331 332 333 334 335 336 337 338 339 340	330 331 332 333 334 335 336 337 338 339 340	330 331 332 333 334 335 336 337 338 339 340
330 331 332 333 334 335 336 337 338 339 340	330 331 332 333 334 335 336 337 338 339 340	330 331 332 333 334 335 336 337 338 339 340	330 331 332 333 334 335 336 337 338 339 340	330 331 332 333 334 335 336 337 338 339 340	330 331 332 333 334 335 336 337 338 339 340	330 331 332 333 334 335 336 337 338 339 340
Diffusion (10)	23.0	(123.4)	(132.2)	39.7	(464.5)	(467.2)
Flow Matching (13)	7.3	(63.3)	(280.5)	17.3	(108.2)	(324.8)
CT (26)	53.7	19.0	33.2	42.8	43.0	69.7
iCT (25)	-	-	21.7	-	-	43.3
sCT (16)	-	-	19.3	-	-	41.6
Shortcut Models (6)	6.9	13.8	20.5	15.5	28.3	40.3
IMM (31)	-	-	19.5	-	-	41.4
sLST (3)	-	-	18.8	-	-	39.9
ECT (8)	-	-	20.7	-	-	40.6
FlowFit (ours)	-	-	14.1	-	-	34.4

341
 342
 343 variants such as iCT (25) and sCT (16) modify the optimization strategy to enhance training stability
 344 and overall sample quality. Shortcut Models (6) instead condition the generator jointly on the current
 345 noise level and the chosen step size, allowing adaptive sampling under different computational
 346 budgets. Another relevant approach is Live Reflow (6), which jointly trains on both flow-matching
 347 objectives and distillation-based targets. However, because it requires generating new targets via full
 348 denoising at every iteration, this method incurs significant computational overhead.

350 5.3 EVALUATION PROTOCOL

352
 353 We follow the evaluation framework established in (6). Each model generates 50k samples for
 354 computing the FID-50k score. Our method is evaluated using a single-step sampler, while the
 355 baseline models are assessed under 128-step, 4-step, and 1-step variants. FID-50k is calculated using
 356 statistics from the full dataset, with no compression applied to the generated samples. All images are
 357 resized to 299×299 via bilinear interpolation and normalized to the $[-1, 1]$ range. During inference,
 358 we apply the Exponential Moving Average (EMA) of the model parameters to improve stability and
 359 performance.

360 5.4 COMPARISON

362
 363 Table 6 highlights that FlowFit delivers high-quality generations in the single sampling step. Notably,
 364 it surpasses all other single-phase training methods in one-step generation performance. Figure 3
 365 show example generations at 256×256 resolution on CelebA-HQ. Additional qualitative results are
 366 presented in Appendix B.

368 5.5 SEMANTIC STRUCTURE IN THE LATENT SPACE OF FLOWFIT

370
 371 To assess whether FlowFit gives rise to a semantically meaningful and smooth latent space, we
 372 perform an interpolation experiment in the input noise domain. We begin by selecting pairs of
 373 Gaussian noise vectors x_0^0 and x_0^1 , and interpolate between them using a variance-preserving scheme
 374 $x_0^n = nx_0^1 + \sqrt{1 - n^2} x_0^0$ with $n \in [0, 1]$. Each interpolated point x_0^n is then processed through the
 375 trained model to generate the corresponding output. Figure 2 shows representative results from this
 376 interpolation. Even though no explicit smoothness constraints or regularization terms are imposed
 377 during training, the outputs exhibit continuous and visually coherent changes. The interpolated
 378 generations preserve high-level semantics while gradually morphing between endpoints, indicating
 379 that FlowFit captures an underlying latent structure that supports semantically consistent transitions.

Figure 2: **Latent Space Interpolation.** All images shown are generated by the model. Each row illustrates the result of applying one-step denoising to intermediate samples obtained by variance-preserving interpolation between two independent Gaussian noise vectors.

Table 2: Impact of the chosen polynomial basis order on image quality when training FlowFit on CelebAHQ-256 using a batch size of 64 and 400,000 training iterations..

Basis Order	$\{t^k\}_{k=1}^2$	$\{t^k\}_{k=1}^4$	$\{t^k\}_{k=1}^8$
FID (\downarrow)	18.2	15.9	14.1

6 ABLATIONS

6.1 EFFECT OF BASIS ORDER

We investigate how the order of the polynomial basis affects image quality. Table 2 reports results for different basis orders under identical training conditions: order 2 with basis functions $\{t^k\}_{k=1}^2$, order 4 with basis functions $\{t^k\}_{k=1}^4$, and order 8 with basis functions $\{t^k\}_{k=1}^8$. Our results indicate that higher-order bases consistently yield improved image quality.

Table 5: Effect of the DiT backbone architecture on image quality when training FlowFit on CelebAHQ-256 using a batch size of 64 and 400,000 training iterations.

	DiT-B	DiT-L	DiT-XL
FID	14.1	10.7	6.2

6.2 EFFECT OF THE BASIS TYPE

We evaluate the influence of the basis function type on generation quality while keeping the expansion order fixed. Specifically, we use $\{t^k\}_{k=1}^8$ for the polynomial basis and $\{\cos(2k\pi t)\}_{k=1}^4 \cup \{\sin(2k\pi t)\}_{k=1}^4$ for the trigonometric basis. As reported in Table 3, the polynomial basis yields a better FID score of 14.1 compared to the trigonometric basis (16.3).

6.3 EFFECT OF STOP GRADIENT IN EQUATION 7) DURING TRAINING

In Table 4, we report the FID scores of generated images when training with and without gradient stopping. We observe that disabling gradient stopping results in an additional computational overhead and lower image quality.

6.4 EFFECT OF THE NETWORK BACKBONE

Table 5 reports the effect of the DiT backbone architecture on image quality when training FlowFit on CelebA-HQ. We observe that increasing the model capacity consistently improves performance: using DiT-L instead of DiT-B reduces the FID from 14.1 to 10.7, while DiT-XL further lowers it to 6.2. These results demonstrate that FlowFit benefits from larger backbones, achieving higher-quality samples with increased model capacity.

432 Table 3: Impact of the basis nature using the same expansion order.
433

Basis	Polynomial	Trigonometric
FID ↓	14.1	16.3

437 Table 4: Effect of applying gradient stopping at training (as in Equation 7) for CelebAHQ-256.
438

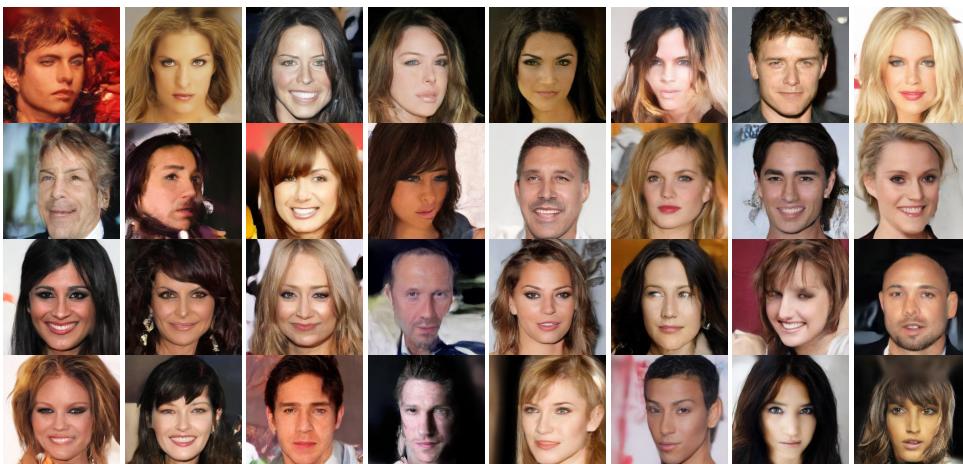
	w/o stopping gradient	w/ stopping gradient
FID ↓	52.4	14.1

444

LIMITATIONS AND FUTURE WORK

446 While FlowFit demonstrates strong performance, it has certain limitations. A key drawback is that
447 the current design is restricted to single-step inference. Another potential improvement would be
448 to use a single network instead of two during training. A promising direction for future research is
449 to generalize the framework to a unified model architecture that supports flexible sampling with a
450 variable number of inference steps.

451 Due to computational constraints, we explore the method up to order 8 in this work. It would be
452 interesting to investigate higher-order expansions and assess their impact. Another potential direction
453 is to explore alternative basis functions in the formulation.

471 Figure 3: Unfiltered samples generated using FlowFit on the unconditional CelebA-HQ dataset at a
472 resolution of 256x256. These images were produced in a single forward pass using a DiT-B model
473 trained for 400,000 iterations.475

REPRODUCIBILITY STATEMENT

477 To support reproducibility, we provide a complete implementation of our method, including training
478 and evaluation scripts, as part of the supplementary materials.

481

CONCLUSION

483 We introduce FlowFit, a novel generative model that enables single-step sampling. The key idea is a
484 new formulation of flow modeling through basis function fitting, which allows the model to learn the
485 generative trajectory efficiently. As a result, FlowFit achieves fast, high-quality generation making it
a practical solution for single-step generative modeling.

486 REFERENCES
487

488 [1] David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
489 Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
490 time-distillation. *arXiv preprint arXiv:2303.04248*, 2023.

491 [2] Errett Bishop. A generalization of the stone-weierstrass theorem. 1961.

492 [3] Quan Dao, Khanh Doan, Di Liu, Trung Le, and Dimitris Metaxas. Improved training technique
493 for latent consistency models. *arXiv preprint arXiv:2502.01441*, 2025.

494 [4] Louis De Branges. The stone-weierstrass theorem. *Proceedings of the American Mathematical
495 Society*, 10(5):822–824, 1959.

496 [5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
497 scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern
498 recognition*, pages 248–255. Ieee, 2009.

499 [6] Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
500 models. *arXiv preprint arXiv:2410.12557*, 2024.

501 [7] Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows
502 for one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025.

503 [8] Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency
504 models made easy. *arXiv preprint arXiv:2406.14548*, 2024.

505 [9] Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Joshua M Susskind. Boot: Data-free
506 distillation of denoising diffusion models with bootstrapping. In *ICML 2023 Workshop on
507 Structured Probabilistic Inference {\&} Generative Modeling*, 2023.

508 [10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances
509 in neural information processing systems*, 33:6840–6851, 2020.

510 [11] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint
511 arXiv:2207.12598*, 2022.

512 [12] Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple
513 data augmentation. *Advances in Neural Information Processing Systems*, 36:65484–65516,
514 2023.

515 [13] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
516 matching for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

517 [14] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
518 and transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

519 [15] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaou Tang. Large-scale celebfaces attributes
520 (celeba) dataset. *Retrieved August*, 15(2018):11, 2018.

521 [16] Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency
522 models. *arXiv preprint arXiv:2410.11081*, 2024.

523 [17] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for
524 improved sampling speed. *arXiv preprint arXiv:2101.02388*, 2021.

525 [18] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho,
526 and Tim Salimans. On distillation of guided diffusion models. In *Proceedings of the IEEE/CVF
527 Conference on Computer Vision and Pattern Recognition*, pages 14297–14306, 2023.

528 [19] William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings
529 of the IEEE/CVF international conference on computer vision*, pages 4195–4205, 2023.

530 [20] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
531 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF
532 conference on computer vision and pattern recognition*, pages 10684–10695, 2022.

540 [21] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
 541 *arXiv preprint arXiv:2202.00512*, 2022.

542 [22] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
 543 distillation. In *European Conference on Computer Vision*, pages 87–103. Springer, 2024.

544 [23] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
 545 vised learning using nonequilibrium thermodynamics. In *International conference on machine
 546 learning*, pages 2256–2265. pmlr, 2015.

547 [24] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
 548 *International Conference on Learning Representations*.

549 [25] Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. *arXiv
 550 preprint arXiv:2310.14189*, 2023.

551 [26] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

552 [27] Joshua Tian Jin Tee, Kang Zhang, Hee Suk Yoon, Dhananjaya Nagaraja Gowda, Chanwoo
 553 Kim, and Chang D Yoo. Physics informed distillation for diffusion models. *arXiv preprint
 554 arXiv:2411.08378*, 2024.

555 [28] Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou, Ying Nian Wu, Kevin Patrick
 556 Murphy, Tim Salimans, Ben Poole, and Ruiqi Gao. Em distillation for one-step diffusion
 557 models, 2024. *URL https://arxiv.org/abs/2405.16852*.

558 [29] Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
 559 Bill Freeman. Improved distribution matching distillation for fast image synthesis. *Advances in
 560 neural information processing systems*, 37:47455–47487, 2024.

561 [30] Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T
 562 Freeman, and Taesung Park. One-step diffusion with distribution matching distillation. In
 563 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages
 564 6613–6623, 2024.

565 [31] Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. *arXiv preprint
 566 arXiv:2503.07565*, 2025.

567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593

594
 595 **Table 6: Comparison of the distillation version of our method with some sample distillation**
 596 **methodswhen using the same architecture (DiT-B).** We report FID-50k scores (lower is better) for
 597 128, 4, and 1-step denoising.

598 Distillation methods	599 CelebAHQ-256			600 ImageNet-256 (Class-Conditional)		
	601 128-Step	602 4-Step	603 1-Step	604 128-Step	605 4-Step	606 1-Step
607 Progressive Distillation	(302.9)	(251.3)	14.8	(201.9)	(142.5)	35.6
608 Consistency Distillation	59.5	39.6	38.2	132.8	98.01	136.5
609 Reflow	16.1	18.4	23.2	16.9	32.8	44.8
610 Ours (Distillation)	-	-	13.4	-	-	31.6

607 A THEORETICAL JUSTIFICATION FOR BASIS FUNCTION FLOW MODELING

608 A key question in FlowFit is whether the proposed basis expansion reliably approximates the target
 609 flow. The following proposition confirms that this is indeed the case.

610 **Proposition 2** (Universal Approximation of Flow Trajectories). *Let $\psi : (\mathbb{R}^d \times [0, 1]) \rightarrow \mathbb{R}^d$ be a*
 611 *continuous trajectory from an initial point x_0 to a target point x_1 . Then, for any $\varepsilon > 0$, there exists*
 612 *a sufficiently large integer $N > 0$, a set of basis functions $\{\gamma_i(t)\}_{i=1}^N$, and coefficients $\{W_i(x)\}_{i=1}^N$*
 613 *such that*

$$614 \quad \left\| \psi(x, t) - \left(\sum_{i=1}^N \gamma_i(t) \cdot W_i(x) \right) \right\| < \varepsilon, \quad \forall t \in [0, 1].$$

615 *Proof.* The results is immediately obtained by applying the Stone–Weierstrass theorem (4; 2) because
 616 \mathbb{R}^d and $[0, 1]$ are both locally compact Hausdorff spaces, and the basis functions and the coefficients
 617 are all continuous. \square

618 B QUALITATIVE SAMPLES

619 Figures 4 and 5 present sample outputs from models trained on CelebA-HQ (unconditional) and
 620 ImageNet (class-conditioned), respectively, using our proposed training procedure.

621 C IMPLEMENTATION DETAILS

622 D TRAINING DETAILS

623 Table 7 provides detailed training configurations corresponding to the results reported in Table 1
 624 (main paper) Across all experiments, we train models using a latent representation obtained from the
 625 `sd-vae-mse-ft` encoder with a downsampling factor of 8, mapping $(256 \times 256 \times 3)$ images to a
 626 $(32 \times 32 \times 4)$ latent space. For CelebA-HQ, we use a batch size of 64 and train for $400k$ steps, while
 627 for ImageNet we use a batch size of 256 and train for $800k$ steps. The ImageNet model additionally
 628 employs classifier-free guidance with a scale of 1.5 and a class-dropout probability of 0.1, whereas the
 629 CelebA-HQ model is trained without guidance. We use AdamW with a learning rate of (5×10^{-5}) ,
 630 zero weight decay, and maintain an exponential moving average of parameters with decay 0.999
 631 for evaluation. The backbone architecture uses a hidden size of 768, patch size of 2, 12 layers, 12
 632 attention heads, and an MLP expansion ratio of 4. All experiments use a progressive step size of
 633 $(\delta t = 0.01)$.

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686



687 Figure 4: Unfiltered samples generated on the unconditional CelebA-HQ dataset at a resolution of
688 256×256. These images were produced in a single forward pass using a DiT-B model trained for
689 400,000 iterations.

690
691
692
693
694
695
696
697
698
699
700
701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

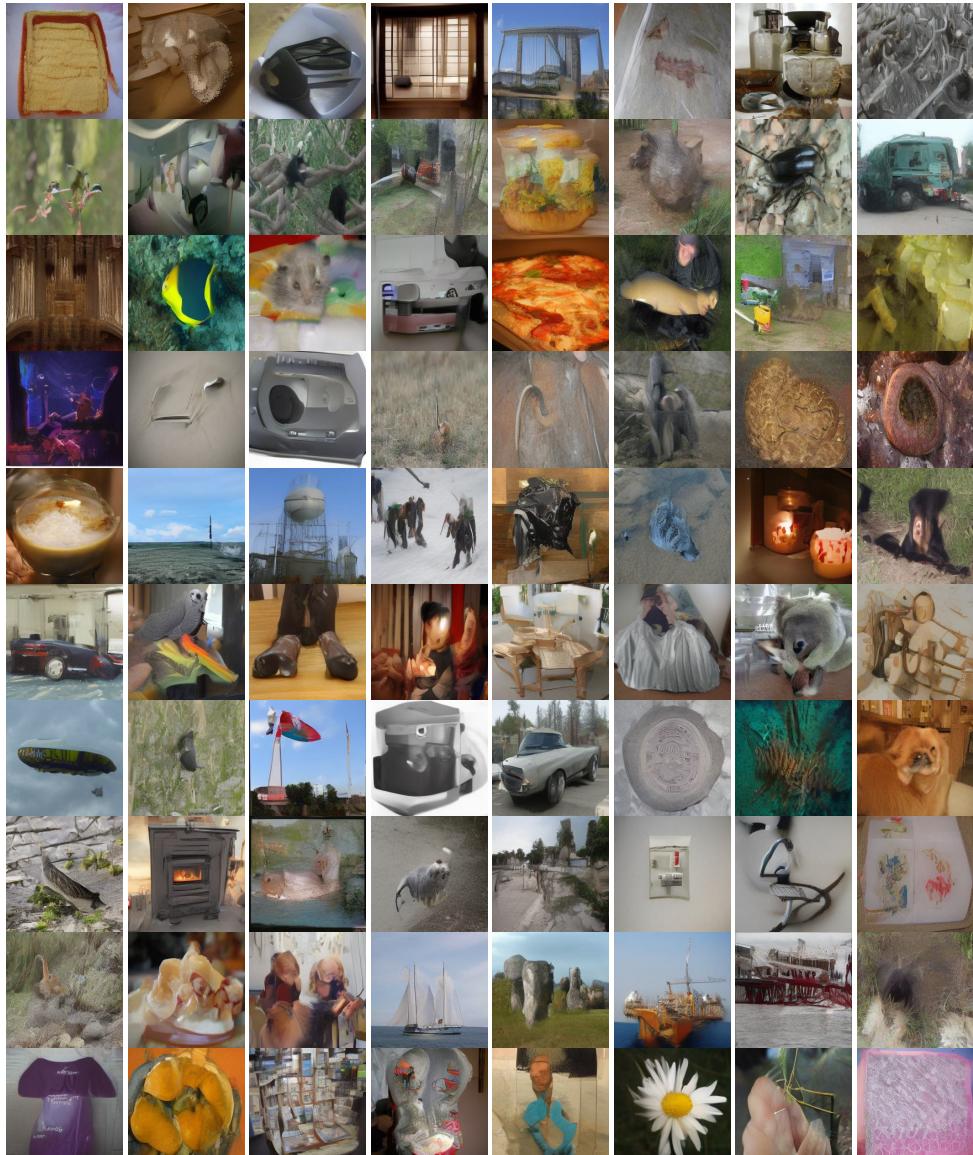


Figure 5: Unfiltered samples generated on the unconditional ImageNet dataset at a resolution of 256×256. These images were produced in a single forward pass using a DiT-B model trained for 800,000 iterations.

756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771

772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792

Batch Size	64 (CelebA-HQ), 256 (Imagenet)
Training Steps	400,000 (CelebA-HQ), 800,000 (Imagenet)
Latent Encoder	sd-vae-mse-ft
Latent Downsampling	8 (256x256x3 to 32x32x4)
Classifier Free Guidance	0 (CelebA-HQ), 1.5 (Imagenet)
Class Dropout Probability	0 (CelebA-HQ), 0.1 (Imagenet)
EMA Parameters Used For Evaluation?	Yes
EMA Ratio	0.999
Optimizer	AdamW
Learning Rate	0.00004
Weight Decay	0.0
Hidden Size	768
Patch Size	2
Number of Layers	12
Attention Heads	12
MLP Hidden Size Ratio	4
Basis	Polynomial
Basis order	8

Table 7: Default hyperparameter settings used during training.

793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809