
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

END-TO-END ONE-STEP FLOW MATCHING VIA FLOW
FITTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion and flow-matching models have demonstrated impressive performance
in generating diverse, high-fidelity images by learning transformations from noise
to data. However, their reliance on multi-step sampling requires repeated neural
network evaluations, leading to high computational cost. We propose FlowFit, a
family of generative models that enables high-quality sample generation through
both single-phase training and single-step inference. FlowFit learns to approximate
the continuous flow trajectory between latent noise x0 and data x1 by fitting a
basis of functions parameterized over time t ∈ [0, 1] during training. At inference
time, sampling is performed by simply evaluating the flow only at the terminal
time t = 1, avoiding iterative denoising or numerical integration. Empirically,
FlowFit outperforms prior diffusion-based single-phase training methods achieving
superior sample quality.

1 INTRODUCTION

In recent years, iterative denoising methods such as diffusion models (21; 8; 22) and flow matching
(11; 12) have achieved remarkable success across a wide range of generative modeling tasks, including
image synthesis, molecular generation, and audio modeling. These methods define a generative
process as the solution to a learned differential equation that progressively transforms simple noise
into complex data through a series of small, structured updates. Their strong empirical performance
stems from their ability to model complex distributions with stable training dynamics and flexible
architectures.

However, a key limitation of these approaches lies in their sampling efficiency. Since generation is
performed by solving a differential equation, typically through numerical integration, these methods
often require hundreds of sequential function evaluations at inference time. This iterative sampling
procedure can be computationally expensive, slow, and memory-intensive, limiting their practicality
in real-time or resource-constrained settings.

In this work, we aim to retain the modeling flexibility and training benefits of diffusion-based methods
while enabling efficient single-step generation.

While recent work has explored accelerating inference in diffusion models through distillation, these
approaches typically follow a two-stage training paradigm. In such methods, a pre-trained diffusion
model is first learned through standard iterative training, and then a separate model is trained to
mimic its behavior in fewer steps, usually by generating a large synthetic dataset of intermediate
trajectories (15; 11) or propagating through a series of teacher and student networks (16; 19). This
introduces additional complexity, increases memory requirements, and may limit generalization due
to reliance on a fixed teacher.

In contrast, we propose FlowFit, a unified, end-to-end training approach that learns to generate
samples in one step from the outset. Our method directly parameterizes the entire flow using a
basis function expansion, enabling the model to learn global transport trajectories in a compact and
structured manner. Once trained, sampling from the model requires only evaluating the learned flow
at terminal time t = 1, given a source point x0 ∼ µ0 (see examples in Figure 1).

A key insight motivating our approach is that a smooth transformation, such as a flow trajectory,
can be directly fitted using the initial value and all its time derivatives. By fitting the trajectory

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison Between Multi-Step Flow Matching and Single-Step FlowFit Generation.
The top row shows images generated using a standard flow-matching model with 128 denoising steps,
while the bottom row displays outputs from our single-step FlowFit model. Each column uses the
same initial noise vector for a fair comparison. FlowFit produces high-fidelity samples even with a
single forward pass, offering up to 128× faster sampling than traditional diffusion and flow-matching
approaches while maintaining high image quality.

using a set of basis functions anchored at the initial point, we capture the flow’s global behavior and
bypass the need for iterative integration. This allows us to retain the expressive modeling capacity of
continuous-time methods while achieving orders-of-magnitude faster sampling.

We train the model to ensure that the trajectory is consistent with a learned velocity field through a
combination of Conditional Flow Matching and a trajectory-velocity consistency loss. Additionally,
we introduce a progressive training strategy that improves stability and alignment between the flow
and velocity in early training stages.

Our main contributions can be summarized as follows

• We propose a novel formulation for flow modeling via basis function fitting. FlowFit, a new
generative modeling framework that directly parameterizes continuous-time flows using
a residual expansion over fixed basis functions. This allows the model to represent entire
flow trajectories with a compact, structured parameterization. To the best of our knowledge,
FlowFit is the first to propose such a formulation.

• We demonstrate that FlowFit achieves sample quality better or on par with existing single
step diffusion-based approaches .

2 RELATED WORK

We review prior research efforts aimed at accelerating diffusion-based generative models through
single-step sampling. Existing approaches generally fall into two categories: those based on multi-
stage distillation and those relying on direct, single-phase training.

2.1 TWO-PHASE TRAINING APPROACHES

A common strategy for improving inference efficiency involves distilling multi-step diffusion models
into simpler one-step samplers. These techniques typically follow a two-phase process: a full
diffusion model is trained first, and then a lightweight student model is optimized to mimic its
behavior over fewer denoising steps.

Several works adopt this paradigm by simulating the full denoising trajectory to generate supervision
pairs, as seen in knowledge distillation (15) and rectified flows (12). While effective, these methods
are computationally intensive due to the need for full reverse-time ODE evaluations. To mitigate this,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

more recent efforts introduce bootstrapping mechanisms that shorten the ODE simulation path (7; 26).
Additionally, researchers have explored a variety of loss functions beyond the traditional L2 objective,
including adversarial criteria (20) and distributional matching techniques (28; 27). Progressive
distillation (19; 1; 16) offers a multi-stage solution, wherein a sequence of student models is trained
with progressively larger time steps. This hierarchical approach reduces the dependency on costly
long-path bootstrap samples. The most similar distillation method to ours is the Physics-Informed
Neural Network (25)(PINN). However, there are two key distinctions. First, PINN is a two-stage
distillation method that relies on a pre-trained diffusion model, whereas our approach is trained
end-to-end in a single stage, eliminating the need for separate distillation. Second, PINN adopts a
diffusion-based formulation and uses a single network to jointly model space and time, requiring
numerical approximation of flow derivatives, while our method is based on flow matching and
decouples time and space via a basis parametrization, allowing exact derivatives of the flow map to
be computed analytically and at no extra cost. A concurre

FlowFit diverges from these frameworks by eliminating the need for both pretraining and distillation.
Instead, it adopts a unified, end-to-end training scheme that learns a single-step generator directly,
simplifying both the implementation and training pipeline.

2.2 SINGLE-PHASE TRAINING APPROACHES

Only a limited number of methods have been developed for one-step generation via single-stage
training. Among the first of its kind, Consistency Models (24) learn to map noisy inputs directly to
their clean counterparts in a single forward pass. Although originally designed for distillation, they
have also been extended to an end-to-end training setup. iCT (23) and sCT (14) refine Consistency
Models by altering the training procedure, leading to gains in sample quality and stability. In contrast,
Shortcut Models (5) formulate generation as a process conditioned jointly on the current noise level
and the chosen step size, which makes the method adaptable to different inference-time compute
budgets. Shortcut models (5) introduce a flexible generative approach that allows conditioning on
both the input noise level and the desired step size, enabling inference under various computational
constraints.

A concurrent work, Mean Flows (6), proposes a one-step generative modeling framework that learns
the average flow along the trajectory. In contrast, our approach is orthogonal: we explicitly fit the
flow using a basis of functions, enabling a flexible and exact representation of the full generative
trajectory.

To the best of our knowledge, FlowFit is the first method to directly aim for a single-step generative
model using a basis of functions.

3 PRELIMINARY: DIFFUSION AND FLOW MATCHING

Recent advances in generative modeling have led to the development of methods such as diffusion
models (21; 8; 22) and flow-matching approaches (11; 12), which learn a continuous-time transfor-
mation from a simple noise distribution to a complex data distribution. These models typically define
the generative process through an ordinary differential equation (ODE), where the time-dependent
dynamics are learned to guide samples from noise toward data.

In this work, we adopt the flow-matching formulation based on the optimal transport objective
introduced by (12), as it offers a simple and effective framework for learning such dynamics. While
diffusion models and flow-matching approaches are often studied separately, recent perspectives,
such as that of (10), highlight that flow matching can be interpreted as a deterministic special case
of diffusion modeling. Accordingly, we treat the two paradigms as closely related and use the
terminology interchangeably where appropriate.

Flow Matching provides a supervised learning framework for modeling deterministic, continuous-
time flows that transport a base distribution µ0 (e.g., standard Gaussian) into a target distribution µ1

(e.g., data distribution). Drawing from optimal transport and neural ODEs, it directly learns a velocity
field that defines a transport trajectory between paired samples.

Let x0 ∼ µ0 be a sample from the source distribution and x1 ∼ µ1 its corresponding target. The
model learns a time-dependent velocity field vθ(x, t) such that solving the associated ODE transforms

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

µ0 into µ1. Formally, the flow is described by
d

dt
ψt(x) = ut(ψt(x)),

ψ0(x) = x,
(1)

where ut : [0, 1]× Rd → Rd is a neural network parameterizing the velocity field, and ψt(x) is the
flow map at time t.

A common training strategy is to supervise the model using velocity information along linear paths
between x0 and x1, evaluated at intermediate points (1− t)x0+ tx1. The corresponding ground-truth
velocity at such a point is simply x1 − x0.

The model is then trained to match this known velocity at intermediate points. The Conditional Flow
Matching (CFM) objective function is defined as

L(θ) = Ex0∼µ0, x1∼µ1, t∼U [0,1]

[
∥vθ ((1− t)x0 + tx1, t)− (x1 − x0)∥2

]
. (2)

This loss guides the model to predict the instantaneous velocity field that aligns with the linear flow
between samples. Notably, this avoids the need for computing density functions or score gradients,
distinguishing it from traditional diffusion models.

Once training is complete, sample generation begins by drawing an initial point x0 ∼ µ0, typically
from a standard Gaussian distribution. This point is then transformed toward the data distribution by
solving the learned ODE defined by the velocity field vθ(x, t). In practice, this continuous-time flow
is discretized and approximated using numerical integration methods such as Euler’s method, where
the sample is updated iteratively over a sequence of small time steps from t = 0 to t = 1.

4 FLOWFIT: DIRECT FLOW PARAMETERIZATION VIA BASIS FUNCTION
FITTING

In this section, we introduce FlowFit, a novel approach for modeling continuous-time flows via
basis function fitting. Specifically, we aim to directly parameterize the flow ψt(x) using a basis of
functions that are conditioned on both the initial point x0 and the time parameter t. Thus, the goal is
to model the mapping (x0, t) 7→ ψt(x) = xt, where ψt(x) is the flow at time t, and xt represents the
transformed point at time t.

To this end, we approximate the true flow ψt(x) with a learnable function ψθ(x0, t)1 , parameterized
via neural networks and basis functions. For simplicity, we use the notation xt interchangeably with
both ψt(x) and ψθ(x0, t), with the dependence on x0 and t understood implicitly. This allows us to
define the transformation in terms of a set of basis functions, which we leverage to approximate the
flow dynamics. Importantly, this representation enables efficient single-step generation by evaluating
the learned trajectory at t = 1, and requires only the initial sample x0 ∼ µ0 at inference time.

4.1 TRAJECTORY PARAMETERIZATION

We approximate the continuous flow trajectory using the time-dependent formulationψθ(x0, t) = x0 +

K∑
k=1

fθ,k(x0)(γk(t)− γk(0)),

ψθ(x0, 0) = x0,

(3)

where

• {γk(t)}Kk=1 are fixed scalar basis functions (e.g., polynomial or Fourier),

• fθ,k : Rd → Rd are neural networks that produce the coefficients,
• θ denotes all learnable parameters.

1In the general case, we aim to learn ψθ(x0, c, t), where c denotes any form of conditioning (e.g., class
labels). For simplicity of derivation, we omit c.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We note that this parametrization satisfies the boundary condition ψθ(x0, t ≈ 0) ≈ x0, by con-
struction. A natural question is whether the trajectory ψ(x, t) can be approximated arbitrarily well
using the basis expansion above. This result is straightforward and is provided in Appendix A for
completeness.

4.2 FLOWFIT TRAINING

We jointly train two models: ψθ, which parameterizes the flow trajectory, and vθ′ , which models the
time-dependent velocity field. To ensure that the learned trajectory ψθ(x0, t) evolves in alignment
with the correct transport dynamics, we supervise it by matching its time derivative to a known target
velocity field. Taking the derivative of the basis function parameterization gives

dψθ
dt

(x0, t) =

K∑
k=1

fθ,k(x0)
dγk
dt

(t). (4)

Simultaneously, the velocity model vθ′(x, t) is trained using the standard Conditional Flow Matching
(CFM) objective. In this setup, a source point x0 is randomly sampled from the base distribution
µ0 and a target point x1 is independently sampled from the data distribution µ1. The model is then
trained to match the ground-truth velocity ṽ(x0, x1, t) = x1 − x0 at intermediate points along the
linear interpolation between x0 and x1. The loss is given by

LCFM(θ′) = Ex0∼µ0, x1∼µ1, t∼U [0,1]

[
∥vθ′((1− t)x0 + tx1, t)− (x1 − x0)∥2

]
. (5)

To align the basis-induced flow with the learned velocity field, we require that the velocity induced
by the basis-function trajectory matches the prediction of the velocity model at the corresponding
location along the flow

dψθ
dt

(x0, t) ≈ vθ′(ψθ(x0, t), t). (6)

We formalize this requirement with a loss that enforces matching the flow derivative to the velocity

Lderivative(θ) = Ex0∼µ0, t∼U [0,1]

[∥∥∥∥dψθdt (x0, t)− vθ′(sg[ψθ(x0, t)], t)
∥∥∥∥2
]
, (7)

where sg[·] denotes the stop-gradient. This loss encourages the parameterized trajectory to follow
a velocity field that is internally consistent with the learned dynamics, improving the alignment
between the path and the underlying transport vector field.

Despite the fact that ψθ(x0, t) may initially provide limited information early in training, we observe
that the propagation loss remains robust and effective. This eliminates the need for manually
scheduling t, thereby simplifying the training process and enhancing both stability and usability, all
without sacrificing performance.

We emphasize that training the velocity vθ′ is independent of training ψθ, allowing both to be trained
jointly and in parallel. Consequently, the effective training time nearly matches that of a single
generative model.

The full training algorithm and the corresponding sampling procedure are outlined in Algorithm 1
and 2.

4.3 SINGLE-STEP GENERATION

At inference time, the model generates samples from the target distribution µ1 by drawing x0 ∼ µ0

and evaluating the fitted trajectory at terminal time:

x1 = ψθ(x0, t = 1). (8)

This enables fast and deterministic generation without iterative integration, in contrast to diffusion or
traditional flow-based models.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Training FlowFit

1: Initialize θ, θ′, time window αt ← 0
2: Initialize ψθ(., t) as in Equation 3
3: for each training step do
4: Sample x0 ∼ µ0, x1 ∼ µ1, t ∼ U [0, 1]
5: Train vθ′ with CFM:
6: x̃t = (1− t)x0 + tx1
7: minθ′ LCFM(θ′) = ∥vθ′(x̃t, t)− (x1 − x0)∥2
8: Update θ′
9: Train ψθ with consistency loss:

10: Compute ψθ(x0, t), dψθ

dt (x0, t) using Equation 4
11: minθ Lderivative(θ) = ∥dψθ

dt (x0, t)− vθ′(ψθ(x0, t), t)∥
2

12: Update θ
13: Increase αt toward 1
14: end for

Algorithm 2 Sampling

1: Sample x0 ∼ µ0

2: Return x1 = ψθ(x0, t = 1)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate our method alongside a range of established baselines under consistent training conditions.
To ensure fairness, all models are trained from scratch using an identical implementation and share
the same backbone architecture, the DiT-B diffusion transformer (17). Our evaluation includes two
tasks: unconditional image generation on the CelebAHQ-256 dataset (13) and a comparison with
class-conditional generation on ImageNet-256 (4). For ImageNet experiments, we use the classifier-
free guidance (CFG) (9) is employed to enhance conditional generation. For the experiments reported
in Table 1, we use the AdamW optimizer. We use a Polynomial basis with order 8. All models are
trained and sampled in the latent space provided by the sd-vae-ft-mse autoencoder (18). Further
implementation details are provided in Appendix C. We release the full code in the supplementary
materials.

5.2 BASELINE APPROACHES

For comparison, we consider several end-to-end generative modeling approaches under the evaluation
protocol of (5). Consistency Models (24) learn one-step generation by training on empirical pairs
(xt, xt+δ), with time discretization granularity refined progressively during training. Improved
variants such as iCT (23) and sCT (14) modify the optimization strategy to enhance training stability
and overall sample quality. Shortcut Models (5) instead condition the generator jointly on the current
noise level and the chosen step size, allowing adaptive sampling under different computational
budgets. Another relevant approach is Live Reflow (5), which jointly trains on both flow-matching
objectives and distillation-based targets. However, because it requires generating new targets via full
denoising at every iteration, this method incurs significant computational overhead.

5.3 EVALUATION PROTOCOL

We follow the evaluation framework established in (5). Each model generates 50k samples for
computing the FID-50k score. Our method is evaluated using a single-step sampler, while the
baseline models are assessed under 128-step, 4-step, and 1-step variants. FID-50k is calculated using
statistics from the full dataset, with no compression applied to the generated samples. All images are
resized to 299× 299 via bilinear interpolation and normalized to the [−1, 1] range. During inference,
we apply the Exponential Moving Average (EMA) of the model parameters to improve stability and
performance.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of various training objectives applied to the same architecture (DiT-B). We
report FID-50k scores (lower is better) for 128, 4, and 1-step denoising. FlowFit achieves high-quality
samples using a single training phase and a one-step inference process. Results in parentheses indicate
settings beyond the intended use of the corresponding objective.

Single-stage methods CelebAHQ-256 ImageNet-256 (Class-Conditional)
128-Step 4-Step 1-Step 128-Step 4-Step 1-Step

Diffusion (8) 23.0 (123.4) (132.2) 39.7 (464.5) (467.2)
Flow Matching (11) 7.3 (63.3) (280.5) 17.3 (108.2) (324.8)
CT (24) 53.7 19.0 33.2 42.8 43.0 69.7
iCT (23) - - 21.7 - - 43.3
sCT (14) - - 19.3 - - 41.6
Shortcut Models (5) 6.9 13.8 20.5 15.5 28.3 40.3
FlowFit (ours) - - 14.1 - - 34.4

Figure 2: Latent Space Interpolation. All images shown are generated by the model. Each row
illustrates the result of applying one-step denoising to intermediate samples obtained by variance-
preserving interpolation between two independent Gaussian noise vectors.

5.4 COMPARISON

Table 1 highlights that FlowFit delivers high-quality generations in the single sampling step. Notably,
it surpasses all other single-phase training methods in one-step generation performance. Additional
qualitative results are presented in Appendix B.

5.5 SEMANTIC STRUCTURE IN THE LATENT SPACE OF FLOWFIT

To assess whether FlowFit gives rise to a semantically meaningful and smooth latent space, we
perform an interpolation experiment in the input noise domain. We begin by selecting pairs of
Gaussian noise vectors x00 and x10, and interpolate between them using a variance-preserving scheme
xn0 = nx10 +

√
1− n2 x00 with n ∈ [0, 1]. Each interpolated point xn0 is then processed through the

trained model to generate the corresponding output. Figure 2 shows representative results from this
interpolation. Even though no explicit smoothness constraints or regularization terms are imposed
during training, the outputs exhibit continuous and visually coherent changes. The interpolated
generations preserve high-level semantics while gradually morphing between endpoints, indicating
that FlowFit captures an underlying latent structure that supports semantically consistent transitions.

6 ABLATIONS

6.1 EFFECT OF BASIS ORDER

We investigate how the order of the polynomial basis affects image quality. Table 2 reports results for
different basis orders under identical training conditions: order 2 with basis functions {tk}2k=1, order
4 with basis functions {tk}4k=1, and order 8 with basis functions {tk}8k=1. Our results indicate that
higher-order bases consistently yield improved image quality.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Impact of the chosen polynomial basis order on image quality.

Basis Order {tk}2k=1 {tk}4k=1 {tk}8k=1

FID (↓) 18.2 15.9 14.1

Table 3: Impact of the basis nature using the same expansion order.

Basis Polynomial Trigonometric

FID ↓ 14.1 16.3

6.2 EFFECT OF THE BASIS TYPE

We evaluate the influence of the basis function type on generation quality while keeping the ex-
pansion order fixed. Specifically, we use {tk}8k=1 for the polynomial basis and {cos(2kπt)}4k=1 ∪
{sin(2kπt)}4k=1 for the trigonometric basis. As reported in Table 3, the polynomial basis yields a
better FID score of 14.1 compared to the trigonometric basis (16.3).

6.3 EFFECT OF STOP GRADIENT IN EQUATION 7) DURING TRAINING

In Table 4, we report the FID scores of generated images when training with and without gradient
stopping. We observe that disabling gradient stopping results in an additional computational overhead
and lower image quality.

7 LIMITATIONS AND FUTURE WORK

While FlowFit demonstrates strong performance, it has certain limitations. A key drawback is that
the current design is restricted to single-step inference. Another potential improvement would be
to use a single network instead of two during training. A promising direction for future research is
to generalize the framework to a unified model architecture that supports flexible sampling with a
variable number of inference steps.

Due to computational constraints, we explore the method up to order 8 in this work. It would be
interesting to investigate higher-order expansions and assess their impact. Another potential direction
is to explore alternative basis functions in the formulation.

8 REPRODUCIBILITY STATEMENT

To support reproducibility, we provide a complete implementation of our method, including training
and evaluation scripts, as part of the supplementary materials.

9 CONCLUSION

We introduce FlowFit, a novel generative model that enables single-step sampling. The key idea is a
new formulation of flow modeling through basis function fitting, which allows the model to learn the
generative trajectory efficiently. As a result, FlowFit achieves fast, high-quality generation making it
a practical solution for single-step generative modeling.

Table 4: Effect of applying gradient stopping at training (as in Equation 7) for CelebAHQ-256.

w/o stopping gradient w/ stopping gradient

FID ↓ 52.4 14.1

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

REFERENCES

[1] David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

[2] Errett Bishop. A generalization of the stone-weierstrass theorem. 1961.

[3] Louis De Branges. The stone-weierstrass theorem. Proceedings of the American Mathematical
Society, 10(5):822–824, 1959.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[5] Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

[6] Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows
for one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

[7] Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Joshua M Susskind. Boot: Data-free
distillation of denoising diffusion models with bootstrapping. In ICML 2023 Workshop on
Structured Probabilistic Inference {\&} Generative Modeling, 2023.

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[9] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[10] Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple
data augmentation. Advances in Neural Information Processing Systems, 36:65484–65516,
2023.

[11] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[12] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[13] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes
(celeba) dataset. Retrieved August, 15(2018):11, 2018.

[14] Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency
models. arXiv preprint arXiv:2410.11081, 2024.

[15] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for
improved sampling speed. arXiv preprint arXiv:2101.02388, 2021.

[16] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho,
and Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14297–14306, 2023.

[17] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 4195–4205, 2023.

[18] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[19] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
arXiv preprint arXiv:2202.00512, 2022.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

[20] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. In European Conference on Computer Vision, pages 87–103. Springer, 2024.

[21] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. pmlr, 2015.

[22] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations.

[23] Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

[24] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

[25] Joshua Tian Jin Tee, Kang Zhang, Hee Suk Yoon, Dhananjaya Nagaraja Gowda, Chanwoo
Kim, and Chang D Yoo. Physics informed distillation for diffusion models. arXiv preprint
arXiv:2411.08378, 2024.

[26] Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou, Ying Nian Wu, Kevin Patrick
Murphy, Tim Salimans, Ben Poole, and Ruiqi Gao. Em distillation for one-step diffusion
models, 2024. URL https://arxiv. org/abs/2405.16852.

[27] Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
Bill Freeman. Improved distribution matching distillation for fast image synthesis. Advances in
neural information processing systems, 37:47455–47487, 2024.

[28] Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T
Freeman, and Taesung Park. One-step diffusion with distribution matching distillation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
6613–6623, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Batch Size 64 (CelebA-HQ), 256 (Imagenet)
Training Steps 400,000 (CelebA-HQ), 800,000 (Imagenet)
Latent Encoder sd-vae-mse-ft
Latent Downsampling 8 (256x256x3 to 32x32x4)
Classifier Free Guidance 0 (CelebA-HQ), 1.5 (Imagenet)
Class Dropout Probability 0 (CelebA-HQ), 0.1 (Imagenet)
EMA Parameters Used For Evaluation? Yes
EMA Ratio 0.999
Optimizer AdamW
Learning Rate 0.00004
Weight Decay 0.0
Hidden Size 768
Patch Size 2
Number of Layers 12
Attention Heads 12
MLP Hidden Size Ratio 4
Basis Polynomial
Basis order 8

Table 5: Default hyperparameter settings used during training.

A THEORETICAL JUSTIFICATION FOR BASIS FUNCTION FLOW MODELING

A key question in FlowFit is whether the proposed basis expansion reliably approximates the target
flow. The following proposition confirms that this is indeed the case.
Proposition 1 (Universal Approximation of Flow Trajectories). Let ψ : (Rd × [0, 1]) → Rd be a
continuous trajectory from an initial point x0 to a target point x1. Then, for any ε > 0, there exists
a sufficiently large integer N > 0, a set of basis functions {γ(t)}Ni=1, and coefficients {Wi(x)}Ni=1
such that ∥∥∥∥∥ψ(x, t)−

(
N∑
i=1

γi(t) ·Wi(x)

)∥∥∥∥∥ < ε, ∀t ∈ [0, 1].

Proof. The results is immediately obtained by applying the Stone–Weierstrass theorem (3; 2), and
because Rd and [0, 1] are both locally compact Hausdorff spaces, and the basis functions and the
coefficients are all continuous.

B QUALITATIVE SAMPLES

Figures 3 and 4 present sample outputs from models trained on CelebA-HQ (unconditional) and
ImageNet (class-conditioned), respectively, using our proposed training procedure.

C IMPLEMENTATION DETAILS

Detailed training configurations and hyperparameters corresponding to the results presented in the
main paper are provided in Table 5.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Figure 3: Unfiltered samples generated on the unconditional CelebA-HQ dataset at a resolution of
256×256. These images were produced in a single forward pass using a DiT-B model trained for
400,000 iterations.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 4: Unfiltered samples generated on the unconditional ImageNet dataset at a resolution of
256×256. These images were produced in a single forward pass using a DiT-B model trained for
800,000 iterations.

13


	Introduction
	Related Work
	Two-Phase Training Approaches
	Single-Phase Training Approaches

	Preliminary: Diffusion and Flow Matching
	FlowFit: Direct Flow Parameterization via Basis Function Fitting
	Trajectory Parameterization
	 FlowFit Training
	Single-Step Generation

	Experiments
	Experimental Setup
	Baseline Approaches
	Evaluation Protocol
	Comparison
	Semantic Structure in the Latent Space of FlowFit

	Ablations 
	Effect of Basis Order
	Effect of the Basis Type
	Effect of stop gradient in Equation 7) during training

	Limitations and Future Work
	Reproducibility Statement
	Conclusion
	Theoretical Justification for Basis Function Flow Modeling
	Qualitative Samples 
	Implementation Details 

