

000 001 TAMING MOMENTUM: RETHINKING OPTIMIZER 002 STATES THROUGH LOW-RANK APPROXIMATION 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Modern optimizers like Adam and Muon are central to training large language
012 models, but their reliance on first- and second-order momenta introduces significant
013 memory overhead, which constrains scalability and computational efficiency.
014 In this work, we re-frame the exponential moving average (EMA) used in these
015 momenta as the training of a linear regressor via online gradient flow. Building on
016 this equivalence, we introduce LoRA-Pre, a novel low-rank optimizer designed
017 for efficient pre-training. Specifically, LoRA-Pre reduces the optimizer's memory
018 footprint by decomposing the full momentum matrix into a compact low-rank
019 subspace within the online linear learner, thereby maintaining optimization per-
020 formance while improving memory efficiency. We empirically validate LoRA-
021 Pre's efficacy by pre-training models from the Llama architecture family, scal-
022 ing from 60M to 1B parameters. LoRA-Pre achieves the highest performance
023 across all model sizes. Notably, LoRA-Pre demonstrates remarkable rank effi-
024 ciency, achieving comparable or superior results using only 1/8 the rank of base-
025 line methods. Beyond pre-training, we evaluate LoRA-Pre's effectiveness in fine-
026 tuning scenarios. With the same rank, LoRA-Pre consistently outperforms all
027 efficient fine-tuning baselines. Specifically, compared to standard LoRA, LoRA-
028 Pre achieves substantial improvements of 3.14 points on Llama-3.1-8B and 6.17
029 points on Llama-2-7B, validating our approach's effectiveness across both pre-
030 training and fine-tuning paradigms.

031 1 INTRODUCTION 032

033 Large Language Models (LLMs) (Guo et al., 2025; Yang et al., 2025; Grattafiori et al., 2024; Brown
034 et al., 2020; Comanici et al., 2025; Touvron et al., 2023; Jaech et al., 2024) have become the center-
035 piece of modern deep learning. Trained on trillions of tokens from heterogeneous sources and scaled
036 to unprecedented parameter counts, they demonstrate remarkable generalization and transfer capa-
037 bilities. Beyond, some LLMs have reasoning ability and leverage external tools (Guo et al., 2025;
038 Yang et al., 2025). These advances have transformed LLMs from statistical learners into versatile
039 systems, driving breakthroughs across research and real-world applications.

040 However, the success of LLMs comes with formidable training and adaptation costs (Grattafiori
041 et al., 2024). The vast number of trainable parameters demands enormous memory and compu-
042 tational resources during pre-training and fine-tuning. A key contributor to this burden lies in the
043 optimizer states. For instance, Adam (Kinga et al., 2015), the *de facto* optimizer for training LLMs,
044 maintains not only the model weights but also first- and second-order moment estimates of the
045 gradients. This triples memory usage and further exacerbates scalability bottlenecks, underscoring the
046 urgent need for more efficient optimization strategies.

047 To address this, a series of low-rank optimization methods has emerged. One prominent line of re-
048 search achieves optimizer state compression through projected gradient descent (Zhao et al., 2023;
049 Chen et al., 2024; Hao et al., 2024; Modoranu et al., 2025). These methods initialize projection
050 matrices via SVD or random mappings, project gradients into smaller subspaces for optimizer state
051 computation, and then map back to achieve parameter updates, thereby compressing the optimiza-
052 tion overhead. Additionally, such methods require periodic subspace updates to enable high-rank
053 parameter updates following $W = \Delta W_{T_1} + \Delta W_{T_2} + \dots$. However, due to the inability to update
subspaces instantly, error accumulation occurs in optimizer state computation, leading to subopti-

mal performance. This motivates the need for a more dynamic approach that can rapidly adapt to changing gradient subspaces.

In this paper, we propose LoRA-Pre, a novel low-rank optimizer for LLM pre-training that addresses these limitations through a different approach. Our key insight is an interesting mathematical connection between the exponential moving average (EMA) of momentum and linear regression. Specifically, we demonstrate that EMA momentum updates are mathematically equivalent to training an online linear regressor with gradient descent on the online gradient flow:

$$m \leftarrow \beta \cdot m + (1 - \beta) \cdot g \quad \iff \quad \min_m L(m, g) = \frac{1}{2} \cdot \|m - g\|_F^2, \quad (1)$$

where $m \in \mathbb{R}^{p \times q}$ represents the momentum, g is the online gradient, and β is the coefficient. This equivalence reveals that momentum accumulation can be viewed as fitting a linear model to approximate the gradient history.

Leveraging this theoretical insight, we develop a memory-efficient optimizer through momentum compression via low-rank factorization. Instead of maintaining the full momentum matrix m , we decompose it as the product of two low-rank matrices as $m = m_B \cdot m_A$, where $m_B \in \mathbb{R}^{p \times r}$ and $m_A \in \mathbb{R}^{r \times q}$, with $r \ll \min(p, q)$. This factorization reduces memory complexity from $p \times q$ to $(p + q) \times r$, yielding substantial memory savings for large-scale models. The low-rank momentum is then updated by solving $\min_{m_B, m_A} L(m_B, m_A, g) = \frac{1}{2} \cdot \|m_B \cdot m_A - g\|_F^2$, with explicit update rules derived in Theorem 3.1.

This theoretical framework enables us to compress any momentum-based optimizer. We demonstrate its versatility by developing LoRA-Pre variants for both Adam (Kinga et al., 2015) and Muon (Jordan et al., 2024) optimizers, with detailed algorithms provided in Appendix B. Extensive experiments across pre-training and fine-tuning tasks validate the effectiveness of our method, while ablation studies demonstrate strong robustness across different rank variations.

Our main contributions are summarized as follows:

- We establish a novel theoretical connection showing that exponential moving average (EMA) momentum updates are mathematically equivalent to training a linear regressor via online gradient flow.
- Based on this insight, we propose LoRA-Pre, a memory-efficient low-rank optimizer for pre-training that compresses optimizer states by factorizing the momentum matrix into low-rank components. We construct LoRA-Pre variants for both Adam and Muon optimizers, mathematically induce their low-rank update rules through our regression formulation, and achieve substantial memory reduction while preserving optimization dynamics.
- We provide extensive experimental validation across both pre-training and fine-tuning tasks, demonstrating that LoRA-Pre achieves superior performance with remarkable rank efficiency compared to existing baselines, confirming both the efficiency and effectiveness of our approach across diverse model scales and application scenarios.

2 RELATED WORKS

Low-Rank Adaptation. The scaling of Large Language Models (LLMs) has spurred the development of Parameter-Efficient Fine-Tuning (PEFT) methods (Hu et al., 2022; Liu et al., 2024; Wang et al., 2025; Ding et al., 2023; Liu et al., 2023; 2022; 2023; Hayou et al., 2024; Wang et al., 2024; Edalati et al., 2023; Zhang et al., 2023; Tastan et al., 2025), which aim to adapt pre-trained models to downstream tasks with reduced computational and memory overhead. Among these PEFT methods, Low-Rank Adaptation (LoRA) (Hu et al., 2022) and its variants (Wang et al., 2025; 2024; Hayou et al., 2024; Liu et al., 2024; Yen et al., 2025) have emerged as the predominant methodologies in the field.

LoRA is grounded in the principle that weight updates during fine-tuning possess an intrinsic low-rank structure (Aghajanyan et al., 2021). By re-parameterizing these updates as the product of two low-rank matrices, LoRA substantially reduces the number of trainable parameters while maintaining competitive performance, thereby enabling efficient adaptation of LLMs with limited computational resources. The effectiveness of LoRA has inspired a line of research aimed at addressing its

108 shortcomings. For instance, LoRA+ (Hayou et al., 2024) introduces differential learning rates for
 109 the two low-rank matrices to improve convergence and final task performance. DoRA (Liu et al.,
 110 2024) decomposes pre-trained weights into magnitude and direction components, applying LoRA
 111 specifically to the directional component to better capture fine-tuning dynamics. Recent works like
 112 LoFT (Tastan et al., 2025) and LoRA-Pro (Wang et al., 2025) establish theoretical connections be-
 113 tween LoRA and full fine-tuning via projected gradient equivalents.

114 While effective for fine-tuning, existing LoRA-based methods face fundamental challenges when
 115 applied to pre-training from scratch. Unlike fine-tuning, where small adaptations naturally exhibit
 116 low-rank structure, pre-training from random initialization requires full-rank weight updates to learn
 117 diverse representations across the entire parameter space (Lialin et al., 2024; Kamalakara et al.,
 118 2022). This mismatch between LoRA’s low-rank assumption and pre-training’s full-rank require-
 119 ments results in suboptimal performance in the pre-training stage.

120 **Low-Rank Pre-Training.** The pre-training cost of LLMs has surged dramatically with the rapid ex-
 121 pansion of model scale. A promising direction for mitigating these costs is compressing optimizer
 122 states into a low-rank subspace, a strategy that significantly reduces memory footprints and com-
 123 munication overhead (Zhao et al., 2023; Modoranu et al., 2025; Ma et al., 2025; Han et al., 2024;
 124 Zmushko et al., 2025; Chen et al., 2024; Hao et al., 2024; Shen et al., 2025; Mahdavinia & Mahdavi,
 125 2025; Zhang et al., 2025). For instance, GaLore (Zhao et al., 2023) utilizes Singular Value De-
 126 composition (SVD) to project gradient information into a low-rank subspace for state compression,
 127 subsequently projecting the optimized gradients back for parameter updates. To enhance compu-
 128 tational efficiency, Flora (Hao et al., 2024) substitutes the expensive SVD operation with random
 129 projection, while Fira (Chen et al., 2024) incorporates SGD momentum to leverage gradient infor-
 130 mation from the complementary subspace. However, these projection-based methods typically rely
 131 on *periodic* subspace updates to amortize costs, which often results in optimization discontinuities
 132 and error accumulation due to the lag in subspace adaptation.

133 Recent works have explored online strategies to address these limitations. MLorc (Shen et al., 2025)
 134 employs randomized SVD for online momentum compression. MoFaSGD (Mahdavinia & Mahdavi,
 135 2025) utilizes momentum factorization to approximate full-rank momentum online, ensuring non-
 136 convex convergence. Similarly, ADAPM (Zhang et al., 2025) compresses first-order momentum
 137 into a low-rank subspace via linear regression. In contrast, our proposed LoRA-Pre fundamentally
 138 reformulates momentum maintenance as an online regression task. By directly evolving low-rank
 139 factors via online gradient flow at every step, our approach achieves continuous subspace adaptation,
 140 effectively eliminating the instabilities associated with periodic updates or heuristic approximations.

143 3 METHOD

144 We begin by revisiting the *de facto* standard optimizer, Adam (Kinga et al., 2015), in Section 3.1.
 145 Then, we establish a connection between the exponential moving average and an online linear re-
 146 gressor over past gradients in Section 3.2. Finally, Section 3.3 introduces our efficient optimizer,
 147 LoRA-Pre, which compresses optimizer states through low-rank parameterization.

154 3.1 PRELIMINARY

155 We begin with Adam (Kinga et al., 2015), the *de facto* optimizer in modern deep learning, which
 156 combines the benefits of AdaGrad (Duchi et al., 2011) and RMSProp (Hinton et al., 2012) by main-
 157 taining estimates of the first and second moments of gradients to achieve adaptive learning rates and
 158 robust performance.

159 Consider an optimization problem where $x_t \in \mathcal{X}$ represents a data point drawn from a distribution
 160 p_{data} , $L(\cdot) : \mathcal{X} \rightarrow \mathcal{R}$ is a loss function, and $\theta \in \mathbb{R}^d$ are the optimized parameters. The Adam

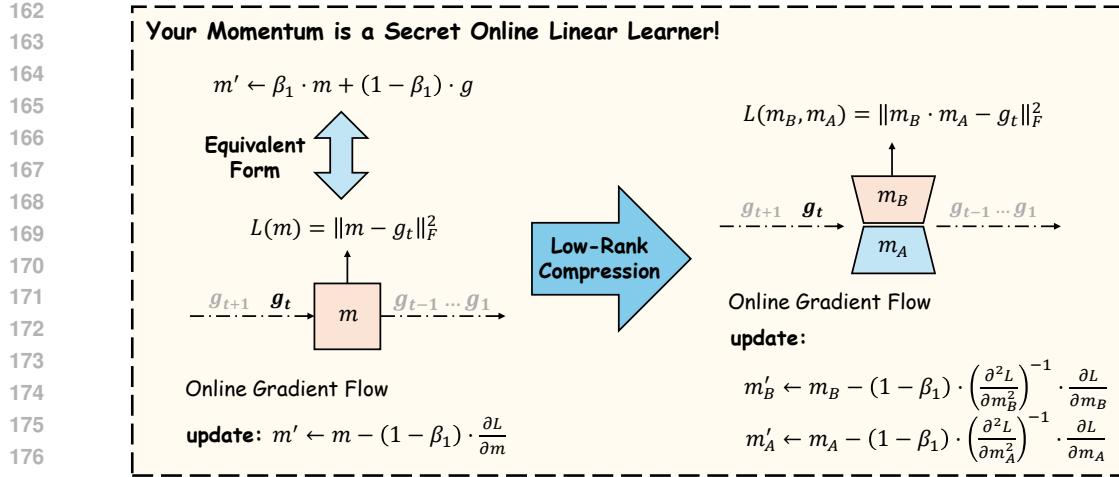


Figure 1: **Illustration of our LoRA-Pre method.** In this work, we establish a novel connection: *the exponential moving average (EMA) update for optimizer momentum is mathematically equivalent to training a linear regressor using online gradient descent.* Leveraging this equivalence, we propose compressing the optimizer states (i.e., the momenta) using low-rank matrices to reduce the memory footprint. Finally, the closed-form update rules for these matrices without requiring back-propagation are given by Theorem 3.1.

optimizer (Kinga et al., 2015) updates θ according to the following steps:

$$g_t = \frac{\partial L(x_t)}{\partial \theta}, \quad x_t \sim p_{data}(x), \quad \text{(Gradient Computation)} \quad (2)$$

$$m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t, \quad \text{(EMA of the First Moment)} \quad (3)$$

$$v_t = \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2, \quad \text{(EMA of the Second Moment)} \quad (4)$$

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}, \quad \hat{v}_t = \frac{v_t}{1 - \beta_2^t}, \quad \text{(Bias-Correction)} \quad (5)$$

$$\theta_{t+1} = \theta_t - \frac{\gamma}{\sqrt{\hat{v}_t} + \epsilon} \cdot \hat{m}_t. \quad \text{(Parameter Update)} \quad (6)$$

Here, m_t and v_t represent the Exponential Moving Average (EMA) of the first- and second-order moments, respectively. The hyperparameters include the learning rate γ , the exponential decay rates $\beta_1, \beta_2 \in [0, 1]$ for the moment estimates, and a small constant $\epsilon > 0$ for numerical stability.

Similar to the Adam optimization process, momentum also plays a critical role in other modern optimizers (Shazeer & Stern, 2018; Jordan et al., 2024), enhancing stability and convergence. However, storing momentum states introduces significant memory overhead. Our work directly addresses this by compressing the momentum term to reduce the optimizer’s memory footprint.

3.2 YOUR MOMENTUM IS A SECRETLY ONLINE REGRESSOR

To begin with, we reveal an interesting connection: momentum updates in modern optimizers are secretly performing online linear regression. Specifically, updating the momentum m via EMA is mathematically equivalent to optimizing m as the parameters of a linear regressor using online gradient flow.

To illustrate this, let’s take the first-order momentum as an example. The standard EMA update for the first-order momentum can be rewritten as follows:

$$m_{t+1} = \beta \cdot m_t + (1 - \beta) \cdot g, \quad (7)$$

$$= \underbrace{m_t}_{\text{weight}} - \underbrace{(1 - \beta)}_{\text{lr}} \cdot \underbrace{(m_t - g)}_{\text{gradient}}. \quad (8)$$

As shown in Equation (8), the EMA update is mathematically equivalent to a gradient descent step where the parameter being optimized is the momentum m , the learning rate is $1 - \beta$, and the gradient

216 is $\frac{\partial L(m_t, g)}{\partial m} = m_t - g$. This reformulation reveals that EMA updates essentially function as an online
 217 linear regressor that continuously adjusts the momentum weights based on incoming gradients. The
 218 underlying objective being minimized is:
 219

$$220 \min_m L(m, g) = \frac{1}{2} \cdot \|m - g\|_F^2. \quad (9)$$

221 This insight opens a new avenue for optimizer footprint optimization: since momentum parameters
 222 are linear model weights, we can apply standard model compression techniques to reduce optimizer
 223 memory usage during training.
 224

225 3.3 LORA-PRE: LOW-RANK ONLINE LINEAR REGRESSION

227 We now introduce LoRA-Pre, a new low-rank optimizer for pre-training. Building on the equivalence
 228 between exponential moving averages and online linear regression, LoRA-Pre compresses the
 229 momentum term m via a low-rank factorization, inspired by the LoRA technique (Hu et al., 2022).
 230 This approach can apply to any momentum-based optimizer, such as Adam (Kinga et al., 2015) and
 231 Muon (Jordan et al., 2024). We detail the compression strategies for both first- and second-order
 232 momentum terms below.
 233

234 **First-Order Momentum Compression.** Having established that momentum updates are equivalent
 235 to gradient descent on the objective $\min_m L(m, g) = \frac{1}{2} \cdot \|m - g\|_F^2$ in Section 3.2, we can now apply
 236 low-rank compression to reduce memory usage. Instead of storing and updating the full momentum
 237 matrix $m \in \mathbb{R}^{p \times q}$ directly, we decompose it with the product of two low-rank matrices $m_B \in \mathbb{R}^{p \times r}$
 238 and $m_A \in \mathbb{R}^{r \times q}$, $r \ll \min(p, q)$, i.e., $m = m_B \cdot m_A$. This factorization transforms our original
 239 optimization problem into:
 240

$$241 \min_{m_B, m_A} L(m_B, m_A, g) = \frac{1}{2} \cdot \|m_B \cdot m_A - g\|_F^2. \quad (10)$$

242 To maintain memory efficiency, we solve this optimization problem using standard gradient descent
 243 on the factorized matrices m_B and m_A . To ensure computational efficiency, we derive closed-form
 244 update rules for these matrices without requiring back-propagation, which is given by Theorem 3.1.
 245 We resort to Newton’s method for updating since the solution can be expressed in the form of EMA.
 246

Theorem 3.1. *Assume both matrices $m_B \in \mathbb{R}^{p \times r}, m_A \in \mathbb{R}^{r \times q}$ are full rank. For the
 247 objective $\min_{m_B, m_A} L(m_B, m_A, g) = \frac{1}{2} \cdot \|m_B \cdot m_A - g\|_F^2$, Newton’s method yields the
 248 following closed-form update rules:*

$$249 m_B \leftarrow (1 - \gamma_1) \cdot m_B + \gamma_1 \cdot g m_A^T (m_A m_A^T)^{-1}, \quad (11)$$

$$250 m_A \leftarrow (1 - \gamma_1) \cdot m_A + \gamma_1 \cdot (m_B^T m_B)^{-1} m_B^T g. \quad (12)$$

251 *Here, γ_1 is the learning rate for the factorized optimization problem.*

252 *Proof.* See Appendix A. □

253 **Second-Order Momentum Compression.** The compression of second-order momentum v presents
 254 additional challenges due to the constraints imposed by Adam’s parameter update rule. Since Equation
 255 (6) requires the square root of momentum, i.e., \sqrt{v} , the second-order momentum must be
 256 element-wise positive.
 257

258 A naive approach would parameterize the second momentum as $v = v_B \cdot v_A$ and optimize using the
 259 regression loss $L(v_B, v_A, g) = \frac{1}{2} \cdot \|v_B \cdot v_A - g\|_F^2$. From Theorem 3.1, we derive the corresponding
 260 parameter update rule:
 261

$$262 v_B \leftarrow (1 - \gamma_2) \cdot v_B + \gamma_2 \cdot g^2 v_A^T (v_A v_A^T)^{-1}, \quad (13)$$

$$263 v_A \leftarrow (1 - \gamma_2) \cdot v_A + \gamma_2 \cdot (v_B^T v_B)^{-1} v_B^T g^2. \quad (14)$$

264 Unfortunately, this approach cannot guarantee that $v_{i,j} > 0, \forall i, j$, making the computation of $\sqrt{v} =$
 265 $\sqrt{v_B \cdot v_A}$ problematic.
 266

267 To address this issue, we re-parameterize the second-order momentum as $v = (v_B \cdot v_A)^{\circ 2}$, where
 268 \circ denotes the Hadamard product. This re-parameterization ensures element-wise positivity while
 269

270 maintaining the low-rank structure. We then formulate the optimization of low-rank matrices v_B
 271 and v_A as:

$$272 \min_{v_B, v_A} L(v_B, v_A, g) = \frac{1}{2} \cdot \|v_B \cdot v_A - |g|\|_F^2. \quad (15)$$

274 And its update rule can be directly induced from Theorem 3.1.

$$276 v_B \leftarrow (1 - \gamma_2) \cdot v_B + \gamma_2 \cdot |g| v_A^T (v_A v_A^T)^{-1}, \quad (16)$$

$$277 v_A \leftarrow (1 - \gamma_2) \cdot v_A + \gamma_2 \cdot (v_B^T v_B)^{-1} v_B^T |g|. \quad (17)$$

279 **Low-Rank Optimizer Algorithms.** As shown before, our method can be applied to any optimizer
 280 with momentum to compress its optimizer state during pre-training and fine-tuning stages. The
 281 detailed pseudo-codes of LoRA-Pre optimizer for AdamW (Kinga et al., 2015) and Muon (Jordan
 282 et al., 2024) are provided in Appendix B.

284 4 EXPERIMENTAL RESULTS

286 In this section, we present extensive experiments to evaluate the effectiveness of our proposed
 287 method, LoRA-Pre. Our evaluation encompasses both memory-efficient pre-training and memory-
 288 efficient fine-tuning on downstream tasks.

289 We begin by assessing LoRA-Pre’s pre-training capabilities in Section 4.1. Following the exper-
 290 imental setup of Galore (Zhao et al., 2023), we train Llama (Touvron et al., 2023) models from
 291 scratch with varying model sizes of 60M, 130M, 350M, and 1B parameters. All models are trained
 292 on the Colossal Clean Crawled Corpus (C4) dataset (Raffel et al., 2020), a large-scale cleaned dataset
 293 specifically designed for language model pre-training. To simulate realistic pre-training conditions,
 294 the models are trained on sufficiently large volumes of data without repetition.

295 Subsequently, we evaluate LoRA-Pre’s fine-tuning performance in Section 4.2. We fine-tune both
 296 Llama-3.1-8B (Grattafiori et al., 2024) and Llama-2-7B (Touvron et al., 2023) models on a 100k
 297 subset sampled from the MetaMathQA dataset (Yu et al., 2024). The fine-tuned models are then
 298 evaluated on the GSM8k (Cobbe et al., 2021) and MATH500 (Lightman et al., 2024) datasets. Fi-
 299 nally, we present an ablation study of LoRA-Pre in Appendix 4.3

300 **Implementation Details.** To ensure fair comparison, we align the experimental setup with that of
 301 Galore (Zhao et al., 2023). By default, LoRA-Pre is applied to all parameters in the attention and
 302 MLP layers, while other parameters are optimized using the standard Adam (Kinga et al., 2015)
 303 optimizer. We set the default ranks for the 60M, 130M, 350M, and 1B parameter models as 128,
 304 256, 256, and 512, respectively. The optimal learning rate is selected from the set {0.01, 0.005,
 305 0.001, 0.0005, 0.0001} based on validation perplexity. To maintain strict fairness in comparison,
 306 we retain the same scale factor of 0.25 as used in Galore (Zhao et al., 2023). For memory-efficient
 307 fine-tuning tasks, we set the default rank as 8 and set the learning rate as $2e - 5$ by default.

309 4.1 MEMORY-EFFICIENT PRE-TRAINING

311 In this section, we evaluate the pre-training performance of our proposed method, LoRA-Pre. Our
 312 experimental setup strictly follows that of Galore (Zhao et al., 2023). We compare LoRA-Pre against
 313 several baseline methods, including both full optimizers and low-rank optimizers: 1) **Adam** (Kinga
 314 et al., 2015): The *de facto* optimizer in modern deep learning that utilizes first- and second-order
 315 momentum statistics to dynamically adjust learning rates and stabilize training. 2) **Muon** (Jordan
 316 et al., 2024): A novel preconditioned optimizer that updates parameters by orthogonalizing the
 317 first-order momentum. 3) **Galore** (Zhao et al., 2023): A low-rank optimizer that projects gradients
 318 using SVD and computes optimizer states in a reduced subspace. 4) **Low-Rank** (Kamalakara et al.,
 319 2022): A traditional low-rank approach that directly represents weights through learnable low-rank
 320 factorization $W = BA$, 5) **LoRA** (Hu et al., 2022): The most widely adopted low-rank method for
 321 fine-tuning that factorizes weights as $W = W_0 + BA$. For pre-training scenarios, we maintain W_0
 322 as the full-rank initialization matrix. 6) **ReLoRA** (Lialin et al., 2024): A LoRA variant designed
 323 for pre-training that periodically merges BA into W and initialize BA with optimizer state resets.
 7) **SLTrain** (Han et al., 2024): A sparse plus low-rank approach that parameterizes weights as
 324 $W = S + BA$, where both components are jointly optimized. 8) **LORO** (Mo et al., 2025): A method

324
 325 Table 1: Comparison with low-rank algorithms on pre-training various sizes of Llama models on the
 326 C4 dataset. We report the validation perplexity (\downarrow) on a hold-out C4 test set. The best and second-
 327 best performance within the low-rank optimizers are highlighted with **bold** and underline. * denotes
 328 the results are reproduced by ourselves.

Model Size	60M	130M	350M	1B
r/d_{model}	128 / 512	256 / 768	256 / 1024	512 / 2048
Training Tokens	1.1B	2.2B	6.4B	13.1B
Adam (Kinga et al., 2015)	34.09	25.08	18.80	15.56
Muon (Jordan et al., 2024)	28.43	21.86	16.17	13.41
Galore (Zhao et al., 2023)	34.88	25.36	18.95	15.64
Low-Rank (Kamalakara et al., 2022)	78.18	45.51	37.41	142.53
LoRA (Hu et al., 2022)	34.99	33.92	25.58	19.21
ReLoRA (Lialin et al., 2024)	37.04	29.37	29.08	18.33
SLTrain (Han et al., 2024)	34.15	26.04	19.42	16.14
LORO (Mo et al., 2025)	33.96	24.59	18.84	15.19
Fira* (Chen et al., 2024)	<u>31.19*</u>	<u>24.51*</u>	<u>17.22*</u>	<u>14.31</u>
LoRA-Pre (Adam)	32.57	<u>23.78</u>	16.36	13.53
LoRA-Pre (Muon)	30.76	23.05	<u>16.97</u>	<u>13.92</u>

344
 345 that optimizes LoRA parameters by strictly constraining updates within the low-rank manifold. 9)
 346 **Fira** (Chen et al., 2024): A method that improves Galore with Norm-Based Scaling and Norm-
 347 Growth Limiter.

348
 349 We pre-trained Llama-series models of different sizes to evaluate LoRA-Pre against these baseline
 350 methods. By default, all low-rank optimizers are built upon the Adam (Kinga et al., 2015) optimizer
 351 foundation. All the low-rank optimizers are based on the Adam (Kinga et al., 2015) optimizer. To
 352 demonstrate the generalizability of our approach, we also evaluate LoRA-Pre with Muon (Algo-
 353 rithm 2), as our method is compatible with any momentum-based optimizer.

354 The results, presented in Table 1, demonstrate that our method achieves superior performance
 355 across multiple model scales. Specifically, LoRA-Pre (Adam) and LoRA-Pre (Muon) attain
 356 either the highest or second-highest performance across almost all four different model sizes
 357 (60M/130M/350M/1B), validating the effectiveness of our approach. While Fira yields competi-
 358 tive results on the 60M model, LoRA-Pre consistently outperforms it on larger scales (130M, 350M,
 359 and 1B), likely because our method avoids the error accumulation associated with Fira’s projected
 360 gradients. And LoRA-Pre (Adam) outperforms the previous best efficient baselines by substantial
 361 margins of 0.81, 2.45, and 1.6 perplexity points for the 130M, 350M, and 1B models, respectively.
 362 Furthermore, when integrated with the Muon (Jordan et al., 2024) optimizer, LoRA-Pre (Muon)
 363 achieves additional improvements on both 60M and 130M scale models, demonstrating our method’s
 364 ability to generalize across different optimizers.

365 4.2 MEMORY-EFFICIENT FINE-TUNING

366
 367 In this section, we evaluate the fine-tuning performance of LoRA-Pre on mathematical tasks. We
 368 fine-tune Llama-2-7B and Llama-3.1-8B models on the MetaMath100k dataset and evaluate their
 369 performance on GSM8K (Cobbe et al., 2021) and MATH500 (Lightman et al., 2024). To ensure fair
 370 comparison, we maintain consistent hyperparameters and training configurations across all methods.

371
 372 We select several memory-efficient fine-tuning baselines for comparison, including 1) **LoRA** (Hu
 373 et al., 2022): the standard low-rank fine-tuning method. 2) **rsLoRA** (Kalajdzievski, 2023): an
 374 improved LoRA variant that optimizes the scaling factor through rank-stabilized normalization. 3)
 375 **DoRA** (Liu et al., 2024): a LoRA extension that decomposes weight updates into magnitude and
 376 directional components for more effective optimization. 4) **Galore** (Zhao et al., 2023): a memory-
 377 efficient optimizer that projects gradients into low-rank subspaces using SVD decomposition. To
 378 demonstrate cross-optimizer compatibility, we evaluate Muon-based versions, including: 1) **Galore-**

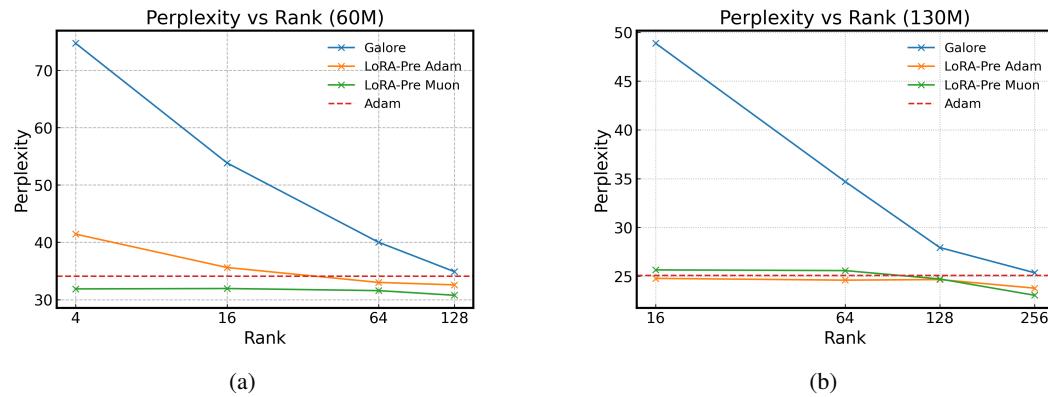
378
 379 **Table 2: Results of memory-efficient fine-tuning methods.** We compare our method with ef-
 380 ficient fine-tuning methods includes LoRA (Hu et al., 2022), rsLoRA (Kalajdzievski, 2023), and
 381 DoRA (Liu et al., 2024), and an efficient optimizer Galore (Zhao et al., 2023). The models are fine-
 382 tuned with MetaMath100k (Yu et al., 2024) dataset, and evaluate on GSM8k (Cobbe et al., 2021)
 383 and MATH500 (Lightman et al., 2024). We highlight the best performance on Adam-like optimizer
 384 and Muon-like optimizer with **bold**.

Method	Llama-3.1-8B			Llama-2-7B		
	GSM8k	MATH500	Average	GSM8k	MATH500	Average
LoRA (Hu et al., 2022)	70.76	17.06	43.91	44.62	7.34	25.98
rsLoRA (Kalajdzievski, 2023)	71.06	17.46	44.26	48.79	5.75	27.27
DoRA (Liu et al., 2024)	71.06	17.86	44.46	44.39	6.55	25.47
Galore (Zhao et al., 2023)	65.08	18.65	41.87	36.44	8.33	22.39
LoRA-Pre (Adam)	76.44	17.66	47.05	57.35	6.94	32.15
Galore-Muon (Zhao et al., 2023)	63.41	18.06	40.74	33.11	4.37	18.74
LoRA-Muon (Hu et al., 2022)	70.30	19.25	44.78	35.15	6.15	20.65
LoRA-Pre (Muon)	72.65	20.83	46.74	47.20	6.15	26.68

397 **Muon:** who apply the Galore (Zhao et al., 2023) algorithm to the Muon optimizer, and 2) **LoRA-
 398 Muon:** optimizing LoRA with the Muon optimizer.

399 The results are presented in Table 2. LoRA-Pre consistently achieves the highest scores across all
 400 experimental configurations, demonstrating superior performance regardless of the base model or
 401 optimizer used. The improvements are particularly notable across different settings: when training
 402 Llama-3.1-8B with Adam, LoRA-Pre shows an average improvement of 2.59 points over the second-
 403 best method, while with Llama-2-7B and Adam, this improvement increases to 4.88 points. When
 404 using the Muon optimizer, LoRA-Pre maintains its advantage with improvements of 1.96 and 6.03
 405 points for the respective models. These results confirm LoRA-Pre’s effectiveness across diverse
 406 experimental conditions and its robust compatibility with different optimizers.

408 4.3 ABLATION STUDY



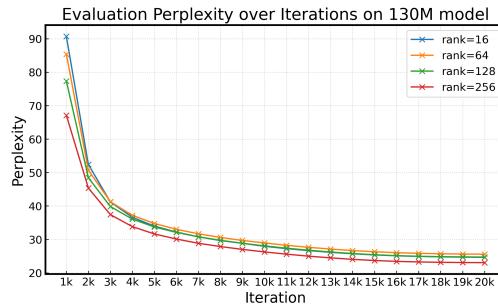
423 **Figure 2: Rank efficiency comparison across efficient optimization methods.** Perplexity versus
 424 rank for 60M (left) and 130M (right) parameter models, demonstrating LoRA-Pre’s superior perfor-
 425 mance at lower ranks compared to baseline methods.

426 **Ablation of Different Rank.** To systematically evaluate how rank selection affects the performance
 427 of LoRA-Pre compared to other efficient optimization methods, we conduct comprehensive experi-
 428 ments across different rank configurations. We evaluate LoRA-Pre (both Adam and Muon variants)
 429 against GaLore (Zhao et al., 2023) on 60M and 130M parameter models. We test ranks of $\{4, 16,$
 430 $64, 128\}$ for the 60M model and $\{16, 64, 128, 256\}$ for the 130M model to observe performance
 431 trends across different memory budgets.

432 Figure 2 shows that all methods improve with increasing rank, but exhibit different rank efficiency.
 433 LoRA-Pre consistently achieves better perplexity at lower ranks compared to GaLore. First, all
 434 methods show improved performance with increasing rank, but they differ significantly in their rank
 435 efficiency. When comparing specific configurations, the efficiency differences become clear. On the
 436 60M model, LoRA-Pre Adam at rank=16 achieves comparable performance to GaLore at rank=128,
 437 representing an $8\times$ reduction in rank requirement. Similarly, on the 130M model, LoRA-Pre Adam
 438 at rank=16 matches GaLore’s performance at rank=256, representing a $16\times$ efficiency improvement.
 439 LoRA-Pre Muon shows higher rank tolerance than LoRA-Pre Adam. We attribute LoRA-Pre’s rank
 440 efficiency to its continuous subspace adaptation mechanism. GaLore performs periodic subspace
 441 updates, creating intervals where the subspace becomes misaligned with the gradient structure. To
 442 compensate for this error accumulation, GaLore requires larger subspaces. In contrast, LoRA-Pre
 443 adjusts its subspace at each step, maintaining better alignment and thus achieving effective optimiza-
 444 tion with smaller subspaces.
 445

446 To gain deeper insights into this rank efficiency, we examine the training dynamics of LoRA-Pre
 447 Muon across different rank configurations. Figure 3 visualizes the perplexity trajectories for the
 130M model with ranks of 256, 128, 64, and 16.

448 The results reveal an intriguing convergence pattern: while smaller ranks initially exhibit higher
 449 perplexity values, this performance gap diminishes rapidly as training progresses. This behav-
 450 ior demonstrates that LoRA-Pre’s dynamic sub-
 451 space update mechanism can efficiently capture
 452 the evolving momentum structure during training,
 453 even when operating with constrained ranks. This
 454 rapid adaptation capability explains why LoRA-
 455 Pre maintains competitive performance across a
 456 wide range of rank settings, making it both ro-
 457 bust to rank selection and practically appealing for
 458 memory-constrained training scenarios.
 459



460 Figure 3: Test perplexity for LoRA-Pre Muon
 461 with different ranks during training.

462 Table 3: **Results of pre-training using different efficient Muon optimizers.**

Model Size	60M	130M	350M
Muon (Jordan et al., 2024)	28.43	21.86	16.17
Muon w/o momentum	32.15	24.23	17.33
Galore Muon (Zhao et al., 2023)	34.39	25.16	19.24
Fira Muon (Chen et al., 2024)	34.45	24.85	17.40
LoRA-Pre Muon	30.76	23.05	16.97

463 **Ablation of Low-Rank Muon Optimizers.** In this section, we evaluate the effectiveness of current
 464 efficient optimizers by extending them to the recently proposed Muon optimizer (Jordan et al., 2024).
 465 Since existing efficient optimizers were originally designed for Adam (Kinga et al., 2015), their
 466 compatibility and performance with other optimizers remain unexplored. We conduct experiments
 467 on 60M, 130M, and 350M parameter models, comparing LoRA-Pre against GaLore (Zhao et al.,
 468 2023) and Fira (Chen et al., 2024) by adapting their implementations to use Muon. Standard Muon
 469 serves as the upper bound, while Muon without momentum provides the lower bound. The Muon-
 470 based algorithm for LoRA-Pre is presented in Algorithm 2.

471 The results in Table 3 reveal two significant findings. First, LoRA-Pre Muon consistently outper-
 472 forms all other efficient optimizers, achieving improvements of 3.54, 1.80, and 0.43 points over the
 473 second-best method at 60M, 130M, and 350M parameters, respectively. Second, projection-based
 474 methods surprisingly perform worse than basic Muon without momentum, despite incorporating
 475 momentum computation. This counterintuitive result exposes fundamental generalization limita-
 476 tions of projection-based gradient descent methods when applied to different optimizers. We conjecture
 477 this phenomenon to the periodic subspace updates in projection-based methods, which introduce
 478 momentum computation errors that subsequently affect Muon’s orthogonal update calculations. In

486 contrast, LoRA-Pre continuously updates its subspace, enabling better capture of the orthogonal
 487 space during Muon’s update process and achieving superior performance.
 488

489 **5 CONCLUSION**
 490

491 In this paper, we present LoRA-Pre, a novel low-rank efficient optimizer. We establish that EMA
 492 momentum updates are mathematically equivalent to training an online linear regressor with
 493 gradient descent on the online gradient flow. Building on this insight, we propose compressing the
 494 momentum component through low-rank factorization, deriving update rules that maintain the EMA
 495 form while operating in a compressed parameter space. We provide two variants: LoRA-Pre Adam
 496 and LoRA-Pre Muon. Extensive experiments on pre-training and fine-tuning tasks demonstrate that
 497 LoRA-Pre achieves competitive or superior performance across all evaluated tasks and model sizes.
 498 Notably, our method exhibits excellent rank robustness, requiring only 1/8 or fewer ranks compared
 499 to previous methods while achieving comparable results. The approach generalizes effectively to
 500 various optimizers, making it a versatile solution for memory-efficient optimization.
 501

502 **REFERENCES**
 503

504 Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the ef-
 505 fectiveness of language model fine-tuning. In *ACL-IJCNLP*, 2021.

506 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 507 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 508 few-shot learners. In *NeurIPS*, 2020.

509

510 Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xiangyu Yue, Ye Yuan, and Guoren Wang.
 511 Fira: Can we achieve full-rank training of llms under low-rank constraint? *arXiv preprint*
 512 *arXiv:2410.01623*, 2024.

513

514 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 515 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 516 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

517

518 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 519 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 520 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 521 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

522

523 Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
 524 Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
 525 language models. *Nature Machine Intelligence*, 5(3):220–235, 2023.

526

527 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
 528 stochastic optimization. *JMLR*, 12(7), 2011.

529

530 Ali Edalati, Marzieh Tahaei, Ivan Kobyzhev, Vahid Partovi Nia, James J Clark, and Mehdi Reza-
 531 gholizadeh. Krona: Parameter efficient tuning with kronecker adapter. In *NeurIPS Workshop*,
 532 2023.

533

534 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 535 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 536 of models. *arXiv preprint arXiv:2407.21783*, 2024.

537

538 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 539 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 540 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

541

542 Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Kumar Jawanpuria, and
 543 Bamdev Mishra. Sltrain: a sparse plus low rank approach for parameter and memory efficient
 544 pretraining. In *NeurIPS*, 2024.

540 Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
 541 compressors. In *ICML*, 2024.

542 Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
 543 *arXiv preprint arXiv:2402.12354*, 2024.

544 Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
 545 lecture 6a overview of mini-batch gradient descent. 2012.

546 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
 547 et al. Lora: Low-rank adaptation of large language models. In *ICLR*, 2022.

548 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 549 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv
 550 preprint arXiv:2412.16720*, 2024.

551 Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
 552 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL <https://kellerjordan.github.io/posts/muon/>.

553 Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. *arXiv preprint
 554 arXiv:2312.03732*, 2023.

555 Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat Venkitesh, Jimmy Ba, Yarin Gal, and Aidan N
 556 Gomez. Exploring low rank training of deep neural networks. *arXiv preprint arXiv:2209.13569*,
 557 2022.

558 Diederik Kinga, Jimmy Ba Adam, et al. Adam: A method for stochastic optimization. In *ICLR*,
 559 2015.

560 Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-rank
 561 training through low-rank updates. In *ICLR*, 2024.

562 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 563 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *ICLR*, 2024.

564 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
 565 train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
 566 cessing. *ACM Computing Surveys*, 55(9):1–35, 2023.

567 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 568 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *ICML*,
 569 2024.

570 Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
 571 Prompt tuning can be comparable to fine-tuning across scales and tasks. In *ACL*, 2022.

572 Chao Ma, Wenbo Gong, Meyer Scetbon, and Edward Meeds. Swan: Sgd with normalization and
 573 whitening enables stateless llm training. In *ICML*, 2025.

574 Pouria Mahdavinia and Mehrdad Mahdavi. Low-rank momentum factorization for memory efficient
 575 training. *TMLR*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=W3D3TVo9a3>.

576 Zhanfeng Mo, Long-Kai Huang, and Sinno Jialin Pan. Parameter and memory efficient pretraining
 577 via low-rank riemannian optimization. In *ICLR*, 2025.

578 Ionut-Vlad Modoranu, Mher Safaryan, Erik Schultheis, and Dan Alistarh. Svd-free low-rank adap-
 579 tive gradient optimization for large language models. *arXiv preprint arXiv:2505.17967*, 2025.

580 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 581 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 582 transformer. *JMLR*, 21(140):1–67, 2020.

594 Noam Shazeer and Mitchell Stern. Adaptive learning rates with sublinear memory cost. In *ICML*,
 595 2018.

596

597 Wei Shen, Yaxiang Zhang, Minhui Huang, Mengfan Xu, Jiawei Zhang, and Cong Shen. Mlorc:
 598 Momentum low-rank compression for large language model adaptation. *arXiv preprint*
 599 *arXiv:2506.01897*, 2025.

600 Nurbek Tastan, Stefanos Laskaridis, Martin Takáč, Karthik Nandakumar, and Samuel Horváth.
 601 LoFT: Low-rank adaptation that behaves like full fine-tuning. In *ICML Workshop*, 2025. URL
 602 <https://openreview.net/forum?id=AigAsBDtdj>.

603

604 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 605 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 606 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

607 Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
 608 In *NeurIPS*, 2024.

609

610 Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Lora-pro: Are low-rank adapters
 611 properly optimized? In *ICLR*, 2025.

612 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 613 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 614 *arXiv:2505.09388*, 2025.

615

616 Jui-Nan Yen, Si Si, Zhao Meng, Felix Yu, Sai Surya Duvvuri, Inderjit S Dhillon, Cho-Jui Hsieh, and
 617 Sanjiv Kumar. Lora done rite: Robust invariant transformation equilibration for lora optimization.
 618 In *The Thirteenth International Conference on Learning Representations*, 2025.

619 Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
 620 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
 621 for large language models. In *ICLR*, 2024.

622

623 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
 624 Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *ICLR*, 2023.

625

626 Yimu Zhang, Yuanshi Liu, and Cong Fang. Adapm: a partial momentum algorithm for llm training.
 627 *arXiv preprint arXiv:2510.09103*, 2025.

628

629 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
 630 Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In *ICML*, 2023.

631

632 Philip Zmushko, Aleksandr Beznosikov, Martin Takáč, and Samuel Horváth. Frugal: Memory-
 633 efficient optimization by reducing state overhead for scalable training. In *ICML*, 2025.

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **Taming Momentum: Rethinking Optimizer States** 649 **Through Low-Rank Approximation**

653 **Appendix**

655 The structure of the Appendix is as follows,

- 656 • Appendix A contains the proofs of the theorems in the main manuscript.
- 657 • Appendix B details the optimization algorithms of the proposed method.
- 658 • Appendix C provides theoretical analysis of approximation error and convergence of the
 659 proposed method.
- 660 • Appendix D provides additional experiments of our method.
- 661 • Appendix E details the LLM usage in this paper.

664 **A PROOF OF THEORETICAL RESULTS**

667 **Theorem.** Assume matrices $m_B \in \mathbb{R}^{p \times r}$, $m_A \in \mathbb{R}^{r \times q}$ are both full rank. For the objective
 668 $\min_{m_B, m_A} L(m_B, m_A, g) = \frac{1}{2} \cdot \|m_B \cdot m_A - g\|_F^2$, Newton's method yields the following
 669 closed-form update rules:

$$670 \quad m_B \leftarrow (1 - \gamma_1) \cdot m_B + \gamma_1 \cdot g m_A^T (m_A m_A^T)^{-1}, \quad (18)$$

$$672 \quad m_A \leftarrow (1 - \gamma_1) \cdot m_A + \gamma_1 \cdot (m_B^T m_B)^{-1} m_B^T g. \quad (19)$$

673 Here, γ_1 is the learning rate for the factorized optimization problem.

676 *Proof.* We aim to derive Newton's method update rules for the optimization problem
 677 $\min_{m_B, m_A} L(m_B, m_A, g) = \frac{1}{2} \|m_B m_A - g\|_F^2$. Our approach begins with computing the first-
 678 order gradients, then proceeds to the Hessian computation, and finally establishes the connection to
 679 exponential moving average (EMA) updates. To start, we compute the first-order partial derivatives:

$$680 \quad \frac{\partial L}{\partial m_B} = (m_B \cdot m_A - g) \cdot m_A^T \quad (20)$$

$$683 \quad \frac{\partial L}{\partial m_A} = m_B^T \cdot (m_B \cdot m_A - g) \quad (21)$$

685 While standard gradient descent would directly use these gradients to update the parameters, we
 686 instead pursue Newton's method because it yields a more elegant form that naturally resembles
 687 EMA updates. For Newton's method, we need the second-order derivatives (Hessian matrices).
 688 Computing these second-order partial derivatives gives us:

$$689 \quad H_{BB} = \frac{\partial^2 L}{\partial m_B^2} = \frac{\partial (m_B \cdot m_A - g) \cdot m_A^T}{\partial m_B} = m_A m_A^T \otimes I_p \quad (22)$$

$$692 \quad H_{AA} = \frac{\partial^2 L}{\partial m_A^2} = \frac{\partial m_B^T \cdot (m_B \cdot m_A - g)}{\partial m_A} = I_q \otimes m_B^T m_B \quad (23)$$

694 Using these Hessian matrices, we can now compute the Newton directions by solving the linear
 695 systems $H \cdot d = \nabla L$, which yields:

$$697 \quad dm_B = H_{BB}^{-1} \cdot \frac{\partial L}{\partial m_B} = m_B - g m_A^T (m_A m_A^T)^{-1} \quad (24)$$

$$699 \quad dm_A = H_{AA}^{-1} \cdot \frac{\partial L}{\partial m_A} = m_A - (m_B^T m_B)^{-1} m_B^T g \quad (25)$$

701 The key insight emerges when we apply these Newton directions with learning rate γ_1 . Substituting
 the Newton directions into the update formula $x \leftarrow x - \gamma_1 d_x$, we obtain:

702

703

$$m_B \leftarrow m_B - \gamma_1 dm_B \quad (26)$$

$$\leftarrow m_B - \gamma_1 \left[m_B - g m_A^T (m_A m_A^T)^{-1} \right] \quad (27)$$

$$\leftarrow (1 - \gamma_1) \cdot m_B + \gamma_1 \cdot g m_A^T (m_A m_A^T)^{-1} \quad (28)$$

$$m_A \leftarrow m_A - \gamma_1 dm_A \quad (29)$$

$$\leftarrow m_A - \gamma_1 [m_A - (m_B^T m_B)^{-1} m_B^T g] \quad (30)$$

$$\leftarrow (1 - \gamma_1) \cdot m_A + \gamma_1 \cdot (m_B^T m_B)^{-1} m_B^T g \quad (31)$$

These final expressions reveal the remarkable property that Newton's method naturally produces update rules in the form of exponential moving averages, where each new parameter value is a weighted combination of the previous value and a target value derived from the optimization objective.

To further illustrate this connection, we note that in the uncompressed case where we optimize $\min_m L(m, g) = \frac{1}{2} \|m - g\|_F^2$, Newton's method similarly yields the classic EMA update:

$$m \leftarrow m - \gamma \cdot H_{mm}^{-1} \cdot \frac{\partial L}{\partial m} \quad (32)$$

$$\leftarrow (1 - \gamma) \cdot m + \gamma \cdot g \quad (33)$$

This consistency across problem formulations demonstrates the fundamental nature of this EMA-like structure in Newton's method and justifies our preference for this approach over standard gradient descent.

725

726

B DETAILED ALGORITHMS OF LoRA-PRE FOR ADAM AND MUON OPTIMIZER

This section presents the LoRA-Pre algorithms for both Adam (Kinga et al., 2015) and Muon (Jordan et al., 2024) optimizers.

B.1 ALGORITHM OF LoRA-PRE FOR ADAM

The Adam optimizer update rules under LoRA-Pre have been established in Section 3.

First-order momentum updates: For the first-order momentum term with parameterization $m = m_B \cdot m_A$, the update rules are:

$$m'_B \leftarrow (1 - \gamma_1) \cdot m_B + \gamma_1 \cdot g m_A^T (m_A m_A^T)^{-1}. \quad (34)$$

$$m'_A \leftarrow (1 - \gamma_1) \cdot m_A + \gamma_1 \cdot (m_B^T m_B)^{-1} m_B^T q. \quad (35)$$

By default, we set $1 - \gamma_1 = \sqrt{\beta_1}$, which ensures that after the update, $m' = m'_B \cdot m'_A = \beta_1 \cdot m_B \cdot m_A + \dots$, making the EMA coefficient consistent with standard Adam.

Second-order momentum updates: For the second-order momentum term with parameterization $v = (v_B, v_A)^{o2}$, the update rules are:

$$v'_B \leftarrow (1 - \gamma_2) \cdot v_B + \gamma_2 \cdot |a| v_A^T (v_A v_A^T)^{-1} \quad (36)$$

$$v'_A \leftarrow (1 - \gamma_2) \cdot v_A + \gamma_2 \cdot (v_{\bar{A}}^T v_B)^{-1} v_{\bar{A}}^T |a| \quad (37)$$

Analogously, we set $1 - \gamma_2 = \beta_2^{0.25}$ by default, which ensures that $v' = (v'_B \cdot v'_A)^2 = \beta_2 \cdot (v_B \cdot v_A)^2 + \dots$

Complete algorithm: Based on these update formulas, Algorithm 1 presents the complete LoRA-Pre implementation for the Adam optimizer, demonstrating how these factorized momentum updates integrate seamlessly into the standard Adam framework.

756
757
758
759
760
761
762
763
764
765
766

Algorithm 1 Comparison of Adam and Adam with LoRA-Pre

767 **Require:** Initial learning rate γ , weight decay λ , $\beta_1, \beta_2 \in [0, 1]$, $\gamma_1, \gamma_2 \in [0, 1]$, $\epsilon > 0$

768 1: Initialize parameters θ_0 , time step $t \leftarrow 0$,
 769 first moment $m_0 \leftarrow 0$, second moment $v_0 \leftarrow 0$,
 770 first low-rank moment $m_{B,0} \leftarrow 0$, $m_{A,0} \leftarrow \mathcal{N}(0, 0.02)$,
 771 second low-rank moment $v_{B,0} \leftarrow 0$, $v_{A,0} \leftarrow \mathcal{N}(0, 0.02)$.
 772 2: **repeat**
 773 3: $t \leftarrow t + 1$
 774 4: $g_t \leftarrow \nabla_{\theta} L_t(\theta_{t-1})$
 775 5: # Update first moment
 776 6: $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$
 777 7: $m_t \leftarrow \beta_1 \cdot m_{B,t-1} \cdot m_{A,t-1} + (1 - \beta_1) \cdot g_t$
 778 8: $m_{B,t} \leftarrow \gamma_1 \cdot m_{B,t-1} + (1 - \gamma_1) \cdot g_t m_{A,t-1} (m_{A,t-1} m_{A,t-1}^T)^{-1}$
 779 9: $m_{A,t} \leftarrow \gamma_1 \cdot m_{A,t-1} + (1 - \gamma_1) \cdot (m_{B,t-1}^T m_{B,t-1})^{-1} m_{B,t-1}^T g_t$
 780 10: # Update second moment
 781 11: $v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^{\circ 2}$
 782 12: $v_t \leftarrow \beta_2 (v_{B,t-1} \cdot v_{A,t-1})^{\circ 2} + (1 - \beta_2) g_t^{\circ 2}$
 783 13: $v_{B,t} \leftarrow \gamma_2 v_{B,t-1} + (1 - \gamma_2) |g_t| v_{A,t-1} (v_{A,t-1} v_{A,t-1}^T)^{-1}$
 784 14: $v_{A,t} \leftarrow \gamma_2 v_{A,t-1} + (1 - \gamma_2) (v_{B,t-1}^T v_{B,t-1})^{-1} v_{B,t-1}^T |g_t|$
 785 15:
 786 16: $\hat{m}_t \leftarrow m_t / (1 - \beta_1^t)$
 787 17: $\hat{v}_t \leftarrow v_t / (1 - \beta_2^t)$
 788 18: $\theta_t \leftarrow \theta_{t-1} - \gamma \left(\frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} + \lambda \theta_{t-1} \right)$
 789 19: **until** stopping criterion is met
 790 20: **return** Optimized parameters θ_t

791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 B.2 ALGORITHM OF LORA-PRE FOR MUON
811812 In this section, we provide Muon (Jordan et al., 2024) optimizer with LoRA-Pre.
813814 **First-order momentum updates:** For the Muon optimizer, we derive the LoRA-Pre algorithm by
815 first reformulating the momentum update. The Muon momentum term can be equivalently written
816 as:
817

818
$$m' = \mu \cdot m + g \quad (38)$$

819

820
$$= m - (1 - \mu) \cdot m + g \quad (39)$$

821

822
$$= m - (1 - \mu) \cdot (m - g) + \mu \cdot g \quad (40)$$

823

824
$$= m - (1 - \mu) \cdot \left[(m - g) + \frac{\mu}{1 - \mu} \cdot g \right] \quad (41)$$

825

826 By treating the Muon update as the solution to an optimization problem, we can derive the equivalent
827 objective function:
828

829
$$L(m, g) = \frac{1}{2} \cdot \|m - g\|_F^2 - \frac{\mu}{1 - \mu} \langle m, g \rangle_F. \quad (42)$$

830 After applying low-rank factorization $m = m_B \cdot m_A$, the objective becomes:
831

832
$$L(m_B, m_A, g) = \frac{1}{2} \cdot \|m_B \cdot m_A - g\|_F^2 - \frac{\mu}{1 - \mu} \langle m_B \cdot m_A, g \rangle_F. \quad (43)$$

833 We aim to derive Newton's method update rules for the optimization problem. Now we can apply
834 Newton's method to this modified objective. Computing the first-order gradients:
835

836
$$\frac{\partial L}{\partial m_B} = (m_B \cdot m_A - g) \cdot m_A^T - \frac{\mu}{1 - \mu} g m_A^T, \quad (44)$$

837

838
$$\frac{\partial L}{\partial m_A} = m_B^T \cdot (m_B \cdot m_A - g) - \frac{\mu}{1 - \mu} m_B^T g. \quad (45)$$

839 The Hessian matrices have the same structure as before since the additional linear term doesn't affect
840 the second derivatives:
841

842
$$H_{BB} = \frac{\partial^2 L}{\partial m_B^2} = \frac{\partial(m_B \cdot m_A - g) \cdot m_A^T}{\partial m_B} = m_A m_A^T \otimes I_p, \quad (46)$$

843

844
$$H_{AA} = \frac{\partial^2 L}{\partial m_A^2} = \frac{\partial m_B^T \cdot (m_B \cdot m_A - g)}{\partial m_A} = I_q \otimes m_B^T m_B. \quad (47)$$

845

846 Using these Hessian matrices, we can now compute the Newton directions by solving the linear
847 systems $H \cdot d = \nabla L$, which yields:
848

849
$$dm_B = H_{BB}^{-1} \cdot \frac{\partial L}{\partial m_B} = m_B - \frac{1}{1 - \mu} g m_A^T (m_A m_A^T)^{-1}, \quad (49)$$

850

851
$$dm_A = H_{AA}^{-1} \cdot \frac{\partial L}{\partial m_A} = m_A - \frac{1}{1 - \mu} (m_B^T m_B)^{-1} m_B^T g. \quad (50)$$

852

853 The key insight emerges when we apply these Newton directions with learning rate γ_1 . Substituting
854 the Newton directions into the update formula $x \leftarrow x - \gamma_1 d_x$, we obtain:
855

856
$$m_B \leftarrow m_B - \gamma_1 dm_B \quad (51)$$

857

858
$$\leftarrow m_B - \gamma_1 [m_B - g m_A^T (m_A m_A^T)^{-1}] \quad (52)$$

859

860
$$\leftarrow (1 - \gamma_1) \cdot m_B + \frac{\gamma_1}{1 - \mu} \cdot g m_A^T (m_A m_A^T)^{-1} \quad (53)$$

861

862
$$m_A \leftarrow m_A - \gamma_1 dm_A \quad (54)$$

863

864
$$\leftarrow m_A - \gamma_1 [m_A - (m_B^T m_B)^{-1} m_B^T g] \quad (55)$$

865

866
$$\leftarrow (1 - \gamma_1) \cdot m_A + \frac{\gamma_1}{1 - \mu} \cdot (m_B^T m_B)^{-1} m_B^T g \quad (56)$$

864 Similarly, we set $1 - \gamma_1 = \sqrt{\beta_1}$.
 865

866 **Complete algorithm:** Based on these update formulas, Algorithm 2 presents the complete LoRA-
 867 Pre implementation for the Muon optimizer, demonstrating how these factorized momentum updates
 868 integrate seamlessly into the standard Muon framework.

869 **Algorithm 2** Comparison of Muon and Muon with LoRA-Pre

871 **Require:** Initial learning rate γ , weight decay λ , momentum $\mu \in [0, 1)$, $\gamma_1 \in [0, 1)$
 872 1: Initialize parameters θ_0 , time step $t \leftarrow 0$,
 873 first moment $m_0 \leftarrow 0$,
 874 first low-rank moment $m_{B,0} \leftarrow 0$, $m_{A,0} \leftarrow \mathcal{N}(0, 0.02)$,
 875 2: **repeat**
 876 3: $t \leftarrow t + 1$
 877 4: $g_t \leftarrow \nabla_{\theta} L_t(\theta_{t-1})$
 878 5: # Update first moment
 879 6: $m_t \leftarrow \mu \cdot m_{t-1} + g_t$
 880 7: $m_t \leftarrow \mu \cdot m_{B,t-1} \cdot m_{A,t-1} + g_t$
 881 8: $m_{B,t} \leftarrow \gamma_1 \cdot m_{B,t-1} + \frac{1-\gamma_1}{1-\mu} \cdot g_t m_{A,t-1} (m_{A,t-1} m_{A,t-1}^T)^{-1}$
 882 9: $m_{A,t} \leftarrow \gamma_1 \cdot m_{A,t-1} + \frac{1-\gamma_1}{1-\mu} \cdot (m_{B,t-1}^T m_{B,t-1})^{-1} m_{B,t-1}^T g_t$
 883 10: $O_t = \text{NewtonSchulz5}(m_t)$
 884 11: $\theta_t \leftarrow \theta_{t-1} - \gamma O_t$
 885 12: **until** stopping criterion is met
 886 13: **return** Optimized parameters θ_t

890
 891 **C THEORETICAL ANALYSIS OF APPROXIMATION ERROR AND**
 892 **CONVERGENCE**

893 In this appendix, we provide a rigorous theoretical analysis of the **LoRA-Pre Adam** optimizer. We
 894 explicitly analyze the approximation error introduced by the low-rank factorization of the optimizer
 895 states, and prove the convergence fidelity of the algorithm in non-convex settings.
 896

897 **C.1 PROBLEM SETUP AND ALGORITHM DYNAMICS**

900 Consider the unconstrained optimization problem $\min_{\theta \in \mathbb{R}^d} f(\theta)$. Let $g_t = \nabla f(\theta_t)$ be the stochastic
 901 gradient at step t . We denote the states of **Standard Adam** as m_t, v_t and the effective states of
 902 **LoRA-Pre Adam** as \tilde{m}_t, \tilde{v}_t .

903 **1. Standard Adam Dynamics** The standard optimizer updates its moments using exponential
 904 moving averages (EMA) with decay rates $\beta_1, \beta_2 \in [0, 1]$:

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t \quad (57)$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) (g_t \odot g_t) \quad (58)$$

905 **2. LoRA-Pre Dynamics** LoRA-Pre maintains low-rank factors $(m_{B,t}, m_{A,t})$ to approximate the
 906 gradient history. Let γ_1 be the update rate. The exact simultaneous update rules (Online Least
 907 Squares) can be compactly expressed using the Moore-Penrose pseudoinverse $(\cdot)^\dagger$:

$$m_{B,t} = (1 - \gamma_1) m_{B,t-1} + \gamma_1 g_t m_{A,t-1}^\dagger \quad (59)$$

$$m_{A,t} = (1 - \gamma_1) m_{A,t-1} + \gamma_1 m_{B,t-1}^\dagger g_t \quad (60)$$

908 where the pseudoinverses for the full-rank factors are defined as $m_A^\dagger = m_A^T (m_A m_A^T)^{-1}$ and $m_B^\dagger = (m_B^T m_B)^{-1} m_B^T$.

909 We define the canonical projection operators associated with the factors at step $t - 1$:

918 • $\mathcal{P}_A \triangleq m_{A,t-1}^\dagger m_{A,t-1}$ (Projection onto Row Space of m_A)
 919 • $\mathcal{P}_B \triangleq m_{B,t-1} m_{B,t-1}^\dagger$ (Projection onto Column Space of m_B)
 920

921 Let $\hat{m}_t = m_{B,t} m_{A,t}$ be the low-rank history reconstruction. Analogous updates apply to the second
 922 moment factors using the gradient magnitude $|g_t|$, producing the reconstruction $\hat{h}_t = v_{B,t} v_{A,t}$.
 923

924 **3. Effective Moments for Update** Crucially, LoRA-Pre computes the effective moments for the
 925 parameter update by combining the low-rank history with the *exact* current gradient:
 926

$$\tilde{m}_t = \beta_1 \hat{m}_{t-1} + (1 - \beta_1) g_t \quad (61)$$

$$\tilde{v}_t = \beta_2 (\hat{h}_{t-1})^{\circ 2} + (1 - \beta_2) (g_t \odot g_t) \quad (62)$$

927 Note that for the second moment, LoRA-Pre approximates the history of magnitudes \hat{h} and then
 928 squares it.
 929

C.2 ASSUMPTIONS

930 **Assumption 1** (Regularity and Boundedness). *The objective function and stochastic gradients sat-
 931 isfy the following conditions:*
 932

- 933 1. **L-Smoothness:** *The objective function f is L -smooth: $\|\nabla f(x) - \nabla f(y)\|_F \leq L\|x - y\|_F$.*
- 934 2. **Bounded Gradients:** *The stochastic gradients are uniformly bounded in both Frobenius
 935 and infinity norms. There exist constants G and G_∞ such that for all t , $\|g_t\|_F \leq G$ and
 936 $\|g_t\|_\infty \leq G_\infty$.*
- 937 3. **Bounded Update Scale:** *The optimizer uses a damping term $\epsilon > 0$. Consequently, the
 938 update mapping $\phi(m, v) = \frac{m}{\sqrt{v+\epsilon}}$ is Lipschitz continuous with constant $L_\phi = \epsilon^{-1}$ with
 939 respect to m .*

940 **Assumption 2** (Subspace Approximation Capability). *The gradient dynamics admit a low-rank
 941 structure. Crucially, we assume this structure holds for both the gradient direction and its element-
 942 wise magnitude. Let $\mathcal{P}_{B,t}, \mathcal{P}_{A,t}$ denote the projections onto the subspaces maintained by the opti-
 943 mizer at step t . We assume there exists a bound $\delta \geq 0$ such that:*
 944

$$\|g_t - (\mathcal{P}_{B,t} g_t + g_t \mathcal{P}_{A,t})\|_F \leq \delta \quad (63)$$

$$\||g_t| - (\mathcal{P}_{B,t} |g_t| + |g_t| \mathcal{P}_{A,t})\|_F \leq \delta \quad (64)$$

945 The second inequality ensures that the second-moment estimator (based on $|G_t|$) also admits a
 946 bounded reconstruction error.
 947

948 **Assumption 3** (Reference Optimizer Descent). *Let $u_t = m_t / (\sqrt{v_t} + \epsilon)$ be the update direction of
 949 the standard full-rank Adam optimizer. We assume that in expectation, u_t is a valid descent direction
 950 aligned with the true gradient:*
 951

$$\mathbb{E}[\langle \nabla f(\theta_t), u_t \rangle] \geq c \mathbb{E}[\|\nabla f(\theta_t)\|_F^2] \quad (65)$$

952 for some constant $c > 0$. This assumption anchors the convergence of LoRA-Pre Adam to the
 953 theoretical behavior of standard Adam.
 954

C.3 BOUNDEDNESS OF FACTOR RECONSTRUCTION ERROR

955 We first prove that the error of the stored low-rank history \hat{m}_t is uniformly bounded. We strictly
 956 enforce the time-scale alignment condition: $\beta_1 = (1 - \gamma_1)^2$.
 957

958 **Lemma C.1.** *Let $\mathcal{E}_t^m = \|m_t - \hat{m}_t\|_F$. Under Assumptions 1 and 2, \mathcal{E}_t^m is uniformly bounded by a
 959 constant $\mathcal{E}_{\text{bound}}$.*
 960

961 **Proof. Step 1: Exact Expansion of LoRA Dynamics** Substitute the update rules (84) and (85) into
 962 $\hat{m}_t = m_{B,t} m_{A,t}$:

$$\begin{aligned} \hat{m}_t &= \left[(1 - \gamma_1) m_{B,t-1} + \gamma_1 g_t m_{A,t-1}^\dagger \right] \left[(1 - \gamma_1) m_{A,t-1} + \gamma_1 m_{B,t-1}^\dagger g_t \right] \\ &= (1 - \gamma_1)^2 \hat{m}_{t-1} + \gamma_1 (1 - \gamma_1) (\mathcal{P}_B g_t + g_t \mathcal{P}_A) + \gamma_1^2 Q_t \end{aligned} \quad (66)$$

972 where $Q_t = g_t m_{A,t-1}^\dagger m_{B,t-1}^\dagger g_t$ is the quadratic interaction term. Due to the boundedness of
 973 gradients and regularized inversions, $\|Q_t\|_F \leq C_Q$. Using the condition $\beta_1 = (1 - \gamma_1)^2$, we imply
 974 $\gamma_1 = 1 - \sqrt{\beta_1}$. The expansion becomes:
 975

$$\hat{m}_t = \beta_1 \hat{m}_{t-1} + (1 - \sqrt{\beta_1}) \sqrt{\beta_1} (\mathcal{P}_B g_t + g_t \mathcal{P}_A) + (1 - \sqrt{\beta_1})^2 Q_t \quad (67)$$

978 **Step 2: Constructing the Recursive Error** We form the difference with the standard Adam update
 979 $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$:

$$m_t - \hat{m}_t = \beta_1 (m_{t-1} - \hat{m}_{t-1}) + R_t \quad (68)$$

981 where the residual driving term R_t is:
 982

$$R_t = (1 - \beta_1) g_t - (1 - \sqrt{\beta_1}) \sqrt{\beta_1} (\mathcal{P}_B g_t + g_t \mathcal{P}_A) - (1 - \sqrt{\beta_1})^2 Q_t \quad (69)$$

985 **Step 3: Bounding the Residual** Using the identity $1 - \beta_1 = (1 - \sqrt{\beta_1})(1 + \sqrt{\beta_1})$, we rewrite the
 986 linear part of R_t :

$$\begin{aligned} \text{Linear} &= (1 - \sqrt{\beta_1}) \left[(1 + \sqrt{\beta_1}) g_t - \sqrt{\beta_1} (\mathcal{P}_B g_t + g_t \mathcal{P}_A) \right] \\ &= (1 - \sqrt{\beta_1}) \left[g_t + \sqrt{\beta_1} (g_t - \mathcal{P}_B g_t - g_t \mathcal{P}_A) \right] \end{aligned} \quad (70)$$

991 Taking the Frobenius norm and using Assumption 2 (where the term in parenthesis is related to the
 992 subspace residual δ):

$$\|R_t\|_F \leq (1 - \sqrt{\beta_1}) G + \sqrt{\beta_1} (1 - \sqrt{\beta_1}) \delta + (1 - \sqrt{\beta_1})^2 C_Q \triangleq \Delta_{\text{res}} \quad (71)$$

995 **Step 4: Convergence** The error recursion is $\mathcal{E}_t^m \leq \beta_1 \mathcal{E}_{t-1}^m + \Delta_{\text{res}}$. Since $\beta_1 < 1$, this converges to
 996 a steady state:

$$\lim_{t \rightarrow \infty} \mathcal{E}_t^m \leq \frac{\Delta_{\text{res}}}{1 - \beta_1} \triangleq \mathcal{E}_{\text{bound}} \quad (72)$$

999 Given $\frac{1 - \sqrt{\beta_1}}{1 - \beta_1} = \frac{1}{1 + \sqrt{\beta_1}} \approx \frac{1}{2}$, we have $\mathcal{E}_{\text{bound}} \approx \frac{1}{2} (G + \delta)$. Thus, the factor error is uniformly
 1000 bounded. \square

C.4 JOINT EFFECTIVE MOMENT ERROR

1004 We now derive the error bounds for the effective moments \tilde{m}_t and \tilde{v}_t used in the parameter update,
 1005 explicitly accounting for the non-linear square term in \tilde{v}_t .

1007 **Lemma C.2.** Let $\Delta_m = \|m_t - \tilde{m}_t\|_F$ and $\Delta_v = \|v_t - \tilde{v}_t\|_F$. Then:

$$\Delta_m \leq \beta_1 \mathcal{E}_{\text{bound}} \quad (73)$$

$$\Delta_v \leq 2\beta_2 G_\infty \mathcal{E}_{\text{bound}} \quad (74)$$

1011 **Proof. 1. First Moment Error:** Subtract Eq. (61) from standard Adam. The term $(1 - \beta_1) g_t$ is
 1012 identical in both and cancels out:

$$m_t - \tilde{m}_t = \beta_1 (m_{t-1} - \hat{m}_{t-1}) \quad (75)$$

1015 Using Lemma C.1, $\Delta_m = \beta_1 \|m_{t-1} - \hat{m}_{t-1}\|_F \leq \beta_1 \mathcal{E}_{\text{bound}}$.

1016 **2. Second Moment Error:** Standard Adam tracks $v_t \approx (h_{t-1})^{\circ 2}$ (where h is the EMA of $|g|$).
 1017 LoRA-Pre uses $\tilde{v}_t \approx (\hat{h}_{t-1})^{\circ 2}$.

$$v_t - \tilde{v}_t = \beta_2 \left[(h_{t-1})^{\circ 2} - (\hat{h}_{t-1})^{\circ 2} \right] \quad (76)$$

1021 Define the element-wise function $s(x) = x^2$. On the bounded domain $[-G_\infty, G_\infty]$, the Lipschitz
 1022 constant of $s(x)$ is $L_{\text{sq}} = 2G_\infty$.

$$\|(h_{t-1})^{\circ 2} - (\hat{h}_{t-1})^{\circ 2}\|_F \leq 2G_\infty \|h_{t-1} - \hat{h}_{t-1}\|_F \quad (77)$$

1023 By Lemma C.1 applied to the magnitude history, $\|h_{t-1} - \hat{h}_{t-1}\|_F \leq \mathcal{E}_{\text{bound}}$. Thus, $\Delta_v \leq$
 1024 $2\beta_2 G_\infty \mathcal{E}_{\text{bound}}$. \square

1026
1027

C.5 CONVERGENCE ANALYSIS

1028
1029**Theorem C.3.** *Let the step size be $\eta_t = \eta/\sqrt{t}$. Under Assumptions 1 and 2, LoRA-Pre Adam converges to a neighborhood of a stationary point:*1030
1031
1032

$$\min_{1 \leq t \leq T} \mathbb{E}[\|\nabla f(\theta_t)\|^2] \leq \frac{C_1}{\sqrt{T}} + C_2 \mathcal{E}_{\text{bound}}^2 \quad (78)$$

1033
1034*where C_1 depends on the initial function gap and C_2 depends on the Lipschitz properties of the update rule.*1035
1036
1037
1038*Proof.* Let $u_t = \frac{m_t}{\sqrt{v_t} + \epsilon}$ and $\tilde{u}_t = \frac{\tilde{m}_t}{\sqrt{\tilde{v}_t} + \epsilon}$. The update function $\phi(m, v) = m/(\sqrt{v} + \epsilon)$ has Lipschitz constants $L_m = \epsilon^{-1}$ and $L_v = G_\infty/(2\epsilon^2)$. By Lemma C.2, the direction error $\xi_t = \|u_t - \tilde{u}_t\|_F$ is bounded:1039
1040

$$\xi_t \leq L_m \Delta_m + L_v \Delta_v \leq \left(\frac{\beta_1}{\epsilon} + \frac{2\beta_2 G_\infty^2}{2\epsilon^2} \right) \mathcal{E}_{\text{bound}} \triangleq K \mathcal{E}_{\text{bound}} \quad (79)$$

1041
1042Using the Descent Lemma for L -smooth functions:1043
1044

$$f(\theta_{t+1}) \leq f(\theta_t) - \eta_t \langle \nabla f(\theta_t), \tilde{u}_t \rangle + \frac{L\eta_t^2}{2} \|\tilde{u}_t\|^2 \quad (80)$$

1045

Substitute $\tilde{u}_t = u_t + (\tilde{u}_t - u_t)$ and apply Young's Inequality to the error term:1046
1047
1048
1049
1050
1051

$$\begin{aligned} \langle \nabla f, \tilde{u}_t \rangle &= \langle \nabla f, u_t \rangle + \langle \nabla f, \tilde{u}_t - u_t \rangle \\ &\geq c \|\nabla f\|^2 - \left(\frac{c}{2} \|\nabla f\|^2 + \frac{1}{2c} \|\xi_t\|^2 \right) \\ &= \frac{c}{2} \|\nabla f\|^2 - \frac{1}{2c} \|\xi_t\|^2 \end{aligned} \quad (81)$$

1052

Substituting back and summing over T steps:1053
1054
1055

$$\sum_{t=1}^T \frac{c\eta_t}{2} \|\nabla f(\theta_t)\|^2 \leq f(\theta_1) - f^* + \sum_{t=1}^T \frac{\eta_t}{2c} K^2 \mathcal{E}_{\text{bound}}^2 + \sum_{t=1}^T \frac{L\eta_t^2}{2} G_{\text{step}}^2 \quad (82)$$

1056
1057Dividing by $\sum \eta_t \approx 2\eta\sqrt{T}$ (since $\eta_t \propto 1/\sqrt{t}$):1058
1059
1060

$$\frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|\nabla f(\theta_t)\|^2] \leq \mathcal{O}\left(\frac{1}{\sqrt{T}}\right) + \frac{K^2}{2c^2} \mathcal{E}_{\text{bound}}^2 \quad (83)$$

1061
1062
1063
1064
1065The term proportional to $\mathcal{E}_{\text{bound}}^2$ represents the irreducible error floor due to the low-rank approximation. For problems with low intrinsic dimension (small δ), this floor is negligible. \square

D ADDITIONAL EXPERIMENTAL RESULTS OF OUR METHOD

1066

D.1 ABLATION OF HYPER-PARAMETERS IN LORA-PRE

1068
1069
1070
1071
1072In this section, we evaluate the sensitivity of LoRA-Pre Adam to hyper-parameter variations. While LoRA-Pre introduces coefficients (γ_1, γ_2) for updating the low-rank components, these are not independent hyperparameters requiring separate tuning. Instead, they are analytically coupled with the standard Adam momentum coefficients (β_1, β_2) .

1073

Formally, the update rules for the momentum components m_A and m_B in LoRA-Pre are defined as:1074
1075
1076

$$m'_B \leftarrow (1 - \gamma_1) m_B + \gamma_1 g m_A^T (m_A m_A^T)^{-1}, \quad (84)$$

$$m'_A \leftarrow (1 - \gamma_1) m_A + \gamma_1 (m_B^T m_B)^{-1} m_B^T g, \quad (85)$$

1077
1078
1079where g represents the gradient. When analyzing the equivalent decay coefficient for the effective momentum matrix m , which is reconstructed via $m \approx m_B m_A$, we obtain the following approximation:

$$m' = m'_B m'_A \approx (1 - \gamma_1)^2 m_B m_A + \dots \approx (1 - \gamma_1)^2 m + \dots \quad (86)$$

1080 To align this behavior with standard Adam optimization (where the momentum decay is governed
 1081 by β_1), we enforce the constraint $(1 - \gamma_1)^2 = \beta_1$ (and similarly $(1 - \gamma_2)^4 = \beta_2$). Consequently,
 1082 determining γ is strictly dependent on β .

1083 We conducted ablation studies on the 60M parameter model by varying β_1 and β_2 around their
 1084 default values ($\beta_1 = 0.9, \beta_2 = 0.95$). The results are summarized in Table 4.

1086 **Table 4: Sensitivity Analysis of β parameters.** We report the validation loss on the 60M model.
 1087 The method exhibits stability around the default settings ($\beta_1 = 0.9, \beta_2 = 0.95$), while extreme
 1088 values lead to divergence.

Hyperparameter	Value	Perplexity	Status
β_1 (with $\beta_2 = 0.95$)	0.90 (Default)	32.57	Optimal
	0.95	37.62	Sub-optimal
	0.99	1458.92	Unstable
β_2 (with $\beta_1 = 0.90$)	0.90	34.61	Sub-optimal
	0.95 (Default)	32.57	Optimal
	0.999	1301.58	Unstable

1090 As shown in Table 4, LoRA-Pre achieves the best performance at the standard default configuration.
 1091 While the optimizer is robust within a reasonable range, extreme values (e.g., $\beta_1 \rightarrow 0.99$) lead
 1092 to numerical instability, consistent with the behavior of adaptive optimizers in low-rank training
 1093 regimes. This confirms that our coupling strategy effectively eliminates the need for grid-searching
 1094 γ .

1104 E STATEMENT OF THE USE OF LARGE LANGUAGE MODELS

1107 The use of LLMs in this work was restricted to paper writing assistance. They were not used to
 1108 generate results, derive proofs, or conduct analysis without human verification. The disclosure here,
 1109 as well as in the submission form, fulfills the ICLR requirement that all contributions of LLMs be
 1110 acknowledged transparently.

1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133