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ABSTRACT

Modern optimizers like Adam and Muon are central to training large language
models, but their reliance on first- and second-order momenta introduces signifi-
cant memory overhead, which constrains scalability and computational efficiency.
In this work, we re-frame the exponential moving average (EMA) used in these
momenta as the training of a linear regressor via online gradient flow. Building on
this equivalence, we introduce LoRA-Pre, a novel low-rank optimizer designed
for efficient pre-training. Specifically, LoRA-Pre reduces the optimizer’s mem-
ory footprint by decomposing the full momentum matrix into a compact low-rank
subspace within the online linear learner, thereby maintaining optimization per-
formance while improving memory efficiency. We empirically validate LoRA-
Pre’s efficacy by pre-training models from the Llama architecture family, scal-
ing from 60M to 1B parameters. LoRA-Pre achieves the highest performance
across all model sizes. Notably, LoRA-Pre demonstrates remarkable rank effi-
ciency, achieving comparable or superior results using only 1/8 the rank of base-
line methods. Beyond pre-training, we evaluate LoRA-Pre’s effectiveness in fine-
tuning scenarios. With the same rank, LoRA-Pre consistently outperforms all
efficient fine-tuning baselines. Specifically, compared to standard LoRA, LoRA-
Pre achieves substantial improvements of 3.14 points on Llama-3.1-8B and 6.17
points on Llama-2-7B, validating our approach’s effectiveness across both pre-
training and fine-tuning paradigms.

1 INTRODUCTION

Large Language Models (LLMs) (Guo et al., 2025; Yang et al., 2025; Grattafiori et al., 2024; Brown
et al., 2020; Comanici et al., 2025; Touvron et al., 2023; Jaech et al., 2024) have become the center-
piece of modern deep learning. Trained on trillions of tokens from heterogeneous sources and scaled
to unprecedented parameter counts, they demonstrate remarkable generalization and transfer capa-
bilities. Beyond, some LLMs have reasoning ability and leverage external tools (Guo et al., 2025;
Yang et al., 2025). These advances have transformed LLMs from statistical learners into versatile
systems, driving breakthroughs across research and real-world applications.

However, the success of LLMs comes with formidable training and adaptation costs (Grattafiori
et al., 2024). The vast number of trainable parameters demands enormous memory and compu-
tational resources during pre-training and fine-tuning. A key contributor to this burden lies in the
optimizer states. For instance, Adam (Kinga et al., 2015), the de facto optimizer for training LLMs,
maintains not only the model weights but also first- and second-order moment estimates of the gra-
dients. This triples memory usage and further exacerbates scalability bottlenecks, underscoring the
urgent need for more efficient optimization strategies.

To address this, a series of low-rank optimization methods has emerged. One prominent line of re-
search achieves optimizer state compression through projected gradient descent (Zhao et al., 2023;
Chen et al., 2024; Hao et al., 2024; Modoranu et al., 2025). These methods initialize projection
matrices via SVD or random mappings, project gradients into smaller subspaces for optimizer state
computation, and then map back to achieve parameter updates, thereby compressing the optimiza-
tion overhead. Additionally, such methods require periodic subspace updates to enable high-rank
parameter updates following W = ∆WT1 +∆WT2 + · · · . However, due to the inability to update
subspaces instantly, error accumulation occurs in optimizer state computation, leading to subopti-
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mal performance. This motivates the need for a more dynamic approach that can rapidly adapt to
changing gradient subspaces.

In this paper, we propose LoRA-Pre, a novel low-rank optimizer for LLM pre-training that ad-
dresses these limitations through a different approach. Our key insight is an interesting mathemati-
cal connection between the exponential moving average (EMA) of momentum and linear regression.
Specifically, we demonstrate that EMA momentum updates are mathematically equivalent to train-
ing an online linear regressor with gradient descent on the online gradient flow:

m← β ·m+ (1− β) · g ⇐⇒ min
m

L(m, g) =
1

2
· ∥m− g∥2F , (1)

where m ∈ Rp×q represents the momentum, g is the online gradient, and β is the coefficient.
This equivalence reveals that momentum accumulation can be viewed as fitting a linear model to
approximate the gradient history.

Leveraging this theoretical insight, we develop a memory-efficient optimizer through momentum
compression via low-rank factorization. Instead of maintaining the full momentum matrix m, we
decompose it as the product of two low-rank matrices as m = mB ·mA, where mB ∈ Rp×r and
mA ∈ Rr×q , with r ≪ min(p, q). This factorization reduces memory complexity from p × q to
(p+ q)× r, yielding substantial memory savings for large-scale models. The low-rank momentum
is then updated by solving minmB ,mA

L(mB ,mA, g) =
1
2 · ∥mB ·mA − g∥2F , with explicit update

rules derived in Theorem 3.1.

This theoretical framework enables us to compress any momentum-based optimizer. We demon-
strate its versatility by developing LoRA-Pre variants for both Adam (Kinga et al., 2015) and
Muon (Jordan et al., 2024) optimizers, with detailed algorithms provided in Appendix B. Exten-
sive experiments across pre-training and fine-tuning tasks validate the effectiveness of our method,
while ablation studies demonstrate strong robustness across different rank variations.

Our main contributions are summarized as follows:

• We establish a novel theoretical connection showing that exponential moving average
(EMA) momentum updates are mathematically equivalent to training a linear regressor
via online gradient flow.

• Based on this insight, we propose LoRA-Pre, a memory-efficient low-rank optimizer for
pre-training that compresses optimizer states by factorizing the momentum matrix into low-
rank components. We construct LoRA-Pre variants for both Adam and Muon optimizers,
mathematically induce their low-rank update rules through our regression formulation, and
achieve substantial memory reduction while preserving optimization dynamics.

• We provide extensive experimental validation across both pre-training and fine-tuning
tasks, demonstrating that LoRA-Pre achieves superior performance with remarkable rank
efficiency compared to existing baselines, confirming both the efficiency and effectiveness
of our approach across diverse model scales and application scenarios.

2 RELATED WORKS

Low-Rank Adaptation. The scaling of Large Language Models (LLMs) has spurred the develop-
ment of Parameter-Efficient Fine-Tuning (PEFT) methods (Hu et al., 2022; Liu et al., 2024; Wang
et al., 2025; Ding et al., 2023; Liu et al., 2023; 2022; 2023; Hayou et al., 2024; Wang et al., 2024;
Edalati et al., 2023; Zhang et al., 2023; Tastan et al., 2025), which aim to adapt pre-trained models to
downstream tasks with reduced computational and memory overhead. Among these PEFT methods,
Low-Rank Adaptation (LoRA) (Hu et al., 2022) and its variants (Wang et al., 2025; 2024; Hayou
et al., 2024; Liu et al., 2024; Yen et al., 2025) have emerged as the predominant methodologies in
the field.

LoRA is grounded in the principle that weight updates during fine-tuning possess an intrinsic low-
rank structure (Aghajanyan et al., 2021). By re-parameterizing these updates as the product of two
low-rank matrices, LoRA substantially reduces the number of trainable parameters while maintain-
ing competitive performance, thereby enabling efficient adaptation of LLMs with limited computa-
tional resources. The effectiveness of LoRA has inspired a line of research aimed at addressing its
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shortcomings. For instance, LoRA+ (Hayou et al., 2024) introduces differential learning rates for
the two low-rank matrices to improve convergence and final task performance. DoRA (Liu et al.,
2024) decomposes pre-trained weights into magnitude and direction components, applying LoRA
specifically to the directional component to better capture fine-tuning dynamics. Recent works like
LoFT (Tastan et al., 2025) and LoRA-Pro (Wang et al., 2025) establish theoretical connections be-
tween LoRA and full fine-tuning via projected gradient equivalents.

While effective for fine-tuning, existing LoRA-based methods face fundamental challenges when
applied to pre-training from scratch. Unlike fine-tuning, where small adaptations naturally exhibit
low-rank structure, pre-training from random initialization requires full-rank weight updates to learn
diverse representations across the entire parameter space (Lialin et al., 2024; Kamalakara et al.,
2022). This mismatch between LoRA’s low-rank assumption and pre-training’s full-rank require-
ments results in suboptimal performance in the pre-training stage.

Low-Rank Pre-Training. The pre-training cost of LLMs has surged dramatically with the rapid ex-
pansion of model scale. A promising direction for mitigating these costs is compressing optimizer
states into a low-rank subspace, a strategy that significantly reduces memory footprints and com-
munication overhead (Zhao et al., 2023; Modoranu et al., 2025; Ma et al., 2025; Han et al., 2024;
Zmushko et al., 2025; Chen et al., 2024; Hao et al., 2024; Shen et al., 2025; Mahdavinia & Mahdavi,
2025; Zhang et al., 2025). For instance, GaLore (Zhao et al., 2023) utilizes Singular Value De-
composition (SVD) to project gradient information into a low-rank subspace for state compression,
subsequently projecting the optimized gradients back for parameter updates. To enhance compu-
tational efficiency, Flora (Hao et al., 2024) substitutes the expensive SVD operation with random
projection, while Fira (Chen et al., 2024) incorporates SGD momentum to leverage gradient infor-
mation from the complementary subspace. However, these projection-based methods typically rely
on periodic subspace updates to amortize costs, which often results in optimization discontinuities
and error accumulation due to the lag in subspace adaptation.

Recent works have explored online strategies to address these limitations. MLorc (Shen et al., 2025)
employs randomized SVD for online momentum compression. MoFaSGD (Mahdavinia & Mahdavi,
2025) utilizes momentum factorization to approximate full-rank momentum online, ensuring non-
convex convergence. Similarly, ADAPM (Zhang et al., 2025) compresses first-order momentum
into a low-rank subspace via linear regression. In contrast, our proposed LoRA-Pre fundamentally
reformulates momentum maintenance as an online regression task. By directly evolving low-rank
factors via online gradient flow at every step, our approach achieves continuous subspace adaptation,
effectively eliminating the instabilities associated with periodic updates or heuristic approximations.

3 METHOD

We begin by revisiting the de facto standard optimizer, Adam (Kinga et al., 2015), in Section 3.1.
Then, we establish a connection between the exponential moving average and an online linear re-
gressor over past gradients in Section 3.2. Finally, Section 3.3 introduces our efficient optimizer,
LoRA-Pre, which compresses optimizer states through low-rank parameterization.

3.1 PRELIMINARY

We begin with Adam (Kinga et al., 2015), the de facto optimizer in modern deep learning, which
combines the benefits of AdaGrad (Duchi et al., 2011) and RMSProp (Hinton et al., 2012) by main-
taining estimates of the first and second moments of gradients to achieve adaptive learning rates and
robust performance.

Consider an optimization problem where xt ∈ X represents a data point drawn from a distribution
pdata, L(·) : X → R is a loss function, and θ ∈ Rd are the optimized parameters. The Adam
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Figure 1: Illustration of our LoRA-Pre method. In this work, we establish a novel connection:
the exponential moving average (EMA) update for optimizer momentum is mathematically equiva-
lent to training a linear regressor using online gradient descent. Leveraging this equivalence, we
propose compressing the optimizer states (i.e., the momenta) using low-rank matrices to reduce the
memory footprint. Finally, the closed-form update rules for these matrices without requiring back-
propagation are given by Theorem 3.1.

optimizer (Kinga et al., 2015) updates θ according to the following steps:

gt =
∂L(xt)

∂θ
, xt ∼ pdata(x), (Gradient Computation) (2)

mt = β1 ·mt−1 + (1− β1) · gt, (EMA of the First Moment) (3)

vt = β2 · vt−1 + (1− β2) · g2t , (EMA of the Second Moment) (4)

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

, (Bias-Correction) (5)

θt+1 = θt −
γ√

v̂t + ϵ
· m̂t. (Parameter Update) (6)

Here, mt and vt represent the Exponential Moving Average (EMA) of the first- and second-order
moments, respectively. The hyperparameters include the learning rate γ, the exponential decay rates
β1, β2 ∈ [0, 1) for the moment estimates, and a small constant ϵ > 0 for numerical stability.

Similar to the Adam optimization process, momentum also plays a critical role in other modern opti-
mizers (Shazeer & Stern, 2018; Jordan et al., 2024), enhancing stability and convergence. However,
storing momentum states introduces significant memory overhead. Our work directly addresses this
by compressing the momentum term to reduce the optimizer’s memory footprint.

3.2 YOUR MOMENTUM IS A SECRETLY ONLINE REGRESSOR

To begin with, we reveal an interesting connection: momentum updates in modern optimizers are
secretly performing online linear regression. Specifically, updating the momentum m via EMA
is mathematically equivalent to optimizing m as the parameters of a linear regressor using online
gradient flow.

To illustrate this, let’s take the first-order momentum as an example. The standard EMA update for
the first-order momentum can be rewritten as follows:

mt+1 = β ·mt + (1− β) · g, (7)
= mt︸︷︷︸

weight

− (1− β)︸ ︷︷ ︸
lr

· (mt − g)︸ ︷︷ ︸
gradient

. (8)

As shown in Equation (8), the EMA update is mathematically equivalent to a gradient descent step
where the parameter being optimized is the momentum m, the learning rate is 1−β, and the gradient
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is ∂L(mt,g)
∂m = mt−g. This reformulation reveals that EMA updates essentially function as an online

linear regressor that continuously adjusts the momentum weights based on incoming gradients. The
underlying objective being minimized is:

min
m

L(m, g) =
1

2
· ∥m− g∥2F . (9)

This insight opens a new avenue for optimizer footprint optimization: since momentum parameters
are linear model weights, we can apply standard model compression techniques to reduce optimizer
memory usage during training.

3.3 LORA-PRE: LOW-RANK ONLINE LINEAR REGRESSION

We now introduce LoRA-Pre, a new low-rank optimizer for pre-training. Building on the equiva-
lence between exponential moving averages and online linear regression, LoRA-Pre compresses the
momentum term m via a low-rank factorization, inspired by the LoRA technique (Hu et al., 2022).
This approach can apply to any momentum-based optimizer, such as Adam (Kinga et al., 2015) and
Muon (Jordan et al., 2024). We detail the compression strategies for both first- and second-order
momentum terms below.

First-Order Momentum Compression. Having established that momentum updates are equivalent
to gradient descent on the objective minm L(m, g) = 1

2 ·∥m−g∥
2
F in Section 3.2, we can now apply

low-rank compression to reduce memory usage. Instead of storing and updating the full momentum
matrix m ∈ Rp×q directly, we decompose it with the product of two low-rank matrices mB ∈ Rp×r

and mA ∈ Rr×q, r ≪ min(p, q), i.e., m = mB · mA. This factorization transforms our original
optimization problem into:

min
mB ,mA

L(mB ,mA, g) =
1

2
· ∥mB ·mA − g∥2F . (10)

To maintain memory efficiency, we solve this optimization problem using standard gradient descent
on the factorized matrices mB and mA. To ensure computational efficiency, we derive closed-form
update rules for these matrices without requiring back-propagation, which is given by Theorem 3.1.
We resort to Newton’s method for updating since the solution can be expressed in the form of EMA.

Theorem 3.1. Assume both matrices mB ∈ Rp×r,mA ∈ Rr×q are full rank. For the
objective minmB ,mA

L(mB ,mA, g) = 1
2 · ∥mB ·mA − g∥2F , Newton’s method yields the

following closed-form update rules:

mB ← (1− γ1) ·mB + γ1 · gmA
T (mAm

T
A)

−1, (11)

mA ← (1− γ1) ·mA + γ1 · (mT
BmB)

−1mT
Bg. (12)

Here, γ1 is the learning rate for the factorized optimization problem.

Proof. See Appendix A.

Second-Order Momentum Compression. The compression of second-order momentum v presents
additional challenges due to the constraints imposed by Adam’s parameter update rule. Since Equa-
tion (6) requires the square root of momentum, i.e.,

√
v, the second-order momentum must be

element-wise positive.

A naive approach would parameterize the second momentum as v = vB · vA and optimize using the
regression loss L(vB , vA, g) = 1

2 ·∥vB ·vA−g
2∥2F . From Theorem 3.1, we derive the corresponding

parameter update rule:

vB ← (1− γ2) · vB + γ2 · g2vTA(vAvTA)−1, (13)

vA ← (1− γ2) · vA + γ2 · (vTBvB)−1vTBg
2. (14)

Unfortunately, this approach cannot guarantee that vi,j > 0,∀i, j, making the computation of
√
v =√

vB · vA problematic.

To address this issue, we re-parameterize the second-order momentum as v = (vB · vA)◦2, where
◦ denotes the Hadamard product. This re-parameterization ensures element-wise positivity while
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maintaining the low-rank structure. We then formulate the optimization of low-rank matrices vB
and vA as:

min
vB ,vA

L(vB , vA, g) =
1

2
· ∥vB · vA − |g|∥2F . (15)

And its update rule can be directly induced from Theorem 3.1.

vB ← (1− γ2) · vB + γ2 · |g|vTA(vAvTA)−1, (16)

vA ← (1− γ2) · vA + γ2 · (vTBvB)−1vTB |g|. (17)

Low-Rank Optimizer Algorithms. As shown before, our method can be applied to any optimizer
with momentum to compress its optimizer state during pre-training and fine-tuning stages. The
detailed pseudo-codes of LoRA-Pre optimizer for AdamW (Kinga et al., 2015) and Muon (Jordan
et al., 2024) are provided in Appendix B.

4 EXPERIMENTAL RESULTS

In this section, we present extensive experiments to evaluate the effectiveness of our proposed
method, LoRA-Pre. Our evaluation encompasses both memory-efficient pre-training and memory-
efficient fine-tuning on downstream tasks.

We begin by assessing LoRA-Pre’s pre-training capabilities in Section 4.1. Following the exper-
imental setup of Galore (Zhao et al., 2023), we train Llama (Touvron et al., 2023) models from
scratch with varying model sizes of 60M, 130M, 350M, and 1B parameters. All models are trained
on the Colossal Clean Crawled Corpus (C4) dataset (Raffel et al., 2020), a large-scale cleaned dataset
specifically designed for language model pre-training. To simulate realistic pre-training conditions,
the models are trained on sufficiently large volumes of data without repetition.

Subsequently, we evaluate LoRA-Pre’s fine-tuning performance in Section 4.2. We fine-tune both
Llama-3.1-8B (Grattafiori et al., 2024) and Llama-2-7B (Touvron et al., 2023) models on a 100k
subset sampled from the MetaMathQA dataset (Yu et al., 2024). The fine-tuned models are then
evaluated on the GSM8k (Cobbe et al., 2021) and MATH500 (Lightman et al., 2024) datasets. Fi-
nally, we present an ablation study of LoRA-Pre in Appendix 4.3

Implementation Details. To ensure fair comparison, we align the experimental setup with that of
Galore (Zhao et al., 2023). By default, LoRA-Pre is applied to all parameters in the attention and
MLP layers, while other parameters are optimized using the standard Adam (Kinga et al., 2015)
optimizer. We set the default ranks for the 60M, 130M, 350M, and 1B parameter models as 128,
256, 256, and 512, respectively. The optimal learning rate is selected from the set {0.01, 0.005,
0.001, 0.0005, 0.0001} based on validation perplexity. To maintain strict fairness in comparison,
we retain the same scale factor of 0.25 as used in Galore (Zhao et al., 2023). For memory-efficient
fine-tuning tasks, we set the default rank as 8 and set the learning rate as 2e− 5 by default.

4.1 MEMORY-EFFICIENT PRE-TRAINING

In this section, we evaluate the pre-training performance of our proposed method, LoRA-Pre. Our
experimental setup strictly follows that of Galore (Zhao et al., 2023). We compare LoRA-Pre against
several baseline methods, including both full optimizers and low-rank optimizers: 1) Adam (Kinga
et al., 2015): The de facto optimizer in modern deep learning that utilizes first- and second-order
momentum statistics to dynamically adjust learning rates and stabilize training. 2) Muon (Jordan
et al., 2024): A novel preconditioned optimizer that updates parameters by orthogonalizing the
first-order momentum. 3) Galore (Zhao et al., 2023): A low-rank optimizer that projects gradients
using SVD and computes optimizer states in a reduced subspace. 4) Low-Rank (Kamalakara et al.,
2022): A traditional low-rank approach that directly represents weights through learnable low-rank
factorization W = BA, 5) LoRA (Hu et al., 2022): The most widely adopted low-rank method for
fine-tuning that factorizes weights as W = W0 + BA. For pre-training scenarios, we maintain W0

as the full-rank initialization matrix. 6) ReLoRA (Lialin et al., 2024): A LoRA variant designed
for pre-training that periodically merges BA into W and initialize BA with optimizer state resets.
7) SLTrain (Han et al., 2024): A sparse plus low-rank approach that parameterizes weights as
W = S+BA, where both components are jointly optimized. 8) LORO (Mo et al., 2025): A method
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Table 1: Comparison with low-rank algorithms on pre-training various sizes of Llama models on the
C4 dataset. We report the validation perplexity (↓) on a hold-out C4 test set. The best and second-
best performance within the low-rank optimizers are highlighted with bold and underline. ∗ denotes
the results are reproduced by ourselves.

Model Size 60M 130M 350M 1B
r/dmodel 128 / 512 256 / 768 256 / 1024 512 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

Adam (Kinga et al., 2015) 34.09 25.08 18.80 15.56
Muon (Jordan et al., 2024) 28.43 21.86 16.17 13.41

Galore (Zhao et al., 2023) 34.88 25.36 18.95 15.64
Low-Rank (Kamalakara et al., 2022) 78.18 45.51 37.41 142.53
LoRA (Hu et al., 2022) 34.99 33.92 25.58 19.21
ReLoRA (Lialin et al., 2024) 37.04 29.37 29.08 18.33
SLTrain (Han et al., 2024) 34.15 26.04 19.42 16.14
LORO (Mo et al., 2025) 33.96 24.59 18.84 15.19
Fira* (Chen et al., 2024) 31.19* 24.51* 17.22* 14.31

LoRA-Pre (Adam) 32.57 23.78 16.36 13.53
LoRA-Pre (Muon) 30.76 23.05 16.97 13.92

that optimizes LoRA parameters by strictly constraining updates within the low-rank manifold. 9)
Fira (Chen et al., 2024): A method that improves Galore with Norm-Based Scaling and Norm-
Growth Limiter.

We pre-trained Llama-series models of different sizes to evaluate LoRA-Pre against these baseline
methods. By default, all low-rank optimizers are built upon the Adam (Kinga et al., 2015) optimizer
foundation. All the low-rank optimizers are based on the Adam (Kinga et al., 2015) optimizer. To
demonstrate the generalizability of our approach, we also evaluate LoRA-Pre with Muon (Algo-
rithm 2), as our method is compatible with any momentum-based optimizer.

The results, presented in Table 1, demonstrate that our method achieves superior performance
across multiple model scales. Specifically, LoRA-Pre (Adam) and LoRA-Pre (Muon) attain
either the highest or second-highest performance across almost all four different model sizes
(60M/130M/350M/1B), validating the effectiveness of our approach. While Fira yields competi-
tive results on the 60M model, LoRA-Pre consistently outperforms it on larger scales (130M, 350M,
and 1B), likely because our method avoids the error accumulation associated with Fira’s projected
gradients. And LoRA-Pre (Adam) outperforms the previous best efficient baselines by substantial
margins of 0.81, 2.45, and 1.6 perplexity points for the 130M, 350M, and 1B models, respectively.
Furthermore, when integrated with the Muon (Jordan et al., 2024) optimizer, LoRA-Pre (Muon)
achieves additional improvements on both 60M and 130M scale models, demonstrating our method’s
ability to generalize across different optimizers.

4.2 MEMORY-EFFICIENT FINE-TUNING

In this section, we evaluate the fine-tuning performance of LoRA-Pre on mathematical tasks. We
fine-tune Llama-2-7B and Llama-3.1-8B models on the MetaMath100k dataset and evaluate their
performance on GSM8K (Cobbe et al., 2021) and MATH500 (Lightman et al., 2024). To ensure fair
comparison, we maintain consistent hyperparameters and training configurations across all methods.

We select several memory-efficient fine-tuning baselines for comparison, including 1) LoRA (Hu
et al., 2022): the standard low-rank fine-tuning method. 2) rsLoRA (Kalajdzievski, 2023): an
improved LoRA variant that optimizes the scaling factor through rank-stabilized normalization. 3)
DoRA (Liu et al., 2024): a LoRA extension that decomposes weight updates into magnitude and
directional components for more effective optimization. 4) Galore (Zhao et al., 2023): a memory-
efficient optimizer that projects gradients into low-rank subspaces using SVD decomposition. To
demonstrate cross-optimizer compatibility, we evaluate Muon-based versions, including: 1) Galore-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Results of memory-efficient fine-tuning methods. We compare our method with ef-
ficient fine-tuning methods includes LoRA (Hu et al., 2022), rsLoRA (Kalajdzievski, 2023), and
DoRA (Liu et al., 2024), and an efficient optimizer Galore (Zhao et al., 2023). The models are fine-
tuned with MetaMath100k (Yu et al., 2024) dataset, and evaluate on GSM8k (Cobbe et al., 2021)
and MATH500 (Lightman et al., 2024). We highlight the best performance on Adam-like optimizer
and Muon-like optimizer with bold.

Method
Llama-3.1-8B Llama-2-7B

GSM8k MATH500 Average GSM8k MATH500 Average

LoRA (Hu et al., 2022) 70.76 17.06 43.91 44.62 7.34 25.98
rsLoRA (Kalajdzievski, 2023) 71.06 17.46 44.26 48.79 5.75 27.27
DoRA (Liu et al., 2024) 71.06 17.86 44.46 44.39 6.55 25.47
Galore (Zhao et al., 2023) 65.08 18.65 41.87 36.44 8.33 22.39
LoRA-Pre (Adam) 76.44 17.66 47.05 57.35 6.94 32.15
Galore-Muon (Zhao et al., 2023) 63.41 18.06 40.74 33.11 4.37 18.74
LoRA-Muon (Hu et al., 2022) 70.30 19.25 44.78 35.15 6.15 20.65
LoRA-Pre (Muon) 72.65 20.83 46.74 47.20 6.15 26.68

Muon: who apply the Galore (Zhao et al., 2023) algorithm to the Muon optimizer, and 2) LoRA-
Muon: optimizing LoRA with the Muon optimizer.

The results are presented in Table 2. LoRA-Pre consistently achieves the highest scores across all
experimental configurations, demonstrating superior performance regardless of the base model or
optimizer used. The improvements are particularly notable across different settings: when training
Llama-3.1-8B with Adam, LoRA-Pre shows an average improvement of 2.59 points over the second-
best method, while with Llama-2-7B and Adam, this improvement increases to 4.88 points. When
using the Muon optimizer, LoRA-Pre maintains its advantage with improvements of 1.96 and 6.03
points for the respective models. These results confirm LoRA-Pre’s effectiveness across diverse
experimental conditions and its robust compatibility with different optimizers.

4.3 ABLATION STUDY

(a) (b)

Figure 2: Rank efficiency comparison across efficient optimization methods. Perplexity versus
rank for 60M (left) and 130M (right) parameter models, demonstrating LoRA-Pre’s superior perfor-
mance at lower ranks compared to baseline methods.

Ablation of Different Rank. To systematically evaluate how rank selection affects the performance
of LoRA-Pre compared to other efficient optimization methods, we conduct comprehensive experi-
ments across different rank configurations. We evaluate LoRA-Pre (both Adam and Muon variants)
against GaLore (Zhao et al., 2023) on 60M and 130M parameter models. We test ranks of {4, 16,
64, 128} for the 60M model and {16, 64, 128, 256} for the 130M model to observe performance
trends across different memory budgets.
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Figure 2 shows that all methods improve with increasing rank, but exhibit different rank efficiency.
LoRA-Pre consistently achieves better perplexity at lower ranks compared to GaLore. First, all
methods show improved performance with increasing rank, but they differ significantly in their rank
efficiency. When comparing specific configurations, the efficiency differences become clear. On the
60M model, LoRA-Pre Adam at rank=16 achieves comparable performance to GaLore at rank=128,
representing an 8× reduction in rank requirement. Similarly, on the 130M model, LoRA-Pre Adam
at rank=16 matches GaLore’s performance at rank=256, representing a 16× efficiency improvement.
LoRA-Pre Muon shows higher rank tolerance than LoRA-Pre Adam. We attribute LoRA-Pre’s rank
efficiency to its continuous subspace adaptation mechanism. GaLore performs periodic subspace
updates, creating intervals where the subspace becomes misaligned with the gradient structure. To
compensate for this error accumulation, GaLore requires larger subspaces. In contrast, LoRA-Pre
adjusts its subspace at each step, maintaining better alignment and thus achieving effective optimiza-
tion with smaller subspaces.

To gain deeper insights into this rank efficiency, we examine the training dynamics of LoRA-Pre
Muon across different rank configurations. Figure 3 visualizes the perplexity trajectories for the
130M model with ranks of 256, 128, 64, and 16.

The results reveal an intriguing convergence pat-
tern: while smaller ranks initially exhibit higher
perplexity values, this performance gap dimin-
ishes rapidly as training progresses. This behav-
ior demonstrates that LoRA-Pre’s dynamic sub-
space update mechanism can efficiently capture
the evolving momentum structure during training,
even when operating with constrained ranks. This
rapid adaptation capability explains why LoRA-
Pre maintains competitive performance across a
wide range of rank settings, making it both ro-
bust to rank selection and practically appealing for
memory-constrained training scenarios. Figure 3: Test perplexity for LoRA-Pre Muon

with different ranks during training.

Table 3: Results of pre-training using different efficient Muon optimizers.

Model Size 60M 130M 350M

Muon (Jordan et al., 2024) 28.43 21.86 16.17
Muon w/o momentum 32.15 24.23 17.33

Galore Muon (Zhao et al., 2023) 34.39 25.16 19.24
Fira Muon (Chen et al., 2024) 34.45 24.85 17.40
LoRA-Pre Muon 30.76 23.05 16.97

Ablation of Low-Rank Muon Optimizers. In this section, we evaluate the effectiveness of current
efficient optimizers by extending them to the recently proposed Muon optimizer (Jordan et al., 2024).
Since existing efficient optimizers were originally designed for Adam (Kinga et al., 2015), their
compatibility and performance with other optimizers remain unexplored. We conduct experiments
on 60M, 130M, and 350M parameter models, comparing LoRA-Pre against GaLore (Zhao et al.,
2023) and Fira (Chen et al., 2024) by adapting their implementations to use Muon. Standard Muon
serves as the upper bound, while Muon without momentum provides the lower bound. The Muon-
based algorithm for LoRA-Pre is presented in Algorithm 2.

The results in Table 3 reveal two significant findings. First, LoRA-Pre Muon consistently outper-
forms all other efficient optimizers, achieving improvements of 3.54, 1.80, and 0.43 points over the
second-best method at 60M, 130M, and 350M parameters, respectively. Second, projection-based
methods surprisingly perform worse than basic Muon without momentum, despite incorporating mo-
mentum computation. This counterintuitive result exposes fundamental generalization limitations
of projection-based gradient descent methods when applied to different optimizers. We conjecture
this phenomenon to the periodic subspace updates in projection-based methods, which introduce
momentum computation errors that subsequently affect Muon’s orthogonal update calculations. In
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contrast, LoRA-Pre continuously updates its subspace, enabling better capture of the orthogonal
space during Muon’s update process and achieving superior performance.

5 CONCLUSION

In this paper, we present LoRA-Pre, a novel low-rank efficient optimizer. We establish that EMA
momentum updates are mathematically equivalent to training an online linear regressor with gra-
dient descent on the online gradient flow. Building on this insight, we propose compressing the
momentum component through low-rank factorization, deriving update rules that maintain the EMA
form while operating in a compressed parameter space. We provide two variants: LoRA-Pre Adam
and LoRA-Pre Muon. Extensive experiments on pre-training and fine-tuning tasks demonstrate that
LoRA-Pre achieves competitive or superior performance across all evaluated tasks and model sizes.
Notably, our method exhibits excellent rank robustness, requiring only 1/8 or fewer ranks compared
to previous methods while achieving comparable results. The approach generalizes effectively to
various optimizers, making it a versatile solution for memory-efficient optimization.
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Taming Momentum: Rethinking Optimizer States
Through Low-Rank Approximation

————Appendix————
The structure of the Appendix is as follows,

• Appendix A contains the proofs of the theorems in the main manuscript.
• Appendix B details the optimization algorithms of the proposed method.
• Appendix C provides theoretical analysis of approximation error and convergence of the

proposed method.
• Appendix D provides additional experiments of our method.
• Appendix E details the LLM usage in this paper.

A PROOF OF THEORETICAL RESULTS

Theorem. Assume matrices mB ∈ Rp×r,mA ∈ Rr×q are both full rank. For the objective
minmB ,mA L(mB ,mA, g) =

1
2 · ∥mB ·mA − g∥2F , Newton’s method yields the following

closed-form update rules:

mB ← (1− γ1) ·mB + γ1 · gmA
T (mAm

T
A)

−1, (18)

mA ← (1− γ1) ·mA + γ1 · (mT
BmB)

−1mT
Bg. (19)

Here, γ1 is the learning rate for the factorized optimization problem.

Proof. We aim to derive Newton’s method update rules for the optimization problem
minmB ,mA

L(mB ,mA, g) = 1
2∥mBmA − g∥2F . Our approach begins with computing the first-

order gradients, then proceeds to the Hessian computation, and finally establishes the connection to
exponential moving average (EMA) updates. To start, we compute the first-order partial derivatives:

∂L

∂mB
= (mB ·mA − g) ·mT

A (20)

∂L

∂mA
= mT

B · (mB ·mA − g) (21)

While standard gradient descent would directly use these gradients to update the parameters, we
instead pursue Newton’s method because it yields a more elegant form that naturally resembles
EMA updates. For Newton’s method, we need the second-order derivatives (Hessian matrices).
Computing these second-order partial derivatives gives us:

HBB =
∂2L

∂m2
B

=
∂(mB ·mA − g) ·mT

A

∂mB
= mAm

T
A ⊗ Ip (22)

HAA =
∂2L

∂m2
A

=
∂mT

B · (mB ·mA − g)

∂mA
= Iq ⊗mT

BmB (23)

Using these Hessian matrices, we can now compute the Newton directions by solving the linear
systems H · d = ∇L, which yields:

dmB = H−1
BB ·

∂L

∂mB
= mB − gmA

T (mAm
T
A)

−1 (24)

dmA = H−1
AA ·

∂L

∂mA
= mA − (mT

BmB)
−1mT

Bg (25)

The key insight emerges when we apply these Newton directions with learning rate γ1. Substituting
the Newton directions into the update formula x← x− γ1dx, we obtain:
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mB ← mB − γ1dmB (26)

← mB − γ1
[
mB − gmA

T (mAm
T
A)

−1
]

(27)

← (1− γ1) ·mB + γ1 · gmA
T (mAm

T
A)

−1 (28)
mA ← mA − γ1dmA (29)

← mA − γ1
[
mA − (mT

BmB)
−1mT

Bg
]

(30)

← (1− γ1) ·mA + γ1 · (mT
BmB)

−1mT
Bg (31)

These final expressions reveal the remarkable property that Newton’s method naturally produces up-
date rules in the form of exponential moving averages, where each new parameter value is a weighted
combination of the previous value and a target value derived from the optimization objective.

To further illustrate this connection, we note that in the uncompressed case where we optimize
minm L(m, g) = 1

2∥m− g∥2F , Newton’s method similarly yields the classic EMA update:

m← m− γ ·H−1
mm ·

∂L

∂m
(32)

← (1− γ) ·m+ γ · g (33)

This consistency across problem formulations demonstrates the fundamental nature of this EMA-
like structure in Newton’s method and justifies our preference for this approach over standard gradi-
ent descent.

B DETAILED ALGORITHMS OF LORA-PRE FOR ADAM AND MUON
OPTIMIZER

This section presents the LoRA-Pre algorithms for both Adam (Kinga et al., 2015) and Muon (Jordan
et al., 2024) optimizers.

B.1 ALGORITHM OF LORA-PRE FOR ADAM

The Adam optimizer update rules under LoRA-Pre have been established in Section 3.

First-order momentum updates: For the first-order momentum term with parameterizationm =
mB ·mA, the update rules are:

m′
B ← (1− γ1) ·mB + γ1 · gmA

T (mAm
T
A)

−1, (34)

m′
A ← (1− γ1) ·mA + γ1 · (mT

BmB)
−1mT

Bg. (35)

By default, we set 1− γ1 =
√
β1, which ensures that after the update, m′ = m′

B ·m′
A = β1 ·mB ·

mA + ..., making the EMA coefficient consistent with standard Adam.

Second-order momentum updates: For the second-order momentum term with parameterization
v = (vB · vA)o2, the update rules are:

v′B ← (1− γ2) · vB + γ2 · |g|vTA(vAvTA)−1, (36)

v′A ← (1− γ2) · vA + γ2 · (vTBvB)−1vTB |g|. (37)

Analogously, we set 1 − γ2 = β0.25
2 by default, which ensures that v′ = (v′B · v′A)2 = β2 · (vB ·

vA)
2 + · · · .

Complete algorithm: Based on these update formulas, Algorithm 1 presents the complete LoRA-
Pre implementation for the Adam optimizer, demonstrating how these factorized momentum updates
integrate seamlessly into the standard Adam framework.
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Algorithm 1 Comparison of Adam and Adam with LoRA-Pre

Require: Initial learning rate γ, weight decay λ, β1, β2 ∈ [0, 1), γ1, γ2 ∈ [0, 1) , ϵ > 0

1: Initialize parameters θ0, time step t← 0,
first moment m0 ← 0, second moment v0 ← 0 ,

first low-rank moment mB,0 ← 0, mA,0 ← N (0, 0.02),

second low-rank moment vB,0 ← 0, vA,0 ← N (0, 0.02) .
2: repeat
3: t← t+ 1
4: gt ← ∇θLt(θt−1)
5: # Update first moment
6: mt ← β1 ·mt−1 + (1− β1) · gt
7: mt ← β1 ·mB,t−1 ·mA,t−1 + (1− β1) · gt
8: mB,t ← γ1 ·mB,t−1 + (1− γ1) · gtmA,t−1(mA,t−1m

T
A,t−1)

−1

9: mA,t ← γ1 ·mA,t−1 + (1− γ1) · (mT
B,t−1mB,t−1)

−1mT
B,t−1gt

10: # Update second moment
11: vt ← β2vt−1 + (1− β2) g

◦2
t

12: vt ← β2(vB,t−1 · vA,t−1)
◦2 + (1− β2)g

◦2
t

13: vB,t ← γ2vB,t−1 + (1− γ2)|gt|vA,t−1(vA,t−1v
T
A,t−1)

−1

14: vA,t ← γ2vA,t−1 + (1− γ2)(v
T
B,t−1vB,t−1)

−1vTB,t−1|gt|
15:
16: m̂t ← mt/(1− βt

1)
17: v̂t ← vt/(1− βt

2)

18: θt ← θt−1 − γ

(
m̂t√
v̂t+ϵ

+ λ θt−1

)
19: until stopping criterion is met
20: return Optimized parameters θt
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B.2 ALGORITHM OF LORA-PRE FOR MUON

In this section, we provide Muon (Jordan et al., 2024) optimizer with LoRA-Pre.

First-order momentum updates: For the Muon optimizer, we derive the LoRA-Pre algorithm by
first reformulating the momentum update. The Muon momentum term can be equivalently written
as:

m′ = µ ·m+ g (38)
= m− (1− µ) ·m+ g (39)
= m− (1− µ) · (m− g) + µ · g (40)

= m− (1− µ) ·
[
(m− g) +

µ

1− µ
· g
]

(41)

By treating the Muon update as the solution to an optimization problem, we can derive the equivalent
objective function:

L(m, g) =
1

2
· ∥m− g∥2F −

µ

1− µ
⟨m, g⟩F . (42)

After applying low-rank factorization m = mB ·mA, the objective becomes:

L(mB ,mA, g) =
1

2
· ∥mB ·mA − g∥2F −

µ

1− µ
⟨mB ·mA, g⟩F . (43)

We aim to derive Newton’s method update rules for the optimization problem. Now we can apply
Newton’s method to this modified objective. Computing the first-order gradients:

∂L

∂mB
= (mB ·mA − g) ·mT

A −
µ

1− µ
gmT

A, (44)

∂L

∂mA
= mT

B · (mB ·mA − g)− µ

1− µ
mT

Bg. (45)

The Hessian matrices have the same structure as before since the additional linear term doesn’t affect
the second derivatives:

HBB =
∂2L

∂m2
B

=
∂(mB ·mA − g) ·mT

A

∂mB
= mAm

T
A ⊗ Ip, (46)

HAA =
∂2L

∂m2
A

=
∂mT

B · (mB ·mA − g)

∂mA
= Iq ⊗mT

BmB . (47)

(48)

Using these Hessian matrices, we can now compute the Newton directions by solving the linear
systems H · d = ∇L, which yields:

dmB = H−1
BB ·

∂L

∂mB
= mB −

1

1− µ
gmA

T (mAm
T
A)

−1, (49)

dmA = H−1
AA ·

∂L

∂mA
= mA −

1

1− µ
(mT

BmB)
−1mT

Bg. (50)

The key insight emerges when we apply these Newton directions with learning rate γ1. Substituting
the Newton directions into the update formula x← x− γ1dx, we obtain:

mB ← mB − γ1dmB (51)

← mB − γ1
[
mB − gmA

T (mAm
T
A)

−1
]

(52)

← (1− γ1) ·mB +
γ1

1− µ
· gmA

T (mAm
T
A)

−1 (53)

mA ← mA − γ1dmA (54)

← mA − γ1
[
mA − (mT

BmB)
−1mT

Bg
]

(55)

← (1− γ1) ·mA +
γ1

1− µ
· (mT

BmB)
−1mT

Bg (56)
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Similarly, we set 1− γ1 =
√
β1.

Complete algorithm: Based on these update formulas, Algorithm 2 presents the complete LoRA-
Pre implementation for the Muon optimizer, demonstrating how these factorized momentum updates
integrate seamlessly into the standard Muon framework.

Algorithm 2 Comparison of Muon and Muon with LoRA-Pre

Require: Initial learning rate γ, weight decay λ, momentum µ ∈ [0, 1), γ1 ∈ [0, 1)

1: Initialize parameters θ0, time step t← 0,
first moment m0 ← 0,

first low-rank moment mB,0 ← 0, mA,0 ← N (0, 0.02),
2: repeat
3: t← t+ 1
4: gt ← ∇θLt(θt−1)
5: # Update first moment
6: mt ← µ ·mt−1 + gt

7: mt ← µ ·mB,t−1 ·mA,t−1 + gt

8: mB,t ← γ1 ·mB,t−1 +
1−γ1

1−µ · gtmA,t−1(mA,t−1m
T
A,t−1)

−1

9: mA,t ← γ1 ·mA,t−1 +
1−γ1

1−µ · (m
T
B,t−1mB,t−1)

−1mT
B,t−1gt

10: Ot = NewtonSchulz5(mt)
11: θt ← θt−1 − γOt

12: until stopping criterion is met
13: return Optimized parameters θt

C THEORETICAL ANALYSIS OF APPROXIMATION ERROR AND
CONVERGENCE

In this appendix, we provide a rigorous theoretical analysis of the LoRA-Pre Adam optimizer. We
explicitly analyze the approximation error introduced by the low-rank factorization of the optimizer
states, and prove the convergence fidelity of the algorithm in non-convex settings.

C.1 PROBLEM SETUP AND ALGORITHM DYNAMICS

Consider the unconstrained optimization problem minθ∈Rd f(θ). Let gt = ∇f(θt) be the stochastic
gradient at step t. We denote the states of Standard Adam as mt, vt and the effective states of
LoRA-Pre Adam as m̃t, ṽt.

1. Standard Adam Dynamics The standard optimizer updates its moments using exponential
moving averages (EMA) with decay rates β1, β2 ∈ [0, 1):

mt = β1mt−1 + (1− β1)gt (57)
vt = β2vt−1 + (1− β2)(gt ⊙ gt) (58)

2. LoRA-Pre Dynamics LoRA-Pre maintains low-rank factors (mB,t,mA,t) to approximate the
gradient history. Let γ1 be the update rate. The exact simultaneous update rules (Online Least
Squares) can be compactly expressed using the Moore-Penrose pseudoinverse (·)†:

mB,t = (1− γ1)mB,t−1 + γ1gtm
†
A,t−1 (59)

mA,t = (1− γ1)mA,t−1 + γ1m
†
B,t−1gt (60)

where the pseudoinverses for the full-rank factors are defined as m†
A = m⊤

A(mAm
⊤
A)

−1 and m†
B =

(m⊤
BmB)

−1m⊤
B .

We define the canonical projection operators associated with the factors at step t− 1:
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• PA ≜ m†
A,t−1mA,t−1 (Projection onto Row Space of mA)

• PB ≜ mB,t−1m
†
B,t−1 (Projection onto Column Space of mB)

Let m̂t = mB,tmA,t be the low-rank history reconstruction. Analogous updates apply to the second
moment factors using the gradient magnitude |gt|, producing the reconstruction ĥt = vB,tvA,t.

3. Effective Moments for Update Crucially, LoRA-Pre computes the effective moments for the
parameter update by combining the low-rank history with the exact current gradient:

m̃t = β1m̂t−1 + (1− β1)gt (61)

ṽt = β2(ĥt−1)
◦2 + (1− β2)(gt ⊙ gt) (62)

Note that for the second moment, LoRA-Pre approximates the history of magnitudes ĥ and then
squares it.

C.2 ASSUMPTIONS

Assumption 1 (Regularity and Boundedness). The objective function and stochastic gradients sat-
isfy the following conditions:

1. L-Smoothness: The objective function f is L-smooth: ∥∇f(x)−∇f(y)∥F ≤ L∥x−y∥F .

2. Bounded Gradients: The stochastic gradients are uniformly bounded in both Frobenius
and infinity norms. There exist constants G and G∞ such that for all t, ∥gt∥F ≤ G and
∥gt∥∞ ≤ G∞.

3. Bounded Update Scale: The optimizer uses a damping term ϵ > 0. Consequently, the
update mapping ϕ(m, v) = m√

v+ϵ
is Lipschitz continuous with constant Lϕ = ϵ−1 with

respect to m.
Assumption 2 (Subspace Approximation Capability). The gradient dynamics admit a low-rank
structure. Crucially, we assume this structure holds for both the gradient direction and its element-
wise magnitude. Let PB,t,PA,t denote the projections onto the subspaces maintained by the opti-
mizer at step t. We assume there exists a bound δ ≥ 0 such that:

∥gt − (PB,tgt + gtPA,t)∥F ≤ δ (63)
∥|gt| − (PB,t|gt|+ |gt|PA,t)∥F ≤ δ (64)

The second inequality ensures that the second-moment estimator (based on |Gt|) also admits a
bounded reconstruction error.
Assumption 3 (Reference Optimizer Descent). Let ut = mt/(

√
vt + ϵ) be the update direction of

the standard full-rank Adam optimizer. We assume that in expectation, ut is a valid descent direction
aligned with the true gradient:

E[⟨∇f(θt), ut⟩] ≥ cE[∥∇f(θt)∥2F ] (65)
for some constant c > 0. This assumption anchors the convergence of LoRA-Pre Adam to the
theoretical behavior of standard Adam.

C.3 BOUNDEDNESS OF FACTOR RECONSTRUCTION ERROR

We first prove that the error of the stored low-rank history m̂t is uniformly bounded. We strictly
enforce the time-scale alignment condition: β1 = (1− γ1)

2.
Lemma C.1. Let Emt = ∥mt − m̂t∥F . Under Assumptions 1 and 2, Emt is uniformly bounded by a
constant Ebound.

Proof. Step 1: Exact Expansion of LoRA Dynamics Substitute the update rules (84) and (85) into
m̂t = mB,tmA,t:

m̂t =
[
(1− γ1)mB,t−1 + γ1gtm

†
A,t−1

] [
(1− γ1)mA,t−1 + γ1m

†
B,t−1gt

]
= (1− γ1)

2m̂t−1 + γ1(1− γ1)(PBgt + gtPA) + γ2
1Qt (66)
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where Qt = gtm
†
A,t−1m

†
B,t−1gt is the quadratic interaction term. Due to the boundedness of

gradients and regularized inversions, ∥Qt∥F ≤ CQ. Using the condition β1 = (1− γ1)
2, we imply

γ1 = 1−
√
β1. The expansion becomes:

m̂t = β1m̂t−1 + (1−
√
β1)
√
β1(PBgt + gtPA) + (1−

√
β1)

2Qt (67)

Step 2: Constructing the Recursive Error We form the difference with the standard Adam update
mt = β1mt−1 + (1− β1)gt:

mt − m̂t = β1(mt−1 − m̂t−1) +Rt (68)

where the residual driving term Rt is:

Rt = (1− β1)gt − (1−
√

β1)
√
β1(PBgt + gtPA)− (1−

√
β1)

2Qt (69)

Step 3: Bounding the Residual Using the identity 1− β1 = (1−
√
β1)(1 +

√
β1), we rewrite the

linear part of Rt:

Linear = (1−
√
β1)
[
(1 +

√
β1)gt −

√
β1(PBgt + gtPA)

]
= (1−

√
β1)
[
gt +

√
β1(gt − PBgt − gtPA)

]
(70)

Taking the Frobenius norm and using Assumption 2 (where the term in parenthesis is related to the
subspace residual δ):

∥Rt∥F ≤ (1−
√
β1)G+

√
β1(1−

√
β1)δ + (1−

√
β1)

2CQ ≜ ∆res (71)

Step 4: Convergence The error recursion is Emt ≤ β1Emt−1 +∆res. Since β1 < 1, this converges to
a steady state:

lim
t→∞

Emt ≤
∆res

1− β1
≜ Ebound (72)

Given 1−
√
β1

1−β1
= 1

1+
√
β1
≈ 1

2 , we have Ebound ≈ 1
2 (G + δ). Thus, the factor error is uniformly

bounded.

C.4 JOINT EFFECTIVE MOMENT ERROR

We now derive the error bounds for the effective moments m̃t and ṽt used in the parameter update,
explicitly accounting for the non-linear square term in ṽt.
Lemma C.2. Let ∆m = ∥mt − m̃t∥F and ∆v = ∥vt − ṽt∥F . Then:

∆m ≤ β1Ebound (73)
∆v ≤ 2β2G∞Ebound (74)

Proof. 1. First Moment Error: Subtract Eq. (61) from standard Adam. The term (1 − β1)gt is
identical in both and cancels out:

mt − m̃t = β1(mt−1 − m̂t−1) (75)

Using Lemma C.1, ∆m = β1∥mt−1 − m̂t−1∥F ≤ β1Ebound.

2. Second Moment Error: Standard Adam tracks vt ≈ (ht−1)
◦2 (where h is the EMA of |g|).

LoRA-Pre uses ṽt ≈ (ĥt−1)
◦2.

vt − ṽt = β2

[
(ht−1)

◦2 − (ĥt−1)
◦2
]

(76)

Define the element-wise function s(x) = x2. On the bounded domain [−G∞, G∞], the Lipschitz
constant of s(x) is Lsq = 2G∞.

∥(ht−1)
◦2 − (ĥt−1)

◦2∥F ≤ 2G∞∥ht−1 − ĥt−1∥F (77)

By Lemma C.1 applied to the magnitude history, ∥ht−1 − ĥt−1∥F ≤ Ebound. Thus, ∆v ≤
2β2G∞Ebound.
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C.5 CONVERGENCE ANALYSIS

Theorem C.3. Let the step size be ηt = η/
√
t. Under Assumptions 1 and 2, LoRA-Pre Adam

converges to a neighborhood of a stationary point:

min
1≤t≤T

E[∥∇f(θt)∥2] ≤
C1√
T

+ C2E2bound (78)

where C1 depends on the initial function gap and C2 depends on the Lipschitz properties of the
update rule.

Proof. Let ut =
mt√
vt+ϵ and ũt =

m̃t√
ṽt+ϵ

. The update function ϕ(m, v) = m/(
√
v+ϵ) has Lipschitz

constants Lm = ϵ−1 and Lv = G∞/(2ϵ2). By Lemma C.2, the direction error ξt = ∥ut − ũt∥F is
bounded:

ξt ≤ Lm∆m + Lv∆v ≤
(
β1

ϵ
+

2β2G
2
∞

2ϵ2

)
Ebound ≜ KEbound (79)

Using the Descent Lemma for L-smooth functions:

f(θt+1) ≤ f(θt)− ηt⟨∇f(θt), ũt⟩+
Lη2t
2
∥ũt∥2 (80)

Substitute ũt = ut + (ũt − ut) and apply Young’s Inequality to the error term:

⟨∇f, ũt⟩ = ⟨∇f, ut⟩+ ⟨∇f, ũt − ut⟩

≥ c∥∇f∥2 −
(
c

2
∥∇f∥2 + 1

2c
∥ξt∥2

)
=

c

2
∥∇f∥2 − 1

2c
∥ξt∥2 (81)

Substituting back and summing over T steps:
T∑

t=1

cηt
2
∥∇f(θt)∥2 ≤ f(θ1)− f∗ +

T∑
t=1

ηt
2c

K2E2bound +
T∑

t=1

Lη2t
2

G2
step (82)

Dividing by
∑

ηt ≈ 2η
√
T (since ηt ∝ 1/

√
t):

1

T

T∑
t=1

E[∥∇f(θt)∥2] ≤ O
(

1√
T

)
+

K2

2c2
E2bound (83)

The term proportional to E2bound represents the irreducible error floor due to the low-rank approxi-
mation. For problems with low intrinsic dimension (small δ), this floor is negligible.

D ADDITIONAL EXPERIMENTAL RESULTS OF OUR METHOD

D.1 ABLATION OF HYPER-PARAMETERS IN LORA-PRE

In this section, we evaluate the sensitivity of LoRA-Pre Adam to hyper-parameter variations. While
LoRA-Pre introduces coefficients (γ1, γ2) for updating the low-rank components, these are not in-
dependent hyperparameters requiring separate tuning. Instead, they are analytically coupled with
the standard Adam momentum coefficients (β1, β2).

Formally, the update rules for the momentum components mA and mB in LoRA-Pre are defined as:

m′
B ← (1− γ1)mB + γ1gm

T
A(mAm

T
A)

−1, (84)

m′
A ← (1− γ1)mA + γ1(m

T
BmB)

−1mT
Bg, (85)

where g represents the gradient. When analyzing the equivalent decay coefficient for the effective
momentum matrix m, which is reconstructed via m ≈ mBmA, we obtain the following approxima-
tion:

m′ = m′
Bm

′
A ≈ (1− γ1)

2mBmA + · · · ≈ (1− γ1)
2m+ · · · . (86)
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To align this behavior with standard Adam optimization (where the momentum decay is governed
by β1), we enforce the constraint (1 − γ1)

2 = β1 (and similarly (1 − γ2)
4 = β2). Consequently,

determining γ is strictly dependent on β.

We conducted ablation studies on the 60M parameter model by varying β1 and β2 around their
default values (β1 = 0.9, β2 = 0.95). The results are summarized in Table 4.

Table 4: Sensitivity Analysis of β parameters. We report the validation loss on the 60M model.
The method exhibits stability around the default settings (β1 = 0.9, β2 = 0.95), while extreme
values lead to divergence.

Hyperparameter Value Perplexity Status

β1 (with β2 = 0.95)
0.90 (Default) 32.57 Optimal
0.95 37.62 Sub-optimal
0.99 1458.92 Unstable

β2 (with β1 = 0.90)
0.90 34.61 Sub-optimal
0.95 (Default) 32.57 Optimal
0.999 1301.58 Unstable

As shown in Table 4, LoRA-Pre achieves the best performance at the standard default configuration.
While the optimizer is robust within a reasonable range, extreme values (e.g., β1 → 0.99) lead
to numerical instability, consistent with the behavior of adaptive optimizers in low-rank training
regimes. This confirms that our coupling strategy effectively eliminates the need for grid-searching
γ.
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