
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TAMING MOMENTUM: RETHINKING OPTIMIZER
STATES THROUGH LOW-RANK APPROXIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern optimizers like Adam and Muon are central to training large language
models, but their reliance on first- and second-order momenta introduces signifi-
cant memory overhead, which constrains scalability and computational efficiency.
In this work, we re-frame the exponential moving average (EMA) used in these
momenta as the training of a linear regressor via online gradient flow. Building on
this equivalence, we introduce LoRA-Pre, a novel low-rank optimizer designed
for efficient pre-training. Specifically, LoRA-Pre reduces the optimizer’s mem-
ory footprint by decomposing the full momentum matrix into a compact low-rank
subspace within the online linear learner, thereby maintaining optimization per-
formance while improving memory efficiency. We empirically validate LoRA-
Pre’s efficacy by pre-training models from the Llama architecture family, scal-
ing from 60M to 1B parameters. LoRA-Pre achieves the highest performance
across all model sizes. Notably, LoRA-Pre demonstrates remarkable rank effi-
ciency, achieving comparable or superior results using only 1/8 the rank of base-
line methods. Beyond pre-training, we evaluate LoRA-Pre’s effectiveness in fine-
tuning scenarios. With the same rank, LoRA-Pre consistently outperforms all
efficient fine-tuning baselines. Specifically, compared to standard LoRA, LoRA-
Pre achieves substantial improvements of 3.14 points on Llama-3.1-8B and 6.17
points on Llama-2-7B, validating our approach’s effectiveness across both pre-
training and fine-tuning paradigms.

1 INTRODUCTION

Large Language Models (LLMs) (Guo et al., 2025; Yang et al., 2025; Grattafiori et al., 2024; Brown
et al., 2020; Comanici et al., 2025; Touvron et al., 2023; Jaech et al., 2024) have become the center-
piece of modern deep learning. Trained on trillions of tokens from heterogeneous sources and scaled
to unprecedented parameter counts, they demonstrate remarkable generalization and transfer capa-
bilities. Beyond, some LLMs have reasoning ability and leverage external tools (Guo et al., 2025;
Yang et al., 2025). These advances have transformed LLMs from statistical learners into versatile
systems, driving breakthroughs across research and real-world applications.

However, the success of LLMs comes with formidable training and adaptation costs (Grattafiori
et al., 2024). The vast number of trainable parameters demands enormous memory and compu-
tational resources during pre-training and fine-tuning. A key contributor to this burden lies in the
optimizer states. For instance, Adam (Kinga et al., 2015), the de facto optimizer for training LLMs,
maintains not only the model weights but also first- and second-order moment estimates of the gra-
dients. This triples memory usage and further exacerbates scalability bottlenecks, underscoring the
urgent need for more efficient optimization strategies.

To address this, a series of low-rank optimization methods has emerged. One prominent line of re-
search achieves optimizer state compression through projected gradient descent (Zhao et al., 2023;
Chen et al., 2024; Hao et al., 2024; Modoranu et al., 2025). These methods initialize projection
matrices via SVD or random mappings, project gradients into smaller subspaces for optimizer state
computation, and then map back to achieve parameter updates, thereby compressing the optimiza-
tion overhead. Additionally, such methods require periodic subspace updates to enable high-rank
parameter updates following W = ∆WT1 +∆WT2 + · · · . However, due to the inability to update
subspaces instantly, error accumulation occurs in optimizer state computation, leading to subopti-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

mal performance. This motivates the need for a more dynamic approach that can rapidly adapt to
changing gradient subspaces.

In this paper, we propose LoRA-Pre, a novel low-rank optimizer for LLM pre-training that ad-
dresses these limitations through a different approach. Our key insight is an interesting mathemati-
cal connection between the exponential moving average (EMA) of momentum and linear regression.
Specifically, we demonstrate that EMA momentum updates are mathematically equivalent to train-
ing an online linear regressor with gradient descent on the online gradient flow:

m← β ·m+ (1− β) · g ⇐⇒ min
m

L(m, g) =
1

2
· ∥m− g∥2F , (1)

where m ∈ Rp×q represents the momentum, g is the online gradient, and β is the coefficient.
This equivalence reveals that momentum accumulation can be viewed as fitting a linear model to
approximate the gradient history.

Leveraging this theoretical insight, we develop a memory-efficient optimizer through momentum
compression via low-rank factorization. Instead of maintaining the full momentum matrix m, we
decompose it as the product of two low-rank matrices as m = mB ·mA, where mB ∈ Rp×r and
mA ∈ Rr×q , with r ≪ min(p, q). This factorization reduces memory complexity from p × q to
(p+ q)× r, yielding substantial memory savings for large-scale models. The low-rank momentum
is then updated by solving minmB ,mA

L(mB ,mA, g) =
1
2 · ∥mB ·mA − g∥2F , with explicit update

rules derived in Theorem 3.1.

This theoretical framework enables us to compress any momentum-based optimizer. We demon-
strate its versatility by developing LoRA-Pre variants for both Adam (Kinga et al., 2015) and
Muon (Jordan et al., 2024) optimizers, with detailed algorithms provided in Appendix B. Exten-
sive experiments across pre-training and fine-tuning tasks validate the effectiveness of our method,
while ablation studies demonstrate strong robustness across different rank variations.

Our main contributions are summarized as follows:

• We establish a novel theoretical connection showing that exponential moving average
(EMA) momentum updates are mathematically equivalent to training a linear regressor
via online gradient flow.

• Based on this insight, we propose LoRA-Pre, a memory-efficient low-rank optimizer for
pre-training that compresses optimizer states by factorizing the momentum matrix into low-
rank components. We construct LoRA-Pre variants for both Adam and Muon optimizers,
mathematically induce their low-rank update rules through our regression formulation, and
achieve substantial memory reduction while preserving optimization dynamics.

• We provide extensive experimental validation across both pre-training and fine-tuning
tasks, demonstrating that LoRA-Pre achieves superior performance with remarkable rank
efficiency compared to existing baselines, confirming both the efficiency and effectiveness
of our approach across diverse model scales and application scenarios.

2 RELATED WORKS

Low-Rank Adaptation. The scaling of Large Language Models (LLMs) has spurred the develop-
ment of Parameter-Efficient Fine-Tuning (PEFT) methods (Hu et al., 2022; Liu et al., 2024; Wang
et al., 2025; Ding et al., 2023; Liu et al., 2023; 2022; 2023; Hayou et al., 2024; Wang et al., 2024;
Edalati et al., 2023; Zhang et al., 2023; Tastan et al., 2025), which aim to adapt pre-trained models to
downstream tasks with reduced computational and memory overhead. Among these PEFT methods,
Low-Rank Adaptation (LoRA) (Hu et al., 2022) and its variants (Wang et al., 2025; 2024; Hayou
et al., 2024; Liu et al., 2024; Yen et al., 2025) have emerged as the predominant methodologies in
the field.

LoRA is grounded in the principle that weight updates during fine-tuning possess an intrinsic low-
rank structure (Aghajanyan et al., 2021). By re-parameterizing these updates as the product of two
low-rank matrices, LoRA substantially reduces the number of trainable parameters while maintain-
ing competitive performance, thereby enabling efficient adaptation of LLMs with limited computa-
tional resources. The effectiveness of LoRA has inspired a line of research aimed at addressing its

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

shortcomings. For instance, LoRA+ (Hayou et al., 2024) introduces differential learning rates for
the two low-rank matrices to improve convergence and final task performance. DoRA (Liu et al.,
2024) decomposes pre-trained weights into magnitude and direction components, applying LoRA
specifically to the directional component to better capture fine-tuning dynamics. Recent works like
LoFT (Tastan et al., 2025) and LoRA-Pro (Wang et al., 2025) establish theoretical connections be-
tween LoRA and full fine-tuning via projected gradient equivalents.

While effective for fine-tuning, existing LoRA-based methods face fundamental challenges when
applied to pre-training from scratch. Unlike fine-tuning, where small adaptations naturally exhibit
low-rank structure, pre-training from random initialization requires full-rank weight updates to learn
diverse representations across the entire parameter space (Lialin et al., 2024; Kamalakara et al.,
2022). This mismatch between LoRA’s low-rank assumption and pre-training’s full-rank require-
ments results in suboptimal performance in the pre-training stage.

Low-Rank Pre-Training. The pre-training cost of LLMs has surged dramatically with the rapid ex-
pansion of model scale. A promising direction for mitigating these costs is compressing optimizer
states into a low-rank subspace, a strategy that significantly reduces memory footprints and com-
munication overhead (Zhao et al., 2023; Modoranu et al., 2025; Ma et al., 2025; Han et al., 2024;
Zmushko et al., 2025; Chen et al., 2024; Hao et al., 2024; Shen et al., 2025; Mahdavinia & Mahdavi,
2025; Zhang et al., 2025). For instance, GaLore (Zhao et al., 2023) utilizes Singular Value De-
composition (SVD) to project gradient information into a low-rank subspace for state compression,
subsequently projecting the optimized gradients back for parameter updates. To enhance compu-
tational efficiency, Flora (Hao et al., 2024) substitutes the expensive SVD operation with random
projection, while Fira (Chen et al., 2024) incorporates SGD momentum to leverage gradient infor-
mation from the complementary subspace. However, these projection-based methods typically rely
on periodic subspace updates to amortize costs, which often results in optimization discontinuities
and error accumulation due to the lag in subspace adaptation.

Recent works have explored online strategies to address these limitations. MLorc (Shen et al., 2025)
employs randomized SVD for online momentum compression. MoFaSGD (Mahdavinia & Mahdavi,
2025) utilizes momentum factorization to approximate full-rank momentum online, ensuring non-
convex convergence. Similarly, ADAPM (Zhang et al., 2025) compresses first-order momentum
into a low-rank subspace via linear regression. In contrast, our proposed LoRA-Pre fundamentally
reformulates momentum maintenance as an online regression task. By directly evolving low-rank
factors via online gradient flow at every step, our approach achieves continuous subspace adaptation,
effectively eliminating the instabilities associated with periodic updates or heuristic approximations.

3 METHOD

We begin by revisiting the de facto standard optimizer, Adam (Kinga et al., 2015), in Section 3.1.
Then, we establish a connection between the exponential moving average and an online linear re-
gressor over past gradients in Section 3.2. Finally, Section 3.3 introduces our efficient optimizer,
LoRA-Pre, which compresses optimizer states through low-rank parameterization.

3.1 PRELIMINARY

We begin with Adam (Kinga et al., 2015), the de facto optimizer in modern deep learning, which
combines the benefits of AdaGrad (Duchi et al., 2011) and RMSProp (Hinton et al., 2012) by main-
taining estimates of the first and second moments of gradients to achieve adaptive learning rates and
robust performance.

Consider an optimization problem where xt ∈ X represents a data point drawn from a distribution
pdata, L(·) : X → R is a loss function, and θ ∈ Rd are the optimized parameters. The Adam

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝑚′ ← 𝛽1 ⋅ 𝑚 + 1 − 𝛽1 ⋅ 𝑔

𝑚
𝒈𝒕−𝟏…𝒈𝟏

𝐿(𝑚) = 𝑚 − 𝑔𝑡 𝐹
2

Online Gradient Flow

update: 𝑚′ ← 𝑚− 1 − 𝛽1 ⋅
𝜕𝐿

𝜕𝑚

Equivalent
Form

Low-Rank
Compression

𝒈𝒕 𝒈𝒕−𝟏…𝒈𝟏𝒈𝒕+𝟏

𝐿(𝑚𝐵 , 𝑚𝐴) = 𝑚𝐵 ⋅ 𝑚𝐴 − 𝑔𝑡 𝐹
2

update:

𝑚𝐵

𝑚𝐴

𝑚𝐴
′ ← 𝑚𝐴 − 1 − 𝛽1 ⋅

𝜕2𝐿

𝜕𝑚𝐴
2

−1

⋅
𝜕𝐿

𝜕𝑚𝐴

𝑚𝐵
′ ← 𝑚𝐵 − 1 − 𝛽1 ⋅

𝜕2𝐿

𝜕𝑚𝐵
2

−1

⋅
𝜕𝐿

𝜕𝑚𝐵

Your Momentum is a Secret Online Linear Learner!

Online Gradient Flow𝒈𝒕𝒈𝒕+𝟏

Figure 1: Illustration of our LoRA-Pre method. In this work, we establish a novel connection:
the exponential moving average (EMA) update for optimizer momentum is mathematically equiva-
lent to training a linear regressor using online gradient descent. Leveraging this equivalence, we
propose compressing the optimizer states (i.e., the momenta) using low-rank matrices to reduce the
memory footprint. Finally, the closed-form update rules for these matrices without requiring back-
propagation are given by Theorem 3.1.

optimizer (Kinga et al., 2015) updates θ according to the following steps:

gt =
∂L(xt)

∂θ
, xt ∼ pdata(x), (Gradient Computation) (2)

mt = β1 ·mt−1 + (1− β1) · gt, (EMA of the First Moment) (3)

vt = β2 · vt−1 + (1− β2) · g2t , (EMA of the Second Moment) (4)

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

, (Bias-Correction) (5)

θt+1 = θt −
γ√

v̂t + ϵ
· m̂t. (Parameter Update) (6)

Here, mt and vt represent the Exponential Moving Average (EMA) of the first- and second-order
moments, respectively. The hyperparameters include the learning rate γ, the exponential decay rates
β1, β2 ∈ [0, 1) for the moment estimates, and a small constant ϵ > 0 for numerical stability.

Similar to the Adam optimization process, momentum also plays a critical role in other modern opti-
mizers (Shazeer & Stern, 2018; Jordan et al., 2024), enhancing stability and convergence. However,
storing momentum states introduces significant memory overhead. Our work directly addresses this
by compressing the momentum term to reduce the optimizer’s memory footprint.

3.2 YOUR MOMENTUM IS A SECRETLY ONLINE REGRESSOR

To begin with, we reveal an interesting connection: momentum updates in modern optimizers are
secretly performing online linear regression. Specifically, updating the momentum m via EMA
is mathematically equivalent to optimizing m as the parameters of a linear regressor using online
gradient flow.

To illustrate this, let’s take the first-order momentum as an example. The standard EMA update for
the first-order momentum can be rewritten as follows:

mt+1 = β ·mt + (1− β) · g, (7)
= mt︸︷︷︸

weight

− (1− β)︸ ︷︷ ︸
lr

· (mt − g)︸ ︷︷ ︸
gradient

. (8)

As shown in Equation (8), the EMA update is mathematically equivalent to a gradient descent step
where the parameter being optimized is the momentum m, the learning rate is 1−β, and the gradient

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

is ∂L(mt,g)
∂m = mt−g. This reformulation reveals that EMA updates essentially function as an online

linear regressor that continuously adjusts the momentum weights based on incoming gradients. The
underlying objective being minimized is:

min
m

L(m, g) =
1

2
· ∥m− g∥2F . (9)

This insight opens a new avenue for optimizer footprint optimization: since momentum parameters
are linear model weights, we can apply standard model compression techniques to reduce optimizer
memory usage during training.

3.3 LORA-PRE: LOW-RANK ONLINE LINEAR REGRESSION

We now introduce LoRA-Pre, a new low-rank optimizer for pre-training. Building on the equiva-
lence between exponential moving averages and online linear regression, LoRA-Pre compresses the
momentum term m via a low-rank factorization, inspired by the LoRA technique (Hu et al., 2022).
This approach can apply to any momentum-based optimizer, such as Adam (Kinga et al., 2015) and
Muon (Jordan et al., 2024). We detail the compression strategies for both first- and second-order
momentum terms below.

First-Order Momentum Compression. Having established that momentum updates are equivalent
to gradient descent on the objective minm L(m, g) = 1

2 ·∥m−g∥
2
F in Section 3.2, we can now apply

low-rank compression to reduce memory usage. Instead of storing and updating the full momentum
matrix m ∈ Rp×q directly, we decompose it with the product of two low-rank matrices mB ∈ Rp×r

and mA ∈ Rr×q, r ≪ min(p, q), i.e., m = mB · mA. This factorization transforms our original
optimization problem into:

min
mB ,mA

L(mB ,mA, g) =
1

2
· ∥mB ·mA − g∥2F . (10)

To maintain memory efficiency, we solve this optimization problem using standard gradient descent
on the factorized matrices mB and mA. To ensure computational efficiency, we derive closed-form
update rules for these matrices without requiring back-propagation, which is given by Theorem 3.1.
We resort to Newton’s method for updating since the solution can be expressed in the form of EMA.

Theorem 3.1. Assume both matrices mB ∈ Rp×r,mA ∈ Rr×q are full rank. For the
objective minmB ,mA

L(mB ,mA, g) = 1
2 · ∥mB ·mA − g∥2F , Newton’s method yields the

following closed-form update rules:

mB ← (1− γ1) ·mB + γ1 · gmA
T (mAm

T
A)

−1, (11)

mA ← (1− γ1) ·mA + γ1 · (mT
BmB)

−1mT
Bg. (12)

Here, γ1 is the learning rate for the factorized optimization problem.

Proof. See Appendix A.

Second-Order Momentum Compression. The compression of second-order momentum v presents
additional challenges due to the constraints imposed by Adam’s parameter update rule. Since Equa-
tion (6) requires the square root of momentum, i.e.,

√
v, the second-order momentum must be

element-wise positive.

A naive approach would parameterize the second momentum as v = vB · vA and optimize using the
regression loss L(vB , vA, g) = 1

2 ·∥vB ·vA−g
2∥2F . From Theorem 3.1, we derive the corresponding

parameter update rule:

vB ← (1− γ2) · vB + γ2 · g2vTA(vAvTA)−1, (13)

vA ← (1− γ2) · vA + γ2 · (vTBvB)−1vTBg
2. (14)

Unfortunately, this approach cannot guarantee that vi,j > 0,∀i, j, making the computation of
√
v =√

vB · vA problematic.

To address this issue, we re-parameterize the second-order momentum as v = (vB · vA)◦2, where
◦ denotes the Hadamard product. This re-parameterization ensures element-wise positivity while

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

maintaining the low-rank structure. We then formulate the optimization of low-rank matrices vB
and vA as:

min
vB ,vA

L(vB , vA, g) =
1

2
· ∥vB · vA − |g|∥2F . (15)

And its update rule can be directly induced from Theorem 3.1.

vB ← (1− γ2) · vB + γ2 · |g|vTA(vAvTA)−1, (16)

vA ← (1− γ2) · vA + γ2 · (vTBvB)−1vTB |g|. (17)

Low-Rank Optimizer Algorithms. As shown before, our method can be applied to any optimizer
with momentum to compress its optimizer state during pre-training and fine-tuning stages. The
detailed pseudo-codes of LoRA-Pre optimizer for AdamW (Kinga et al., 2015) and Muon (Jordan
et al., 2024) are provided in Appendix B.

4 EXPERIMENTAL RESULTS

In this section, we present extensive experiments to evaluate the effectiveness of our proposed
method, LoRA-Pre. Our evaluation encompasses both memory-efficient pre-training and memory-
efficient fine-tuning on downstream tasks.

We begin by assessing LoRA-Pre’s pre-training capabilities in Section 4.1. Following the exper-
imental setup of Galore (Zhao et al., 2023), we train Llama (Touvron et al., 2023) models from
scratch with varying model sizes of 60M, 130M, 350M, and 1B parameters. All models are trained
on the Colossal Clean Crawled Corpus (C4) dataset (Raffel et al., 2020), a large-scale cleaned dataset
specifically designed for language model pre-training. To simulate realistic pre-training conditions,
the models are trained on sufficiently large volumes of data without repetition.

Subsequently, we evaluate LoRA-Pre’s fine-tuning performance in Section 4.2. We fine-tune both
Llama-3.1-8B (Grattafiori et al., 2024) and Llama-2-7B (Touvron et al., 2023) models on a 100k
subset sampled from the MetaMathQA dataset (Yu et al., 2024). The fine-tuned models are then
evaluated on the GSM8k (Cobbe et al., 2021) and MATH500 (Lightman et al., 2024) datasets. Fi-
nally, we present an ablation study of LoRA-Pre in Appendix 4.3

Implementation Details. To ensure fair comparison, we align the experimental setup with that of
Galore (Zhao et al., 2023). By default, LoRA-Pre is applied to all parameters in the attention and
MLP layers, while other parameters are optimized using the standard Adam (Kinga et al., 2015)
optimizer. We set the default ranks for the 60M, 130M, 350M, and 1B parameter models as 128,
256, 256, and 512, respectively. The optimal learning rate is selected from the set {0.01, 0.005,
0.001, 0.0005, 0.0001} based on validation perplexity. To maintain strict fairness in comparison,
we retain the same scale factor of 0.25 as used in Galore (Zhao et al., 2023). For memory-efficient
fine-tuning tasks, we set the default rank as 8 and set the learning rate as 2e− 5 by default.

4.1 MEMORY-EFFICIENT PRE-TRAINING

In this section, we evaluate the pre-training performance of our proposed method, LoRA-Pre. Our
experimental setup strictly follows that of Galore (Zhao et al., 2023). We compare LoRA-Pre against
several baseline methods, including both full optimizers and low-rank optimizers: 1) Adam (Kinga
et al., 2015): The de facto optimizer in modern deep learning that utilizes first- and second-order
momentum statistics to dynamically adjust learning rates and stabilize training. 2) Muon (Jordan
et al., 2024): A novel preconditioned optimizer that updates parameters by orthogonalizing the
first-order momentum. 3) Galore (Zhao et al., 2023): A low-rank optimizer that projects gradients
using SVD and computes optimizer states in a reduced subspace. 4) Low-Rank (Kamalakara et al.,
2022): A traditional low-rank approach that directly represents weights through learnable low-rank
factorization W = BA, 5) LoRA (Hu et al., 2022): The most widely adopted low-rank method for
fine-tuning that factorizes weights as W = W0 + BA. For pre-training scenarios, we maintain W0

as the full-rank initialization matrix. 6) ReLoRA (Lialin et al., 2024): A LoRA variant designed
for pre-training that periodically merges BA into W and initialize BA with optimizer state resets.
7) SLTrain (Han et al., 2024): A sparse plus low-rank approach that parameterizes weights as
W = S+BA, where both components are jointly optimized. 8) LORO (Mo et al., 2025): A method

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison with low-rank algorithms on pre-training various sizes of Llama models on the
C4 dataset. We report the validation perplexity (↓) on a hold-out C4 test set. The best and second-
best performance within the low-rank optimizers are highlighted with bold and underline. ∗ denotes
the results are reproduced by ourselves.

Model Size 60M 130M 350M 1B
r/dmodel 128 / 512 256 / 768 256 / 1024 512 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

Adam (Kinga et al., 2015) 34.09 25.08 18.80 15.56
Muon (Jordan et al., 2024) 28.43 21.86 16.17 13.41

Galore (Zhao et al., 2023) 34.88 25.36 18.95 15.64
Low-Rank (Kamalakara et al., 2022) 78.18 45.51 37.41 142.53
LoRA (Hu et al., 2022) 34.99 33.92 25.58 19.21
ReLoRA (Lialin et al., 2024) 37.04 29.37 29.08 18.33
SLTrain (Han et al., 2024) 34.15 26.04 19.42 16.14
LORO (Mo et al., 2025) 33.96 24.59 18.84 15.19
Fira* (Chen et al., 2024) 31.19* 24.51* 17.22* 14.31

LoRA-Pre (Adam) 32.57 23.78 16.36 13.53
LoRA-Pre (Muon) 30.76 23.05 16.97 13.92

that optimizes LoRA parameters by strictly constraining updates within the low-rank manifold. 9)
Fira (Chen et al., 2024): A method that improves Galore with Norm-Based Scaling and Norm-
Growth Limiter.

We pre-trained Llama-series models of different sizes to evaluate LoRA-Pre against these baseline
methods. By default, all low-rank optimizers are built upon the Adam (Kinga et al., 2015) optimizer
foundation. All the low-rank optimizers are based on the Adam (Kinga et al., 2015) optimizer. To
demonstrate the generalizability of our approach, we also evaluate LoRA-Pre with Muon (Algo-
rithm 2), as our method is compatible with any momentum-based optimizer.

The results, presented in Table 1, demonstrate that our method achieves superior performance
across multiple model scales. Specifically, LoRA-Pre (Adam) and LoRA-Pre (Muon) attain
either the highest or second-highest performance across almost all four different model sizes
(60M/130M/350M/1B), validating the effectiveness of our approach. While Fira yields competi-
tive results on the 60M model, LoRA-Pre consistently outperforms it on larger scales (130M, 350M,
and 1B), likely because our method avoids the error accumulation associated with Fira’s projected
gradients. And LoRA-Pre (Adam) outperforms the previous best efficient baselines by substantial
margins of 0.81, 2.45, and 1.6 perplexity points for the 130M, 350M, and 1B models, respectively.
Furthermore, when integrated with the Muon (Jordan et al., 2024) optimizer, LoRA-Pre (Muon)
achieves additional improvements on both 60M and 130M scale models, demonstrating our method’s
ability to generalize across different optimizers.

4.2 MEMORY-EFFICIENT FINE-TUNING

In this section, we evaluate the fine-tuning performance of LoRA-Pre on mathematical tasks. We
fine-tune Llama-2-7B and Llama-3.1-8B models on the MetaMath100k dataset and evaluate their
performance on GSM8K (Cobbe et al., 2021) and MATH500 (Lightman et al., 2024). To ensure fair
comparison, we maintain consistent hyperparameters and training configurations across all methods.

We select several memory-efficient fine-tuning baselines for comparison, including 1) LoRA (Hu
et al., 2022): the standard low-rank fine-tuning method. 2) rsLoRA (Kalajdzievski, 2023): an
improved LoRA variant that optimizes the scaling factor through rank-stabilized normalization. 3)
DoRA (Liu et al., 2024): a LoRA extension that decomposes weight updates into magnitude and
directional components for more effective optimization. 4) Galore (Zhao et al., 2023): a memory-
efficient optimizer that projects gradients into low-rank subspaces using SVD decomposition. To
demonstrate cross-optimizer compatibility, we evaluate Muon-based versions, including: 1) Galore-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Results of memory-efficient fine-tuning methods. We compare our method with ef-
ficient fine-tuning methods includes LoRA (Hu et al., 2022), rsLoRA (Kalajdzievski, 2023), and
DoRA (Liu et al., 2024), and an efficient optimizer Galore (Zhao et al., 2023). The models are fine-
tuned with MetaMath100k (Yu et al., 2024) dataset, and evaluate on GSM8k (Cobbe et al., 2021)
and MATH500 (Lightman et al., 2024). We highlight the best performance on Adam-like optimizer
and Muon-like optimizer with bold.

Method
Llama-3.1-8B Llama-2-7B

GSM8k MATH500 Average GSM8k MATH500 Average

LoRA (Hu et al., 2022) 70.76 17.06 43.91 44.62 7.34 25.98
rsLoRA (Kalajdzievski, 2023) 71.06 17.46 44.26 48.79 5.75 27.27
DoRA (Liu et al., 2024) 71.06 17.86 44.46 44.39 6.55 25.47
Galore (Zhao et al., 2023) 65.08 18.65 41.87 36.44 8.33 22.39
LoRA-Pre (Adam) 76.44 17.66 47.05 57.35 6.94 32.15
Galore-Muon (Zhao et al., 2023) 63.41 18.06 40.74 33.11 4.37 18.74
LoRA-Muon (Hu et al., 2022) 70.30 19.25 44.78 35.15 6.15 20.65
LoRA-Pre (Muon) 72.65 20.83 46.74 47.20 6.15 26.68

Muon: who apply the Galore (Zhao et al., 2023) algorithm to the Muon optimizer, and 2) LoRA-
Muon: optimizing LoRA with the Muon optimizer.

The results are presented in Table 2. LoRA-Pre consistently achieves the highest scores across all
experimental configurations, demonstrating superior performance regardless of the base model or
optimizer used. The improvements are particularly notable across different settings: when training
Llama-3.1-8B with Adam, LoRA-Pre shows an average improvement of 2.59 points over the second-
best method, while with Llama-2-7B and Adam, this improvement increases to 4.88 points. When
using the Muon optimizer, LoRA-Pre maintains its advantage with improvements of 1.96 and 6.03
points for the respective models. These results confirm LoRA-Pre’s effectiveness across diverse
experimental conditions and its robust compatibility with different optimizers.

4.3 ABLATION STUDY

(a) (b)

Figure 2: Rank efficiency comparison across efficient optimization methods. Perplexity versus
rank for 60M (left) and 130M (right) parameter models, demonstrating LoRA-Pre’s superior perfor-
mance at lower ranks compared to baseline methods.

Ablation of Different Rank. To systematically evaluate how rank selection affects the performance
of LoRA-Pre compared to other efficient optimization methods, we conduct comprehensive experi-
ments across different rank configurations. We evaluate LoRA-Pre (both Adam and Muon variants)
against GaLore (Zhao et al., 2023) on 60M and 130M parameter models. We test ranks of {4, 16,
64, 128} for the 60M model and {16, 64, 128, 256} for the 130M model to observe performance
trends across different memory budgets.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2 shows that all methods improve with increasing rank, but exhibit different rank efficiency.
LoRA-Pre consistently achieves better perplexity at lower ranks compared to GaLore. First, all
methods show improved performance with increasing rank, but they differ significantly in their rank
efficiency. When comparing specific configurations, the efficiency differences become clear. On the
60M model, LoRA-Pre Adam at rank=16 achieves comparable performance to GaLore at rank=128,
representing an 8× reduction in rank requirement. Similarly, on the 130M model, LoRA-Pre Adam
at rank=16 matches GaLore’s performance at rank=256, representing a 16× efficiency improvement.
LoRA-Pre Muon shows higher rank tolerance than LoRA-Pre Adam. We attribute LoRA-Pre’s rank
efficiency to its continuous subspace adaptation mechanism. GaLore performs periodic subspace
updates, creating intervals where the subspace becomes misaligned with the gradient structure. To
compensate for this error accumulation, GaLore requires larger subspaces. In contrast, LoRA-Pre
adjusts its subspace at each step, maintaining better alignment and thus achieving effective optimiza-
tion with smaller subspaces.

To gain deeper insights into this rank efficiency, we examine the training dynamics of LoRA-Pre
Muon across different rank configurations. Figure 3 visualizes the perplexity trajectories for the
130M model with ranks of 256, 128, 64, and 16.

The results reveal an intriguing convergence pat-
tern: while smaller ranks initially exhibit higher
perplexity values, this performance gap dimin-
ishes rapidly as training progresses. This behav-
ior demonstrates that LoRA-Pre’s dynamic sub-
space update mechanism can efficiently capture
the evolving momentum structure during training,
even when operating with constrained ranks. This
rapid adaptation capability explains why LoRA-
Pre maintains competitive performance across a
wide range of rank settings, making it both ro-
bust to rank selection and practically appealing for
memory-constrained training scenarios. Figure 3: Test perplexity for LoRA-Pre Muon

with different ranks during training.

Table 3: Results of pre-training using different efficient Muon optimizers.

Model Size 60M 130M 350M

Muon (Jordan et al., 2024) 28.43 21.86 16.17
Muon w/o momentum 32.15 24.23 17.33

Galore Muon (Zhao et al., 2023) 34.39 25.16 19.24
Fira Muon (Chen et al., 2024) 34.45 24.85 17.40
LoRA-Pre Muon 30.76 23.05 16.97

Ablation of Low-Rank Muon Optimizers. In this section, we evaluate the effectiveness of current
efficient optimizers by extending them to the recently proposed Muon optimizer (Jordan et al., 2024).
Since existing efficient optimizers were originally designed for Adam (Kinga et al., 2015), their
compatibility and performance with other optimizers remain unexplored. We conduct experiments
on 60M, 130M, and 350M parameter models, comparing LoRA-Pre against GaLore (Zhao et al.,
2023) and Fira (Chen et al., 2024) by adapting their implementations to use Muon. Standard Muon
serves as the upper bound, while Muon without momentum provides the lower bound. The Muon-
based algorithm for LoRA-Pre is presented in Algorithm 2.

The results in Table 3 reveal two significant findings. First, LoRA-Pre Muon consistently outper-
forms all other efficient optimizers, achieving improvements of 3.54, 1.80, and 0.43 points over the
second-best method at 60M, 130M, and 350M parameters, respectively. Second, projection-based
methods surprisingly perform worse than basic Muon without momentum, despite incorporating mo-
mentum computation. This counterintuitive result exposes fundamental generalization limitations
of projection-based gradient descent methods when applied to different optimizers. We conjecture
this phenomenon to the periodic subspace updates in projection-based methods, which introduce
momentum computation errors that subsequently affect Muon’s orthogonal update calculations. In

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

contrast, LoRA-Pre continuously updates its subspace, enabling better capture of the orthogonal
space during Muon’s update process and achieving superior performance.

5 CONCLUSION

In this paper, we present LoRA-Pre, a novel low-rank efficient optimizer. We establish that EMA
momentum updates are mathematically equivalent to training an online linear regressor with gra-
dient descent on the online gradient flow. Building on this insight, we propose compressing the
momentum component through low-rank factorization, deriving update rules that maintain the EMA
form while operating in a compressed parameter space. We provide two variants: LoRA-Pre Adam
and LoRA-Pre Muon. Extensive experiments on pre-training and fine-tuning tasks demonstrate that
LoRA-Pre achieves competitive or superior performance across all evaluated tasks and model sizes.
Notably, our method exhibits excellent rank robustness, requiring only 1/8 or fewer ranks compared
to previous methods while achieving comparable results. The approach generalizes effectively to
various optimizers, making it a versatile solution for memory-efficient optimization.

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. In ACL-IJCNLP, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS, 2020.

Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xiangyu Yue, Ye Yuan, and Guoren Wang.
Fira: Can we achieve full-rank training of llms under low-rank constraint? arXiv preprint
arXiv:2410.01623, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12(7), 2011.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi Reza-
gholizadeh. Krona: Parameter efficient tuning with kronecker adapter. In NeurIPS Workshop,
2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Kumar Jawanpuria, and
Bamdev Mishra. Sltrain: a sparse plus low rank approach for parameter and memory efficient
pretraining. In NeurIPS, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. In ICML, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. 2012.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In ICLR, 2022.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. arXiv preprint
arXiv:2312.03732, 2023.

Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat Venkitesh, Jimmy Ba, Yarin Gal, and Aidan N
Gomez. Exploring low rank training of deep neural networks. arXiv preprint arXiv:2209.13569,
2022.

Diederik Kinga, Jimmy Ba Adam, et al. Adam: A method for stochastic optimization. In ICLR,
2015.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-rank
training through low-rank updates. In ICLR, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In ICLR, 2024.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1–35, 2023.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In ICML,
2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In ACL, 2022.

Chao Ma, Wenbo Gong, Meyer Scetbon, and Edward Meeds. Swan: Sgd with normalization and
whitening enables stateless llm training. In ICML, 2025.

Pouria Mahdavinia and Mehrdad Mahdavi. Low-rank momentum factorization for memory efficient
training. TMLR, 2025. ISSN 2835-8856. URL https://openreview.net/forum?id=
W3D3TVo9a3.

Zhanfeng Mo, Long-Kai Huang, and Sinno Jialin Pan. Parameter and memory efficient pretraining
via low-rank riemannian optimization. In ICLR, 2025.

Ionut-Vlad Modoranu, Mher Safaryan, Erik Schultheis, and Dan Alistarh. Svd-free low-rank adap-
tive gradient optimization for large language models. arXiv preprint arXiv:2505.17967, 2025.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 21(140):1–67, 2020.

11

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://openreview.net/forum?id=W3D3TVo9a3
https://openreview.net/forum?id=W3D3TVo9a3

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Noam Shazeer and Mitchell Stern. Adaptive learning rates with sublinear memory cost. In ICML,
2018.

Wei Shen, Yaxiang Zhang, Minhui Huang, Mengfan Xu, Jiawei Zhang, and Cong Shen. Mlorc:
Momentum low-rank compression for large language model adaptation. arXiv preprint
arXiv:2506.01897, 2025.

Nurbek Tastan, Stefanos Laskaridis, Martin Takáč, Karthik Nandakumar, and Samuel Horváth.
LoFT: Low-rank adaptation that behaves like full fine-tuning. In ICML Workshop, 2025. URL
https://openreview.net/forum?id=AigAsBDtdj.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
In NeurIPS, 2024.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Lora-pro: Are low-rank adapters
properly optimized? In ICLR, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Jui-Nan Yen, Si Si, Zhao Meng, Felix Yu, Sai Surya Duvvuri, Inderjit S Dhillon, Cho-Jui Hsieh, and
Sanjiv Kumar. Lora done rite: Robust invariant transformation equilibration for lora optimization.
In The Thirteenth International Conference on Learning Representations, 2025.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In ICLR, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In ICLR, 2023.

Yimu Zhang, Yuanshi Liu, and Cong Fang. Adapm: a partial momentum algorithm for llm training.
arXiv preprint arXiv:2510.09103, 2025.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In ICML, 2023.

Philip Zmushko, Aleksandr Beznosikov, Martin Takáč, and Samuel Horváth. Frugal: Memory-
efficient optimization by reducing state overhead for scalable training. In ICML, 2025.

12

https://openreview.net/forum?id=AigAsBDtdj

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Taming Momentum: Rethinking Optimizer States
Through Low-Rank Approximation

————Appendix————
The structure of the Appendix is as follows,

• Appendix A contains the proofs of the theorems in the main manuscript.
• Appendix B details the optimization algorithms of the proposed method.
• Appendix C provides theoretical analysis of approximation error and convergence of the

proposed method.
• Appendix D provides additional experiments of our method.
• Appendix E details the LLM usage in this paper.

A PROOF OF THEORETICAL RESULTS

Theorem. Assume matrices mB ∈ Rp×r,mA ∈ Rr×q are both full rank. For the objective
minmB ,mA L(mB ,mA, g) =

1
2 · ∥mB ·mA − g∥2F , Newton’s method yields the following

closed-form update rules:

mB ← (1− γ1) ·mB + γ1 · gmA
T (mAm

T
A)

−1, (18)

mA ← (1− γ1) ·mA + γ1 · (mT
BmB)

−1mT
Bg. (19)

Here, γ1 is the learning rate for the factorized optimization problem.

Proof. We aim to derive Newton’s method update rules for the optimization problem
minmB ,mA

L(mB ,mA, g) = 1
2∥mBmA − g∥2F . Our approach begins with computing the first-

order gradients, then proceeds to the Hessian computation, and finally establishes the connection to
exponential moving average (EMA) updates. To start, we compute the first-order partial derivatives:

∂L

∂mB
= (mB ·mA − g) ·mT

A (20)

∂L

∂mA
= mT

B · (mB ·mA − g) (21)

While standard gradient descent would directly use these gradients to update the parameters, we
instead pursue Newton’s method because it yields a more elegant form that naturally resembles
EMA updates. For Newton’s method, we need the second-order derivatives (Hessian matrices).
Computing these second-order partial derivatives gives us:

HBB =
∂2L

∂m2
B

=
∂(mB ·mA − g) ·mT

A

∂mB
= mAm

T
A ⊗ Ip (22)

HAA =
∂2L

∂m2
A

=
∂mT

B · (mB ·mA − g)

∂mA
= Iq ⊗mT

BmB (23)

Using these Hessian matrices, we can now compute the Newton directions by solving the linear
systems H · d = ∇L, which yields:

dmB = H−1
BB ·

∂L

∂mB
= mB − gmA

T (mAm
T
A)

−1 (24)

dmA = H−1
AA ·

∂L

∂mA
= mA − (mT

BmB)
−1mT

Bg (25)

The key insight emerges when we apply these Newton directions with learning rate γ1. Substituting
the Newton directions into the update formula x← x− γ1dx, we obtain:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

mB ← mB − γ1dmB (26)

← mB − γ1
[
mB − gmA

T (mAm
T
A)

−1
]

(27)

← (1− γ1) ·mB + γ1 · gmA
T (mAm

T
A)

−1 (28)
mA ← mA − γ1dmA (29)

← mA − γ1
[
mA − (mT

BmB)
−1mT

Bg
]

(30)

← (1− γ1) ·mA + γ1 · (mT
BmB)

−1mT
Bg (31)

These final expressions reveal the remarkable property that Newton’s method naturally produces up-
date rules in the form of exponential moving averages, where each new parameter value is a weighted
combination of the previous value and a target value derived from the optimization objective.

To further illustrate this connection, we note that in the uncompressed case where we optimize
minm L(m, g) = 1

2∥m− g∥2F , Newton’s method similarly yields the classic EMA update:

m← m− γ ·H−1
mm ·

∂L

∂m
(32)

← (1− γ) ·m+ γ · g (33)

This consistency across problem formulations demonstrates the fundamental nature of this EMA-
like structure in Newton’s method and justifies our preference for this approach over standard gradi-
ent descent.

B DETAILED ALGORITHMS OF LORA-PRE FOR ADAM AND MUON
OPTIMIZER

This section presents the LoRA-Pre algorithms for both Adam (Kinga et al., 2015) and Muon (Jordan
et al., 2024) optimizers.

B.1 ALGORITHM OF LORA-PRE FOR ADAM

The Adam optimizer update rules under LoRA-Pre have been established in Section 3.

First-order momentum updates: For the first-order momentum term with parameterizationm =
mB ·mA, the update rules are:

m′
B ← (1− γ1) ·mB + γ1 · gmA

T (mAm
T
A)

−1, (34)

m′
A ← (1− γ1) ·mA + γ1 · (mT

BmB)
−1mT

Bg. (35)

By default, we set 1− γ1 =
√
β1, which ensures that after the update, m′ = m′

B ·m′
A = β1 ·mB ·

mA + ..., making the EMA coefficient consistent with standard Adam.

Second-order momentum updates: For the second-order momentum term with parameterization
v = (vB · vA)o2, the update rules are:

v′B ← (1− γ2) · vB + γ2 · |g|vTA(vAvTA)−1, (36)

v′A ← (1− γ2) · vA + γ2 · (vTBvB)−1vTB |g|. (37)

Analogously, we set 1 − γ2 = β0.25
2 by default, which ensures that v′ = (v′B · v′A)2 = β2 · (vB ·

vA)
2 + · · · .

Complete algorithm: Based on these update formulas, Algorithm 1 presents the complete LoRA-
Pre implementation for the Adam optimizer, demonstrating how these factorized momentum updates
integrate seamlessly into the standard Adam framework.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1 Comparison of Adam and Adam with LoRA-Pre

Require: Initial learning rate γ, weight decay λ, β1, β2 ∈ [0, 1), γ1, γ2 ∈ [0, 1) , ϵ > 0

1: Initialize parameters θ0, time step t← 0,
first moment m0 ← 0, second moment v0 ← 0 ,

first low-rank moment mB,0 ← 0, mA,0 ← N (0, 0.02),

second low-rank moment vB,0 ← 0, vA,0 ← N (0, 0.02) .
2: repeat
3: t← t+ 1
4: gt ← ∇θLt(θt−1)
5: # Update first moment
6: mt ← β1 ·mt−1 + (1− β1) · gt
7: mt ← β1 ·mB,t−1 ·mA,t−1 + (1− β1) · gt
8: mB,t ← γ1 ·mB,t−1 + (1− γ1) · gtmA,t−1(mA,t−1m

T
A,t−1)

−1

9: mA,t ← γ1 ·mA,t−1 + (1− γ1) · (mT
B,t−1mB,t−1)

−1mT
B,t−1gt

10: # Update second moment
11: vt ← β2vt−1 + (1− β2) g

◦2
t

12: vt ← β2(vB,t−1 · vA,t−1)
◦2 + (1− β2)g

◦2
t

13: vB,t ← γ2vB,t−1 + (1− γ2)|gt|vA,t−1(vA,t−1v
T
A,t−1)

−1

14: vA,t ← γ2vA,t−1 + (1− γ2)(v
T
B,t−1vB,t−1)

−1vTB,t−1|gt|
15:
16: m̂t ← mt/(1− βt

1)
17: v̂t ← vt/(1− βt

2)

18: θt ← θt−1 − γ

(
m̂t√
v̂t+ϵ

+ λ θt−1

)
19: until stopping criterion is met
20: return Optimized parameters θt

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 ALGORITHM OF LORA-PRE FOR MUON

In this section, we provide Muon (Jordan et al., 2024) optimizer with LoRA-Pre.

First-order momentum updates: For the Muon optimizer, we derive the LoRA-Pre algorithm by
first reformulating the momentum update. The Muon momentum term can be equivalently written
as:

m′ = µ ·m+ g (38)
= m− (1− µ) ·m+ g (39)
= m− (1− µ) · (m− g) + µ · g (40)

= m− (1− µ) ·
[
(m− g) +

µ

1− µ
· g
]

(41)

By treating the Muon update as the solution to an optimization problem, we can derive the equivalent
objective function:

L(m, g) =
1

2
· ∥m− g∥2F −

µ

1− µ
⟨m, g⟩F . (42)

After applying low-rank factorization m = mB ·mA, the objective becomes:

L(mB ,mA, g) =
1

2
· ∥mB ·mA − g∥2F −

µ

1− µ
⟨mB ·mA, g⟩F . (43)

We aim to derive Newton’s method update rules for the optimization problem. Now we can apply
Newton’s method to this modified objective. Computing the first-order gradients:

∂L

∂mB
= (mB ·mA − g) ·mT

A −
µ

1− µ
gmT

A, (44)

∂L

∂mA
= mT

B · (mB ·mA − g)− µ

1− µ
mT

Bg. (45)

The Hessian matrices have the same structure as before since the additional linear term doesn’t affect
the second derivatives:

HBB =
∂2L

∂m2
B

=
∂(mB ·mA − g) ·mT

A

∂mB
= mAm

T
A ⊗ Ip, (46)

HAA =
∂2L

∂m2
A

=
∂mT

B · (mB ·mA − g)

∂mA
= Iq ⊗mT

BmB . (47)

(48)

Using these Hessian matrices, we can now compute the Newton directions by solving the linear
systems H · d = ∇L, which yields:

dmB = H−1
BB ·

∂L

∂mB
= mB −

1

1− µ
gmA

T (mAm
T
A)

−1, (49)

dmA = H−1
AA ·

∂L

∂mA
= mA −

1

1− µ
(mT

BmB)
−1mT

Bg. (50)

The key insight emerges when we apply these Newton directions with learning rate γ1. Substituting
the Newton directions into the update formula x← x− γ1dx, we obtain:

mB ← mB − γ1dmB (51)

← mB − γ1
[
mB − gmA

T (mAm
T
A)

−1
]

(52)

← (1− γ1) ·mB +
γ1

1− µ
· gmA

T (mAm
T
A)

−1 (53)

mA ← mA − γ1dmA (54)

← mA − γ1
[
mA − (mT

BmB)
−1mT

Bg
]

(55)

← (1− γ1) ·mA +
γ1

1− µ
· (mT

BmB)
−1mT

Bg (56)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Similarly, we set 1− γ1 =
√
β1.

Complete algorithm: Based on these update formulas, Algorithm 2 presents the complete LoRA-
Pre implementation for the Muon optimizer, demonstrating how these factorized momentum updates
integrate seamlessly into the standard Muon framework.

Algorithm 2 Comparison of Muon and Muon with LoRA-Pre

Require: Initial learning rate γ, weight decay λ, momentum µ ∈ [0, 1), γ1 ∈ [0, 1)

1: Initialize parameters θ0, time step t← 0,
first moment m0 ← 0,

first low-rank moment mB,0 ← 0, mA,0 ← N (0, 0.02),
2: repeat
3: t← t+ 1
4: gt ← ∇θLt(θt−1)
5: # Update first moment
6: mt ← µ ·mt−1 + gt

7: mt ← µ ·mB,t−1 ·mA,t−1 + gt

8: mB,t ← γ1 ·mB,t−1 +
1−γ1

1−µ · gtmA,t−1(mA,t−1m
T
A,t−1)

−1

9: mA,t ← γ1 ·mA,t−1 +
1−γ1

1−µ · (m
T
B,t−1mB,t−1)

−1mT
B,t−1gt

10: Ot = NewtonSchulz5(mt)
11: θt ← θt−1 − γOt

12: until stopping criterion is met
13: return Optimized parameters θt

C THEORETICAL ANALYSIS OF APPROXIMATION ERROR AND
CONVERGENCE

In this appendix, we provide a rigorous theoretical analysis of the LoRA-Pre Adam optimizer. We
explicitly analyze the approximation error introduced by the low-rank factorization of the optimizer
states, and prove the convergence fidelity of the algorithm in non-convex settings.

C.1 PROBLEM SETUP AND ALGORITHM DYNAMICS

Consider the unconstrained optimization problem minθ∈Rd f(θ). Let gt = ∇f(θt) be the stochastic
gradient at step t. We denote the states of Standard Adam as mt, vt and the effective states of
LoRA-Pre Adam as m̃t, ṽt.

1. Standard Adam Dynamics The standard optimizer updates its moments using exponential
moving averages (EMA) with decay rates β1, β2 ∈ [0, 1):

mt = β1mt−1 + (1− β1)gt (57)
vt = β2vt−1 + (1− β2)(gt ⊙ gt) (58)

2. LoRA-Pre Dynamics LoRA-Pre maintains low-rank factors (mB,t,mA,t) to approximate the
gradient history. Let γ1 be the update rate. The exact simultaneous update rules (Online Least
Squares) can be compactly expressed using the Moore-Penrose pseudoinverse (·)†:

mB,t = (1− γ1)mB,t−1 + γ1gtm
†
A,t−1 (59)

mA,t = (1− γ1)mA,t−1 + γ1m
†
B,t−1gt (60)

where the pseudoinverses for the full-rank factors are defined as m†
A = m⊤

A(mAm
⊤
A)

−1 and m†
B =

(m⊤
BmB)

−1m⊤
B .

We define the canonical projection operators associated with the factors at step t− 1:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• PA ≜ m†
A,t−1mA,t−1 (Projection onto Row Space of mA)

• PB ≜ mB,t−1m
†
B,t−1 (Projection onto Column Space of mB)

Let m̂t = mB,tmA,t be the low-rank history reconstruction. Analogous updates apply to the second
moment factors using the gradient magnitude |gt|, producing the reconstruction ĥt = vB,tvA,t.

3. Effective Moments for Update Crucially, LoRA-Pre computes the effective moments for the
parameter update by combining the low-rank history with the exact current gradient:

m̃t = β1m̂t−1 + (1− β1)gt (61)

ṽt = β2(ĥt−1)
◦2 + (1− β2)(gt ⊙ gt) (62)

Note that for the second moment, LoRA-Pre approximates the history of magnitudes ĥ and then
squares it.

C.2 ASSUMPTIONS

Assumption 1 (Regularity and Boundedness). The objective function and stochastic gradients sat-
isfy the following conditions:

1. L-Smoothness: The objective function f is L-smooth: ∥∇f(x)−∇f(y)∥F ≤ L∥x−y∥F .

2. Bounded Gradients: The stochastic gradients are uniformly bounded in both Frobenius
and infinity norms. There exist constants G and G∞ such that for all t, ∥gt∥F ≤ G and
∥gt∥∞ ≤ G∞.

3. Bounded Update Scale: The optimizer uses a damping term ϵ > 0. Consequently, the
update mapping ϕ(m, v) = m√

v+ϵ
is Lipschitz continuous with constant Lϕ = ϵ−1 with

respect to m.
Assumption 2 (Subspace Approximation Capability). The gradient dynamics admit a low-rank
structure. Crucially, we assume this structure holds for both the gradient direction and its element-
wise magnitude. Let PB,t,PA,t denote the projections onto the subspaces maintained by the opti-
mizer at step t. We assume there exists a bound δ ≥ 0 such that:

∥gt − (PB,tgt + gtPA,t)∥F ≤ δ (63)
∥|gt| − (PB,t|gt|+ |gt|PA,t)∥F ≤ δ (64)

The second inequality ensures that the second-moment estimator (based on |Gt|) also admits a
bounded reconstruction error.
Assumption 3 (Reference Optimizer Descent). Let ut = mt/(

√
vt + ϵ) be the update direction of

the standard full-rank Adam optimizer. We assume that in expectation, ut is a valid descent direction
aligned with the true gradient:

E[⟨∇f(θt), ut⟩] ≥ cE[∥∇f(θt)∥2F] (65)
for some constant c > 0. This assumption anchors the convergence of LoRA-Pre Adam to the
theoretical behavior of standard Adam.

C.3 BOUNDEDNESS OF FACTOR RECONSTRUCTION ERROR

We first prove that the error of the stored low-rank history m̂t is uniformly bounded. We strictly
enforce the time-scale alignment condition: β1 = (1− γ1)

2.
Lemma C.1. Let Emt = ∥mt − m̂t∥F . Under Assumptions 1 and 2, Emt is uniformly bounded by a
constant Ebound.

Proof. Step 1: Exact Expansion of LoRA Dynamics Substitute the update rules (84) and (85) into
m̂t = mB,tmA,t:

m̂t =
[
(1− γ1)mB,t−1 + γ1gtm

†
A,t−1

] [
(1− γ1)mA,t−1 + γ1m

†
B,t−1gt

]
= (1− γ1)

2m̂t−1 + γ1(1− γ1)(PBgt + gtPA) + γ2
1Qt (66)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where Qt = gtm
†
A,t−1m

†
B,t−1gt is the quadratic interaction term. Due to the boundedness of

gradients and regularized inversions, ∥Qt∥F ≤ CQ. Using the condition β1 = (1− γ1)
2, we imply

γ1 = 1−
√
β1. The expansion becomes:

m̂t = β1m̂t−1 + (1−
√
β1)
√
β1(PBgt + gtPA) + (1−

√
β1)

2Qt (67)

Step 2: Constructing the Recursive Error We form the difference with the standard Adam update
mt = β1mt−1 + (1− β1)gt:

mt − m̂t = β1(mt−1 − m̂t−1) +Rt (68)

where the residual driving term Rt is:

Rt = (1− β1)gt − (1−
√

β1)
√
β1(PBgt + gtPA)− (1−

√
β1)

2Qt (69)

Step 3: Bounding the Residual Using the identity 1− β1 = (1−
√
β1)(1 +

√
β1), we rewrite the

linear part of Rt:

Linear = (1−
√
β1)
[
(1 +

√
β1)gt −

√
β1(PBgt + gtPA)

]
= (1−

√
β1)
[
gt +

√
β1(gt − PBgt − gtPA)

]
(70)

Taking the Frobenius norm and using Assumption 2 (where the term in parenthesis is related to the
subspace residual δ):

∥Rt∥F ≤ (1−
√
β1)G+

√
β1(1−

√
β1)δ + (1−

√
β1)

2CQ ≜ ∆res (71)

Step 4: Convergence The error recursion is Emt ≤ β1Emt−1 +∆res. Since β1 < 1, this converges to
a steady state:

lim
t→∞

Emt ≤
∆res

1− β1
≜ Ebound (72)

Given 1−
√
β1

1−β1
= 1

1+
√
β1
≈ 1

2 , we have Ebound ≈ 1
2 (G + δ). Thus, the factor error is uniformly

bounded.

C.4 JOINT EFFECTIVE MOMENT ERROR

We now derive the error bounds for the effective moments m̃t and ṽt used in the parameter update,
explicitly accounting for the non-linear square term in ṽt.
Lemma C.2. Let ∆m = ∥mt − m̃t∥F and ∆v = ∥vt − ṽt∥F . Then:

∆m ≤ β1Ebound (73)
∆v ≤ 2β2G∞Ebound (74)

Proof. 1. First Moment Error: Subtract Eq. (61) from standard Adam. The term (1 − β1)gt is
identical in both and cancels out:

mt − m̃t = β1(mt−1 − m̂t−1) (75)

Using Lemma C.1, ∆m = β1∥mt−1 − m̂t−1∥F ≤ β1Ebound.

2. Second Moment Error: Standard Adam tracks vt ≈ (ht−1)
◦2 (where h is the EMA of |g|).

LoRA-Pre uses ṽt ≈ (ĥt−1)
◦2.

vt − ṽt = β2

[
(ht−1)

◦2 − (ĥt−1)
◦2
]

(76)

Define the element-wise function s(x) = x2. On the bounded domain [−G∞, G∞], the Lipschitz
constant of s(x) is Lsq = 2G∞.

∥(ht−1)
◦2 − (ĥt−1)

◦2∥F ≤ 2G∞∥ht−1 − ĥt−1∥F (77)

By Lemma C.1 applied to the magnitude history, ∥ht−1 − ĥt−1∥F ≤ Ebound. Thus, ∆v ≤
2β2G∞Ebound.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.5 CONVERGENCE ANALYSIS

Theorem C.3. Let the step size be ηt = η/
√
t. Under Assumptions 1 and 2, LoRA-Pre Adam

converges to a neighborhood of a stationary point:

min
1≤t≤T

E[∥∇f(θt)∥2] ≤
C1√
T

+ C2E2bound (78)

where C1 depends on the initial function gap and C2 depends on the Lipschitz properties of the
update rule.

Proof. Let ut =
mt√
vt+ϵ and ũt =

m̃t√
ṽt+ϵ

. The update function ϕ(m, v) = m/(
√
v+ϵ) has Lipschitz

constants Lm = ϵ−1 and Lv = G∞/(2ϵ2). By Lemma C.2, the direction error ξt = ∥ut − ũt∥F is
bounded:

ξt ≤ Lm∆m + Lv∆v ≤
(
β1

ϵ
+

2β2G
2
∞

2ϵ2

)
Ebound ≜ KEbound (79)

Using the Descent Lemma for L-smooth functions:

f(θt+1) ≤ f(θt)− ηt⟨∇f(θt), ũt⟩+
Lη2t
2
∥ũt∥2 (80)

Substitute ũt = ut + (ũt − ut) and apply Young’s Inequality to the error term:

⟨∇f, ũt⟩ = ⟨∇f, ut⟩+ ⟨∇f, ũt − ut⟩

≥ c∥∇f∥2 −
(
c

2
∥∇f∥2 + 1

2c
∥ξt∥2

)
=

c

2
∥∇f∥2 − 1

2c
∥ξt∥2 (81)

Substituting back and summing over T steps:
T∑

t=1

cηt
2
∥∇f(θt)∥2 ≤ f(θ1)− f∗ +

T∑
t=1

ηt
2c

K2E2bound +
T∑

t=1

Lη2t
2

G2
step (82)

Dividing by
∑

ηt ≈ 2η
√
T (since ηt ∝ 1/

√
t):

1

T

T∑
t=1

E[∥∇f(θt)∥2] ≤ O
(

1√
T

)
+

K2

2c2
E2bound (83)

The term proportional to E2bound represents the irreducible error floor due to the low-rank approxi-
mation. For problems with low intrinsic dimension (small δ), this floor is negligible.

D ADDITIONAL EXPERIMENTAL RESULTS OF OUR METHOD

D.1 ABLATION OF HYPER-PARAMETERS IN LORA-PRE

In this section, we evaluate the sensitivity of LoRA-Pre Adam to hyper-parameter variations. While
LoRA-Pre introduces coefficients (γ1, γ2) for updating the low-rank components, these are not in-
dependent hyperparameters requiring separate tuning. Instead, they are analytically coupled with
the standard Adam momentum coefficients (β1, β2).

Formally, the update rules for the momentum components mA and mB in LoRA-Pre are defined as:

m′
B ← (1− γ1)mB + γ1gm

T
A(mAm

T
A)

−1, (84)

m′
A ← (1− γ1)mA + γ1(m

T
BmB)

−1mT
Bg, (85)

where g represents the gradient. When analyzing the equivalent decay coefficient for the effective
momentum matrix m, which is reconstructed via m ≈ mBmA, we obtain the following approxima-
tion:

m′ = m′
Bm

′
A ≈ (1− γ1)

2mBmA + · · · ≈ (1− γ1)
2m+ · · · . (86)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

To align this behavior with standard Adam optimization (where the momentum decay is governed
by β1), we enforce the constraint (1 − γ1)

2 = β1 (and similarly (1 − γ2)
4 = β2). Consequently,

determining γ is strictly dependent on β.

We conducted ablation studies on the 60M parameter model by varying β1 and β2 around their
default values (β1 = 0.9, β2 = 0.95). The results are summarized in Table 4.

Table 4: Sensitivity Analysis of β parameters. We report the validation loss on the 60M model.
The method exhibits stability around the default settings (β1 = 0.9, β2 = 0.95), while extreme
values lead to divergence.

Hyperparameter Value Perplexity Status

β1 (with β2 = 0.95)
0.90 (Default) 32.57 Optimal
0.95 37.62 Sub-optimal
0.99 1458.92 Unstable

β2 (with β1 = 0.90)
0.90 34.61 Sub-optimal
0.95 (Default) 32.57 Optimal
0.999 1301.58 Unstable

As shown in Table 4, LoRA-Pre achieves the best performance at the standard default configuration.
While the optimizer is robust within a reasonable range, extreme values (e.g., β1 → 0.99) lead
to numerical instability, consistent with the behavior of adaptive optimizers in low-rank training
regimes. This confirms that our coupling strategy effectively eliminates the need for grid-searching
γ.

E STATEMENT OF THE USE OF LARGE LANGUAGE MODELS

The use of LLMs in this work was restricted to paper writing assistance. They were not used to
generate results, derive proofs, or conduct analysis without human verification. The disclosure here,
as well as in the submission form, fulfills the ICLR requirement that all contributions of LLMs be
acknowledged transparently.

21

	Introduction
	Related Works
	Method
	Preliminary
	Your Momentum is a Secretly Online Regressor
	LoRA-Pre: Low-Rank Online Linear Regression

	Experimental Results
	Memory-Efficient Pre-training
	Memory-Efficient Fine-Tuning
	Ablation Study

	Conclusion
	Proof of Theoretical Results
	Detailed Algorithms of LoRA-Pre for Adam and Muon Optimizer
	Algorithm of LoRA-Pre for Adam
	Algorithm of LoRA-Pre for Muon

	Theoretical Analysis of Approximation Error and Convergence
	Problem Setup and Algorithm Dynamics
	Assumptions
	Boundedness of Factor Reconstruction Error
	Joint Effective Moment Error
	Convergence Analysis

	Additional Experimental Results of Our Method
	Ablation of Hyper-parameters in LoRA-Pre

	Statement of the Use of Large Language Models

