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Deeper Look at Image Salient Object Detection:
Bi-Stream Network With a Small Training Dataset

Zhenyu Wu, Shuai Li , Chenglizhao Chen , Aimin Hao, and Hong Qin

Abstract—Compared with the conventional hand-crafted
approaches, the deep learning based ISOD (image salient
object detection) models have achieved tremendous performance
improvements by training exquisitely crafted fancy networks over
large-scale training sets. However, do we really need large-scale
training set for ISOD? In this article, we provide a deeper insight
into the interrelationship between the ISOD performance and the
training data. To alleviate the conventional demands for large-
scale training data, we provide a feasible way to construct a
novel small-scale training set, which only contains 4 K images. To
take full advantage of this new set, we propose a novel bi-stream
network consisting of two different feature backbones. Benefit from
the proposed gate control unit, this bi-stream network is able
to achieve complementary fusion status for its subbranches. To
our best knowledge, this is the first attempt to use a small-scale
training set to compete with other large-scale ones; nevertheless,
our method can still achieve the leading SOTA performance on all
tested benchmark datasets. Both the code and dataset are publicly
available at https://github.com/wuzhenyubuaa/TSNet.

Index Terms—Bi-stream fusion, image salient object detection,
small-scale training set.

I. INTRODUCTION

IMAGE salient object detection (ISOD) aims to well-segment
the most attractive regions of the given image. As a pre-

processing step, ISOD plays an important role in various com-
puter vision tasks, such as visual tracking [1], [2], camouflaged
object detection [3], [4], video saliency detection [5]–[8], and
RGB-D completion [9]–[11].
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Fig. 1. Saliency maps generated by different network architectures might be
complementary occasionally (see Table I), in which these saliency maps are
obtained from the last convolutional layer of either VGG16 or ResNet50. The
“Fusion” column shows the results obtained by fusing these two different back-
bones via the proposed gate control unit.

Inspired by cognitive psychology and neuroscience, the clas-
sical ISOD models [12], [13] are developed on fusing various
hand-crafted saliency cues, however, all these cues fail to cap-
ture the wide variety of salient objects. After entering the deep
learning era, the SOTA (state-of-the-art) ISOD performance has
achieved tremendous improvement, which is mainly brought
by both exquisitely crafted fancy network architectures [14]–
[16] and newly available of large-scale well-annotated training
sets [17], [18].

Following the single-stream network structure, recent ISOD
methods [15], [16], [19]–[21] focused on how to effectively ag-
gregate multi-level visual feature maps to boost their perfor-
mances. Though remarkable progress has been achieved, these
models might have reached to their performance limits, because
they usually consist of a single feature backbone with limited
ability in providing semantical information. Empirically, even
for an identical image, different network architectures tend to
have different feature responses. Inspired by this, we may eas-
ily achieve complementary semantical features if we simultane-
ously use two distinct feature backbones, where some pictorial
demonstrations can be seen in Fig. 1.

In terms of the training dataset, the ISOD community has
reached a consensus on the training protocol, i.e., models should
be trained on the MSRA10K [17] or DUTS-TR [18] dataset,
then tested on other datasets. However, we may raise a ques-
tion regarding this widely-used training protocol, is this training
strategy the best choice? According to our experimental results,
some inspiring observations can be summarized as follows: 1)
models’ performances are not always positively correlated with
the training data size, see the empirical results in Fig. 3; 2 the
widely-used training sets (MSRA10 K and DUTS-TR) are also
complementary with each other in performance, see quantitative
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Fig. 2. Semantical category distribution (classified by [25]) of the MSRA10 K
and the DUTS-TR sets. We only demonstrate the top-50 categories due to the
limitation of space.

TABLE I
COMPARISONS OF THE THREE MOST REPRESENTATIVE SOTA MODELS

TRAINED ON DIFFERENT DATASETS (AVERAGE F-MEASURE). WE USE BOLD
TO EMPHASIZE THE BEST RESULTS

results in Table I; 3) moreover, the MSRA10 K and DUTS-TR
datasets are complementary in semantics as shown in Fig. 2.

Inspired by the aforementioned observations, this article con-
structs a novel small-scale training set named MD4K with to-
tal 4172 images, where all training instances are selected from
either MSRA10 K or DUTS-TR and balanced in semantic cat-
egory. Also, to take full advantage of this novel set, we de-
vise a bi-stream network, where two different backbones (e.g.,
VGG16+ResNet50) are respectively used as the sub-branches.
The behind rationale is to explore complementary semantical in-
formation which is already embedded in the pre-trained feature
backbones for improving the SOTA performance.

To this end, we devise a novel gate control unit to effec-
tively fuse complementary information encoded in different
sub-branches. Meanwhile, we introduce a novel multi-layer at-
tention into the bi-stream network for retaining tiny saliency de-
tails. We have also conducted extensive comparisons and compo-
nent evaluations to show the advantages and effectiveness of the
proposed approach (small-scale dataset & bi-stream network).

In summary, the contributions of this article can be summa-
rized as follows:
� We provide a deeper insight into the interrelationship be-

tween ISOD performance and training data;
� We construct a new training set—being small-scale yet

highly competitive in training performance;
� To take full advantage of the proposed small-scale training

set (i.e., MD4K), we devise a novel fusion scheme for bi-
stream network, in which the key technical components
include the gate control unit and the multi-layer attention
module;

� Extensive quantitative results demonstrate that the pro-
posed model achieves the SOTA performance on all tested
datasets, showing the effectiveness and superiority of the
proposed method.

II. RELATED WORKS

To simulate the human visual attention, early ISOD meth-
ods mainly focus on designing various visual hand-crafted fea-
tures, cues and priors, background cues, regional contrasts and
other kinds of relevant low-level visual cues [26], [27]. Due to
the space limitation, we only concentrate on the deep learning
based ISOD models here. See [28], [29] for more details about
traditional and early deep methods.

A. Single-Stream Models

Recently, most of the existing salient object detection models
focus on aggregating multi-level/multi-scale features extracted
from CNNs and push the performance of ISOD to a new level.
As one of the earliest works, Hou et al. [15] proposed a top-down
model to integrate both high-level and low-level features from
different layers, achieving outstanding performance. Liu and
Han [30] devised a coarse-to-fine approach, which locates salient
objects firstly, then performs saliency refinement hierarchically
and progressively for tiny saliency details. Following this ratio-
nale, various feature aggregation schemes [16], [30]–[38] were
proposed subsequently. In contrary to the [15] which only uses
specific-level features, Zhang et al. [32] integrated multi-level
feature maps into different resolutions to predict saliency maps,
aiming for incorporating both high-level semantic information
and low-level spatial details simultaneously. Similarly, Wang et
al. [36] integrated both top-down and bottom-up saliency infer-
ences in an iterative and cooperative manner. Zhao et al. [37] pre-
sented an edge guidance network to model the complementary
information provided by a single network. As a bridge between
ISOD and fixation prediction, Wang et al. [39] built a novel at-
tentive saliency network learning to detect salient objects from
fixations, which narrows the gap between salient object detec-
tion and fixation prediction.

Our method is clearly different from the above approaches
in two aspects. First, all of the above-mentioned models take
the pre-trained classification network (e.g. ResNet and VGG)
as a fixed feature extractor, ignoring the contributions of differ-
ent encoder blocks. In sharp contrast, our model introduces a
bi-stream encoder, where complementary information encoded
in different networks can be learned mutually. Second, these
models integrate multi-level features without considering their
consistency, while our model with the proposed gate control unit
can control the data flows between inter/intra-layers. The most
closely related work to ours is [35] which proposed a gate func-
tion to control the data flows between different layers. Different
from the gate settings proposed in [35], the major highlight of
our gate control unit is that it can enable full interactions between
two different sub-networks. Additionally, our gate control unit,
a plug-in, can well retain the non-linear learning abilities of each
individual sub-branch (see Section IV-A).

B. Bi-Stream Models

In recent years, the bi-stream network structure has
achieved much research attention due to its effectiveness in
broad computer vision applications, including video action
recognition [40], image recognition [41], [42], and the one we
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Fig. 3. Quantitative performances of three most representative SOTA models (CPD19 [23], PoolNet19 [22], and AFNet19 [24]) vary with the training data size
(MSRA10 K and DUTS-TR), showing that the conventional consensus regarding the relationship between the model performance and the training set size—“the
model performance is positively related to the training set size” may not always hold.

interested in, i.e., image salient object detection [43]–[46]. As
a seminal work, Lin et al. [42] proposed a bilinear CNN model
for the recognition task, which consists of two feature extractors
to formulate image-level descriptor. Hou et al. [41] further pre-
sented a framework named DualNet to effectively learn more ac-
curate representation for the image recognition task and its core
idea is to coordinate two parallel DCNNs to learn complemen-
tary features. For human action recognition, Feichtenhofer et
al. [40] proposed a bi-stream network with novel convolutional
fusion layer between its sub-branches, aiming for incorporating
both appearance and motion information.

Most recently, the bi-stream network has also been adopted in
the ISOD community. Zhao et al. [43] proposed a multi-context
deep learning framework, in which both the global and local
contexts are combined in a unified deep learning framework.
Zhang et al. [44] proposed a new deep neural network model
named CapSal, which consists of two sub-networks to lever-
age the captioning information with both local and global visual
contexts for predicting salient regions. In addition to using seg-
mentation labels, researchers have also attempted to use the edge
labels. For example, Su et al. [47] proposed a boundary-aware
network to solve the selectivity-invariance dilemma of ISOD,
where boundary localization and interior perception streams
are introduced to capture features with selectivity and invari-
ance, respectively. In [48], the work investigates the logical
interrelations between binary segmentation and edge maps,
which are then promoted to bidirectionally refine multi-level
features of the two tasks. Similarly, Zhou et al. [45] proposed a
lightweight two-stream model, in which one stream aims to learn
the representations of salient regions and another focuses on the
contours.

These approaches simply use the pre-trained network as a
fixed feature extractor to extract common features, which are
then processed by separate streams, and this topic has received

less attention up to now. In sharp contrast, this article inves-
tigates the feature representation interrelations between dif-
ferent network structures, which aims to take advantage of
complementary information presented in different networks to
amend the probable failures that may occur in the indeterminate
regions (see Fig. 1).

C. RGB-D ISOD Models

Previous works mainly focused on identifying salient re-
gions via color channels (e.g., RGB) and achieved remarkable
progress. However, the ISOD task is still challenging in some
complex scenarios.

Recent literatures have shown that the depth information [9],
[49]–[52] can be served as an important supplement to improve
the ISOD performance, in which these works mainly relied on
extracting salient features from RGB image and depth map sepa-
rately, and then fused them in the shallow, middle, or deep layers
of the network, and here we will list several most representa-
tive works. Piao et al. [53] introduced a novel depth-induced
multi-scale recurrent attention network for saliency detection,
which combined the RGB and depth complementary features in
a multi-level fusion manner. Piao et al. [54] proposed a depth
distiller, which explored the way of using network prediction
and attention as two bridges to transfer depth knowledge from
the depth stream to the RGB stream. Zhao et al. [55] proposed
a unified framework for RGBD-based and RGB-based salient
object detection tasks, which treated the depth information as
supervision in the training stage. Zhang et al. [56] proposed a
bilateral attention network to collaboratively learn complemen-
tary foreground and background features from both RGB and
depth streams for better RGB-D ISOD performance. A detailed
discussion of RGB-D based ISOD methods is beyond the main
scope of this article, readers interested in RGB-D ISOD can refer
to [57] for a comprehensive understanding.
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D. Attention Mechanism

Inspired by the human visual system, attention mechanisms
have been widely-used in various tasks such as object recogni-
tion [58], image captioning [59], visual question answering [60],
pose estimation [61] and machine translation [62]. Xu et al. [59]
introduced a soft deterministic and a hard stochastic attention
mechanism for caption generation under a common framework.
Xu et al. [60] proposed a novel multi-hop memory network with
spatial attention for the VQA task which allows one to visualize
the spatial inference process used by the deep network.

Due to attention mechanisms have a remarkable ability to
select features, it is also suitable for saliency detection. As a pi-
oneering work, Hu et al. [63] proposed the classic channel-wise
attention to select the most representative feature channels. After
that, this attention has been widely-applied in salient object de-
tection. Recently, Zhang et al. [64] introduced both spatial-wise
and channel-wise attention into the ISOD task. Wang et al. [29]
devised an essential pyramid attention structure, which enables
the network to concentrate more on salient regions when explor-
ing multi-scale saliency information. Liu et al. [65] proposed a
pixel-wise contextual attention mechanism to selectively com-
bine global contexts with local ones. In [66], a novel reverse
attention block was designed to highlight those image regions
which were miss-detected before. Zhao et al. [67] proposed a
novel saliency detection method, which contains a channel-wise
attention module to capture context-aware multi-scale multi-
receptive-field high-level features and a spatial attention module
for low-level feature maps to refine salient object details.

However, those methods select features usually from low-
level to high-level and ignore the relationship of high-level and
low-level features. In sharp contrast to these works, the proposed
multi-layer attention module transfers high-level semantic infor-
mation to shallower layers to learn more detailed information,
shrinking the given problem domain effectively. As a result, the
proposed model learns more accurate details and achieves sig-
nificant improvement.

E. Major Highlights of Our Method

In sharp contrast to the previous works which merely focus on
the perspective of network design, our research might potentially
be able to inspire the ISOD community to pay more attention
on the training data aspect, which, in our view, could improve
the SOTA performance more easily. Also, as another highlight,
the proposed bi-stream network aims to take advantage of the
rich semantic information embedded in the proposed small-scale
MD4K set. To the best of our knowledge, this is the first time for
a “wider” network trained on a small-scale dataset to outperform
the existing modes trained on large-scale training sets.

III. A SMALL-SCALE TRAINING SET

Given an ISOD deep model, its performance usually relies
on two factors: 1) the specific training dataset and 2) the cor-
responding set size. In fact, these two factors have been widely
known [70], [71], while, in this article, we will provide some
novel deeper insights.

A. Do We Really Need a Large-Scale Training Data?

The existing SOTA ISOD models usually have complex net-
work architectures, thus these models heavily rely on large-scale
training data to ensure their prominent performances. This issue
motivates us to reconsider a basic problem regarding the ISOD
task, i.e., will continually increasing the training data size be
possible for achieving persistent performance improvements?

To clarify this issue, we have carried out a series of quan-
titative experiments on three SOTA ISOD models, including
CPD19 [23], PoolNet19 [22] and AFNet19 [24]. We firstly train
these models on the whole DUTS-TR(10 K)/MSRA10 K set,
then retrain these models on smaller sets with 1000 images ran-
domly removed each time, and this procedure will be repeated
for multiple times. Thus, the relationship between the overall
performance and the training data size can be observed in Fig. 3.

As we can see, when training data is increased to 2 K, the
performances can be improved significantly. However, with the
training data continue growing, the performance gains might be-
come marginal, showing the fact that models’ performances are
not always positively correlated with the size of training data. We
take the DUTS-TR training set for instance, the performance of
CPD19 on the DUT-OMRON can be improved by about 12.5%
after increasing the training data from 1 K to 2 K, while the per-
formance gain decreases to 3.2% when increasing the training
set size from 2 K to 3 K. Specifically, instead of using the entire
DUTS-TR (10 K) set, the CPD19 achieves its best performance
on the DUTS-TR (6 K).

Despite the aforementioned anomalies, the widely-used train-
ing sets (DUTS-TR and MSRA10 K) have two major limitations.
First, the semantical category distributions of both training sets
are unbalanced in essence. As we all known that a training set,
which is balanced in its semantic distribution, is more prefer-
able in producing better training performance. Actually, in the
DUTS-TR set, there are 351 images classified into the “coffee
shop” category, while, in sharp contrast, there are only 10 images
can be classified into the “campus” category. Moreover, previous
works [72], [73] have already demonstrated that the CNN based
deep models are capable of understanding new concepts even
only a few examples have been given, yet those redundant se-
mantic scenes have less substantial help in improving the overall
performance.

Second, there exists a large number of questionable binary
annotations in the widely-used training sets, in which these an-
notations are easily leading to learning ambiguity. Thus, when
constructing novel training set, we shall avoid including such an-
notations. Fig. 4 have summarized four types of questionable bi-
nary annotations. Concretely, the “Wrong Annotations” column
refers to incorrectly labeling backgrounds as salient regions.
The “Controversial Annotations” column illustrates that images
containing no salient objects are mistakenly labeled with some
possible salient regions. The “Conflict Annotations” column
demonstrates the cases that salient regions are labeled follow-
ing different labeling protocols. The “Grayscale Annotations”
column shows the cases that salient regions are labeled with
non-binary values which are positively related to the labeling
confidences.
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Fig. 4. Examples of inappropriate human annotations in ISOD benchmarks. The yellow marks in the top/bottom right of each image denote the corresponding
dataset names, where {DTS, HKU, SOD, PASCAL} stands for {DUTS-TR [18], HKU-IS [43], SOD [68], and PASCAL-S [69]} sets respectively.

B. Which Training Set Should Be Selected?

In our ISOD community, SOTA models are usually trained on
either MSRA10 K or DUTS-TR set in advance and tested later
on others. However, this widely-used training/testing protocol
suffers from a serious limitation; i.e., the inconsistent data distri-
butions between different sets might result in the “domain-shift”
problem.

For example, the images of the widely-used training set—
MSRA10 K, are characterized with high contrast, center-
surround, and simple background, and, in most cases, each im-
age only contains a single salient object. However, the images
in the widely-used testing set—PASCAL, are attributed as low
contrast with complex background, in which multiple salient ob-
jects cases are occasionally existed in these images. Therefore,
because of the inconsistencies mentioned above, models trained
on MSRA10 K set usually perform worse on the PASCAL set,
see the first row in Fig. 3. To conquer the “domain-shift” prob-
lem, we shall combine different training sets when constructing
new training set, because, as we have mentioned in the intro-
duction section, the widely-used training sets (MSRA10 K &
DUTS-TR) are complementary in essence.

Specifically, previous works [18], [44], [74]–[76] have al-
ready demonstrated that semantic information, especially in
cluttered scenes, is beneficial to the ISOD task. Meanwhile, it is
also well known that a training set with good category distribu-
tion can ensure the given deep model to retain semantic-aware
when striving for its saliency objective. Therefore, the balance
of semantic categories is another key aspect that we need to take
care when constructing new training set.

C. Our Novel Training Set (MD4K)

In this section, we build a small, GT bias-free and semantic
category balanced training set, named MD4K, in which all train-
ing instances are selected from either MSRA10 K or DUTS-TR
set.

We divide these two sets into 267 semantic categories via
the off-the-shelf scene classification tool [25]. Then, we filter
the dirty data, which consists of two parts: 1) 2 254 images that
have been misclassified by the off-the-shelf scene classification
tool [25], and 2) 72 images with biased annotations. Thus there
are 9 012 left in the MSRA10 K set and 9 215 images left in the

DUTS-TR set. As the major part, all those 2 254 images are fil-
tered in a full automatical way. To be more specific, we resort to
an auxiliary classifier with an identical structure to the primary
classifier of the scene classification tool [25]. From the view of
agreement maximization principle [79], [80], different classi-
fiers would exhibit strong consistency usually, but such strong
consistency tends to be vanished when facing some misclassi-
fied instances. Thus, we utilize the KL-divergence between the
predictions of these two classifiers to show the classification
confidence, where we automatically filter all those instances
with classification confidences smaller than a relatively slack
hard-threshold (0.67). As for the biased annotations, the only
choice to filter these images might be the manual way, while, ac-
cording to our quantitative evaluation result, removing this part
of dirty data can only improve the overall performance slightly
(about 0.2%).

We have noticed that the semantic category distribution of
the images obeys the Pareto principle—20% scene categories
account for 80% of the total. Specifically, the top-50 scene
categories of MSRA10 K account for 71.23% of the whole
MSRA10 K set, and such percentage is 74.13% in the DUTS-TR
set. To balance the semantic categories, we randomly select
a maximum of 40 images for each of the top-50 scene cat-
egories and then choose a maximum of 20 images for each
of the remaining 217 scene categories. The main reason that
we choose two different quantities (40/20) can be explained
as follows and the corresponding experiments can be found in
Table XI.

It is well known an ISOD model could achieve some perfor-
mance gain if the category distribution of the training set is more
consistent with that of the testing set. Since the existing testing
sets also follow the Pareto principle, the ISOD models trained
on datasets biased towards the top-50 scenes might perform bet-
ter. Thus, when constructing the new MD4K dataset, we choose
to use different quantities to ensure the semantic distribution of
MD4K being similar to the original one, so that our MD4K set
will have similar distribution to that of the testing sets.

In this way, we finally obtain a small-scale training set, con-
taining 4 172 images with total of 267 semantical categories.
The reason we choose 4 172 images is that we attempt to find a
balance between training size and performance, and the perfor-
mance trained on a different number of data is shown in Table II.
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TABLE II
PERFORMANCE OF THE PROPOSED BI-STREAM MODEL TRAINED ON

DIFFERENT SIZES OF THE MD4K SET

Though better performance can be achieved by using more train-
ing data, the overall performance improvements may gradually
become really marginal (less than 0.4%). Moreover, by limiting
the proposed set to a small size (4 K), it may be easier for fu-
ture works to achieve further performance gain by adding other
semantic-balanced data.

IV. PROPOSED NETWORK

In the previous sections, we have built a small-scale and se-
mantic category balanced training set (MD4K), where this new
set is capable of improving the SOTA performance occasionally
(Table IX). To further improve, we propose a novel bi-stream
network consisting of two different backbones, where these two
feature backbones aim for providing complementary semantical
information while taking full advantage of our MD4K set.

A. How to Fuse Bi-Stream Networks

In this section, we consider how to effectively fuse two differ-
ent feature backbones. Our key rationale is to use feature maps
extracted from one sub-branch to benefit another one. To facili-
tate a better understanding, we shall provide some preliminaries
regarding the conventional fusion schemes in advance.

For simplicity, the function f: {(XR,XV )→ Y} represents
fusing two feature maps XR and XV to generate the output
feature Y, where XR and XV respectively represent feature
maps obtained from ResNet50 backbone and VGG16 backbone,
{XR,XV ,Y ∈ RH×W×C}, H,W,C denote the height, width
and channel respectively.

1) Element-Wise Summation:Ysum, which calculates the sum
of two features at the same location (w, h) and channel (c):

Ysum =

C∑

c=1

W∑

w=1

H∑

h=1

(XR
h,w,c +XV

h,w,c). (1)

2) Element-Wise Maximum: Ymax, which, analogously, com-
putes the maximum of two input feature maps:

Ymax =

C∑

c=1

W∑

w=1

H∑

h=1

max(XR
h,w,c,X

V
h,w,c). (2)

3) Concatenation: Yconcat, which stacks the input feature maps
channel-wisely:

Yconcat = Concat(XR
h,w,c,X

V
h,w,c). (3)

4) Convolution: Yconv , which first employs the concatenation
operation to obtain featuresYconcat ∈ RH×W×2C and then con-
volves it:

Yconv = Yconcat ∗W + b, (4)

where ∗ denotes the convolution operation, W represents the
convolution filters, and b denotes the bias parameters.

B. Bi-Stream Fusion Via GCU (Gate Control Unit)

Generally, all of the above-mentioned fusion operations di-
rectly fuse two input feature maps without considering the fea-
ture conflictions between them, and this less consideration easily
results in suboptimal results.

Inspired by the classic LSTM [81], we propose a novel gate
control unit (input & output gates) to dynamically control the
fusion process, and Fig. 5 illustrates the overall network archi-
tecture. In our method, the proposed input gate plays a critical
role in aggregating feature maps. Let XV = {XV

i , i = 1, . . ., 5}
denotes the feature maps for each convolutional block in the
pre-trained VGG16 feature backbone, and, similarly, XR repre-
sents that of the pre-trained ResNet50 backbone.

In our input gate, we use the dynamic thresholding to suppress
those less-trustworthy input features. For example, each side-
output of VGG16 with a probability below the threshold will
be suppressed, where these side-outputs can be obtained via
linear projections: {XV

i ∗W + b}, modulated by gates based
on activation function (σ: sigmoid) as: {σ(XV

i ∗Vin + bin)}.
In practice, the input gate will be element-wisely multiplied

by the side-output feature matrix, controlling the interactions
between the parallel sub-branches hierarchically. Thus, the fused
bi-stream feature maps (Yconv) can be obtained by using the
below operation.

Θ(XV
i ) = (XV

i ∗W + b)⊗ σ(XV
i ∗Vin + bin),

Yconv = f
(
XR

i ,Θ(XV
i )

)
, (5)

where W, b, Vin, bin are learned parameters, σ is the sigmoid
function and ⊗ is the element-wise multiplication operation.

Moreover, previous ISOD models directly propagate the fea-
ture maps from low-level layers to high-level layers without con-
sidering whether these features are beneficial to the ISOD task. In
fact, only a small part of these features are useful, yet others may
lead the fused performance even worse. To solve this problem,
we propose a multiplicative operation based “output gate” to
suppress those distractions from the non-salient regions. That is,
given two consecutive layers, the feature responses in high-level
layers σ(XR

i ∗Vout + bout) will be served as the guidance for
low-level layers XR

i−1(i ∈ {2, 3, 4, 5}) to adaptively determine
which data flow should be propagated, and this procedure can
be formulated as Eq. 6.

τ(XR
i ,X

R
i−1) = XR

i−1 ⊗ σ(XR
i ∗Vout + bout), (6)

where Vout and bout respectively represent the learned weights
and biases. In this way, the salient regions with high feature
responses can be enhanced, while the non-salient backgrounds
can be suppressed in subsequent layers. In a word, our gate
control unit is capable of boosting the conventional fusion
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Fig. 5. Architecture of the proposed bi-stream network. Our bi-stream network is developed on the commonly used ResNet50 and VGG16, using both the newly
designed gate control unit (Section. IV-A) and the scaling-free multi-layer attention (Section IV-D) to achieve the complementary status between two parallel
sub-branches.

performances, and the quantitative evidences can be found in
Section V.

C. Differences Between the Proposed GCU and the Gate
Logic Used in LSTM

The error gradient in the LSTM [82] can be expressed as:

∇ (tanh(X)⊗ σ(X)) = σ′(X)∇X⊗ tanh(X)

+ tanh′(X)∇X⊗ σ(X). (7)

Notice that such gradient will gradually get vanished due to
the down-scaling factor tanh′(X) and σ′(X). In sharp con-
trast, the gradient of our gate mechanism has a directional path
∇X⊗ σ(X) without using any down-scaling operations for the
activated gating units in σ(X) as Eq. 8.

∇ (σ(X)⊗X) = ∇X⊗ σ(X) + σ′(X)∇X⊗X, (8)

Thus, the proposed gate control unit outperforms the LSTM
significantly (quantitative evidences can be found in Section V).

D. The Proposed MLA (Multi-Layer Attention)

Generally, the predicted saliency maps tend to lose their de-
tails if we use sequential scaling operations (e.g., pooling). As
we have mentioned before, visual features generated by deep
layers tend to be dominated by high-level semantic information,
while the shallower layers preserve low-level tiny details. Thus,
the previous works have focused on devising feasible ways (e.g.,
short connections [15]) for integrating multi-level/multi-scale
features.

However, as for our bi-stream network, the overall perfor-
mance is mainly ensured by the exact fusion scheme (i.e., GCU),
while the performances of its sub-branches (i.e., plain VGG16

and ResNet50) are clearly worse than other single-stream SOTA
models. Consequently, the performance of our bi-stream net-
work might degenerate if we follow the conventional “low ←
high” or “high ← low” fusion schemes simply, because those
low-quality feature maps tend to lead the fused ones even worse.
Thus, we devise a novel multi-layer attention (MLA) mecha-
nism on the ResNet50 sub-branch, of which the key rationale is
to make full use of those features obtained in deep layers. Com-
pared with the conventional “high← low” scheme, the proposed
MLA is very sparse, where only the high-level localization in-
formation (i.e., XR

j , j ∈ {4, 5}) is adopted to complement the
shallower layers directly.

The dataflow of the proposed MLA can be seen in Fig. 5, and
its technical details can be formulated as follows:

αj(l
′) =

eβj(l
′)

∑H×W
l=1 eβj(l)

, βj = tanh(XR
j ∗W + b), (9)

where βj ∈ RH×W integrates the information of all channels
in XR

j , βj(l
′) denotes the feature at location l′, and αj is the

location attention map. Next, these location attention maps are
applied to enhance those features in low-level layers XR

m(m ∈
{1, 2}) as below.

XR
j ← f

(
XR

j , D
(
(XR

m ∗W + b)⊗αj

))
, (10)

where the function f(·) denotes the element-wise summation,
D(·) stands for down-sampling operation. The newly updated
XR

j will be feeded into the decoder to enhance spatial de-
tails progressively. In summary, compared with the widely used
multi-scale short-connections, the proposed MLA is more suit
for our bi-stream network.
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V. EXPERIMENTS AND RESULTS

A. Datasets

We evaluate the performance of the proposed method on six
commonly used benchmark datasets, including DUT-OMRON
[77], DUTS-TE [18], ECSSD [78], HKU-IS [43] and PASCAL-
S [69] and SOC [71].

DUT-OMRON contains 5168 high-quality images. Images
of this dataset have one or more salient objects with complex
backgrounds.

DUTS-TE has 5019 images with high-quality pixel-wise an-
notations, selecting from the currently largest ISOD benchmark
DUTS.

ECSSD has 1000 natural images, which contain many seman-
tically meaningful and complex structures. As an extension of
the complex scene saliency dataset, ECSSD is obtained by ag-
gregating the images from BSD [89] and PASCAL VOC [90].

HKU-IS contains 4447 images. Most of the images in this
dataset have low contrast with more than one salient object.

PASCAL-S contains 850 natural images with several objects,
which are carefully selected from the PASCAL VOC dataset
with 20 object categories and complex scenes.

SOC is designed to reflect the real-world scenes in detail.
SOC is the largest instance-level ISOD dataset and contains 6000
images from more than 80 common categories.

B. Evaluation Metrics

We adopt five widely-used metrics to evaluate our method, in-
cluding the precision-recall (PR) curves, the F-measure curves,
mean absolute error (MAE), weighted F-measure, S-measure
and E-measure.

PR curves: Following the previous settings [17], [91], we
utilize the standard PR curves to evaluate the performance of
our model.

F-measure: The F-measure is a harmonic mean of average
precision and average recall. We compute the F-measure as

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall
, (11)

where we set β2 to be 0.3 to weigh precision more than recall.
MAE: The MAE is calculated as the average pixel-wise ab-

solute difference between the binary GT and the saliency map
S as Eq. 12.

MAE =
1

W ×H

W∑

x=1

H∑

y=1

∣∣∣S(x, y)−GT (x, y)
∣∣∣, (12)

where W and H are width and height of the saliency map S,
respectively.

Weighted F-measure: Weighted F-measure [92] define
weighted precision, which is a measure of exactness, and
weighted recall, which is a measure of completeness:

Fw
β =

(1 + β2)× Precisionw × Recallw

β2 × Precisionw +Recallw
. (13)

S-measure: S-measure [93] simultaneously evaluates region-
aware Sr and object-aware So structural similarity between the

saliency map and ground truth. It can be written as follows:
Sm = α× So + (1− α)× Sr, where α is set to 0.5.

Enhanced-measure: Enhanced-measure (E-measure) [94]
combines local pixel values with the image-level mean value
to jointly evaluate the similarity between the prediction and the
ground truth.

C. Comparison With the SOTA Models

We compare our model with 17 SOTA models, includ-
ing DSS17 [15], Amulet17 [32], UCF17 [88], SRM17 [31],
R3Net18 [87], RADF18 [16], PAGRN18 [64], DGRL18 [33],
MWS19 [86], CPD19 [23], AFNet19 [24], PoolNet19 [22],
BASNet19 [85], EGNet19 [37], R2Net20 [83], MRNet20 [84]
and RANet20 [66]. For all of these SOTA models, the saliency
maps are either generated by the original codes with recom-
mended parameters or provided by the authors. Our results are
generated by our model without using any additional processing.

1) Quantitative Comparisons: As a commonly used quantita-
tive evaluation metric, we first investigate our model using the
PR curves. As shown in the first row of Fig. 7, our model can
consistently outperform the SOTA models on all tested bench-
mark datasets. Specifically, the proposed model outperforms
other competitors on DUT-OMRON set significantly. Mean-
while, our model is evaluated by F-measure curves (see the sec-
ond row of Fig. 7), which also demonstrates the superiority of
our model. Moreover, the detailed experimental results in terms
of five metrics (i.e, max F-measure, MAE, weighted F-measure,
S-measure, and Enhanced F-measure) are listed in Table III and
Table IV. As can be seen from these tables, our model shows
good performance and outperforms other SOTA approaches sig-
nificantly. In particular, in terms of max F-measure, the per-
formance is improved by 5.8% over the second-best method
RANet20 [66] on DUT-OMRON dataset.

2) Qualitative Comparisons: We demonstrate the qualitative
comparisons in Fig. 6. The proposed method is capable of detect-
ing salient objects accurately and completely. It can also adapt
to various scenarios, including occlusion (the 1st row), com-
plex background (the 2nd row), small object (3 rd row), and low
contrast (4th row). Moreover, our method can highlight salient
objects with sharp object boundaries.

3) Running Time and Model Complexity Comparisons: Ta-
ble VI shows the running time comparisons. This evaluation
was conducted on a machine with i7-6700 CPU, GTX 1070
GPU, where our model achieves 23 FPS (frames per second).
Furthermore, we have compared our model with three most rep-
resentative SOTA models in model size, FLOPs, and parameter
number (Table VII).

Despite using two feature backbones, our model complexity
is slightly worse than CPD [23]. As shown in Table VII, previous
works have mainly focused on their decoders’ design. In sharp
contrast, our model concentrates on the encoder part solely, yet
it has achieved the best performance.

4) Attributes-based Performance on SOC Set: As shown in
Table V, we have compared the proposed method with sev-
eral representative SOTA methods. Though we have reported
the RANet20 [66], R2Net20 [83] and MRNet20 [84] in other
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Fig. 6. Qualitative comparisons with the most recent SOTA models. Our approach can well locate salient objects accurately and completely with sharp object
boundaries.

Fig. 7. Quantitative comparisons via PR curves (the first row) and F-measure curves (the second row).

datasets in the previous version, we have to omit these ap-
proaches in the SOC dataset, because these models are neither
reported in the articles nor released with runnable codes cur-
rently. We can see that the proposed model outperforms almost
all SOTA approaches significantly, demonstrating that the pro-
posed model trained on MD4K can well adapt to various unseen
categories.

D. Component Evaluations

1) Effectiveness of the Proposed MD4K Dataset: To illustrate
the advantages of the proposed dataset, we present the evalua-
tion results of the proposed models on our MD4K and DUTS-TR
sets respectively in Table III and Table IV. Compared with us-
ing DUTS-TR as training set, our bi-stream network trained on
MD4K set achieves the best performance in terms of different
measures, showing the effectiveness of the proposed dataset.
As shown in rows 9–14 of Table III, three SOTA models (i.e.,
PoolNet19, CPD19, and AFNet19) are trained on either the

DUTS-TR dataset or our MD4K dataset. It can be observed
that models trained on the MD4K dataset achieve better perfor-
mances.

To demonstrate the effectiveness of balancing in semantic
distribution, we also present the models’ performances trained
on MK4K and DTS4K, where images in these two sets are all
Random (R) or Category Balanced (CB) selected from either
MSRA10 K or DUTS-TR. As shown in Table IX, models trained
on the proposed semantic balanced MD4K achieves better per-
formance than both MK4K and DTS4K sets. To be more spe-
cific, compared with the ‘Random’ sampling, applying the pro-
posed ‘Category Balanced’ sampling scheme on single dataset
(e.g., DTS4K† and MK4K†) could still improve the overall per-
formance by 0.5%∼1%. In fact, such limited improvement is
mainly induced by the fact that the semantical category distri-
bution in a single dataset is still very biased, even though the
proposed sampling scheme has been used. In sharp contrast, as
the main advocation of our article, the widely-used DUTS-TR
and MSRA10 K training sets are complementary in essence, thus
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TABLE III
DETAILED QUANTITATIVE COMPARISONS BETWEEN OUR METHOD AND 17 SOTA MODELS IN F-MEASURE AND MAE METRICS. TOP THREE SCORES ARE

DENOTED IN RED, GREEN, AND BLUE, RESPECTIVELY. {MD4K, DTS, MK, MB, VOC, TH, CO} ARE TRAINING DATASETS WHICH RESPECTIVELY DENOTE {OUR

SMALL DATASET, DUTS-TR, MSRA10 K, MSRA-B, PASCAL VOC2007, THUS10 K, AND MICROSOFT COCO}. THE SYMBOL “*” INDICATES THAT THE

TARGET MODELS WERE TRAINED ON THE MD4K DATASET

TABLE IV
CONTINUED QUANTITATIVE COMPARISONS IN TERMS OF WEIGHTED F-MEASURE, S-MEASURE, AND E-MEASURE

our MD4K set (MD4K†) constructed on these two sets could
achieve significant performance improvement.

2) Effectiveness of the Proposed Bi-stream Network: To
demonstrate the effectiveness of the proposed bi-stream
network, we additionally implement the proposed bi-
stream network by using two identical feature back-
bones, i.e., “VGG16+VGG16” and “ResNet50+ResNet50,”
see Table III. Compared with the “VGG16+VGG16” and
“ResNet50+ResNet50” models, the proposed bi-stream network

achieves better performance. Besides, we also report the per-
formance of the proposed bi-stream network trained on the
DUTS-TR dataset (the 2nd row of Table III), where our model
achieves better performance than other SOTA models, showing
the effectiveness of the proposed bi-stream network.

To further illustrate the complementarity between VGG16
and ResNet50, Fig. 8 have provided some qualitative demon-
strations, in which the proposed bi-stream network is capable of
revealing different but complementary salient regions.
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TABLE V
ATTRIBUTES-BASED PERFORMANCE ON SOC DATASET [71]. WE USE THE S-MEASURE TO EVALUATE EACH SPECIFIC ATTRIBUTE AND THE AVERAGE

PERFORMANCE IS GIVEN IN THE LAST ROW. TOP THREE SCORES ARE DENOTED IN RED, GREEN, AND BLUE, RESPECTIVELY

TABLE VI
SPEED COMPARISONS, FPS: FRAMES PER SECOND

TABLE VII
COMPARISONS IN MODEL SIZE, FLOPS AND HIDDEN PARAMETER SIZE

TABLE VIII
PERFORMANCE COMPARISONS OF DIFFERENT FUSION STRATEGIES, WHERE

“W/” DENOTES “WITH,” “W/O” DENOTES “WITHOUT”; GCU: GATE CONTROL

UNIT; CONV, SUM, CONCAT, MAX ARE FOUR CONVENTIONAL FUSION

SCHEMES MENTIONED IN SECTION IV-A. “CONV W/ GCU (LSTM)” DENOTES

THE PERFORMANCE USING THE GATE CONTROL LOGIC OF LSTM

3) Effectiveness of the GCU (Gate Control Unit): To vali-
date the exact contribution of the proposed GCU, we take the
above-mentioned fusion methods mentioned in Section IV-A as
the baselines. Then, we apply the proposed GCU into these con-
ventional fusion schemes, and the corresponding quantitative
results are shown in Table VIII. It can be seen that these con-
ventional fusion schemes equipped with GCU are clearly better
than their plain versions.

TABLE IX
QUANTITATIVE EVALUATION REGARDING THE EFFECTIVENESS OF THE

PROPOSED SMALL-SCALE TRAINING SET MD4K. DTS4K/MK4K REPRESENTS

EXTRACTING 4172 IMAGES FROM DUTS-TR/MSRA10 K SET. THE SYMBOL

‘∗’ INDICATES RANDOM (R) SAMPLING FROM THE SOURCE DATASET WHILE

‘†’ STANDS FOR THE CATEGORY BALANCED (CB) SAMPLING SCHEME THAT IS

IDENTICAL TO THE SAMPLING SCHEME USED IN CONSTRUCTING OUR

MD4K SET

Fig. 8. Qualitative demonstrations to show the ability of the proposed bi-
stream network in achieving complementary fusion status between its VGG16
and ResNet50 sub-branches.

4) Effectiveness of the MLA (Multi-layer Attention): As shown
in the last row of Table IX, the proposed MLA improves the
overall performance significantly. In particular, in terms of F-
measure and MAE, the performance on DUT-OMRON set is
improved by 2.3% and 6% respectively. Additionally, Fig. 9
shows that the proposed MLA is capable of sharping object
boundaries.

5) Why Do We Choose the ResNet50 as the Main Sub-branch?:
As shown in the first row of Table X, we have carried out the
experiments of ResNet50→ V GG16, which means feeding
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TABLE X
QUANTITATIVE EVALUATIONS ON TWO DIFFERENT FUSION SCHEMES. V GG16→ ResNet50 DENOTES THAT FEATURES OF VGG16 ARE FEEDED INTO THE

RESNET50, OR VICE VERSA. THE BEST RESULT IS SHOWN IN BOLD

TABLE XI
QUANTITATIVE EVALUATIONS OF DIFFERENT CATEGORY COMBINATION RATIOS. GS: GAUSSIAN SAMPLING

Fig. 9. Visual comparison of the proposed model with multi-layer attention
(“Ours+MLA”) and without multi-layer attention (“Ours-MLA”).

the ResNet50’s multi-scale features into that of the VGG16,
and we have observed a clear performance degeneration after
switching the roles of the VGG16 and ResNet50 sub-branch.
We noticed that an ISOD model taking ResNet50 as backbone
usually outperforms the VGG16 based version. Thus, it is quite
normal for the proposed bi-stream network to be degenerated
after switching its main backbone from ResNet50 to VGG16,
because the main feature extractor (i.e., the subbranch who re-
ceives complementary information) is the key factor influencing
the overall performance.

6) Shallow Fusion vs. Deep Fusion: We also implement the
deep fusion version of the proposed bi-stream network, where
fusion processed are mainly performed in the decoder part. For
a fair comparison, the deep fusion network have also adopted
both GCU and MLA, which is completely identical to that of
the proposed shallow fusion version (fused in the encoder part).
As shown in the last row of Table X, the shallow fusion version
outperforms the deep fusion version persistently for all cases.
This quantitative result further confirms the superiority of the
proposed model in extracting and fusing multi-level paired com-
plementary information.

7) The Effects of Different Ratio of the Proposed MD4K: We
also report how the performance will be impacted if a different
ratio of the distribution is used. The corresponding quantita-
tive results can be found in Table XI, where several sampling
ratios: {20:20}, {40:20}, {60:20}, {40:10}, and the Gaussian

scheme have been tested. Taking the ratio {40:20} for instance,
in which we select a maximum of 40 images for each of the
top-50 scene category, while, for each of the remaining 217
scene category, a maximum of 20 images will be included.

As can be seen in Table XI, the performance tends to improve
if we adopt a ratio biasing towards the top-50 scene category, but,
with the increasing of the biasing tendency, the performance gap
would become very marginal. For example, compared with the
bias-free scheme (i.e., {20:20}, Model-1), we can easily notice
that the Model-2 ({40:20}) outperforms it significantly. More-
over, the very slight performance gain achieved by the {60:20}
ratio is mainly induced by the performance trade-off between
the increasing of training instances and the over-biased semantic
distribution. In addition, to verify the effectiveness of sampling
instances from the 217 minor categories, we have tested the ra-
tio {40:10}, where we have observed a significant performance
decrease.

Further, we have also tested the widely-used Box − Muller
Gaussian to estimate the category distribution, and then sam-
pling our small-scale MD4K according to this distribution,
where the quantitative results can be seen in the bottom row
of Table XI. As can be seen, the ‘Gaussian Sampling’ could
degenerate the overall performance by a large margin, and the
main reason is that the imbalanced category distribution.

In a word, we recommend the ratio {40:20} for the proposed
MD4K set to find a balance between training set size, semantic
category distribution, and performance.

E. Failure Case and Analysis

We have provided some failure cases in Fig. 10. Com-
pared with the conventional single-stream approaches, the major
advantage of the proposed bi-stream network is its capabil-
ity of taking full complementary fusion between the parallel
subbranches. Since subbranches with different feature back-
bones can complement with each other, the fused saliency maps
outperforms either of them easily. However, one major limita-
tion still exists, i.e., our approach may produce failure detections
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Fig. 10. Failure cases of our proposed bi-stream network.

when both of its subbranches have failed in providing correct
saliency cues.

VI. CONCLUSION

In this article, we have provided a deeper insight into the in-
terrelationship between the ISOD performance and the training
dataset. Inspired by our observations, we build a small, hybrid,
and semantic category balanced new training set. This new set
is able to improve the SOTA performances extensively, provid-
ing a paradigm regarding how to effectively design a training
set for performance gain. Meanwhile, we have proposed a novel
bi-stream architecture with gate control unit and multi-layer at-
tention to take full advantage of the proposed small-scale train-
ing set. Extensive quantitative comparisons and component eval-
uations have demonstrated that the proposed bi-stream network
trained on the new small-scale training set can achieve new
SOTA performance.
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