
POLICY-INDUCED SELF-SUPERVISION IMPROVES REP-
RESENTATION FINETUNING IN VISUAL RL

Anonymous authors
Paper under double-blind review

ABSTRACT

We study how to transfer representations pretrained on source tasks to target
tasks in visual percept based RL. We analyze two popular approaches: freezing or
finetuning the pretrained representations. Empirical studies on a set of popular tasks
reveal several properties of pretrained representations. First, finetuning is required
even when pretrained representations perfectly capture the information required to
solve the target task. Second, finetuned representations improve learnability and
are more robust to noise. Third, pretrained bottom layers are task-agnostic and
readily transferable to new tasks, while top layers encode task-specific information
and require adaptation. Building on these insights, we propose a self-supervised
objective that clusters representations according to the policy they induce, as
opposed to traditional representation similarity measures which are policy-agnostic
(e.g. Euclidean norm, cosine similarity). Together with freezing the bottom layers,
this objective results in significantly better representation than frozen, finetuned,
and self-supervised alternatives on a wide range of benchmarks.

1 INTRODUCTION

Learning representations via pretraining is a staple of modern transfer learning. Typically, a feature
encoder is pretrained on one or a few source task(s). Then it is either frozen (i.e., the encoder
stays fixed) or finetuned (i.e., the parameters of the encoders are to be updated) when solving a new
downstream task (Yosinski et al., 2014). While whether to freeze or finetune is application-specific,
finetuning outperforms in general freezing when there are sufficient (labeled) data and compute.
This pretrain-then-transfer recipe has led to many success stories in vision (Razavian et al., 2014;
Chen et al., 2021), speech (Amodei et al., 2016; Akbari et al., 2021), and NLP (Brown et al., 2020;
Chowdhery et al., 2022).

For reinforcement learning (RL), however, finetuning is a costly option as the learning agent needs
to collect its own data specific to the downstream task. Moreover, when the source tasks are very
different from the downstream task, the first few updates from finetuning destroy the representations
learned on the source tasks, cancelling all potential benefits of transferring from pretraining. For those
reasons, practitioners often choose to freeze representations, thus completely preventing finetuning.

But representation freezing has its own shortcomings, especially pronounced in visual RL, where
the (visual) feature encoder can be pretrained on existing image datasets such as ImageNet (Deng
et al., 2009) and even collections of web images. Such generic but easier-to-annotate datasets are
not constructured with downstream (control) tasks in mind and the pretraining does not necesarily
capture important attributes used to solve those tasks. For example, the downstream embodied AI
task of navigating around household items (Savva et al., 2019; Kolve et al., 2017) requires knowing
the precise size of the objects in the scene. Yet this information is not required when pretraining on
visual objection categorization tasks, resulting in what is called negative transfer where a frozen
representation hurts downstream performance.

More seriously, even when the (visual) representation needed for the downstream task is known
a priori, it is unclear that learning it from the source tasks then freezing it should be preferred
to finetuning, as shown in Figure 1. On the left two plots, freezing representations (Frozen)
underperforms learning representations using only downstream data (De Novo). On the right two
plots, we observe the opposite outcome. Finetuning representations (Finetuned) performs well
overall, but fails to unequivocally outperform freezing on the rightmost plots.

1

0 2 4
Steps ×102

40

50

60

70

80

R
ew

ar
ds

(↑
b

et
te

r)

MSR Jump

De Novo

Frozen

Finetuned

Upper Bound

Evaluation Tasks

(a)

0.5 1.0 1.5 2.0
Steps ×105

100

200

300

400

500

R
ew

ar
ds

(↑
b

et
te

r)

DMC

De Novo

Frozen

Finetuned

Walker-Run

(b)

0 2 4
Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

S
P

L
(↑

b
et

te
r)

Habitat

De Novo

Frozen

Finetuned

Gibson

(c)

0 2 4 6
Steps ×106

0.0

0.2

0.4

0.6

0.8

S
P

L
(↑

b
et

te
r)

Habitat

De Novo

Frozen

Finetuned

Matterport3D

(d)

Figure 1: When should we freeze or finetune pretrained representations in visual RL? Reward and
success weighted by path length (SPL) transfer curves on MSR Jump, DeepMind Control, and Habitat tasks.
Freezing pretrained representations can underperform no pretraining at all (Figures 1a and 1b) or outperform
it (Figures 1c and 1d). Finetuning representations is always competitive, but fails to significantly outperform
freezing on visually complex domains (Figures 1c and 1d). Solid lines indicate mean over 5 random seeds,
shades denote 95% confidence interval. See Section 3.2 for details.

Contributions When should we freeze representations, when do they require finetuning, and why?
This paper answers those questions through several empirical studies on visual RL tasks ranging from
simple game and robotic tasks (Tachet des Combes et al., 2018; Tassa et al., 2018) to photo-realistic
Habitat domains (Savva et al., 2019).

Our studies highlight properties of finetuned representations which improve learnability. First, they
are more consistent in clustering states according to the actions they induce on the downstream
task; second, they are more robust to noisy state observations. Inspired by these empirical findings,
we propose PiSCO, a representation finetuning objective which encourages robustness and
consistency with respect to the actions they induce.

We also show that visual percept feature encoders first compute task-agnostic information and then
refine this information to be task-specific (i.e., predictive of rewards and / or dynamics) — a well-
known lesson from computer vision (Yosinski et al., 2014) but, to the best of our knowledge, never
demonstrated for RL so far. We suspect that finetuning with RL destroys the task-agnostic (and
readily transferrable) information found in lower layers of the feature encoder, thus cancelling the
benefits of transfer. To retain this information, we show how to identify transferrable layers, and
propose to freeze those layers while adapting the remaining ones with PiSCO. This combination
yields excellent results on all testbeds, outperforming both representation freezing and finetuning.

2 RELATED WORKS AND BACKGROUND

Learning representations for visual reinforcement learning (RL) has come a long way since its early
days. Testbeds have evolved from simple video games (Koutník et al., 2013; Mnih et al., 2015) to
self-driving simulators (Shah et al., 2018; Dosovitskiy et al., 2017), realistic robotics engines (Tassa
et al., 2018; Makoviychuk et al., 2021), and embodied AI platforms (Savva et al., 2019; Kolve et al.,
2017). Visual RL algorithms have similarly progressed, and can now match human efficiency and
performance on the simpler video games (Hafner et al., 2021; Ye et al., 2021), and control complex
simulated robots in a handful of hours (Yarats et al., 2022; Laskin et al., 2020; Hansen et al., 2022).

In spite of this success, visual representations remain challenging to transfer in RL (Lazaric, 2012).
Prior work shows that learned representations can be surprisingly brittle, and fail to generalize to
minor changes in pixel observations (Witty et al., 2021). This perspective is often studied under the
umbrella of generalization (Zhang et al., 2018; Cobbe et al., 2020; Packer et al., 2018) or adversarial
RL (Pinto et al., 2017; Khalifa et al., 2020). In part, those issues arise due to our lack of understanding
in what can be transferred and how to learn it in RL. Others have argued for a plethora of representation
pretraining objectives, ranging from capturing policy values (Lehnert et al., 2020; Liu et al., 2021)
and summarizing states (Mazoure et al., 2020; Schwarzer et al., 2021; Abel et al., 2016; Littman &
Sutton, 2001) to disentangled (Higgins et al., 2017) and bi-simulation metrics (Zhang et al., 2021;
Castro & Precup, 2010). Those objectives can also be aggregated in the hope of learning more generic
representations (Gelada et al., 2019; Yang & Nachum, 2021). Nonetheless, it remains unclear which
of these methods should be preferred to learn generic transferrable representations.

2

(a)

Encoder

Encoder Projector

Data
Augmentation

Data
Augmentation

(b)

Figure 2: (a) Annotated observation from MSR Jump. On this simple game, the optimal policy consists of
moving right until the agent (white) is 14 pixels away from the obstacle (gray), at which point it should jump.
(b) Diagram for our proposed PiSCO consistency objective. It encourages the policy’s actions to be consistent
for perturbation of state s, as measured through the actions induced by the policy. See Section 4 for details.

Those issues are exacerbated when we pretrain representations on generic vision datasets (e.g.,
ImageNet (Deng et al., 2009)), as in our Habitat experiments. Most relevant to this setting are
the recent works of Xiao et al. (2022) and Parisi et al. (2022): both pretrain their feature encoder
on real-world images and freeze it before transfer to robotics or embodied AI tasks. However,
neither reports satisfying results as they both struggle to outperform a non-visual baseline built on
top of proprioceptive states. This observation indicates that more work is needed to successfully
apply the pretrain-then-transfer pipeline to visual RL. A potentially simple source of gain comes
finetuning those generic representations to the downstream task, as suggested by Yamada et al. (2022).
While this is computationally expensive, prior work has hinted at the utility of finetuning in visual
RL (Schwarzer et al., 2021; Wang et al., 2022).

In this work, we zero-in on representation freezing and finetuning in visual RL. Unlike prior represen-
tation learning work, our goal is not to learn generic representations that transfer; rather, we would
like to specialize those representations to a specific downstream task. We contribute in Section 3
an extensive empirical analysis highlighting important properties of finetuning, and take the view
that finetuning should emphasize features that easily discriminate between good and bad action on
the downstream task — in other words, finetuning should ease decision making. Building on this
analysis, we propose a novel method to simplify finetuning, and demonstrate its effectiveness on
challenging visual RL tasks where naive finetuning fails to improve upon representation freezing.

3 UNDERSTANDING WHEN TO FREEZE AND WHEN TO FINETUNE

We presents empricial analysis of representation freezing and finetuning. In Sections 3.1 and 3.2 we
detail the results from Figure 1 mentioned above. Then, we show in Section 3.3 a surprising result
on the MSR Jump tasks: although freezing the pretrained representations results in negative transfer,
those representations are sufficiently informative to perfectly solve the downstream task. This result
indicates that capturing the relevant visual information through pretraining is not always effective
for RL transfer. Instead, Section 3.4 shows that representations need to emphasize task-relevant
information to improve learnability – an insight we explore in Section 3.5 and build upon in Section 4
to motivate a simple and effective approach to finetuning.

3.1 EXPERIMENTAL TESTBEDS

Our testbeds are standard and thoroughly studied RL tasks in literature. Our description here focuses
on using to study RL transfer. We defer details and implementations to Appendix B.

MSR Jump (Tachet des Combes et al., 2018) The agent (a gray block) needs to cross the screen from
left to right by jumping over an obstacle (a white block). The agent’s observations are video game
frames displaying the entire world state (see Figure 2a) based on which it can choose to “move right”
or “jump”. We generate 140 tasks by changing the position of the obstacle vertically and horizontally;
half of them are used for pretraining, half for evaluation. We train the convolutional actor-critic agent
from Mnih et al. (2016) with PPO (Schulman et al., 2017) for 500 iterations on all pretraining tasks,
and transfer its 4-layer feature encoder to jointly solve all evaluation tasks. Like pretraining, we train
the actor and critic heads of the agent with PPO for 500 iterations during transfer.

3

Frozen

Finetuned

0.0

0.2

0.4

0.6

0.8

1.0

A
ct

io
n

A
cc

ur
ac

y
(↑

b
et

te
r)

Evaluation Tasks

Frozen

Finetuned

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ta
nc

e
E

st
im

at
io

n
E

rr
or

(↓
b

et
te

r)

MSR Jump

(a)

Random
Frozen

Finetuned

0.0

0.2

0.4

0.6

0.8

1.0

C
lu

st
er

P
ur

it
y

(↑
b

et
te

r)

MSR JumpEvaluation Tasks

(b)

0 5 10
Noise Magnitude

10−4

10−3

10−2

10−1

C
la

ss
ifi

ca
ti

on
E

rr
or

(↓
b

et
te

r)

MSR Jump

Random

Frozen

Finetuned

Evaluation Tasks

(c)

Figure 3: (a) Transfer can still fail even though frozen representations are informative enough. On MSR
Jump tasks, we can perfectly regress the optimal actions (accuracy = 1.0) and agent-obstacle distance (mean
square error < 1.0) with frozen or finetuned representations. Combined with Figure 1a, those results indicate
that capturing the right information is not enough for RL transfer. (b) Finetuned representations yield purer
clusters. Given a state, we measure the expected purity of the cluster consisting of the 5 closest neighbours of
that state in representation space. For Finetuned representations, this metric is significantly higher (98.75%)
than for Frozen (91.41%) or Random (82.98%), showing that states which beget the same actions are closer to
one another and thus easier to learn. (c) Finetuned representations are more robust to perturbations. For
source and downstream tasks, the classification error (1 - action accuracy) degrades significantly more slowly for
Finetuned representations than for Frozen ones under increasing data augmentation noise, suggesting that
robustness to noise improves learnability. See Section 3.3 for details.

DeepMind Control (DMC) (Tassa et al., 2018) This robotics suite is based on the MuJoCo (Todorov
et al., 2012) physics engine. We use visual observations as described by Yarats et al. (2021), and
closely replicate their training setup. The learning agent consists of action-value and policy heads,
together with a shared convolutional feature encoder whose representations are used in lieu of the
image observations. We pretrain with DrQ-v2 (Yarats et al., 2022) on a single task from a given
domain, and transfer only the feature encoder to a different task from the same domain. For example,
our Walker agent is pretrained on Walker-Walk and transfers to Walker-Run.

Note: The main text uses Walker to illustrate results on DeepMind Control, and more tasks are
included in Appendix C (including Cartpole Balance→Swingup and Hopper Stand→Hop).

Habitat (Savva et al., 2019) In this setting, we pretrain a ConvNeXt (tiny) (Liu et al., 2022) to
classify images from the ImageNet (Deng et al., 2009) dataset. We use the “trunk” of the ConvNeXt
as a feature encoder (i.e., discard the classification head) and transfer it to either Gibson (Shen
et al., 2021) or Matterport3D (Chang et al., 2017) scenes simulated with the Habitat embodied AI
simulator. The tasks in Habitat consist of navigating to a point from an indoor scene (i.e., PointNav)
from visual observations, aided with GPS and compass sensing. Our implementation replaces the
residual network from “Habitat-Lab” (Szot et al., 2021) with our ConvNeXt1, and uses the provided
DDPPO (Wijmans et al., 2020) implementation for transfer training. We train for 5M steps on Gibson
and 7M steps on Matterport3D, include all scenes from the respective datasets, and report reward
weighted by path length (SPL).

3.2 WHEN FREEZING OR FINETUNING WORKS

As a first experiment, we take the pretrained feature encoders from the previous section and transfer
them to their respective downstream tasks. We consider three scenarios.

• De Novo: where the feature encoder is randomly initialized (not pretrained) and its repre-
sentations are learned on the downstream task only. The feature encoder might use different
hyper-parameters (e.g., learning rate, momentum, etc) from the rest of the agent.

• Frozen: where the feature encoder is pretrained and its representations are frozen (i.e., we
never update the weights of the feature encoder).

• Finetuned: where the feature encoder is pretrained and its representations are finetuned
(i.e., we update the weights of the feature encoder using the data and the algorithm of the
downstream task). As for De Novo, the hyper-parameters for the feature encoder are tuned
separately from the other hyper-parameters of the model.

1We choose a ConvNeXt because it removes batch normalization and dropout layers after pretraining.

4

Figure 1 displays those results. Comparing De Novo and Frozen shows that freezing representations
works well on Habitat (see Figures 1c and 1d), likely because these tasks demand significantly
richer visual observations. However, freezing representations completely fails on the simpler MSR
Jump and DeepMind Control tasks (see Figures 1a and 1b). The pretrained feature encoders don’t
provide any benefit over a randomly initialized ones, and even significantly hurt transfer on MSR
Jump. The latter is especially surprising because there is very little difference between pretraining
and evaluation tasks (only the obstacle position is changed). Those results beg the question: why does
transfer fail so badly on MSR Jump?

On the other hand, Finetuned performs reasonably well across all benchmarks but those results hide
an important caveat: finetuning can sometimes collapse to representation freezing. This was the case
on Habitat, where our hyper-parameter search resulted in a tiny learning rate for the feature encoder
(1e−6, the smallest in our grid-search), effectively preventing the encoder to adapt. We hypothesize
that on those large-scale and visually challenging tasks, Finetuned offers no improvement over
Frozen because RL updates are too noisy for finetuning. Thus, we ask: how can we help stabilize
finetuning in RL?

We answer both questions in the remaining of this paper. We take a closer look at MSR Jump
tasks and explain why transfer failed. We show that a core role of finetuning is to emphasize task-
specific information, and that layers which compute task-agnostic information can be frozen without
degrading transfer performance. In turn, this suggests an instinctive strategy to help stabilize RL
training: freezing task-agnostic layers, and only finetuning task-specific ones.

3.3 FREEZING FAILS EVEN WHEN LEARNED REPRESENTATIONS ARE USEFUL

We now show that, on MSR Jump, the pretrained representations are informative enough to perfectly
solve all evaluation tasks.

Due to the simplicity of the dynamics, we can manually devise the following optimal policy because
the size of the agent, the size of the obstacle, and the jump height are shared across all tasks:

π∗ =

{
Jump, if the agent is 14 pixels to the left of the obstacle.
Move right, otherwise.

We empirically confirmed this policy reaches the maximal rewards (81) on all pretraining and evalua-
tion tasks. Immediately, we see that the distance from the agent to the obstacle is the only information
that matters to solve MSR Jump tasks. This observation suggests the following experiment.

To measure the informativeness of pretrained representations, we regress the distance between the
agent and the obstacle from pretrained representations. If the estimation error (i.e., mean square error)
is lower than 1.0 pixel, the representations are informative enough to perfectly solve MSR Jump tasks.
To further validate this scenario, we also regress the optimal actions from the simple policy above
given pretrained representations. Again, if the acurracy is perfect the representations are good enough.
We repeat this experiment for finetuned representations, and compare the results against one another.

Figure 3a reports results for pretrained and finetuned (i.e., after transfer) representations. We regress
the distance and optimal actions with linear models from evaluation task observations, using a mean
square error and binary cross-entropy loss. Surprisingly, both pretrained and finetuned representations
can perfectly regress the distance and optimal actions: they get sub-pixel estimation error (0.94 and
0.79, respectively) and perfect accuracy (both 100%). Combined with the previous section, these
results indicate that capturing the right visual information is not enough for successful transfer in RL.
They also put forward the following hypothesis: one role of finetuning is to emphasize information
that eases decision making. This hypothesis is supported by the lower distance error for Finetuned
in the right panel of Figure 3a.

3.4 FINETUNING IMPROVES LEARNABILITY AND ROBUSTNESS TO NOISE

How is information refined for decision making? Our next set of experiments answers this question
by highlighting differences between pretrained and finetuned representations.

First, we measure the ability of each feature encoder to cluster states assigned to identical actions
together. Intuitively, we expect states that require similar actions to have similar representations.

5

Observ.

Conv1
Conv2

Conv3
Linear

When Using Features From Layer

10−2

V
al

ue
E

st
im

at
io

n
E

rr
or

(↓
b

et
te

r)

Jump

Random

Frozen

Finetuned

Evaluation Tasks

Observ.

Conv1
Conv2

Conv3
Conv4

When Using Features From Layer

2−2

2−1

20

V
al

ue
E

st
im

at
io

n
E

rr
or

(↓
b

et
te

r)

DMC

Random

Frozen

Finetuned

Walker-Run

(a)

Observ.

Conv1
Conv2

Conv3
Linear

Layers Frozen Up To

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a
U

nd
er

R
ew

ar
d

C
ur

ve
(↑

b
et

te
r)

JumpEvaluation Tasks

Observ.

Conv1
Conv2

Conv3
Conv4

When Freezing Up To Layer

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a
U

nd
er

R
ew

ar
d

C
ur

ve
(↑

b
et

te
r)

DMCWalker-Run

(b)

Figure 4: Frozen layers that retain the same information as finetuned layers can be kept frozen. (a) Mean
squared error when linearly regressing action values from representations computed by a given layer. Some early
layers are equally good at predicting action values before or after finetuning. This suggests those layers can be
kept frozen, potentially stabilizing training. See Section 3.5 for details. (b) Area under the reward curve when
freezing up to a given layer and finetuning the rest. Freezing early layers does not degrade performance, and
sometimes improves it (e.g., up to Conv2 on DeepMind Control).

To that end, we compute the average purity when clustering a state with its 5 closest neighbors
in representation space. In other words, given state s, we find the 5 closest neighbors to x in
representation space and count how many of them are assigned the same optimal action as s.
Figure 3b the average cluster purity for random, pretrained, and finetuned representations. We
find that Finetuned representations yield clusters with significantly higher purity (98.75%) than
Frozen (91.41%) or random (82.98%) ones, which explains why PPO converges more quickly when
representations are finetuned: it is easier to discriminate between the states requiring “jump” v.s.
“move right”, if the representations for those states cluster homogenously.

Second, we uncover another property of finetuned representations, namely, that they are more robust
to perturbations. We replicate the optimal action classification setup from Figure 3a but perturb
states randomly rotating them. For each image, the degree of the rotation is randomly sampled from
range (−x, x). Figure 3c shows how classification accuracy degrades as we let x increase from 0◦

to 12◦. Both Frozen and Finetuned degrade with more noise, but Finetuned is more robust and
degrades more slowly.

Those results point to finetuned representations that consistently map to similar actions and are robust
to perturbations They set the stage for Section 4 where we introduce PiSCO, a policy consistency
objective which builds on these insights. In the next section, we continue our analysis and further
investigate how information gets refined in each layer of the feature encoder.

3.5 WHEN AND WHY IS REPRESENTATION FINETUNING REQUIRED?

As the previous section uncovered important pitfalls of representation freezing, we now turn to
finetuning in the hope of understanding why it succeeds when it does. To that end, we dive into
the representations of individual layers in Finetuned feature encoders and compare them to the
Frozen and random representations. We take inspiration from the previous section and hypothesize
that “purpose drives adaptation”; that is, a layer only needs finetuning if it computes task-specific
information that eases decision making on the downstream task. Conversely, layers that compute task-
agnostic information can be frozen thus potentially stabilizing RL training. To test this hypothesis,
we conduct two layer-by-layer experiments: linear probing and incremental freezing.

With layer-by-layer linear probing, we aim to measure how relevant each layer is when choosing an
action (Ding et al., 2021; Zhang et al., 2022). To start, we collect a dataset of 10, 000 state-action
pairs and their corresponding action values with the Finetuned policy on the downstream task. The
action values are computed with an action value function trained to minimize the temporal difference
error on the collected state-action pairs (more details in Appendix C). We then proceed as follows
for each layer l in the feature encoder. First, we store the representations computed by layer l, and
extract their most salient features by projecting them to a 50-dimensional vector with PCA. Second,
we regress action values from the projected representations and their corresponding actions using a
linear regression model. Finally, we report the mean squared error for this linear model at layer l.
Intuitively, the lower the linear probing error the easier it is to predict how good an action is for a

6

given state2. We repeat this entire process for Frozen and Finetuned feature encoders, as well as
one with a randomly initialized weights (i.e., Random).

Results for this experiment are shown in Figure 4a. On all testbeds, both Frozen and Finetuned
curves trend downwards and lie significantly lower than Random, indicating, as expected, that
representations specialize for decision making as we move up the feature encoder. We also notice
that the first few layers of Frozen and Finetuned track each other closely before Frozen starts to
stagnate. On MSR Jump, this happens after the last convolutional layer (Conv3) and on DeepMind
Control after the second one (Conv2). This evidence further supports our previous insight that early
layers compute task-agnostic information, and suggests a new hypothesis: can we freeze the early
layers without degrading finetuning performance? If so, this strategy might help stabilize finetuning
in visually complex tasks like Habitat.

We confirm this hypothesis by combining freezing and finetuning in our second layer-by-layer
experiment. For each target layer l, we take the pretrained feature encoder and freeze all layers up to
and including l; the remaning layers are finetuned using the same setup as Figure 1.

Figure 4b summarizes this experiment with the (normalized) area under the reward curve (AURC).
We preferred this metric over “highest reward achieved” since the latter does not consider how
quickly the agent learns. On MSR Jump, the pretrained layers that have similar value estimation
error in Figure 4a can be frozen without degrading adaptation. But, freezing yields lower AURC
when value estimation error stagnates (as for Linear). Similarly, freezing the last two layers on
DeepMind Control (Conv3 and Conv4, which did not match Finetuned’s value estimation error)
also degrades performance. We also see that adapting too many layers (i.e., when Conv1 is frozen
but not Conv2) reduces the AURC. The training curves show this is due to slower convergence,
suggesting that Conv2 already computes useful representations which can be readily used for the
downstream task.

Merging the observations from our layer-by-layer experiments, we conclude that pretrained layers
which extract task-agnostic information can be frozen. We show in Section 5 that this conclusion
significantly helps stabilize training when finetuning struggles, as in Habitat.

4 FINETUNING WITH A POLICY-INDUCED SELF-SUPERVISED OBJECTIVE

Section 3.4 suggests that an important outcome of finetuning is that states which are assigned the same
actions cluster together. This section builds on this insight and introduces PiSCO, a self-supervised
objective which attempts to accelerate the discovery of representations which cluster together for
similar actions. At a high level PiSCO works as follows: given a policy π, it ensures that π(a | s1)
and π(a | s2) are similar if states s1 and s2 should yield similar actions (e.g., s1, s2 are perturbed
version of state s). This objective is self-supervised because it applies to any policy π (not just the
optimal one) and doesn’t require knowledge of rewards nor dynamics.

More formally, we assume access to a batch of states B from which we can sample state s. Further,
we compute two embedding representations for state s. The first, z = φ(s), is obtained by passing
s through an encoder φ(·); the second, p = h(z), applies a projector h(·) on top of representation
z. Both represenations z and p have identical dimensionality and can thus be used to condition the
policy π. The core contribution behind PiSCO is to measure the dissimilarity between z and p in
terms of the distribution they induce through π:

D(z, p) = KL (⊥ (π(· | z)) ||π(· | p)) ,

where KL(·||·) is the Kullback-Leibler divergence, and ⊥(x) is the stop-gradient operator, which sets
all partial derivatives with respect to x to 0. The choice of the Kullback-Leibler is arbitrary — other
statistical divergence are valid alternatives.

The final ingredient in PiSCO is a distribution T (s′ | s) over perturbed states s′. This distribution is
typically implemented by randomly applying a set of data augmentation transformations on the state
s. Then, the PiSCO objective (for Policy-induced Self-Consistency Objective) is to minimize the

2We found action values to be better targets to measure ease of decision making than, say, action accuracy
which is upper bounded by 1.0 as in Figure 3a.

7

0 2 4
Steps ×102

40

50

60

70

80

R
ew

ar
ds

(↑
b

et
te

r)

MSR Jump

Frozen

Finetuned

Frozen+Finetuned

Frozen+PiSCO

Upper Bound

Evaluation Tasks

0.5 1.0 1.5 2.0
Steps ×105

100

200

300

400

500

600

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen

Finetuned

Frozen+Finetuned

Frozen+PiSCO

Walker-Run

0 2 4
Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

S
P

L
(↑

b
et

te
r)

Habitat

Frozen

Finetuned

Frozen+Finetuned

Frozen+PiSCO

Gibson

0 2 4 6
Steps ×106

0.0

0.2

0.4

0.6

0.8

S
P

L
(↑

b
et

te
r)

Habitat

Frozen

Finetuned

Frozen+Finetuned

Frozen+PiSCO

Matterport3D

Figure 5: Partial freezing improves convergence; adding our policy-induced consistency objective im-
proves further. As suggested by Section 3.5, we freeze the early layers of the feature extractor and finetune
the rest of the parameters without (Frozen+Finetuned) or with our policy-induced consistency objective
(Frozen+PiSCO). On challenging tasks (e.g., Habitat), partial freezing dramatically boosts downstream
performance, while Frozen+PiSCO further improves upon Frozen+Finetuned across the board.

dissimilarity between the representation of states sampled from T :

LPiSCO = E
s∼B

s1,s2∼T(·|s)

[
1

2
(D(z1, p2) +D(z2, p1))

]
,

where s1 and s2 are two different perturbations obtained from state s, and the objective uses a
symmetrized version of the dissimilarity measure D. In practice, the PiSCO objective is added as an
auxiliary term to the underlying RL objective and optimized for the encoder φ and the projector h.
Pseudocode is available in Appendix D.

Remarks PiSCO is reminiscent of SimSiam (Chen & He, 2020) and only differs in how dissimilarity
between embeddings is measured. Our proposed policy-induced similarity measure is crucial for best
performance, as shown in Section 5.2. In fact, similar representation learning algorithms for RL could
be derived by replacing the embedding similarity measure in existing self-supervised algorithms,
such as SimCLR (Chen et al., 2020), MoCo (He et al., 2019), or VICReg (Bardes et al., 2022). We
chose SimSiam for its simplicity – no target encoder nor negative samples required – which suits the
requirements of RL training.

Alone, PiSCO is not a useful objective to solve RL tasks; rather, its utility stems from assisting
the underlying RL algorithm in learning representations that are robust to perturbations. Could we
obtain the same benefits by learning the policy with augmented data (and thus side-stepping the
need for PiSCO)? In principle, yes. However, the policy objective is typically a function of the
rewards which is known to be excessively noisy to robustly learn representations. For example, DrQ
avoids learning representations through the policy objective, and instead relies on Bellman error
minimization. We hypothesize that PiSCO succeeds in learning robust representations because its
self-supervised objective is less noisy than the policy objective.

5 EXPERIMENTS

We complete our analysis with a closer look at PiSCO and partially frozen feature encoders. First, we
check whether partial freezing and policy-induced supervision can help accelerate finetuning with
RL; second, we compares policy-induced supervision as an RL finetuning objective against more
common similarity measures in self-supervised learning.

5.1 PARTIAL FREEZING AND POLICY-INDUCED SUPERVISION IMPROVE RL FINETUNING

This section shows that partially freezing a pretrained feature encoder can significantly help stabilize
downstream training. We revist the experimental setup of Figure 1, this time including two new
transfer variations. The first one is Frozen+Finetuned, where we freeze early layers and finetune
the remaining ones as with Finetuned. The second, Frozen+PiSCO, additionally includes the
PiSCO objective as an auxiliary loss to help finetuning representations. Frozen+PiSCO involves one
extra hyper-parameter, namely, the auxiliary loss weight, which we set to 0.01 for all benchmarks.

8

0.5 1.0 1.5 2.0
Steps ×105

100

200

300

400

500

600

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen+Finetuned

Frozen+CURL

Frozen+SimSiam

Frozen+PiSCO

Walker-Run

0.5 1.0 1.5 2.0
Steps ×105

0

50

100

150

200

250

300

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen+Finetuned

Frozen+CURL

Frozen+SimSiam

Frozen+PiSCO

Hopper-Hop Figure 6: Policy-induced supervision is a better ob-
jective than representation alignment for finetuning.
We compare our policy-induced consistency objective
as a measure of representation similarity against pop-
ular representation learning objectives (e.g. SimSiam,
CURL). Policy supervision provides more useful similar-
ities for RL finetuning, which accelerates convergence
and reaches higher rewards.

In both cases, we identify which layers to freeze and which to finetune following a similar linear
probing setup as for Figure 4a. For each layer, we measure the action value estimation error of
pretrained and finetuned representations, and only freeze the first pretrained layers that closely match
the finetuned ones. On MSR Jump, we freeze up to Conv3; on DeepMind Control (Walker) up to
Conv2; and on Habitat, we freeze upto Conv8 for Gibson and upto Conv7 for Matterport3D. (See
the Appendix C for results on Habitat.)

We report convergence curves in Figure 5. As suggested by our analysis of Figure 4b, freezing
those early layers does not degrade performance; in fact, we see significant gains on Habitat both
in terms of convergence rate and in asymptotic rewards. Those results are particularly noticeable
since Finetuned struggled to outperform Frozen on those tasks. We also note that Frozen+PiSCO
improves upon Frozen+Finetuned across the board: it accelerates convergence on MSR Jump, and
also improves asymptotic performance on DeepMind Control and Habitat. These results tie all
our analyses together: they show that (a) freezing early layers can help stabilize transfer in visual
RL, (b) which layer to freeze is predicted by how well it encodes action value information, and (c)
policy-induced supervision (and PiSCO) is a useful objective to accelerate RL finetuning.

5.2 POLICY-INDUCED SUPERVISION IMPROVES UPON CONTRASTIVE PREDICTIVE CODING

As a final experiment, we answer how important it is to evaluate similarity through the policy rather
than with representation alignment as in contrastive predictive coding. In other words, could we swap
PiSCO for SimSiam and obtain similar results in Figure 5? Our ablation studies focus on DeepMind
Control as it is more challenging than MSR Jump yet computationally tractable, unlike Habitat.

We include Frozen+SimSiam and Frozen+CURL in addition to Frozen+Finetuned and
Frozen+PiSCO. Frozen+SimSiam is akin to Frozen+PiSCO but uses the negative cosine sim-
ilarity to measure the dissimilarity between embeddings z and p. For Frozen+CURL, we implement
the contrastive auxiliary loss of CURL (Laskin et al., 2020), a self-supervised method specifically
designed for RL. Both of these alternatives use DrQ as the underlying RL algorithm.

Figure 6 reports convergence curves on Walker Walk→Run and Hopper Stand→Hop3. Including
the SimSiam objective typically improves upon vanilla finetuning, but including CURL does not. We
hypothesize that most of the benefits from CURL are already captured by DrQ, as shown in prior
work (Yarats et al., 2021). PiSCO significantly outperforms the standard self-supervised methods
thus demonstrating the efficacy of using the policy when measuring similarity between embeddings.
We hypothesize that representation alignment objectives naturally map two similarly looking states to
similar representations, even when they shouldn’t (e.g., when the agent is 15 and 14 pixels away from
the obstacle in MSR Jump). Instead, PiSCO is free to assign different representations since those two
states might induce different actions (“move right” and “jump”, respectively).

6 CONCLUSION

Our analysis of representation learning for transfer reveals several new insights on the roles of
finetuning: similarity between representations should reflect whether they induce the same or similar
distribution of actions; not all layers in encoders of states need to be adapted. Building on those
insights, we develop a hybrid approach which partially freezes the bottom (and readily transferrable)
layers while finetuning the top layers with a policy-induced self-supervised objective. This approach
is especially effective for hard downstream tasks, as it alleviates the challenges of finetuning rich
visual representations with reinforcement learning.

3Hopper-Hop is especially difficult; e.g., DrQ-v2 fails to solve it after 3M iterations (Yarats et al., 2022).

9

REFERENCES

David Abel, David Hershkowitz, and Michael Littman. Near optimal behavior via approximate
state abstraction. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The
33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 2915–2923, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/abel16.html. Cited on p. 2.

Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and Boqing
Gong. VATT: Transformers for multimodal self-supervised learning from raw video, audio and
text. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=
RzYrn625bu8. Cited on p. 1.

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl
Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, Jie Chen, Jingdong Chen,
Zhijie Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Ke Ding, Niandong Du, Erich
Elsen, Jesse Engel, Weiwei Fang, Linxi Fan, Christopher Fougner, Liang Gao, Caixia Gong, Awni
Hannun, Tony Han, Lappi Vaino Johannes, Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley, Libby
Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang Li, Dongpeng Ma, Sharan Narang, Andrew
Ng, Sherjil Ozair, Yiping Peng, Ryan Prenger, Sheng Qian, Zongfeng Quan, Jonathan Raiman,
Vinay Rao, Sanjeev Satheesh, David Seetapun, Shubho Sengupta, Kavya Srinet, Anuroop Sriram,
Haiyuan Tang, Liliang Tang, Chong Wang, Jidong Wang, Kaifu Wang, Yi Wang, Zhijian Wang,
Zhiqian Wang, Shuang Wu, Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan, Jun
Zhan, and Zhenyao Zhu. Deep speech 2: End-to-end speech recognition in english and mandarin.
In Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, pp. 173–182. JMLR.org, 2016. Cited on p. 1.

Ba, Kiros, and Hinton. Layer normalization. arXiv preprint arXiv:1607. 06450, 2016. URL
http://arxiv.org/pdf/1607.06450. Cited on p. 17.

Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance regularization
for self-supervised learning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=xm6YD62D1Ub. Cited on p. 8.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf. Cited on p. 1.

Pablo Samuel Castro and Doina Precup. Using bisimulation for policy transfer in MDPs. In Twenty-
Fourth AAAI Conference on Artificial Intelligence, July 2010. URL https://www.aaai.org/
ocs/index.php/AAAI/AAAI10/paper/viewPaper/1907. Cited on p. 2.

A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niebner, M. Savva, S. Song, A. Zeng, and Y. Zhang.
Matterport3d: Learning from rgb-d data in indoor environments. In 2017 International Conference
on 3D Vision (3DV), pp. 667–676, Los Alamitos, CA, USA, oct 2017. IEEE Computer Society.
doi: 10.1109/3DV.2017.00081. URL https://doi.ieeecomputersociety.org/10.1109/
3DV.2017.00081. Cited on p. 4, 18.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Hal Daumé Iii and Aarti Singh (eds.), Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1597–1607. PMLR, 2020. URL https://proceedings.mlr.press/
v119/chen20j.html. Cited on p. 8.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. November 2020.
URL http://arxiv.org/abs/2011.10566. Cited on p. 8, 21, 22.

10

https://proceedings.mlr.press/v48/abel16.html
https://openreview.net/forum?id=RzYrn625bu8
https://openreview.net/forum?id=RzYrn625bu8
http://arxiv.org/pdf/1607.06450
https://openreview.net/forum?id=xm6YD62D1Ub
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewPaper/1907
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewPaper/1907
https://doi.ieeecomputersociety.org/10.1109/3DV.2017.00081
https://doi.ieeecomputersociety.org/10.1109/3DV.2017.00081
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
http://arxiv.org/abs/2011.10566

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9640–9649, 2021. URL https://github.com/facebookresearch/moco-v3. Cited on p. 1.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. PaLM: Scaling language modeling with pathways. April 2022. URL
http://arxiv.org/abs/2204.02311. Cited on p. 1.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 2048–2056. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/cobbe20a.html. Cited on p. 2.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, June 2009. URL http://dx.doi.org/10.1109/CVPR.2009.5206848. Cited
on p. 1, 3, 4, 17.

Frances Ding, Jean-Stanislas Denain, and Jacob Steinhardt. Grounding representation similarity
through statistical testing. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=_kwj6V53ZqB. Cited on p. 6.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA:
An open urban driving simulator. In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg
(eds.), Proceedings of the 1st Annual Conference on Robot Learning, volume 78 of Proceedings of
Machine Learning Research, pp. 1–16. PMLR, 13–15 Nov 2017. URL https://proceedings.
mlr.press/v78/dosovitskiy17a.html. Cited on p. 2.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 2170–2179. PMLR, 2019. URL http://proceedings.mlr.
press/v97/gelada19a.html. Cited on p. 2.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=0oabwyZbOu. Cited on p. 2.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv [cs.LG], March 2022. URL http://arxiv.org/abs/2203.04955. Cited on p.
2.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. November 2019. URL http://arxiv.org/abs/
1911.05722. Cited on p. 8.

D Hendrycks, K Gimpel arXiv preprint arXiv:1606.08415, and 2016. Bridging nonlinearities and
stochastic regularizers with gaussian error linear units. arxiv.org, 2016. URL https://arxiv.
org/abs/1606.08415. Cited on p. 16, 17.

11

https://github.com/facebookresearch/moco-v3
http://arxiv.org/abs/2204.02311
https://proceedings.mlr.press/v119/cobbe20a.html
https://proceedings.mlr.press/v119/cobbe20a.html
http://dx.doi.org/10.1109/CVPR.2009.5206848
https://openreview.net/forum?id=_kwj6V53ZqB
https://openreview.net/forum?id=_kwj6V53ZqB
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html
http://proceedings.mlr.press/v97/gelada19a.html
http://proceedings.mlr.press/v97/gelada19a.html
https://openreview.net/forum?id=0oabwyZbOu
http://arxiv.org/abs/2203.04955
http://arxiv.org/abs/1911.05722
http://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel, Matthew
Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot transfer in
reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning
- Volume 70, ICML’17, pp. 1480–1490. JMLR.org, 2017. Cited on p. 2.

Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius. Pcgrl: Procedural content
generation via reinforcement learning. In Proceedings of the Sixteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, AIIDE’20. AAAI Press, 2020. ISBN
978-1-57735-849-7. Cited on p. 2.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. December 2014.
URL http://arxiv.org/abs/1412.6980. Cited on p. 17.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment
for Visual AI. arXiv, 2017. Cited on p. 1, 2.

Jan Koutník, Giuseppe Cuccu, Jürgen Schmidhuber, and Faustino Gomez. Evolving large-scale neural
networks for vision-based reinforcement learning. In Proceedings of the 15th annual conference
on Genetic and evolutionary computation, GECCO ’13, pp. 1061–1068, New York, NY, USA, July
2013. Association for Computing Machinery. URL https://doi.org/10.1145/2463372.
2463509. Cited on p. 2.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive unsupervised repre-
sentations for reinforcement learning. In Hal Daumé III and Aarti Singh (eds.), Proceed-
ings of the 37th International Conference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pp. 5639–5650. PMLR, 13–18 Jul 2020. URL https:
//proceedings.mlr.press/v119/laskin20a.html. Cited on p. 2, 9.

Alessandro Lazaric. Transfer in reinforcement learning: A framework and a survey. In Marco
Wiering and Martijn van Otterlo (eds.), Reinforcement Learning: State-of-the-Art, pp. 143–173.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. URL https://doi.org/10.1007/
978-3-642-27645-3_5. Cited on p. 2.

Lucas Lehnert, Michael L Littman, and Michael J Frank. Reward-predictive representations generalize
across tasks in reinforcement learning. PLoS Comput. Biol., 16(10):e1008317, October 2020. URL
http://dx.doi.org/10.1371/journal.pcbi.1008317. Cited on p. 2.

Michael Littman and Richard S Sutton. Predictive representations of state. Adv. Neural Inf. Process.
Syst., 14, 2001. URL https://web.eecs.umich.edu/~baveja/Papers/psr.pdf. Cited
on p. 2.

Guoqing Liu, Chuheng Zhang, Li Zhao, Tao Qin, Jinhua Zhu, Li Jian, Nenghai Yu, and Tie-Yan
Liu. Return-based contrastive representation learning for reinforcement learning. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
_TM6rT7tXke. Cited on p. 2.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022. Cited on p. 4, 17.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym:
High performance GPU-Based physics simulation for robot learning. August 2021. URL http:
//arxiv.org/abs/2108.10470. Cited on p. 2.

Bogdan Mazoure, Remi Tachet des Combes, Thang Long Doan, Philip Bachman, and De-
von Hjelm. Deep reinforcement and infomax learning. In NeurIPS 2020. ACM, De-
cember 2020. URL https://www.microsoft.com/en-us/research/publication/
deep-reinforcement-and-infomax-learning/. Cited on p. 2.

12

http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/2463372.2463509
https://doi.org/10.1145/2463372.2463509
https://proceedings.mlr.press/v119/laskin20a.html
https://proceedings.mlr.press/v119/laskin20a.html
https://doi.org/10.1007/978-3-642-27645-3_5
https://doi.org/10.1007/978-3-642-27645-3_5
http://dx.doi.org/10.1371/journal.pcbi.1008317
https://web.eecs.umich.edu/~baveja/Papers/psr.pdf
https://openreview.net/forum?id=_TM6rT7tXke
https://openreview.net/forum?id=_TM6rT7tXke
http://arxiv.org/abs/2108.10470
http://arxiv.org/abs/2108.10470
https://www.microsoft.com/en-us/research/publication/deep-reinforcement-and-infomax-learning/
https://www.microsoft.com/en-us/research/publication/deep-reinforcement-and-infomax-learning/

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles
Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Nature, 518
(7540):529–533, February 2015. URL http://dx.doi.org/10.1038/nature14236. Cited
on p. 2, 16.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016. Cited on p. 3.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, V Koltun, and D Song. Assessing gener-
alization in deep reinforcement learning. ArXiv, 2018. URL https://www.semanticscholar.
org/paper/caea502325b6a82b1b437c62585992609b5aa542. Cited on p. 2.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
effectiveness of Pre-Trained vision models for control. March 2022. URL http://arxiv.org/
abs/2203.03580. Cited on p. 3.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
High-Performance deep learning library. In H Wallach, H Larochelle, A Beygelzimer, F d’Alche
Buc, E Fox, and R Garnett (eds.), Advances in Neural Information Processing Systems 32,
pp. 8026–8037. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf. Cited on p. 24.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pp. 2817–2826. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/
pinto17a.html. Cited on p. 2.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features
off-the-shelf: An astounding baseline for recognition. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 512–519, 2014. doi: 10.1109/CVPRW.2014.131.
Cited on p. 1.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
Platform for Embodied AI Research. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2019. Cited on p. 1, 2, 4, 17.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. July 2017. URL http://arxiv.org/abs/1707.06347. Cited on p.
3, 16, 23.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
uCQfPZwRaUu. Cited on p. 2, 3, 22.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual
and physical simulation for autonomous vehicles. In Marco Hutter and Roland Siegwart (eds.),
Field and Service Robotics, pp. 621–635, Cham, 2018. Springer International Publishing. ISBN
978-3-319-67361-5. Cited on p. 2.

Bokui Shen, Fei Xia, Chengshu Li, Roberto Martín-Martín, Linxi Fan, Guanzhi Wang, Claudia
Pérez-D’Arpino, Shyamal Buch, Sanjana Srivastava, Lyne Tchapmi, Micael Tchapmi, Kent Vainio,
Josiah Wong, Li Fei-Fei, and Silvio Savarese. igibson 1.0: A simulation environment for interactive

13

http://dx.doi.org/10.1038/nature14236
https://www.semanticscholar.org/paper/caea502325b6a82b1b437c62585992609b5aa542
https://www.semanticscholar.org/paper/caea502325b6a82b1b437c62585992609b5aa542
http://arxiv.org/abs/2203.03580
http://arxiv.org/abs/2203.03580
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.mlr.press/v70/pinto17a.html
https://proceedings.mlr.press/v70/pinto17a.html
http://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu

tasks in large realistic scenes. In 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 7520–7527, 2021. doi: 10.1109/IROS51168.2021.9636667. Cited on p. 4.

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Vondrus,
Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun,
Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home assistants to rearrange
their habitat. In Advances in Neural Information Processing Systems (NeurIPS), 2021. Cited on p.
4, 17.

Remi Tachet des Combes, Philip Bachman, and Harm van Seijen. Learning invariances for policy
generalization, 2018. URL https://openreview.net/forum?id=BJHRaK1PG. Cited on p. 2,
3, 16.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.
DeepMind control suite. January 2018. URL http://arxiv.org/abs/1801.00690. Cited on
p. 2, 4, 17.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
October 2012. URL http://dx.doi.org/10.1109/IROS.2012.6386109. Cited on p. 4, 17.

Che Wang, Xufang Luo, Keith Ross, and Dongsheng Li. VRL3: A data-driven framework for visual
deep reinforcement learning. arXiv [cs.CV], February 2022. URL http://arxiv.org/abs/
2202.10324. Cited on p. 3.

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva,
and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames.
In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=H1gX8C4YPr. Cited on p. 4, 18.

Sam Witty, Jun K. Lee, Emma Tosch, Akanksha Atrey, Kaleigh Clary, Michael L. Littman, and David
Jensen. Measuring and characterizing generalization in deep reinforcement learning. Applied AI
Letters, 2(4):e45, 2021. doi: https://doi.org/10.1002/ail2.45. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/ail2.45. Cited on p. 2.

Fei Xia, Amir R. Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson
Env: real-world perception for embodied agents. In Computer Vision and Pattern Recognition
(CVPR), 2018 IEEE Conference on. IEEE, 2018. Cited on p. 18.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. arXiv [cs.CV], March 2022. URL http://arxiv.org/abs/2203.06173. Cited
on p. 3.

Jun Yamada, Karl Pertsch, Anisha Gunjal, and Joseph J Lim. Task-induced representation learning.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=OzyXtIZAzFv. Cited on p. 3.

Mengjiao Yang and Ofir Nachum. Representation matters: Offline pretraining for sequential decision
making. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 11784–
11794. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/yang21h.
html. Cited on p. 2.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=GY6-6sTvGaf. Cited on p. 4, 9, 17.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=_SJ-_yyes8. Cited on
p. 2, 4, 9, 17, 19, 23.

14

https://openreview.net/forum?id=BJHRaK1PG
http://arxiv.org/abs/1801.00690
http://dx.doi.org/10.1109/IROS.2012.6386109
http://arxiv.org/abs/2202.10324
http://arxiv.org/abs/2202.10324
https://openreview.net/forum?id=H1gX8C4YPr
https://openreview.net/forum?id=H1gX8C4YPr
https://onlinelibrary.wiley.com/doi/abs/10.1002/ail2.45
https://onlinelibrary.wiley.com/doi/abs/10.1002/ail2.45
http://arxiv.org/abs/2203.06173
https://openreview.net/forum?id=OzyXtIZAzFv
https://openreview.net/forum?id=OzyXtIZAzFv
https://proceedings.mlr.press/v139/yang21h.html
https://proceedings.mlr.press/v139/yang21h.html
https://openreview.net/forum?id=GY6-6sTvGaf
https://openreview.net/forum?id=_SJ-_yyes8

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games with
limited data. Adv. Neural Inf. Process. Syst., 34, 2021. URL https://proceedings.neurips.
cc/paper/2021/file/d5eca8dc3820cad9fe56a3bafda65ca1-Paper.pdf. Cited on p. 2.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in Neural Information Processing Systems, 27:3320–3328, 2014. Cited
on p. 1, 2.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in
continuous reinforcement learning. June 2018. URL http://arxiv.org/abs/1806.07937.
Cited on p. 2.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
-2FCwDKRREu. Cited on p. 2.

Wancong Zhang, Anthony GX-Chen, Vlad Sobal, Yann LeCun, and Nicolas Carion. Light-weight
probing of unsupervised representations for reinforcement learning. arXiv [cs.LG], August 2022.
URL http://arxiv.org/abs/2208.12345. Cited on p. 6.

15

https://proceedings.neurips.cc/paper/2021/file/d5eca8dc3820cad9fe56a3bafda65ca1-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/d5eca8dc3820cad9fe56a3bafda65ca1-Paper.pdf
http://arxiv.org/abs/1806.07937
https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=-2FCwDKRREu
http://arxiv.org/abs/2208.12345

0.5 1.0 1.5 2.0
Steps ×105

100

200

300

400

500

R
ew

ar
ds

(↑
b

et
te

r)

DMC

De Novo

Frozen

Finetuned

Walker-Run

0.25 0.50 0.75 1.00
Steps ×105

200

300

400

500

600

700

800

900

R
ew

ar
ds

(↑
b

et
te

r)

DMC

De Novo

Frozen

Finetuned

Cartpole-Swingup

0.5 1.0 1.5 2.0
Steps ×105

0

50

100

150

200

250

R
ew

ar
ds

(↑
b

et
te

r)

DMC

De Novo

Frozen

Finetuned

Hopper-Hop

Figure 7: When should we freeze or finetune pretrained representations in visual RL? Reward transfer
curves on Cartpole and Hopper DeepMind Control domains; replicates Figure 1. Freezing pretrained
representations can underperform no pretraining at all (Figures 1a and 1b) or outperform it (Figures 1c and 1d).
Finetuning representations is always competitive, but fails to significantly outperform freezing on visually
complex domains (Figures 1c and 1d). Solid lines indicate mean over 5 random seeds, shades denote 95%
confidence interval. See Section 3.2 for details.

A APPENDIX

B TESTBED DETAILS

This section details the pretraining and transfer setups for the MSR Jump, DeepMind Control, and
Habitat domains.

B.1 MSR Jump (TACHET DES COMBES ET AL., 2018)

As discussed in Section 3, the goal of MSR Jump tasks is for the agent to reach the right-hand side
of the screen. The agent always starts on the left-hand side and has to jump over a single gray
obstacle. The agent observes the entire screen from pixel values, and the only factors of variation
are the x and y coordinates of the obstacle (i.e., its horizontal position and the floor height). Its only
possible actions are to move right or jump. The jump dynamics are shared across tasks and mid-air
actions don’t affect the subsequent states until the agent has landed (i.e., all jumps go up by 15 pixels
diagonally, and down by 15 pixels diagonally). Our experiments carefully replicate the reward and
dynamics of Tachet des Combes et al. (2018), save for one aspect: we increase the screen size from
64 pixels to 84 pixels, as this significantly accelerated training with the DQN (Mnih et al., 2015)
feature encoder. We provide a fast GPU-accelerated implementation of MSR Jump tasks in our code
release (see Appendix E).

B.1.1 PRETRAINING SETUP

Source tasks We pretrain on 70 source tasks, varying both the obstacle x (from 15 to 50 pixels)
and y (from 5 to 50) coordinates, every 5 pixel. We don’t use frame stacking nor action repeats.

Learning agent We train with PPO (Schulman et al., 2017) for 500 iterations, where each iteration
collects 80 episodes from randomly sampled source tasks. We use those episodes to update the agent
320 times with a batch size of 64, a discount factor of 0.99, and policy and value clip of 0.2. The
learning rate starts at 0.0005 and is decayed by 0.99 once every 320 update. The agent consists of the
4-layer DQN feature encoder and linear policy and value heads. All models use GELU (Hendrycks
et al., 2016) activations.

B.1.2 TRANSFER SETUP

Downstream tasks At transfer time, we replace the 70 source tasks with 70 unseen downstream
tasks. Those downstream tasks are obtained by shifting the obstacle position (x and y coordinates)
of each source task by 2 pixels. For example, if a source task has an obstacle at x = 20 and y = 30
there is a corresponding downstream task at x = 22 and y = 32.

16

Learning agent The learning agent is identical to the source tasks, but rather than randomly
initializing the weights of the feature encoder we use the final weights from pretraining. As mentioned
in the main text, we also introduce one additional hyper-parameter as we decouple the learning rate
for the feature encoder and policy / value heads. For Finetuned, these learning rates are 0.001 for
the heads and 0.0001 for the feature encoder; both learning rates are decayed during finetuning.

B.2 DeepMind Control (TASSA ET AL., 2018)

The DeepMind Control tasks build on top of the MuJoCo physiscs engine (Todorov et al., 2012)
and implement a suite of robotic domains. Our experiments focus on Walker, Cartpole, and
Hopper (see Appendix C.2 for the latter two). Walker and Hopper are robot locomotion domains,
while Cartpole is the classic cartpole environment. On all domains, the agent receives an agent-
centric visual 84 × 84 RGB observation, and controls its body with continuous actions. Our task
implementation exactly replicate the one from DrQ (Yarats et al., 2021).

B.2.1 PRETRAINING SETUP

Source task On Walker, the source task is Walk, where the agent is tasked to walk in the forward
direction. On Cartpole it is Balance, where the pole starts in a standing position and the goal is to
balance it. And on Hopper it is Stand, where the agent needs to reach a (still) standing position. For
all tasks, we keep a stack of the last 3 images and treat those as observations.

Learning agent Our learning agent is largely inspired by DrQ-v2 (Yarats et al., 2022), and com-
prises a 4-layer convolutional feature encoder, a policy head, and a twin action value head. Both
the policy and action value heads consist of a projection layer, followed by LayerNorm (Ba et al.,
2016) normalization, and a 2-layer MLP with 64 hidden units and GELU (Hendrycks et al., 2016)
activations. We train with DrQ-v2 for 200k iterations, starting the policy standard deviation at 1.0,
decaying it by 0.999954 every iteration until it reaches 0.1. We use a 512 batch size and don’t use
n-steps bootstrapping nor delayed updates. For pretraining, we always a learning rate of 3e−4 and
default Adam (Kingma & Ba, 2014) hyper-parameters.

B.2.2 TRANSFER SETUP

Downstream task On Walker, we transfer to Run, where the agent needs to run in the forward
direction. On Cartpole, the downstream task is Swingup, where the pole starts in downward
position and should be swung and balanced upright. On Hopper, we use Hop, where the agents move
in the forward direction by hopping.

Learning agent We use the same learning agent as for pretraining, but initialize the feature encoder
with the weights obtained from pretraining. We also add a learning rate hyper-parameter when
finetuning the feature encoder, which is tuned independently for each setting and method.

B.3 Habitat (SAVVA ET AL., 2019)

On Habitat, the goal of the agent is to navigate indoor environments to reach a desired location.
To solve this point navigation task, it relies on two sensory inputs: a GPS with compass and visual
observations. The visual observations are 256× 256 RGB images (n.b., without depth information).
Our codebase builds on the task and agent definitions of “Habitat-Lab” (Szot et al., 2021), and only
modifies them to implement our proposed methods.

B.3.1 PRETRAINING SETUP

Source task We use the ImageNet (Deng et al., 2009) dataset as source task to pretrain our feature
encoder.

Learning agent The learning agent is a ConvNeXt-tiny (Liu et al., 2022) classifier, trained to
discriminate between ImageNet-1K classes. We directly use the pretrained weights provided by the
ConvNeXt authors, available at: https://github.com/facebookresearch/ConvNeXt

17

https://github.com/facebookresearch/ConvNeXt

Observ.

Conv1
Conv2

Conv3
Conv4

When Using Features From Layer

2−2

2−1

20
V

al
ue

E
st

im
at

io
n

E
rr

or
(↓

b
et

te
r)

DMC

Random

Frozen

Finetuned

Walker-Run

Observ.

Conv1
Conv2

Conv3
Conv4

When Using Features From Layer

20

21

22

V
al

ue
E

st
im

at
io

n
E

rr
or

(↓
b

et
te

r)

DMC

Random

Frozen

Finetuned

Cartpole-Swingup

Observ.

Conv1
Conv2

Conv3
Conv4

When Using Features From Layer

23

V
al

ue
E

st
im

at
io

n
E

rr
or

(↓
b

et
te

r)

DMC

Random

Frozen

Finetuned

Hopper-Hop

Observ.

Conv1
Conv2

Conv3
Conv4

When Freezing Up To Layer

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a
U

nd
er

R
ew

ar
d

C
ur

ve
(↑

b
et

te
r)

DMCWalker-Run

Observ.

Conv1
Conv2

Conv3
Conv4

When Freezing Up To Layer

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a
U

nd
er

R
ew

ar
d

C
ur

ve
(↑

b
et

te
r)

DMCCartpole-Swingup

Observ.

Conv1
Conv2

Conv3
Conv4

When Freezing Up To Layer

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a
U

nd
er

R
ew

ar
d

C
ur

ve
(↑

b
et

te
r)

DMCHopper-Hop

Figure 8: Frozen layers that retain the same information as finetuned layers can be kept frozen. Replicates
Figure 4a on Cartpole and Hopper DeepMind Control domains. (top) Mean squared error when linearly
regressing action values from representations computed by a given layer. Some early layers are equally good at
predicting action values before or after finetuning. This suggests those layers can be kept frozen, potentially
stabilizing training. See Section 3.5 for details. (bottom) Area under the reward curve when freezing up to a
given layer and finetuning the rest. Freezing early layers does not degrade performance, and sometimes improves
it (e.g., up to Conv2 on DeepMind Control).

B.3.2 TRANSFER SETUP

Downstream tasks For transfer, we load maps from the Gibson (Xia et al., 2018) and Matter-
port3D (Chang et al., 2017) datasets. Both are freely available for academic, non-commercial use
at:

• Gibson: https://github.com/StanfordVL/GibsonEnv/
• Matterport3D: https://github.com/niessner/Matterport/

Learning agent We take the pretrained ConvNeXt classifier, discard the linear classification head,
and only keep its trunk as our feature encoder. We train a 2-layer LSTM policy head and a linear
value head on top of this feature encoder with DDPPO (Wijmans et al., 2020) for 5M iterations on
Gibson and 10M on Matterport3D. For both tasks, we collect 128 steps with 4 workers for every
update, which consists of 2 PPO epochs with a batch size of 4. We set PPO’s entropy coefficient to
0.01, the value loss weight to 0.5, GAE’s τ to 0.95, the discount factor to 0.99, and clip the gradient
norm to have 0.2 l2-norm. The learning rate for the policy and value heads is set to 2.4e−4, and the
feature encoder’s learning rate to 1e−4 for Frozen+Finetuned. For Frozen+Varnish, we use a
single learning rate set to 1e−4 for the feature encoder and policy / value heads (but 2.5e−4 gave
similar results). We never decay learning rates.

C ADDITIONAL EXPERIMENTS

This section provides additional details on the experiments from the main text, and also includes
additional results to further support our conclusions.

18

https://github.com/StanfordVL/GibsonEnv/
https://github.com/niessner/Matterport/

0.5 1.0 1.5 2.0
Steps ×105

100

200

300

400

500

600

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen

Finetuned

Frozen+Finetuned

Frozen+PiSCO

Walker-Run

0.25 0.50 0.75 1.00
Steps ×105

200

300

400

500

600

700

800

900

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen

Finetuned

Frozen+Finetuned

Frozen+PiSCO

Cartpole-Swingup

0.5 1.0 1.5 2.0
Steps ×105

0

50

100

150

200

250

300

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen

Finetuned

Frozen+Finetuned

Frozen+PiSCO

Hopper-Hop

Figure 9: Partial freezing improves convergence; adding our policy-induced consistency objective im-
proves further. As suggested by Section 3.5, we freeze the early layers of the feature extractor and finetune
the rest of the parameters without (Frozen+Finetuned) or with our policy-induced consistency objective
(Frozen+PiSCO). On challenging tasks (e.g., Hopper), partial freezing dramatically boosts downstream perfor-
mance, while Frozen+PiSCO further improves upon Frozen+Finetuned across the board.

0.5 1.0 1.5 2.0
Steps ×105

100

200

300

400

500

600

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen+Finetuned

Frozen+CURL

Frozen+SimSiam

Frozen+PiSCO

Walker-Run

0.25 0.50 0.75 1.00
Steps ×105

200

300

400

500

600

700

800

900

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen+Finetuned

Frozen+CURL

Frozen+SimSiam

Frozen+PiSCO

Cartpole-Swingup

0.5 1.0 1.5 2.0
Steps ×105

0

50

100

150

200

250

300

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen+Finetuned

Frozen+CURL

Frozen+SimSiam

Frozen+PiSCO

Hopper-Hop

Figure 10: Policy-induced supervision is a better objective than representation alignment for finetuning.
We compare our policy-induced consistency objective as a measure of representation similarity against popular
representation learning objectives (e.g. SimSiam, CURL). Policy supervision provides more useful similarities
for RL finetuning, which accelerates convergence and reaches higher rewards.

C.1 COMPUTING ACTION VALUES FOR THE LAYER-BY-LAYER LINEAR PROBING EXPERIMENTS

We follow a similar protocol for all tasks to obtain action values for layer-by-layer linear probing
experiments. As stated in Section 3.5, we first collect 10, 000 pairs using a policy trained (or finetuned)
on the downstream task. We then compute the returns for each state-action pair by discounting the
rewards observed in the collected trajectories. Then, we fit a 64-hidden unit 2-layer MLP with GELU
activations to predict action values from the collected state-action pairs, and store the predicted
action-values. On MSR Jump and Habitat we use the one-hot encoding of the actions rather than
their categorical values. Finally, we use the MLP-predicted action values as regression targets for our
linear probing models.

C.2 FULL RESULTS ON DeepMind Control

As mentioned in Section 3.1, we also ran our analysis on two DeepMind Control domains other
than Walker: Cartpole and Hopper. Both tasks use the same pretraining and transfer setups as
Walker. In Cartpole, we pretrain on the Balance task, where the pole starts in an upright position
and our goal is to keep it blanced. We then transfer to Swingup, where the pole starts upside down
and the goal is to swing and balance it upright. With Hopper, the pretraining task is Stand where
the agent is asked to stand up still; the downstream task is Hop where the agent should move in
the forward directino as fast as it can. Note that Hopper-Hop is considered more challenging than
Cartpole and Walker tasks, and DrQ-v2 fails to solve it even after 3M iterations (Yarats et al.,
2022).

For both domains, all analysis results are qualitatively similar to the Walker ones from the main
text. Figure 7 shows once more that freezing representations is not sufficient for transfer. Figure 8

19

Conv2
Conv3

Conv4
Conv5

Conv6
Conv7

Conv8

AvgPool

LayerN
orm

When Using Features From Layer

2−2

V
al

ue
E

st
im

at
io

n
E

rr
or

(↓
b

et
te

r)

Habitat

Random

Frozen

Gibson

Conv2
Conv3

Conv4
Conv5

Conv6
Conv7

Conv8

AvgPool

LayerN
orm

When Using Features From Layer

2−3

2−2

2−1

V
al

ue
E

st
im

at
io

n
E

rr
or

(↓
b

et
te

r)

Habitat

Random

Frozen

Matterport3D

Figure 11: Identifying which layers to freeze on Habitat tasks. We replicate the layer-by-layer linear probing
experiments on Habitat with the ImageNet pretrained feature extractor. Although the downward trend is less
evident than in Figure 4a, we clearly see that layers Conv8 and Conv7 yield lowest value prediction error on
Gibson and Matterport3D, respectively.

replicates Figure 4a. On both Cartpole and Hopper, freezing beyond layer Conv2 increases the
value estimation error (top panels); conversely, freezing up to those layers yields the best AURC
(bottom panels). Note that on Cartpole the degradation in value error is minimal and so is the
difference in AURC. We see in Figure 9 that partially freezing the feature encoder yields better
transfer results, especially when combined with PiSCO. Finally, Figure 10 reconfirms our hypothesis
that a policy-driven similarity metric improves RL finetuning.

C.3 SELECTING FROZEN LAYERS IN Habitat

We decided to freeze up to layer Conv8 and Conv7 for the Gibson and Matterport3D experiments
in Section 5.1. This section explain how our analysis informs the choice of those layers, without
resorting to a finetuned policy nor layer-by-layer freezing experiments as in Figure 4b.

Building on our analysis, we obtained 10, 000 state-action pairs from a policy trained directly on
Gibson and Matterport3D. This policy is provided by “Habitat-lab” but in practice a couple of expert
demonstrations might suffice. As in Figure 4a, we fit an action value function and save the action
values for the observation-action pairs from the collected state-action pairs. Then, we replicate the
layer-by-layer linear probing experiment of Section 3.5 with a randomly initialized feature encoder
and the one pretrained on ImageNet. Two differences from Section 3.5 stem from the large and
visually rich observations on Habitat. First, we project each layer’s representations to a PCA
embedding of dimensions 600 rather than 504; second, we omit the first convolutional layer as PCA
is prohibitively slow on such large representations.

Figure 11 displays those results. As expected, the downward trend is less evident than in Figure 4a
since the transfer gap between ImageNet and Habitat is larger than between tasks in MSR Jump or
DeepMind Control. Nonetheless, we can easily identify the representations in layers Conv8 and
Conv7 as the most predictive of action value on Gibson and Matterport3D, thus justifying our choice.

C.4 DeepMind Control TRANSFER FROM IMAGENET

Given the promising results of large feature extractors pretrained on large amounts of data Figures 1c
and 1d, we investigate whether similarly trained feature extractors would also improve transfer on
DeepMind Control tasks. To that end, we use the same ConvNeXt as on our Habitat experiments,
freeze its weights, learn policy and action-value heads on each one of the three DeepMind Control
tasks (replicating the setup of Figure 1).

4Dimensions ranging from 500 to 750 work equally well. Smaller dimensions yield underfitting as PCA
doesn’t retain enough information from the representations. Larger dimensions yield overfitting and pretrained
representations don’t do much better than random ones.

20

0.5 1.0 1.5 2.0
Steps ×105

0

100

200

300

400

500

600

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen (Walk)

Frozen (ImageNet)

Walker-Run

0.25 0.50 0.75 1.00
Steps ×105

0

200

400

600

800

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen (Balance)

Frozen (ImageNet)

Cartpole-Swingup

0.5 1.0 1.5 2.0
Steps ×105

0

50

100

150

200

250

300

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen (Stand)

Frozen (ImageNet)

Hopper-Hop

Figure 12: Pretraining on large and diverse data can hurt transfer when the generalization gap is too
large. When transferring representations that are pretrained on ImageNet to DeepMind Control tasks, we see
a signficant decrease in convergence rate. We hypothesize this is due to the lack of visual similarity between
ImageNet and DeepMind Control.

0.5 1.0 1.5 2.0
Steps ×105

100

200

300

400

500

600

R
ew

ar
ds

(↑
b

et
te

r)

DMC

De Novo

De Novo+PiSCO

Frozen

Frozen+PiSCO

Walker-Run

0.25 0.50 0.75 1.00
Steps ×105

200

300

400

500

600

700

800

900

R
ew

ar
ds

(↑
b

et
te

r)

DMC

De Novo

De Novo+PiSCO

Frozen

Frozen+PiSCO

Cartpole-Swingup

0.5 1.0 1.5 2.0
Steps ×105

0

50

100

150

200

250

300

R
ew

ar
ds

(↑
b

et
te

r)

DMC

De Novo

De Novo+PiSCO

Frozen

Frozen+PiSCO

Hopper-Hop

Figure 13: PiSCO can also improves representation learning on source tasks but shines with pretrained
representations. When benchmarking PiSCO combined with fully finetunable features (De Novo+PiSCO),
we observe that it marginally outperforms DrQ-v2 on the downstream tasks (De Novo). However, the best
performance is obtained when also transferring task-agnostic features (Frozen+PiSCO).

Figure 12 provides convergence curves comparing the 4-layer CNN pretrained on the source Deep-
Mind Control task (i.e., either Walker-Walk, Cartpole-Balance, or Hopper-Stand) against
the ConvNeXt pretrained on ImageNet. The CNN drastically outperforms the ConvNeXt despite
having fewer parameters and trained on less data. We explain those results as follows. The smaller
network is trained on data that is more relevant to the downstream task, thus has a smaller generaliza-
tion gap to bridge. In other words, more data is useful insofar as it is relevant to the downstream task.
More parameters might help (i.e., pretraining the ConvNeXt on DeepMind Control tasks) but it
is notoriously difficult to train very deep architectures from scratch with reinforcement learning, as
shown with De Novo on Habitat tasks.

C.5 De Novo FINETUNING WITH PiSCO

As an additional ablation, we investigate the ability of PiSCO to improve reinforcement learning from
scratch. In Figure 13, we compare the benefits of using PiSCO with when representations are (partly)
frozen v.s. fully finetunable (De Novo). We see that PiSCO always improves upon learning from
scratch (De Novo+PiSCO outperforms De Novo) but that it is most beneficial when the task-agnostic
features are frozen (Frozen+PiSCO outperforms De Novo+PiSCO).

C.6 PiSCO WITHOUT PROJECTION LAYERS

The original SimSiam formulation includes a projector layer h(·), and Chen & He (2020) show that
this projector is crucial to prevent representation collapse. Does this also holds true for RL?

To answer this question, we compare the performance of a (partially) frozen feature extractor finetuned
with PiSCO, with and without a projection layer, in Figure 14. The results clearly answer our question

21

0.5 1.0 1.5 2.0
Steps ×105

100

200

300

400

500

600

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen

Frozen+PiSCO (no proj.)

Frozen+PiSCO (w/ proj.)

Walker-Run

0.25 0.50 0.75 1.00
Steps ×105

200

300

400

500

600

700

800

900

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen

De Novo+PiSCO (no proj.)

Frozen+PiSCO (w/ proj.)

Cartpole-Swingup

0.5 1.0 1.5 2.0
Steps ×105

0

50

100

150

200

250

300

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen

Frozen+PiSCO (no proj.)

Frozen+PiSCO (w/ proj.)

Hopper-Hop

Figure 14: Is the projector h(·) necessary in PiSCO’s formulation? Yes. Removing projection layer
when finetuning task-specific layers (and freezing task-agnostic layers) drastically degrades performance on all
DeepMind Control tasks.

0.5 1.0 1.5 2.0
Steps ×105

100

200

300

400

500

600

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen+Finetuned

Frozen+PiSCO

Frozen+SPR

Frozen+PiSPR

Walker-Run

0.25 0.50 0.75 1.00
Steps ×105

200

300

400

500

600

700

800

900

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen+Finetuned

Frozen+PiSCO

Frozen+SPR

Frozen+PiSPR

Cartpole-Swingup

0.5 1.0 1.5 2.0
Steps ×105

0

50

100

150

200

250

300

R
ew

ar
ds

(↑
b

et
te

r)

DMC

Frozen+Finetuned

Frozen+PiSCO

Frozen+SPR

Frozen+PiSPR

Hopper-Hop

Figure 15: Combining SPR with PiSCO significantly improves the performance of SPR. Swapping the
cosine similarity objective in SPR (Schwarzer et al., 2021) for the policy-induced objective suggested by our
analysis significantly improves finetuning. Still, finetuning with PiSCO (based on SimSiam (Chen & He, 2020))
yields the best performance, while remaining easier to implement and faster in terms of wall-clock time.

in the affirmative: the projector is also required and removing it drastically degrades performance on
the downstream task.

C.7 COMPARING AND COMBINING WITH SPR

To illustrate future avenues for extending the ideas motivating PiSCO, we combine them with the
self-predictive representation (SPR) objective of Schwarzer et al. (2021). We replace SimSiam for SPR
as the auxiliary self-supervised objective used during finetuning. Concretely, reimplemented SPR for
DeepMind Control tasks and compare the original implementation (which uses cosine similarity
cos(p1, p2) to compare representations) against a variant (PiSPR) which uses the policy-induced
objective 1

2 (D(p1, p2)) +D(p2, p1))5.

In terms of implementation details, we found that setting the number of contiguous steps sampled
from the replay buffer toK = 3 yielded the best results on DeepMind Control tasks. The transition
model is a 2-layer MLP (1024 hidden units) with layer normalization and ReLU activations. We used
the same projector as as for SimSiam (which does not reduce dimensionality), and a linear predictor
with layer-normalized inputs.

Figure 15 reports the results for partially frozen feature extractors with different finetuning objectives.
We observe that using SPR typically performs as well as finetuning the task-specific layers with the
RL objective. In that sense, finetuning with PiSCO offers an compelling alternative: it is substantially
cheaper (3̃x faster in wall-clock time), doesn’t require learning a transition model nor keeping track
of momentum models, and is simpler to tune (fewer hyper-parameters). More interestingly, we find
that replacing the cosine similarity in SPR for the policy-induced objective (i.e., PiSPR) significantly
improves performance over SPR. Those results further validate the generality of our analysis insights.

5Note: p1 and p2 correspond to ŷt+k and ỹt+k in the original SPR notation.

22

D PSEUDOCODE

Here we provide pseudocode for implementing PiSCO on top of two popular reinforcement learning
algorithms. Algorithm 1 adds PiSCO to PPO (Schulman et al., 2017), while Algorithm 2 adds it to
DrQ-v2 (Yarats et al., 2022).

Algorithm 1 PPO with PiSCO

1 # sample transitions from replay
2 s, a, r, s′ = replay.sample(batch_size)
3 z = φ(s)
4
5 # compute value loss
6 LV = 0.5 · (V (z) - discount(r))2

7
8 # compute policy loss
9 ∆π = log π(a | z)− log πold(a | z)

10 A = GAE(V (z), r, γ, τ)
11 Lπ = min(exp(∆π) ·A, clip(exp(∆π) ·A, 1− ε, 1 + ε)
12
13 # compute PiSCO loss
14 z1, z2 = φ(data_augment(s)), φ(data_augment(s))
15 p1, p2 = h(z1), h(z2)
16 LPiSCO = 0.5 · KL(⊥(π(· | z1))‖π(· | p2)) + 0.5 · KL(⊥(π(· | z2))‖π(· | p1))
17
18 adam.optimize(Lπ + ν · LV + λ · LPiSCO − β ·H(π(· | z))) # optimizes V , π, h, and φ

Algorithm 2 DrQ-v2 with PiSCO

1 # sample transitions from replay
2 s, a, r, s′ = replay.sample(batch_size, n_steps, γ)
3
4 # compute policy loss
5 z = ⊥(φ(data_augment(s)))
6 â = π(· | z).rsample()
7 Lπ = - min(Q1(z, â), Q2(z, â))
8 adam.optimize(Lπ) # only optimizes π
9

10 # compute action-value loss
11 z = φ(data_augment(s))
12 z′ = φ(data_augment(s′))
13 a′ = π(· | z′).sample()
14 q1, q2 = Q1(z, a), Q2(z, a)
15 q′ = ⊥(r + γ · min(Q1(z′, a′), Q2(z′, a′)))
16 LQ = 0.5 · (q1 - q′)2 + 0.5 · (q2 - q′)2

17
18 # compute PiSCO loss
19 z1, z2 = φ(data_augment(s)), φ(data_augment(s))
20 p1, p2 = h(z1), h(z2)
21 LPiSCO = 0.5 · KL(⊥(π(· | z1))‖π(· | p2)) + 0.5 · KL(⊥(π(· | z2))‖π(· | p1))
22
23 adam.optimize(LQ + λ · LPiSCO) # only optimizes Q1, Q2, h, and φ

E CODE RELEASE

Together with our submission, we release example code to implement PiSCO in the code/ directory
of the Supp. Material. We plan to publicly release complete implementations, together with examples
for the pretrain-and-transfer pipeline. We describe the main files below.

23

• msr_jump.py: our GPU implementation of MSR Jump tasks.
• ppo_pisco.py: our PyTorch (Paszke et al., 2019) implementation of PiSCO on top of

PPO.
• drqv2_pisco.py: our PyTorch (Paszke et al., 2019) implementation of PiSCO on top of

DrQ-v2.

24

	Introduction
	Related works and background
	Understanding when to freeze and when to finetune
	Experimental testbeds
	When freezing or finetuning works
	Freezing fails even when learned representations are useful
	Finetuning improves learnability and robustness to noise
	When and why is representation finetuning required?

	Finetuning with a policy-induced self-supervised objective
	Experiments
	Partial freezing and policy-induced supervision improve RL finetuning
	Policy-induced supervision improves upon contrastive predictive coding

	Conclusion
	Appendix
	Testbed details
	MSR Jump Tachet2018-qp
	Pretraining setup
	Transfer setup

	DeepMind Control Tassa2018-pz
	Pretraining setup
	Transfer setup

	Habitat habitat19iccv
	Pretraining setup
	Transfer setup

	Additional experiments
	Computing action values for the layer-by-layer linear probing experiments
	Full results on DeepMind Control
	Selecting frozen layers in Habitat
	DeepMind Control transfer from ImageNet
	De Novo finetuning with PiSCO
	PiSCO without projection layers
	Comparing and combining with SPR

	Pseudocode
	Code Release

