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ABSTRACT

Federated Learning (FL) can be coordinated under the orchestration of a central
server to build a privacy-preserving model without collaborative data exchange.
However, participant data heterogeneity leads to local optima divergence, affect-
ing convergence outcomes. Recent research focused on global sharpness-aware
minimization (SAM) and dynamic regularization to enhance consistency between
global and local generalization and optimization objectives. Nonetheless, the es-
timation of global SAM introduces additional computational and memory over-
head. At the same time, the local dynamic regularizer cannot capture the global
update state due to training isolation. This paper proposes a novel FL algorithm,
FedTOGA, designed to consider optimization and generalization objectives while
maintaining minimal uplink communication overhead. By linking local perturba-
tions to global updates, global generalization consistency is improved. Addition-
ally, linking the local dynamic regularizer to global updates increases the percep-
tion of the global gradient and enhances optimization consistency. Global updates
are passively received by clients, reducing overhead. We also propose neighbor-
hood perturbation to approximate local perturbation, analyzing its strengths and
working principle. Theoretical analysis shows FedTOGA achieves faster con-
vergence O(1/T) on the non-convex function. Empirical studies demonstrate that
FedTOGA outperforms existing algorithms, with a 1% accuracy increase and 30%
faster convergence, achieving state-of-the-art.

1 INTRODUCTION

The widespread connectivity of mobile terminals has dramatically propelled the development of in-
dustries related to big data. However, the massive data throughput has led to communication link
congestion and increased privacy risks. Consequently, to safeguard data privatization and localiza-
tion, FL McMahan et al.[(2017)) has garnered significant attention as a distributed machine learning
(ML) method that avoids the need for data exchange. Nonetheless, due to the variations in data
distribution among participants [Fan et al.| (2022;2024c), conflicts in local optimization targets arise,
potentially causing the global loss function to converge to a sharp local minimum Woodworth et al.
(2020). As illustrated in Figures with an increase in local heterogeneity, there is a steep rise
in the sharpness of the global model loss. Moreover, due to the limitations of uplink bandwidth to
the global server|Speedtest| (2024), FL employs a “Computation-Then-Aggregation” (CTA) strategy
Zhang et al|(2020), which utilizes multiple rounds of local training and partial participation to al-
leviate communication bottlenecks. However, by increasing synchronization intervals and reducing
participation rates, the discrepancy between local and global models will be significantly amplified
Wang et al.| (2020); L1 et al.| (2020b).

In response to these challenges, most studies address global consistency issues via the Empirical
Risk Minimization (ERM) Malinovsky et al.| (2020). However, when handling highly heteroge-
neous datasets, global solutions may become trapped in steep local minima, rendering it difficult
to provide reliable estimates |Sun et al.| (2023b) and potentially causing the optimizer to stagnate.
Consequently, recent innovations have leveraged Sharpness-Aware Minimization (SAM)|Foret et al.
(2021)), which seeks to identify a flatter minimum by minimizing the perturbed loss of the model,
thereby enhancing generalization capabilities. FedSAM was introduced by incorporating SAM into
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Figure 1: Fig.(a)-(c) shows the loss surface under FL IID and the Non-IID setting and Fig.(d)-
(f) shows the FL system, where the gray color represents the global consensus and the
regions represent the local knowledge. In Fig.(d), no further consensus can be increased in FL only

supported by the SAM . In Fig.(e), a _ is introduced in some work to increase

global generalization. In Fig.(f), we further introduce 'Global Update to extend the generalization.

FL|Qu et al(2022), and further, momentum-based algorithms were integrated, resulting in the pro-
posal of MoFedSAM. FedGAMMA |Dai et al. (20234) replaced ERM with SAM in Scaffold to
enhance its performance and alleviate model bias.FedSpeed integrated FedDyn
into FedSAM to bolster performance. However, the approach based on minimizing local sharpness
loss fails to capture the flatness of the global loss surface, as depicted in Fig[Ta} localized knowledge
does not allow for effective consensus. Therefore, FedSMOO [Sun et al] (2023b) enhances local tar-
get consistency through a dynamic regulariser, as shown in Fig[le] Furthermore, FedLESAM
estimates the global perturbation as the difference between the locally stored historical
model from the activation round and the global model received in the current round, thereby avoid-
ing extra computational costs. Nonetheless, FedSMOO introduces additional communication over-
head and storage requirements, which can be unacceptable in real-world environments with limited
bandwidth. In FedLESAM (2024a), the global perturbation estimate does not encompass
additional local gradient ascent computations, while reducing computational overhead may lead to
insufficient local generalization. In both methods, the difference in local perturbation scales may
be significant when facing clients with prolonged disconnections, thereby disrupting generalization.
Apart from addressing the consistency of perturbation generalization, local objective optimization
has also been intensely studied, as seen in dynamic regularize algorithms [Zhang et al.| (2020)); [Acar]
letal] (2021));[Sun et al.| (2023b)). However, its performance degrades significantly as the local interval
expands. This is because the CTA strategy makes local fail to capture the global updates state.

To achieve a reliable, stable, and consistent global model, we propose a novel algorithm named
FedTOGA, as illustrated in Fig[lfi FedTOGA initially guides global update gradients to merge
with local perturbations, thereby enhancing local generalization consistency. Simultaneously, it
employs global updates to correct the local dynamic regularizer, reinforcing consistency with the
global optimization objective. This approach significantly improves performance, even under ex-
treme conditions characterized by highly heterogeneous data or limited client participation. Due
to the communication interval, the universal SAM optimizer applied on the global server cannot
precisely capture the perturbations occurring during local updates on client devices. We introduce
the global update gradient as an approximation to maintain local consistency, replacing the global
perturbation estimation used in FedSMOO (2023b). Furthermore, the universal dynamic
regularizer dynamically adjusts the optimization direction based on the client drift estimated from
dual variable statistics; however, it neglects the global gradient’s changing trends. Hence, we con-
sider the global stationary condition and propose leveraging the global update gradient to correct
the local dynamic regularizer, further aligning with global and local objectives. At the same time,
to further reduce the computational overhead, we propose the neighborhood gradient perturbation.
When the interval between local training sessions on the client side exceeds one, the client simulates
the current perturbation by utilizing cached gradients stored in a gradient register, thereby alleviating
computational costs. Unlike FedCM and MoFedSAM (2022), the global
update is not treated as a trade-off term with the local perturbation, meaning that their coefficients
do not sum to one. As the active local clients converge, they ultimately reach a globally stationary
state characterized by a smooth loss landscape.

Theoretically, FedTOGA can achieve a rapid convergence rate of O(1/7) in non-convex settings.
Extensive evaluations were conducted on the CIFAR10/100 datasets, demonstrating that FedTOGA
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achieves faster convergence rates and higher generalization accuracy in practice. These results
were obtained in comparison to 17 baseline methods, including FedAvg, FedAdam, FedYogi,
SCAFFOLD, FedACG, FedCM, FedDyn, FedDC, FedRCL, FedSAM, MoFedSAM, FedGAMMA,
FedSMOO, FedSpeed, FedLESAM, FedLESAM-D, and FedLESAM-S.

* We propose a novel FL algorithm, FedTOGA, the first global perturbation technique that
uses a merged global update, and the first local dynamic regularizer that employs the
global update. This method effectively reduces uplink communication overhead, ensuring
rapid convergence and strong generalization.

* We introduce the concept of neighborhood perturbation to mitigate local computation and
enhance generalization for the first time. This approach integrates or substitutes local per-
turbation by leveraging gradient registers without incurring additional overhead. We further
analyze its benefits and working principles.

* We provide a theoretical convergence rate analysis, demonstrating that FedTOGA attains a
rapid O(1/T) convergence rate in non-convex settings. Additionally, we performed exten-
sive empirical evaluations on the CIFAR10 and CIFAR100 datasets using various neural
network architectures to validate the superior performance of FedTOGA, particularly in
scenarios involving highly heterogeneous and sparse participants, where it significantly
outperformed existing methods.

2 PRELIMINARIES

This section shows the preliminaries of FL and SAM, and related works are in Appendix [A.T]

Federated Learning The goal of the FL framework is to build global models that minimize the
average experience loss of participating clients:

) 1
argminf(0) = = > fi(0); fi(0) = Be_p, fi(6,&)- )
0 iEN
Where f : R — R is denoted as the global objective function, @ is a model parameter, N is the

total number of all the participating clients, and &; is a randomly sampled data from the distribution
D, subject to data heterogeneity. f; is the loss function for the i-th client.

Sharpness Aware Minimization Many studies Hochreiter & Schmidhuber (1994); Dinh et al.
(2017) have pointed out that a flat minimum implies a better generalization performance, which
possesses greater robustness to model perturbations. To minimize sharpness, |[Keskar et al.| (2017);
Foret et al.| (2021)) proposed SAM:

argmin { fsam (#) = argmax f(6 + ) }. 2)
o llsll<p

SAM extends the search by a one-step gradient ascent perturbation and a one-step gradient descent

to reduce sharpness and loss. First, calculate the gradient ascent perturbation § = p%. pis

the perturbation learning rate. The gradient is then computed after adding the perturbation using the
model and updating the model § = V f(6 + 0); 0 = 0 — ng, where 7 is the learning rate.

2.1 RETHINK FEDSAM AND OTHERS

The limitations of SAM in FL systems |Qu et al.| (2022)) have been widely discussed [Sun et al.
(2023b); [Fan et al.| (20244); Lee et al.|(2024])), with the main conflict coming mainly from centralized
training vs. Distributed Computing Perturbation Differences. The centralized SAM|Qu et al.|(2022)
training objectives are as follows:

max Eeop (0 +90,8) = max E;E¢,p, f(0 +6,&). (3)

llsl<p llsll<p
where D = E;D;, some work applies SAM directly to the FL. paradigm |Sun et al.| (2023c); Dai
et al.|(2023a), and reformulates its goal as follows:

max E;E¢,p, fi(0; + 0:,&). “4)

lldill<p
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where the model 6, and the perturbation § are isolated due to the CTA of FL, and the 6; represents
the local model. In this case, minimizing local sharpness in isolation does not effectively achieve
a global flat minimum. As a result, maintaining consistency between the global and client models
becomes more difficult as the local update interval and the degree of data heterogeneity increase Fan
et al.|(2024a).

Some recent studies, FedSAM |Caldarola et al.| (2022), MoFedSAM |Qu et al.| (2022)), Fe[dGAMMA
Dai et al.|(2023a), FedSpeed |[Sun et al.| (2023c) have not resolved the internal perturbation variance
contradiction. MoFedSAM uses momentum to weigh the perturbation gradient against the global
gradient to alleviate this problem, FedGAMMA Dai et al| (2023a) uses variance reduction tech-
niques, and FedSpeed Sun et al.[(2023c)) uses dynamic regularization to alleviate this contradiction.
FedSMOO |Sun et al.|(2023b) notices this contradiction for the first time and uses dynamic regular-
ization to correct the discrepancy between local and global perturbations, FedSOL [Lee et al.|(2024)
employs perturbation orthogonality to find a consistent direction of perturbation, FedLESAM |Fan
et al.| (2024a) believes that computing the perturbations requires additional computation and there-
fore opens up additional storage locally to approximate the estimated global perturbations. However,
FedSMOO introduces additional computation, which increases the overhead of the clients in FL. As
the set of activated clients S; decreases sharply, the perturbation estimation by FedLESAM is more
affected. For a more detailed description of the limitations, see Appendix[A.2]

2.2 RETHINK DYNAMIC REGULARIZER IN FL

Dynamic regularisation is intensively studied in FL(FedPD/FedDyn/FedSMOO)|Wang et al.|(2022);
Gong et al.[(2022); Acar et al.| (2021); [Sun et al.| (2023b)), mainly used to correct local optimization
biases. Consider a standard edge Augmented Lagrangian(AL) function in dynamic regularisation:

1 1
Ffed:NZ{fi+<h§79t_ezt‘>+m||0t_ef||2}' &)
i€EN

The dual variable h; can be interpreted as a signed “’correction vector” (positive or negative), quan-
tifying the discrepancy between 6% and #% and providing the direction for adjustments in opti-
mization Zhang et al. (2020); Gong et al.[ (2022). Consider the first-order condition V f;(0!) —
ht + é(@f — #%) = 0, which ensured that convergence to a stationary point at each train-
ing iteration. And consider the update rule of the dual variable h; = h; — é(&f = 0!y)we
haveV f;(0f) — V £;(0:") + L (¢ — 6*) = 0. Whent — o0, have 02° — 67°7", then 02° — 6>°
Acar et al.[(2021);/Sun et al.|(2023b). However, each subproblem’s stationary points typically differ,
particularly in the FL setting with heterogeneous data distributions. Observing the stationary condi-
tion in problemE], > ien Vfi(0) = 0, it is implied that any given —V f;(6*) could be partially or
fully offset by V f;(6*), where i # j. Consequently, existing studies that focus solely on local cor-
rection are insufficient; there is a need to incorporate further considerations of the global stationary
condition within the local optimization process.

3 MOTIVATION

Therefore, we consider three questions:

1. How can we efficiently estimate global perturbations without adding extra overhead?
2. How can we reduce computational overheads and enhance local generalization?

3. How can we further align local and global objectives?

4 METHODOLOGY

4.1 ESTIMATE GLOBAL PERTURBATION

As mentioned above, we aim to efficiently estimate each client’s global perturbations(G-
perturbations) without incurring additional storage or computational overhead. To achieve this, we
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Algorithm 1: FedTOGA Algorithm

Initial model parameters °, initial global update A~ local dual variable h;, global dual variable h, local
perturbation gradient g; —1, total communication rounds 7', penalized coefficient for the quadratic term
a, Correction coefficient for perturbation and dual term «, 8

for each round t € [T] = {0,1,2,--- , T — 1} do

Sample the active client set S; C [IV].

for i € S; in parallel do

67" < Client Update(9* [A"); communicate 6! to server ;
end

t+1 _ 1 RS R | t+1, gt+1 _ 1 t+1 t+1
AT = e ) s, (05T —0) T =R - SKAT 0T =530, 0 —ah

end
Client Update(;, A): 0}, = 6"
for local epoch k € [K] £ {0,1,2,--- , K — 1} do

t t
- . L ptrA
sample a mini-batch data §f,k; gfk = Vf(@f’k; ffyk);Perturbatlon: §f’k = pllzz-’2+:Atll
7,

extra-step: 52,1@ = va(eik + 52,1@% ffk)» 9§,k+1 = 9§k - m (§Zk —hi+1 (0Zk - 95,0)"‘ BA! )

@

end
Rt =hi— L (0] x —0lo); return0;T' = 0!

K a

first recall the definition of sharpness-aware minimization in FL:

1
i = — E;E¢.wp, f:(0; + 0;,& 6
min { f Ngvugﬁi%{p e, fi(0i + 6,6 } (6)
Therefore, we can obtain that at ¢ round, ¥ moments, the virtual global perturbation variable ot =
VIiOYH  _ Yien VAR e VIi(6h) :
PISTEOT = P Zi]:] Vfi(GZ)H ~ pHZiZ Vfi(f)’:i)\l' The 9,2 denotes the global model at virtual

moment k, which is computed as 0}, = - >, s, 07 .- However, due to the CTA strategy in the FL

paradigm, the set of clients does not have effective access to the global model ¢}, at each moment in
time. Thus, the global perturbation § cannot be computed correctly. Inspired by the FedCMXu et al.
(2021) strategy, we estimate the global update A? ~ V f(6*) by passing the global update variable.
Finally, we define the update strategy for the global perturbation SAM of FedTOGA as follows:

0 = Pugﬁz:;” ~ p\lﬁii:itu 107 = 0; . — mVE(0} ), + pd},). The differences between the

FedTOGA perturbation strategy and similar works can be viewed in Appendix Tab[5]

4.2  UTILIZE NEIGHBOURHOOD PERTURBATION

Besides, as stated by |[Fan et al.| (2024al), local perturbations require additional gradient ascent com-
putation, which may consume additional computational overhead. Therefore, how can we esti-
mate the local perturbation without utilizing additional computation? We propose neighborhood
perturbation(N-perturbation) for the first time. Specifically, when the client’s local iteration interval
exceeds one, the local perturbation gradient g¢, _; will be recorded by the cache without opening

additional storage space. We can get g; , = g.,_,. We can further replace the perturbation term

~t t
. .. . .St _ gi,k,1+HA
in the local SAM optimization and get: J; , = PTaT FraT

estimation of local perturbations in environments with scarce client-side resources.

This operation allows approximate

Perturbation Fusion? In the FL paradigm, the edge client SAM only captures the sharpness of a
specific small batch of data, which is mitigated by the G-Perturbation technique described above
to enhance generalization. Let’s consider whether N-Perturbation may bring additional benefits
and alleviate computational overhead. Similar to LookAhead Zhang et al.| (2019), it backtracks by
perturbing ascent after each gradient descent. Then, our perturbation calculation can be rewritten:

ik Tgr o FRAT . . . . . .
o = p%. Appendix |A.3|provides a more in-depth discussion of N-perturbation.
@ gi kg5 11 TRAT
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4.3 GLOBAL CORRECTION IN DYNAMIC REGULARIZER

To effectively avoid performance degradation and further improve the optimization objective con-

sistency, we also adopt dynamic regularization (2021)) that merges the global update A
correction on each local client and takes the form of an ADMM-like method on the server to min-

imize the global objective f effectivel Zhang et al.| (2020). This is the first dynamic regularisation
FL framework that considers merging the global update. First, we consider the global Augmented
Lagrangian(AL) function f.q which introduces a penalty term § = 6; constraint as:

. 1 t pt t 1 t t)12
Freas 5 30 { o+ (10,0 = ) + o0~ 1P} @

i€EN

In general, we can split the finite sum problem to each local client and minimize the local parameters
0; in the AL function in each subproblem:

. 1
0 = min { 5= (0, 00) + oo - 0017} ®

Where the global dual variable & is updated at each communication, and the local dual variable
h; is stored locally. As stated in Sec[2.2] although recording h; helps to mitigate the local target
point offset, it ignores the global gradient trend, which was not addressed in previous studies
let al.| (2021); |Sun et al.| (2023b). Therefore, we use the A’ to approximate the global update trend.
Specifically, we cause the local dual variables by adding corrections and obtaining h; — SA!. Again,
to not affect the original SAM, we use SGD to solve this problem[Sun et al|(2023b). We then update
the dual variables locally h{™" = h! — L (6! - — 6! ). After finishing the local training, update 6

(03
to 0! by solving the equation[7]and start the next iteration.

4.4 OVERVIEW OF FEDTOGA

Algorith shows the detailed flow of FedTOGA. First, initialize the server-side global model 6.
In the global synchronization round ¢, a set S; containing M clients is randomly selected from all
clients N, and the global model 6, is sent to the set of authorized clients S; with the global update
A" of the t — 1 round. The client first computes the original gradient g}, according to Line.11
of the algorithm and subsequently, computes the SAM gradient 6;?’ . corrected by A’ in Line.11,
with the neighborhood perturbation variable g; being optional. In Line.12, we use the formula §] for
local dual variable correction to update the local model #; and update the local dual variable h; via
Line.14. After local training, FedTOGA sends only 6! to the server for aggregation. In line 7 of the
algorithm, the server updates the global model from #* to #**! by minimizing the function This
process is repeated until 7-1.

5 THEORETICAL ANALYSIS

Assumption 1. The loss function f; is L-Smooth, i.e., f;(y) — fi(x) < (Vfi(x),y—x)+ %Hy—xHQ
Assumption 2. Unbiased and bounded variance of stochastic gradient. The stochastic gradient
Vfi(x) = Vfi(x,&) computed by the i-th client using mini-batch & is an unbiased estimator of
Vi), ie. BV fi(x)] = V(@) E|V fi(x) - V()| < o2

Assumption 3. Bounded Heterogeneity, for all x € R? we establish the following
inequality:E||V f;(x) — Vf(x)|| < o4 Besides, the variance of the unit gradient is bounded:
E| ‘lvfi(x) | < o, These assumptions are also used in SAM-based FL analysis

V@] V@]
let al](2022); [Fan et al.|(2024d).

Theorem 1. Under Assumption For any training interval t on i-th client, model divergence
satisfies:

165 1. — i ll* < Hi(k) ©)
L2p217/2—i-0'2 2192 s . .
where H;(1) < ——#—=((1+ 207 L*)" — 1), {v'} is a virtual sequence representing the global

model. More details are in the Appendix
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Remark 1. The difference between the local and global models will be geometrically amplified as
the local interval expands, mainly from the model perturbation error and update error, and thus, it
is reasonable to enhance the consistency of optimization and generalization objective (in Sec. ).

Theorem 2. Under Assumption When n; < min{\/ﬁ, a}, and the perturbation learning
rate satisfies p = O(1/\/T), and local interval K > o letw = 1+ B8—-2128n?L?K — 3% — LaS?

is a positive constant with select the suitable 1, the auxiliary sequence {z'} generated by executing
the Algorithm [1] satisfies:

Z va ”2 f( ) f* 16a3L2
T

2
112L 771
Tow +

o

zEN

SCEIRP+ Y

iEN

(10)

where the f* is the optimal of non-convex function f, and the term Y is:
1
Y = — (5607 L*K (307 + 1602 + 5L°p*) + L*p?)
w

More details are in the Appendix[C.2]

Remark 2. When we set the local learning rate n; to satisfy ; = O(1/K) and the perturbation
learning rate to be O(1/T), FedTOGA can achieve a fast convergence rate of O(1/T) when the
local interval K satisfies K = O(T).

Remark 3. The proof of Wang et al.| (2022); |Gong et al|(2022); |Acar et al.| (2021); \Sun et al.
(2023bl) relies on the strict assumption that the client must approach a stationary point in each
round of training, which cannot be strictly fulfilled in real FL system. Therefore, we do not consider
the strict assumption of the first-order condition gt — ht + 1 (6! — 6') + BA' = 0 of the equation
(8). Inspired by Sun et al.|(2023c), we relax this assumption by enlarging the local intervals, which
also achieves O(1/T') convergence speed|Sun et al.|(2023D).

Remark 4. Inspired by|Sun et al.|(2023c|), FedTOGA can also speed up convergence by increasing
the setting of the local interval K, which is helpful for bandwidth-constrained FL systems. However,
the local perturbation learning rate p in FedSpeed restricts the upper bound and our proof

1
V6alL’
slightly relaxes the limitation so that the p only needs to satisfy O(1/T). We can also tighten the
boundary of % by adjusting [3 appropriately.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUPS.

Baselines. We compare FedTOGA with the FedAvg [McMahan et al| (2017) and SAM-base FL
methods, including FedSAM, MoFedSAM |Qu et al| (2022), FedGAMMA Dai et al.| (2023a),
FedSMOO |Sun et al.[(2023b), FedSpeed [Sun et al.| (2023c), with the recent FedLESAM |Fan et al.
(2024a). Also, we compare with momentum-based FL algorithms, for example, FedAdam, Fed Yogi
Reddi et al.| (2021)), FedACG Kim et al.| (2024}, FedCM Xu et al.|(2021)). In addition, methods based
on local consistency are also in the comparison, including FedDyn |Acar et al.[(2021), SCAFFOLD
Karimireddy et al.| (2020), FedDC|Gao et al.|(2022) with FedRCL |Seo et al.|(2024).

Experimental Details. We adopt the same experimental setup as in |Sun et al.|(2023b)); |[Fan et al.
(2024a)) for a fair comparison. The datasets CIFAR10 and CIFAR100 are utilized in the experiments.
We follow the methodologies outlined in Dai et al.|(2023b); |Sun et al.|(2024); [Fan et al.[(2024b) to
simulate client data using Dirichlet and Pathological splits in non-IID scenarios. We use SGD as the
optimizer, with a client learning rate 7; set to 0.1 and a global learning rate of 1. The weight decay is
fixed at 1e~3. To further assess the generalization capability of our method, we conduct experiments
with two models, LeNet and ResNet18|He et al.|(2016). For LeNet, the learning rate decays by 0.997
per epoch, whereas for ResNet18 He et al.[(2016), it decays by 0.998. For CIFAR10, the batch size
is 50, and the number of local epochs is 5. For CIFAR100, the batch size is set to 20, and the
number of local epochs is set to 2. In FedTOGA, the local perturbation correction coefficient « is
set to 1, the dual variable correction coefficient 3 is set to 0.8, and the penalized coefficient « is set
to 0.1. Consistent with several other algorithms, the perturbation magnitude p is set to 0.1, except
for FedSAM, MoFedSAM, and FedLESAM, where it is set to 0.01. Detailed information about the
experimental setup can be found in Appendices
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Table 1: Dirichlet coefficients u selected from {0.1,0.6}, and ¢ is the Pathological coefficient, i.e.,
the number of active categories in each client. The two datasets have 100 clients in the upper part
with 10% active in each round and 200 clients in the lower part with 5% active in each round.(LeNet)

Method CIFAR10 CIFAR100
Partition Dirichlet Pathological Dirichlet Pathological
Coefficient u=0.6 u=0.1 c=6 c=3 u = 0.6 u=0.1 c=20 c=10
FedAvg 80.28T0 11 7468019 80,5908 7810023 | 47.35T016 45561020 46467020 43.43T0%7
FedAdam 80.39%0-17  71.52%0:20 g1 2020 7788025 | 48 94021 43 62025 44 86025 47 58027
FedYogi 80.11%0-19 7358025 g7 (8021 78 10£020 | 48 41021 45 442022 46 184022 49 7020
SCAFFOLD 82.87+0-12 78,00+016  g3.31+0-10 g0 29+0-15 | 53 68021 5, 33£024 51 30E022 4771022
FedACG 82.87+0-14 77514016 g9 geE0-12 - g( g4E017 | 59 gRE0-20 48 79028 5 94021 46,0802
FedCM 77.04%030 62754031 66,58+0-20 71, 90033 | 43 08010 34 69026 3627018 98 48050
FedDyn 82.31%0-13  78,0540-19  g3,13+0-18 79 96E0-19 | 49 97010 45 g5EO20 47 47021 43 990.19
FedDC 83.58i0'14 78.50i0'19 84_00i0.16 81.72i0'l7 51'9910.15 48.75i0'21 49.53i0.19 44.82i0'23
FedRCL 77.621011 68,7906 7898015 76,042019 | 46,3420-24 42 981017 44064019 39,6402
FedSAM 81.58%0-15  77.67%0-15 g2 152017 79 93+0-23 | 48 08021 46861026  46.710-25  43.41%0-22
MoFedSAM TTATECI266.24F015 77, 44%015 79 15E019 | 43 30018 34 43+021 36 50+0-19 99 99024
FedGAMMA | 83.88%0-13 78615015 83.79*0:14 79 68015 | 53.9440-20  49,95£0-24 57 9£0-22 48 17:+0-29
FedSMOO 84.82%0-15  80.06%0-10 8507017 81.26%019 | 56571018 52 174017 53 494021 4g 19019
FedSpeed 84.14%0-15 80 16016 84 74011 g3 20019 | 53 96019 5229021 53 784018 4g 332020
FedLESAM 80.94+0-18 77 02+0-15 - g1 79E018 78 g5E015 | 48 13E018 46555021 46,08%028 43572017
FedLESAM-D | 83.28%0-15  79.12%0-18 84 99£0-19  80.91£0-16 | 54 8g=0-18 57 08022 54,14+0-19 48 9g+0.22
FedLESAM-S | 83.39%0-12  78.23%0-17 83, 99%0-19 81 90%0-15 | 53292015 50192021 53 90%020 4799017
FedTOGA(ours) | 86.017012 82,0550t 85711013 84,0010-12 | 57255013 53454015 55494015 51,7+0.18
FedAvg 77.53i0.17 74.60i0'23 79‘21i0.25 76‘20i0'23 43.86i0'21 42'70i0.24 42‘94i0.25 42‘28i0'29
FedAdam 79.39%0-19 74 494031 79 53+0.23 76 09E025 | 45 34+0-25 42 79028 43 57025 40 66+0-29
FedYogi 79.9570-21 7599025 79 734022 77 64+0.23 | 46671025 43 021024 44.70%0-27  41.33%0-30
SCAFFOLD 81.18%0-15  76.11%H0-19 82 44+0.17 78 59+0.17 | 5] 45+0.25 47 19+0-27 48 96+0.28  46,89+0-26
FedACG 82.57H0-17 78 474020 89 09F0-16 80 50E019 | 51.96%0-24 49 34*0-26  50,01F0-2T  46,82%0-25
FedCM 76.08%0-30 6433031 76,64+029  68.61+033 | 40.32%0-19  33,05%0-26 34 .19*0.18 97 gg+0.30
FedDyn 80.60%017 7753021 8] 54022 79 30+0.24 | 48 40F020 45 04+031  46.87E0-24 43 04+0-29
FedDC 81.83+0-17 78, 87H0:21 89 44 F01T  8() 93+0-19 | 48 74F019 45 11%0:26 45 94+0.22 43 94+0.27
FedRCL 76.06i0'15 66'88:&0.19 76.51i0'19 72.28i0'23 42'0510.27 38.60i0'20 40.56i0'24 37.28i0'26
FedSAM 79.74%018 74 69F0-19 79 87+0-18 76 90023 | 44 78%0-25 43, 50%0-24  44.14F0-29 43 36+0-25
MoFedSAM 76.36T0-15  65.7410-19 76 74+017 70 74%021 | 41 o701 34 114023 3591+017 98 55£027
FedGAMMA 80.89F0-17 75344019 g1 73+0.16 78 74£0.19 | 49 78+0-25 46, 31+0-2T  47.91+0-26 45 26+0-33
FedSMOO 84.17%0:19  80.92%0-17  84.78+0-19 82 79+0.21 | 53 31+0-24 49 43+0-20 50 594021 46 08+0-25
FedSpeed 82.76T0-19 79 95+0-19 83 36+0.18  g() 794022 | 49 93+0-23 49 041024 50,6110-23  46.85%0-25
FedLESAM 80.11%0-23 74354022 78 354021 71 93+025 | 44 35019 43 75+0.21 43 g7+0.23 43 91+0.22
FedLESAM-D | 83.26%0-19  79.89%020 83 99#023 g1 gg#021 | 49 77+0-20 45 35%0.22  5() 58+0.19 46 55+0.21
FedLESAM-S | 83.76t0-17  79,02+018 83 19#020 g1 57+021 | 49 50+0-19  47.83+0.22 48 91+0.20 45 75+0.24
FedTOGA(ours) | 84.9170-15 81787017 84,90°0-19  §3.49+0-11 | 5490+0.16 51005015 53255017 4990+0-2!

Table 2: Dirichlet coefficients u selected from {0.1,0.6}, and c is the Pathological coefficient, i.e.,
the number of active categories in each client. The CIFARI10 has 100 clients in the left part with
10% active in each round and 200 clients in the right part with 5% active in each round.(ResNet18)
Note: The extended table sees Tab. |§|in Appendix.

Method CIFAR10
Partition Dirichlet Pathological Dirichlet Pathological
Coefficient u=0.6 u=0.1 c=6 c=3 u=0.6 u=0.1 c=6 c=3
FedAvg 79.52F03 7 76.00E018 79.91F017  74,08F022 | 75.90X0-21  72.93F019 77 47E03T 7] 68F031
FedAdam 77.08+031 73 41£0-33 77 05026 79 44+0.20 | 75 554038 g9 70+0.32 75 74+0.22 70 49+0.26
SCAFFOLD 81.81%017 78 57+0.14 g3 o7+0.10 77 02+0.18 | 79 00026 76, 15+015 80 69+0-21  74,05+0-31
FedCM 82.97+021 77 89+0.16 g3 g4+0.17 77 g9+0.19 | () 504029 77 9g+£0.22 g1 76+0.24 76, 794025
FedDyn 83.22%0-18 78 08019 83 18+0-17 77632014 | 80 69023 76.82F0-17 g9 91+018 74 93+0.22
FedSAM 81.46%012  77,03F0-17  g]1,13+023  78.30+0:24 | 78,32%0-16 74 0pE014 78 75027 75 19+0.29
MoFedSAM 85.20%0:13 80 25F0-17 g4 74F016 83 )9£0-24 | g4 76020 g0 10+014  8500+0-27  §2,13+0-23
FedGAMMA 82.82%016 79 91£0.15 g3 51+0.18 77 11£0.14 | g 79+0.19 76 70+0.14 g1 g1+0-27 77 44+0-29
FedSMOO 86.08=0-11  81.80+0-18  86,38+0-15  §2.79+0.16 | 84 96+0-19 79 76+0.19 g4 g9+0-18 g1 1+0-19
FedSpeed 86.01%0-16 8102016 86.09+0-19 82 50%016 | 84 12%0-18 76 74+0-14 g4 784027 79 9+0-29
FedLESAM 81.04%019  76,92+0-16 g1 7017 78 914021 | 77 80F018 73 734022 78 44+0.20 74 53+0.19
FedLESAM-D | 84.27+0-14 g0 08+0-19  g85.62+0-18 8300022 | 82.53+0-19 79 56+0-27  85,04+0-21 g1 10+0-19
FedLESAM-S 84.94%012 79 59+0.17  gr gg+0.19 g9 1g+0.15 | g3 994022 78 9+0.17 g5 )2+0.24 g 57017
FedTOGA(ours) | 86.99%013 8316017 87214018 84,55+50-15 | 8521+0-17  81,60+0-16  85.24+019  §325+0.20
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Table 3: WALL-CLOCK Time Comparison. Note: The extended table sees Tab. E]in Appendix.

Method R(80%) Cost R(82%) Cost
FedSAM 481 3.6x 800+ 4.7x
MoFedSAM 167 1.2x 270 1.6x
FedGAMMA 458 3.4x 630 3.7x
FedSpeed 262 1.9x 318 1.9%
FedSMOO 190 1.4x 253 1.5x%
FedLESAM-D 248 1.8x 418 2.5x
FedTOGA 135 1.0x 170 1.0x

6.2 PERFORMANCE EVALUATION

Performance with compared benchmarks. As shown in Tables[I]and 2] the proposed FedTOGA
algorithm performs excellently on various heterogeneous datasets regarding convergence speed and
final achieved accuracy. Table |1} which details the test accuracy of the LeNet model, demonstrates
that FedTOGA significantly outperforms other algorithms with different heterogeneous data con-
ditions. Specifically, under the Dirichlet-0.1 setting on the CIFAR10 dataset, FedTOGA attains an
accuracy of 82.05%, marking a significant improvement of over 7.37% compared to vanilla FedAvg
and a 1.99% increase over the second-highest baseline accuracy. Similar results are observed in
Table 2] for the ResNet18 model, FedTOGA outperforms all current baseline algorithms. As seen
in Table [3] FedTOGA also exhibits a significant advantage in terms of convergence speed. When
reaching 80% accuracy, FedTOGA converges 3.6x faster than FedSAM and 1.2x faster than the
second-best algorithm. Similarly, when reaching 82% accuracy, FedTOGA converges 4.7x faster
compared to FedSAM and 1.5x faster than the second-best algorithm. This indicates that FedTOGA
achieves the target accuracy with significantly reduced computation and communication overhead
compared to other methods.

Impact of heterogeneity. We use the Dirichlet and Pathological methods for data partitioning. For
the Dirichlet distribution, we adopt with variance coefficients u of 0.1 and 0.6. We use coefficients
c of 3 and 6 for the Pathological distribution. As shown in Tables [ and [2] increased data hetero-
geneity leads to decreased accuracy across all algorithms. However, FedTOGA exhibits the smallest
accuracy drop. Specifically, for the Resnet18 model, as u changes from 0.6 to 0.1 under the Dirich-
let distribution on the CIFAR10 dataset, FedSAM’s accuracy decreases from 81.46% to 77.03%,
a 4.43% reduction. At the same time, the second-best algorithm, FedSMOO, shows a drop from
86.08% to 81.80%, a 4.28% reduction. In contrast, FedTOGA’s accuracy declines from 86.99% to
83.16%, a 3.83% drop. Similar trends are observed under the Pathological distribution, underscoring
FedTOGA'’s superior stability and accuracy across varying levels of data heterogeneity.

Impact of partial participation. We fix all hyperparameters except the client participation rate
to assess its effect on accuracy. As illustrated in Table [2| a reduction in the client participation
rate from 10% to 5% results in a modest decline in accuracy across all algorithms. For instance,
on the CIFAR10 dataset, under the challenging pathological distribution with ¢ = 3, FedTOGA’s
accuracy decreases marginally from 84.55% to 83.35%, a reduction of just 1.40%, while FedSMOO
experiences a sharper decline from 82.79% to 81.01%, a reduction of 1.78%. Similarly, under the
Dirichlet distribution with v = 0.1, FedTOGA’s accuracy decreases from 86.99% to 85.21%, a
decrease of 1.78%, whereas FedSMOQ’s accuracy drops from 86.08% to 84.96%, a reduction of
1.12%. Despite these reductions, FedTOGA consistently outperforms other algorithms’ accuracy,
highlighting its robust generalization capability and stability.

7 CONCLUSION

In this paper, we propose a novel FL algorithm, FedTOGA, which, for the first time, estimates global
perturbations by combining global training gradients and enhances the local dynamic regularizer.
This ensures local clients can effectively align with the global generalization and optimization ob-
jectives. FedTOGA facilitates the efficient search for globally consistent flat minima and accelerates
convergence without incurring additional local storage or uplink communication overhead. Theo-
retical analysis guarantees that FedTOGA achieves a fast convergence rate of O(1/7'). Extensive
experiments were conducted to verify its efficiency and remarkable performance.
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A RELATED WORKS

A.1 LITERATURE REVIEW

In this section, we review the contributions of related works.

Federated Learning FL gained widespread attention upon its introduction due to its data-exchange-
free nature. FedAvg [McMahan et al.| (2017) As its foundational framework, it allows for collabora-
tive modeling without exchanging data Stich/ (2019). However, due to various irresistible factors, the
data of cooperative devices show heterogeneous distribution, which makes the modeling effective-
ness suffer. Therefore, many studies based on empirical loss minimization have been proposed to
solve this problem. FedProx [Li et al.[(2020a) employs a simple and intuitive practice, ensuring that
the local model is not far from the global model. Specifically, regular terms are introduced during
local training to limit the distance between the local and global models. SCAFFOLD [Karimireddy
et al.| (2020), Mime |[Karimireddy et al.| (2021)) uses control variables for local updates. However, it
requires greater communication overhead. FedDyn |Acar et al.| (2021)), FedPD Zhang et al.| (2020)
considers the inconsistency of the local optimal point with the global optimal point to be a fun-
damental dilemma, which aligns the locally optimal solution to the global optimal solution via a
dynamic regularizer. FedPA |Al-Shedivat et al.| (2021) removes bias from client updates by estimat-
ing a global posterior. FedDC|Gao et al.|(2022) takes decoupled local and global updates to mitigate
heterogeneity. Furthermore, recent research has shown that local model bias is similar to catas-
trophic forgetting in continuous learning [Lee et al.| (2022} [2024); [Shoham et al.| (2019); [Wang et al.
(2023), Clients overriding previously important parameters to learn a new task resulted in disrupting
pretask performance. Some studies have mitigated global knowledge collapse by task recall |Re-
buffi et al.| (2017); Dong et al|(2022). Server momentum-based Sun et al.| (2023a)) algorithms also
play an important role in FL. [Zaheer et al.| (2018) investigates the convergence failure of ADAM
in certain non-convex settings and develops an adaptive optimizer, YOGI, which aims to improve
convergence. Reddi et al|(2021) integrates it in a FL framework. FedAvgM [Hsu et al.| (2019)) us-
ing Momentum |Qian| (1999), while FedACG Kim et al.| (2024) utilizes NAG [Nesterov| (1983). And
FedCM Xu et al.|(2021) mitigates local heterogeneity by using the proximity global update gradient
applied to the client momentum. FedLADA [Sun et al|(2023d) combines local ADAM with FedCM
to dynamically modify local deviations.

Sharpness-aware Minimization. Many studies [Hochreiter & Schmidhuber| (1994); Dinh et al.
(2017) have pointed out that flat minima imply superior generalization performance, which pos-
sesses greater robustness to model perturbations. In order to minimize sharpness Keskar et al.
(2017), [Foret et al.| (2021); |Becker et al.| (2024) proposed sharpness-aware minimization (SAM),
and many works |[Li & Giannakis|(2023)); Mueller et al|(2023)) were carried out. Specifically, SAM
only captures the sharpness of specific small batches of data, and VaSSO Mueller et al.|(2023) aims
to address this issue. Our FedTOGA can also help solve this problem to some extent. First, we add
neighborhood perturbations gf, 41 to help the local SAM optimizer perceive the amount of neigh-

boring batch data perturbations (optionally), and global update perturbations via A*~!. In addition,
m-SAM |Andriushchenko & Flammarion|(2022) can be considered to be closely related to federated
sharpness minimization. m-SAM |Andriushchenko & Flammarion| (2022) quantifies the sharpness
of batches across m training point batches, averaging out multiple disjoint batches in the generated
Updates. The neighborhood global perturbation proposed by our FedTOGA alleviates the problem
of local perturbation isolation in the FL paradigm and can be applied to all existing algorithms.

SAM in Federated Learning To extend the generalizability of local models in FL, |Qu et al.|(2022);
Caldarola et al.[(2022) introduced SAM into the FL paradigm to propose FedSAM. further, Qu et al.
(2022) combined with FedCM Xu et al.| (2021) to propose MoFedSAM. FedGAMMA |Dai et al.
(2023a) introduces the variance reduction technique of SCAFFOLDKarimireddy et al.| (2020) into
FedSAM and gets some results. And FedSpeed |Sun et al.| (2023c)) uses SAM to optimize FedDyn
Acar et al.| (2021). FedSMOO Sun et al.| (2023b)) builds on FedSpeed to use dynamic regulariza-
tion to SAM to estimate global disturbances. FedSOL |Lee et al.| (2024) uses the orthogonal idea
of continuous learning to make local perturbations close to the global. [Fan et al.| (2024a)) proposes
an efficient algorithm, the Local Estimation of Global Perturbations SAM (FedLESAM), which op-
timizes global sharpness and reduces computation. As we have seen, FedSAM |Qu et al.| (2022);
Caldarola et al.|(2022), MoFedSAM, and FedGAMMA Dai et al.| (2023a) compute local perturba-
tions and optimize sharpness on client data, which may result in the local SAM does not reach the
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global flat minimum. Several studies have identified this drawback and attempted to address it. Fed-
SOL uses local orthogonal solving to limit the range of local perturbations, which
can lead to perturbation absences. FedSMOO [Sun et al| (2023b) uses dynamic regularity to compute
and add corrections; however, it requires additional communication and storage overheads. FedLE-
SAM believes that additional computation would be burdensome and, therefore,
uses historical storage parameters to estimate global perturbations. However, the above solutions
may have limitations due to network fluctuations, which we discuss in detail in Therefore, we
propose FedTOGA to estimate the global perturbation using the global update.

Table 4: Baic Notations

1, k,t Number of the client, local training interval and global epoch.

i, P Local learing rate, and perturbation learning rate.

D, D; Data distributions of global and -th client.

h, h; Global and local dual variables.

AT Global update gradient in ¢-th round.

0,6",0% Model weights and weights of global and local models.

) Perturbation towards to the sharpest point near the neighborhood of ¢
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A.2 EXISTING LIMITATIONS

FedSMOO |Sun et al.| (2023b) In the algorithm [2| to solve the model perturbation problem, |Sun
et al.|(2023b) utilizes the local Augmented Lagrangian function to penalize the deviation of the lo-
cal perturbation from the global perturbation. As training proceeds, the local perturbation is made
to approach the global perturbation gradually. However, it needs to open extra storage space on the
client side to record p;, 5;. Meanwhile, S; needs to be synchronously uploaded to update the global
perturbation variable s at the time of aggregation during the communication process, which dou-
bles the communication overhead. Further, this estimation bias will be exacerbated by the server’s
strategy of randomly selecting the set of clients S; to mitigate the communication overhead due to
communication bottlenecks.

Algorithm 2: FedSMOO Algorithm
Initial 6°, 0;, si, 5, Ai, A, s
for each round t € [T] = {0,1,2,--- ,T — 1} do
Sample the active client set S; C [IV].
for i € S in parallel do
| 6;,5: + Client Update(¢’,s); communicate 0}, 5; to server ;
end
t 1 .t _ St
S t:lju Z:tiGSt 18’“ c Hstt” 7 t t+1 1 t t+1
B =R S (B - 60 67 = LS 6 - aht
end
Client Update(0,, s"): 0} o = 0";s = s
for local epoch k € [K] £ t{0,1,2,--- | K —1} do
sample a mini-batch data &; ;; gradient estimate: g , = V f; (0} 1; &} 1)

St
Lot Lot o Sik ot
Perturbation: 7, = gi ), — pi — 885 5 = Pyse i = bt (3ik—9)
i

extra-step: gf,k = Vfi(af,k + §fk7§fk), 9§,k+1 = ef,k —m (gfk - hﬁ + é (Gfk - 95,0))
end
8i =i — 55 hi ™ = hi = L (6f x — 05 0)

return 0 = 0] ;; &

FedLESAMFan et al.[(2024a) In the al gorithm to reduce the computational overhead and estimate
the global perturbations, [Fan et al.| (2024a) utilizes the historical global model record values 69'¢ to
compare with the latest round’s global model 6° to estimate the global perturbations. This poses
the same problem as the algorithm [2| described above, specifically, in the face of an extreme case
where participants will only participate in one global aggregation, FedLESAM will not be able to
estimate the global perturbation variables efficiently. Meanwhile, the perturbation scales will vary
when the frequency of client participation is different. In addition, since the perturbation estimation
does not include the current perturbation computation, it may not be possible to accurately estimate
the current perturbation direction.

Algorithm 3: FedLESAM-D Algorithm
Initial 6°, 67", hi, h
for each round t € [T] = {0,1,2,--- ,T — 1} do
Sample the active client set S; C [IV].
for i € S in parallel do
| 6; < Client Update(¢'); communicate 6; to server ;
end

W =R = 5 Yies, (00 = 0'); 077 = 57 30cq, 00 — ah'™
end
Client Update(6,): 0}, = 0'
for local epoch k € [K] = {0,1,2,--- ,K — 1} do

sample a mini-batch data §fk, Perturbation: 5f,k = Pigetagry

extra-step: §f,k = Vfi(ef,k + 5f,k§ ff,k)% ef,kﬂ = ef,k —m (gfk —hi+ i (9fk - f,o))
end
it =hi— ¢ (0l —0i0); 07 =0"
return 0} = 0

Qfld _pt
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Table 5: Abstract for the SAM-based FL algorithms for solving data heterogeneity, focusing on
the basic algorithm, sharpness minimization objective, perturbation computation strategy, additional
communication, and storage overhead comparison.

Works Base Algorithm Minimizing Target  Local Perturbation Extra-S  Extra-C
FedSAM FedAvg Local Sharpness pug':—’ku 1x 1x
é k
MoFedSAM FedCM Local Sharpness pH‘Z;—’kH 1x 1x
9ik
FedSpeed FedDyn Local Sharpness pui;—’ku 2x 1x
: k
FedGAMMA SCAFFOLD Local Sharpness pHZ’L—’”H 2X 2x
ik
Local Sharpness gt —pi—s
FedSMOO FedDyn With Correction PlgL —rmi—sll 3x 2x
old
FedLESAM(S-D) | FedDyn SCAFFOLD  Global Sharpness pﬁ 3x 1x
Local With Global g5 HRA
FedTOGA (ours) FedDyn FedCM Sharpness Estimate PTgt (FrATT 2% 1x

A.3 NEIGHBOURHOOD PERTURBATION STRATEGY

How Neighbourhood Perturbation works? Recall the fact that when the local iteration interval is
greater than 1, the gradient register needs to be cleared by (optimizer.zero_grad()) each time the
gradient computation is performed. This is to prevent the accumulating gradient from causing errors.
Recognizing that using the neighborhood gradient variables in the registers does not need substantial
additional overhead, we use the neighboring gradients temporarily stored in the registers to simulate
the current perturbation gradient. We give an example of a local gradient computation to help better
understand the workflow. We initialize the model 6, and a gradient register G = [(}]. After the
first calculation of the gradient (1loss.backward()), the register is updated G = [g1 = V f(6p)].
If SGD is used, 6; = 6y — ng1, followed by clearing the register G = [§}] before computing the
second gradient. If SAM is used, then the perturbation is computed as §; = pui—i”, then the gradient

register is emptied, and after the gradient is computed again as §; = V f(6 + d1), perform model
update §; = 6y — ng1. So the register status changes to G = [@] — [g1] — [#] — [§1]. When
neighborhood perturbation is enabled, gradient calculation and clearing before SAM are no longer
required. Therefore, the register status changes to G = [gg] — [0] — [g1]- The client will directly
use the previously calculated gradient of the gradient register as the perturbation variable. You can
observe the gradient calculation and cache change process in Fig. [2]

How does Perturbation Fusion work? With the above technical means of neighborhood per-
turbation, we can easily merge it in the perturbation computation by not emptying the gradient
cache before computing the perturbation, then the gradient cache state will change to G = [go] —
[G0 + g1] = [0] = [g1].

What is LOOKAHEAD? LOOKAHEAD |Zhang et al.| (2019) uses a fast-slow-step mechanism,
where a retrospective is performed every K steps forward. The idea behind this is to take a step in
the direction of the current gradient update and then use a set of additional weights (called “slow
weights”) to take a step in the same direction but on a longer time scale. These slow weights
are updated less frequently than the original weights, effectively creating a “look ahead” into the
future of the optimization process. Incorporating N-perturbation techniques forms a Lookahead-like
updating mechanism that helps the optimizer escape local minima and saddle points more efficiently,
leading to faster convergence. Experiments on the fusion of N-P with existing algorithms in Sec[B.7]

optimizer.zero_grad()

L VIW0) ) Vf(07'+5)
e
O‘ o || d _._II_ ‘ ________ O loss.backward() loss.backward()

’ \ G VF(0;'+9) 2 +Vf(0)
@ @ imizer.zero_grad() optimizer.zero_grad() imizer.zero_grad()
VAORG) o=l 0V f(0+5)
o ¢ ¢ ¢
' L lo: d() lo: d() lo. d()
‘ Vros) | ‘ V(03) ‘ ‘ Vr(1+3) ‘

Figure 2: Illumination of the perturbation technique and its variants
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B EXPERIMENTS
B.1 INTRODUCTION OF DATASETS

Table 6: Summary of CIFAR10/100

Dataset Total Number Train Data Test Data  Class Size
CIFARI10 60,000 50,000 10,000 10 3x32x%x32
CIFARI100 60,000 50,000 10,000 100 3x32x32

CIFARI10 and CIFAR100 are two datasets widely used in machine learning research. As shown
in Table @, CIFAR10 contains 60,000 color images in 10 categories, with 6,000 images in each
category and an image size of 32 x 32 pixels. CIFAR100 is similar to CIFAR10, but it contains
100 categories with 600 images per category, 500 of which are used for training and 100 for testing.
These categories are further categorized into 20 major categories, each containing five subcategories.

B.2 DETAILED HYPERPARAMETERS SELECTION

To ensure a fair comparison across different datasets, we employed an experimental design con-
sistent with FedGAMMA Dai et al.| (2023a)), FedSMOO |Sun et al.| (2023b), and FedLESAM [Fan
et al|(2024a)). ResNet18 |He et al.|(2016) was selected as the backbone model, utilizing group nor-
malization Wu & He| (2018)) and stochastic gradient descent (SGD). 800 training rounds were con-
ducted, with the initial local learning rate set to 17, = 0.1. The global learning rate was maintained
at 9y = 1.0 for most experiments, except for FedAdam and FedYOGI Reddi et al.| (2021) were ad-
justed to 0.01. The penalty coefficients o for FedDC|Gao et al.[(2022) and FedDyn|Acar et al.[(2021)
were uniformly set to 0.01 in the LeNet, consistent with |Gao et al.|(2022)), but were increased to 0.1
for ResNet18. In FedACG Kim et al.| (2024), following its prescribed settings, the local penalty co-
efficient was set to i = 0.01, and the server momentum coefficient A was set to 0.85. For FedAdam
and FedYOGI [Reddi et al.[(2021)), the parameters were set as 51 = 0.9, B3 = 0.99, and 7 = le=3.
The momentum trade-off coefficient for FedCM Xu et al.| (2021) was configured as o« = 0.1. In the
SAM-based algorithms, the penalty coefficients for FedSpeed, FedSMOO, FedLESAM-D, and Fed-
TOGA were uniformly set to &« = 0.1. The perturbation coefficients for FedGAMMA, FedSpeed,
FedSMOO, FedLESAM(S-D), and FedTOGA were consistently set to p = 0.1 for ResNet18, except
for FedSAM and MoFedSAM |Qu et al.| (2022) and the vanilla FedLESAM coefficient were set to
0.01. In the LeNet experiments, the perturbation coefficients p for FedGAMMA, FedLESAM, and
its variants were set to 0.01, though in some cases, 0.1 yielded better performance. Weight decay
was uniformly set to 1e~2 across all experiments. In the ResNet18 experiments, the learning rate
decay was set to 0.998 for most methods, except for FedSMOO, FedLESAM, and its variants, which
were set to 0.9995. In the 200-client case, the learning rate decay was set to 0.9995 (This is not al-
ways the case; in some cases, a learning rate decay of 0.998 works better, and we kept only the best
results). In most scenarios, the local perturbation correction coefficient x for FedTOGA was set to
1; however, in cases of increased heterogeneity, « could be slightly enlarged but not beyond the local
interval value K. The local dual variable correction coefficient 3 for FedTOGA was chosen from
0 to 1, with 0.8 or 0.9 typically performing best on CIFAR10. Generally, the parameter selection
range can be determined according to Table

Table 7: Hyperparameters Selection.

Options SGD-type Best Selection proxy-Type Best Selection
Local Learning Rate {0.01,0.1,0.5} 0.1 {0.01,0.1,0.5} 0.1
Global Learning Rate {0.01,0.1,1.0} 1.0 {0.01,0.1,1.0} 1.0
Learning Rate Decay {0.995,0.998,0.9995} 0.998 {0.997,0.998,0.9995} 0.9995
SAM Learning Rate {0.001,0.01,0.1} 0.01 {0.001,0.01,0.1} 0.1
penalized coefficient o {0.01,0.1,0.2} 0.1 {0.01,0.1,0.2} 0.1
client-level momentum o {0.01,0.05,0.1} 0.1 - -

SAM Perturbation Correction & - - {1,2,4} 1

Dual variable Correction /3 - - {0.1,0.5,0.8,0.9} 0.8
Server-level momentum A\ {0.8,0.85,0.9} 0.85 - -

Test Experiments: Quadro RTX 6000; Driver Version 515.76; CUDA Version 11.7
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B.3 DISTRIBUTIONS OF DIRICHLET AND PATHOLOGICAL SPLIT
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Figure 3: Heatmaps of the data distributions for CIAR10 and CIFAR100 for Dirichlet distributions
with coefficients of 0.6 and 0.1, respectively, and for Pathological sampling probabilities with coef-
ficients of 6/20 and 3/10. Both datasets consistently include 100 / 200 clients.

Dirichlet Sampling: The Dirichlet distribution can be thought of as the conjugate prior of a poly-
nomial distribution, and is used to generate weights for a mixture model or to distribute samples in
the context of a non-uniform category distribution. By adjusting the parameter u, it is possible to
generate data ranging from extremely inhomogeneous (near-discrete concentration in a category) to
uniformly distributed. The data exhibit a long-tailed distribution. See Fig. 3]

Pathological Sampling: A typical feature of pathological sampling is extreme skewness or anoma-
lies in the data distribution, which may lead to unstable training, convergence difficulties, or severe
model performance degradation. We used it to test and validate the model’s performance under
adverse conditions. The data are presented in species isolation; see Fig[3]

The splitting strategy for all data is consistent with FedGAMMA |Dai et al|(2023a), FedSMOO
(2023b), and FedLESAM (2024a).
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B.4 EVALUATION CURVES
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Figure 4: Accyracy/ Loss on the CIFAR-10 dataset under 10% /5% participation of total 100/200
clients

As can be seen from the above figures, FedTOGA significantly outperforms other algorithms in
scenarios with significant heterogeneity (e.g., Dirichlet-0.1 and Pathological-3). Our algorithm still
shows stability even when the number of clients decreases(e.g., 200 clients with 5% participation).
These results are in line with our expectations. We aim to design an algorithm that enhances global
consistency while efficiently finding a global flat minimum to improve generalization and reduce
edge node computation and storage requirements.

In addition to the results in the main text, we also conducted experiments on CIFAR100. We fol-
lowed the same parameter settings with FedSMOO, but we found that the baseline produced fluc-
tuations in performance. Therefore, we report the best performance of previous studies (OLD) and
the results of brand new experiments (NEW) in table[§] To show the extraordinary performance of
FedTOGA, we only report the historical best accuracy of all benchmarks in the main text.
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B.5 TRAINING SPEED

Table 9: Number of communication rounds to achieve a target accuracy. We recorded the first
round of communication to reach a target accuracy. We improved the number of training rounds
compared to the other algorithms in the Dirichlet-0.1/0.6 and Pathological-6.0/3.0 settings. We

mainly compared the SAM-based FL algorithms.

Partition Dirichlet Pathological

Coefficient u=0.6 u=0.1 c=06 c=3
Acc/Rounds [80% cost 82% cost 76% cost 78% cost |80% cost 82% cost 76% cost 78% cost
FedSAM 481 3.6x800+4.7x 587 3.2x800+3.5x(4433.3x 790 4.8x 4652.9x 691 3.5
MoFedSAM |167 1.2x 270 1.6x 303 1.6x 425 29x[1351.0x 253 1.5x 167 1.1x 265 1.3x
FedGAMMA |458 3.4x 630 3.7x 369 2.0x 591 2.6x[407 3.0x 550 3.3x 701 4.4 x 800+4.0 %
FedSMOO 190 1.4x 253 1.5x 302 1.6x 402 1.8x|2051.5x 263 1.6x 262 1.7x 322 1.6x
FedSpeed 262 1.9x 318 1.9%x 445 2.4x 530 2.3x|2331.7x 292 1.8x 3492.2x 438 2.2x
FedLESAM |588 4.4x 800+4.7 x 800+4.3x 800+3.5%|620 4.6 x 800+4.8x 497 3.1x 778 3.9x%
FedLESAM-D|248 1.8 x 418 2.5x 369 2.0x 663 2.9x(224 1.7x 376 2.3x 3932.5x 452 2.3x
FedLESAM-S|3902.9x 643 3.8x 529 2.8x800+3.5x|3482.6x 602 3.6x 497 3.1 x 800+4.0x
FedTOGA 1351.0x 170 1.0x 184 1.0x 226 1.0x[1341.0x 166 1.0x 158 1.0x 200 1.0x

Note: The SGD method is not considered.

According to the above table 0] we can see that FedTOGA performs far better than the rest of the
algorithms. It has the fastest convergence rate while maintaining high accuracy. The SAM optimizer
usually slows down the whole training process due to the need to compute additional perturbations
to the ascent process, which will be improved by enhancing consistency. MoFedSAM enforces
consistency by employing global momentum on each local client and weighting it by a factor a
(usually 0.1), which means that local knowledge will be forcibly overwritten by global gradient
while speeding up convergence in the early stage. However, it may not be able to draw further ade-
quate learning progress from the locals in the later stage. FedTOGA corrects local perturbations and
dynamic regularizers by guiding global updates, greatly enhancing the consistency of generalization
and optimization. Therefore, our method can effectively accelerate the modeling speed and improve
the modeling accuracy, especially in the case of large-scale heterogeneous. Table [I0] shows that
FedTOGA has a similar local computation time as the SAM-based FL algorithm.

Table 10: wall clock time on CIFAR10 ResNet18 u = 0.6, 0.1 and 100 clients.

FedSAM MoFedSAM FedGAMMA FedSpeed FedSMOO FedLESAM-D FedTOGA

time | 25.71s 28.73s 29.88s 28.98s 29.67s 25.70s 29.12s
B.6 ABLATION STUDIES
Table 11: Ablation studies of different modules.
SAM  Dynamic Regularization =~ Dual Correction SAM Correction | CIFAR10 Acc  CIFAR100 Acc
v - - - 81.39% 48.08%
v v - - 84.14% 53.79%
v v v - 85.54% 56.85%
v v v v 86.01% 57.25%

We tested the performance of different modules called “SAM,” “Dynamic Regularization,” “Dual
Variable Correction,” and “SAM Perturbation Correction” modules on the Dirichlet 0.6 partitioned
CIFAR-10/100 dataset, LeNet network. The benchmark is FedSAM. After the sequential introduc-
tion of the different modules, the CIFAR10 accuracy increased by 2.75%, 4.15%, and 4.62% com-
pared to the FedSAM; the CIFAR100 accuracy increased by 5.71%, 8.77%, and 9.17% compared to
the FedSAM.
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B.7 NEIGHBOURHOOD PERTURBATION ANALYSIS

Test Accuracy
Test Accuracy

/ —— FedTOGA

065 / —— FedSMOO w/ N-P
/ —— FedSMOO w/o N-P 01

0.60 / —— FedSpeed w/ N-P

—— FedTOGA
—— FedSMOO w/ N-P
—— FedSMOO w/o N-P
—— FedSpeed w/ N-P
—— FedSpeed w/o N-P

—— Fedspeed wjo N-P

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

(a) CIFARI10 (b) CIFAR100

Figure 5: Testing the Impact of FedSpeed and FedSMOO with N-Perturbation Modules on CIFAR
10/100, Dirichlet 0.6, 100 Client 0.1 Participation

As shown in Fig[5] We test the performance of SAM-based FL algorithms with enabled Neighbor-
hood Perturbation technology. We found that allowing neighborhood perturbation can effectively
improve the performance of FedSpeedSun et al.| (2023c) and FedSMOQSun et al.| (2023b)). This
confirms our conjecture in Secf4.2]

B.8 HYPERPARAMETERS SENSITIVITY

@=015-09.x=1,p=0.1 r=0997.x=1.6=00,p=01 Ir=0997,a=0.1,k=1,p=0.1 Ir=0.997,0=01,6=09.p=01 Ir=0997.a=01,5=0.9,k=1
4] FeatocA N

s FedsHOO

—— FedTOGA
- FedSMOO.

—— FedTOGA o] —— FeaTOGA

e - FedSMOO

FedsHOO

*|  reatoon
7| - Fedsmoo

Figure 6: Hyperparameters sensitivity studies of learning rate decay, penalized coefficient «, Cor-
rection coeficient 3, k and perturbations coefficient p on CIFAR-10.

We study the sensitivity of the hyperparameters: learning rate decay, penalty coefficient «, cor-
rection coefficients 3 and «, and perturbation coefficient p. As shown in Figure [6] our extensive
experiments demonstrate FedTOGA’s resilience to variations in these hyperparameters. By system-
atically adjusting each parameter while holding the others constant, FedTOGA remains remarkably
stable under changes in learning rate decay and the correction coefficients 3 and . Additionally, the
penalty coefficient o and perturbation coefficient p effectively maintain robust performance when
appropriately selected.

B.9 DISCUSSION WITH OTHER RELATED WORKS

We show how to generalize FedTOGA to FedDyn/ FedPD/ FedProx without considering local
perturbations, recalling the AL function defined in Eqn.(7). By setting h; = 0; A’ = 0 (i.e., omitting
lines 18 and 21 in Alg[T), the local training problem of FedProx is recovered. Additionally, setting
At = 0 recovers the local training problems of FedPD and FedDyn. When the value of 1/« is set
to zero, the local training problem of FedAvg is restored. These terms revisiting the core challenge
of heterogeneous FL: local consensus inconsistency. In addition to the quadratic proximal term
introduced by FedProx, FedDyn, and FedPD employ dual variables, which benefits in guiding local
model updates are discussed in Sec[2.2] However, focusing solely on local stationary points is
insufficient, due to the inability of clients in real FL to guarantee convergence to local stationary
points after each training. Therefore, we further introduce global stationary conditions to enhance
local consensus. The advantage of this approach is that clients are not burdened with additional
storage or computation overhead, while the extra uplink overhead is effectively reduced, alleviating
the communication bottleneck.
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B.10 LOCAL INTERVAL STUDIES

°
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(a) (b

Figure 7: Test accuracy and training loss of FedTOGA with different intervals K on CIFAR10. K
issetas 1,2, 5,10, and other parameters are the same as mentioned above.

K measures the communication interval, which refers to the number of local training steps. In The-
orem[2] we observe that increasing K can help the global model achieve a higher convergence rate
when 7' is large enough. However, although increasing K improves the convergence speed, it also
amplifies the negative effects of local heterogeneity. Figure [7]shows the impact of different values
of K. Some previous studies suggested making K large enough to approach the suboptimal value
of the objective function. However, in most practical FL setups, K represents a trade-off between
training convergence speed and local overfitting. In our experiments, when /' = 2, the training con-
vergence rate and generalization of FedTOGA improved compared to K = 1. When K increased to
5, the convergence rate was about 1.5 times faster than K = 2, achieving the best accuracy, which
aligns with our theoretical analysis. As K increases, when K = 10, the acceleration effect remains
but becomes less significant, while generalization performance starts to decline. We believe that a
larger K means more local updates, which forces local clients to move toward their local optima, in-
terfering with generalization. As the communication intervals increase, the model accuracy does not
significantly decline, which demonstrates FedTOGA’s robustness in long-interval communication
scenarios and highlights the importance of enhancing global generalization consistency.

B.11 MODEL DIVERGENCE

—— FedTOGA
—— FedSAM
—— FedGAMMA
— Fedspeed
—— FedSMOO

Model Divergence

0 100 200 300 400 500 600 700 800

Figure 8: Consistency of Models

In the Figure[8] we show the difference between the local model and the global model after each
training. Obviously, FedTOGA effectively alleviates the model’s migration.
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C PROOF FOR ANALYSIS
C.1 THEOREMI[I'S PROOF

Proof. Calculated by SAM rules, 91 po1 =051+ pllgﬂzi o 1;H' For the induction, we assume
i 1
that (|6} , | —vj_,|*> < Hi(k — 1), then

1675 — vill®
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- ( e 1“’@2522 3|> Vi VS (v}i_l +p§; ZZ 1 ”)H
=10 oy — vl (meZ < . 1+pm> —mVfi (Uk 1+P||§;EZZ SH)

2

e vk o) s (o))

Vfil0; 1) , Vil )
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Floh_y (i) |
v ( +p) vy ( +p)
: IV F(oE )l SR TN
2
1 Vfi(0; 1) Viv_y)
<1165 51 — v |I” + 17 L |6 O 1+ p ; +njo}
A bt G PIN @i )l o
( ) /
<(1+ 207 L?))|0F 51 — i,k_1||2+77?(L2020g2+0§)
L2p202+02 /
<(1 +27712L2)$((1 + 2 Lz) -1 +1712(L2p2092 Jrar;)
L2p2012—|—02 L2p2012—|—02 ,
<——5 21+ 27 L) — (1 + 2 L) —= 55— + i (LPpPo) + o))
2L 2L
L2 o4 —l—a L2p%0% + o2
_pi(l_i_g 2L2) P9 T
2L2 212
L?p? O’ —|—J
7%2 (14 2n2LHk — 1) (11)

Equation (1-2) holds due to the Assumption[I] Recursively, it follows that the Theorem[T]holds. [
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C.2 THEOREM[Z]'S PROOF

Recalling the Algorithm [I] based on the FL paradigm, we propose an Augmented Lagrangian(AL)
function:

o 1 . !
FO0.0) 2 55 > (0,05 1) Fi(0, 60, ha) £ [(0) + (hav 0= 0) + —[16; =0 (12)
iEN

By fixing 6, the AL function can be separated into local pairs {6;, h;}. However, the local opti-
mization function cannot perceive the global gradient trend due to the CTA policy. Therefore, we
direct the global update A to be merged into the local dual variables. Thus, the local AL function is
rewritten as:

1
Fi(6,0;,h;) 2 f:(6;) + (hi — BA, 0 — 6;) + 5”9" —0)? (13)

Unlike [Wang et al.[(2022); |Gong et al|(2022); |Acar et al|(2021); [Sun et al.| (2023b), we relax the
strict assumption that g! — h} + = (0% — 0") + BA" = 0 as a strict assumption and extend the local
interval to K rounds, so we obtain the workflow in Algorithm T}

First, we give all the lemmas needed for proof analysis.
Lemma C.1. For V0!, € R andiin S;, we have ¢}, = 0%, — 0%, | with the fact )} , = 0, and
vt = ZkK;ol f & = 07  — 0} o, under the workflow in Algorithm we have:

K-1

U= —ay > Egh 4 ya(hl - pAY) (14)
k=0

where y = S/ e = Yp) (1= ) T =1 (1- )"
Proof. According to the update rule of Line.19 in Algorithm[I} have

=W =V =0, =00 =—m(gix—hi+— (0i, —0;o) +BAY)

1

@
N 1

=-n (gfk — hi + alllﬁ,k—l + 5At)~

Then we can build the ¥} , as:

_ 1 m -
‘I’E,k = ‘I’E,kq — (gf,k — R+ a‘l’ﬁ,kq + BAY) = (1 - E) ‘1’5,1@71 - nl(gf,k — hi + BAY).

Taking the iteration on k,

K K—1-k
ot _ ot — iyt :<1_@> Wt (1_@> Gt Bt 4 BAL
i, K 2,0 i, K a 2,0 m kZ:O o (g’L,k‘ 7 + ﬁ )
K-1
@ m\E-=k t t
o Y (=) (gl — b+ 8AY
k=0
K-1 K—1—k
——a Y B(1-T)7 (gl hi 45T
o a ’
k=0
K-1
_ m _@Kﬁl*k% (_ MKt t)
==Yy B(1-2)" g+ (1- (1= ¥a(nl - gAY
k=0
K1,
% -
=—ay ) —gi,+yalhi - BA")
=0 |
(1) applies ¥}, = 0. O

26



Under review as a conference paper at ICLR 2025

Lemma C.2. Under the workflow in Algorithm[I] we have

K—1
R = (1— k47 Y (g, + BAY (15)
k=0
Proof. According to the update rule of Line.21 in Algorithm|[T] have
Rt = pt

1
L0 0t)
1

——(~ar Y %a;k +ya(ht — BAY))
k=0

@

e

K-1
=hi+ Y il — (ki - BAY)
k=0

K-1

= (1) e
K-1
= (L=t Y Tk + BAY.
=0 !
(1) holds due to Lemma

Lemma C.3. We define the u't! =

O
N 2ien 01 i s the averaged model among the last iteration
of clients at t, the auxiliary sequence {2t = u® +

;"’(ut — ut™ Y }ys0 satisfies the rule as:

2l =2 —a—zzry—kgfk apAt

(16)
i€N k=0
Proof. Firstly, recalling the lemma and 0f ) = 0" = § >, v (05 W —ahl)in Algorlthml we
have:
1
= b0t
iEN
1
= N Z(ef,K - 95,0 - ah?)
iEN
= Z —ay Z 791 » +ya(hl — BAY) — ahl)
ZEN k=0
1 K1,
k
=0 03 ot + BAY + (1 - ).
i€N k=0 v

Here, we define a virtual observation sequence {u'}, and its update rule is:

i
UE,kJrl = Uﬁ,k - 047(’)’(91 gt ﬁAt) +(1— ’y)hﬁ); =

uiht = u't Z ul
LEN

Recalling the lemmaand update rule uf - — u}

can get:

o= —a(l=ht —ay Y1) (3t + BAY),

K-—1
k
W = (1=t +y S (gt + BAY
k=0 v
1 = Tk
k k
= 7(1,1/7;, -7 — gzk+BAt +’YZ gzk+ﬁAt)
a k=0 v v
1

k=0
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Then, we can expend the auxiliary sequence z* as:

z — 2z = —Uu U —u
Y Y
1 1-—
_ (ut+1_ut)_ 'Y(ut_ut—l)
Y Y
1 7 Y L—n
k (~t t t — t t—1
=—a— = (g5 +BAY) ) + h (u* —u'")
N1€N<<l;) v v
1 Ky 1—v1 11—+
ko[~ - _
=—ay Zy(gfk+ﬂﬁt)* NZ hi — (u' —u'™h)
1€N k=0 1EN
1 Ky 1-~1
——ae SN B (gl A - =TT 3w ' )
i€N k=0 v v i€eN

K
1 I 1—71
= —a SO T (g 4 BAY) - — TS0 — 612 + ahl)
eN k=0 | v iEN

K
€h) 1 Ve - n 1—71 -1 i—1
=~ y ; (gfk +/6Af> - ,7 N;V(ez K = 91 0 +Oéh§ - ahi )

(1) holds due to Line.21 in Algorithm [T} O

Lemma C.4. (Bounded global dual update)The global dual variable % DoieN hﬁ“ holds upper
bound of:

2 2
1 1 1
t t t+1
Lyl < (mt s -mlLyn
'LGN i€EN 1EN
K- ’y 2
+ 2F, Z Z LGl + 287 R AY. (17)
z€N k=0 "Y
Proof. According to lemmal[C.2] we have:
] K1,
ko~
Lyl Y G + 5.
=y N Nixio
Take L2-norm, we have:
1 2 1 K1, 2
ko~
N T == 2ok gy (gt +BAY
iEN iEN ieN k=0 |
1 ’ 1 5 ’
k
<(1-7) Nzh;’? N —(gi, + BAT)
ieN ien k=0 |
2 . = 2
<=2y Z hill +2v| % Z =gie| +287v01AY
ieN eN k=0 |

28



Under review as a conference paper at ICLR 2025

Take expectations. Thus, we have the following recursion:

2 2 2
1 ! 1 . 1 -
N S5 B o m B Dk
€N 1EN 1EN
K 2
+ 2, Z Z Togtell +28%E Al (18)
z€N k= 7

O
Lemma C.5. (Bounded local dual update)The local dual variable ht-Jrl holds upper bound of:

¥ NI <5 S @A - B ) + 4022+ 2 ZZ”’“Et e

i1EN iEN i€EN k=0
+ (124 28)CE, |V £(2)|° +2C (602 + 7). (19)
where % =1- w is the constant.

Proof. Recalling lemmal[C.2]

K—1
'Vk:
hitt = Wity > (G + BAY).
k=0
same like lemma[C.4[s proof, we have:
K—1 y
k .
*ZEtllhtHQ Z(]EtHhElF B[R %) —E||3} 11?4+ 28°E || AY)1%.
iEN zEN zeN k=0 v

Here, we provide an upper bound for the quasi-stochastic gradient:

—Z Z 7’“ﬂat [k

i€EN k=0
1 K_lw
:NZEN 2 7]Et||v.f1 k+6zk‘ || +O'l
1 1@17 )
=5 S VIO 050 = VIO + VIO + of
i€EN k=0
K-1
<L+ = B, [V Ai(6) = Vhi(z) + V() = VFE) + V| + oF
i€N k=0 v
K-1
§2L2,02+% S R, [|6!, — 21|* + 6, | V£(H)| + (602 + oF)
i€EN k=0 v
2 5, 6L - Tk t t o pt_ t
i€N k=0 v
2 o 1207 < 1% t(2 2 || gt t t t
<2L%p? + = E, (|68, — 0))* + 1202 |0 — ut + ut — 2| + 6, |V £(=9)||* + (602 + oF)
i€EN k=0 v
L 5, 1212 K*W £112 2 1 N e
2P+ =) B t]|6f, — 0" + 12L NZHahi+7ahi

i €N k=0 i€EN
2

29



Under review as a conference paper at ICLR 2025

K—
<212 + Z Z %Etngik_gtHZ 1202 L Z]Et |htH
i€N k=0 v €N
—|—6EtHVf ) + (602 + o). (20)
Inequality (1) holds because u’ — 2! = —lfT“’(ut —u' )0 —ut = —ag Yoy b Let &

2r2 2
1— 2 L7022 s the constant. Combining the above inequalities, we have:

K-1

24C'L2 . 2
ZEtnhtn? Zaatuhﬁn? — E|lhT?) + 40 L2 + Z L, |6t — 0"
ZEN zeN eN k=0 |
+ (124 262)CE, ||V £()||” + 2C(602 + o).
We set At =~ V f(2?) like Xu et al.| (2021); |Qu et al. (2022); [Fan et al.| (2024a). O

Now we have completed all the preparations for the proof of Theorem 2] For the non-convex case,
based on assumptions l-l we take the conditional expectation at round ¢+ 1 and expand the f(z ”1)
as:

Etf(ZHl)
L
S]Etf(zt) + ]Et<Vf(Zt)7 Zt+1 _ Zt> + §]Et||2t+1 _ Zt||2

K
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zeNk 07 s
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(21)
Firstly, the term A.1 can be bounded:
1 K v,
Al=-aE, <Vf(zt>, DD IR Vf(zt)>
ieN k=0 |
€Y) 1 = 1 S
k ~ k
i€N k=0 iEN k=0
% 2 2
(2) « 1 Vi - ’Yk
DNV + B |5 > 3 2 (gt — V(") Bl Z
ieN k=0 | iEN k=0
) g ol K Yie ot o2 Yk
SSIVFEE+ 55 D2 D0 B [Bgi, — Vi) B> Z ~EdL
ieN k=0 | iEN k=0
(22)

(1) holds due to the fact % >, Vfi(2") = Vf(2"). (b) applies —(z,y) = $(||=* + [ly||* —

= +y|[*) (c) holds due to Jensen’s inequality. And, according SAM update rule we have Eg; , =
2

Eg; , — Vfi(z")

V(0% + 6t ). Then, we can bounded the term + >,y ZkK=0 LR, as

30



Under review as a conference paper at ICLR 2025

follows:
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(1) applied the lemma[C.4]

Then, we assume ¢! = = 5, SOF ! LETE[|07 5, — 0"]|* term as the local offset after k iterations.
we first bounded €], = % >, v E¢]|0f ;, — 07| as:
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(2) holds due to the fact 5 € (0,1). We set « to satisfy % + L]\‘,’“j — 552 < 0and we

make aw = § + o8 — 896an?L*K — 168an?L*K % — o8> — La? 3%, and w can be regarded as
a constant.

proof for w can be regarded as a constant. First, Let # = 0 means no dual variable correction ex-

ists. There exist a constant ¢ € (0,1/2), we let w = 3 — 1064n?L*K > § — ¢ > 0. Thus,
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We take the full expectation on the bounded global gradient as:
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Take the full expectation and telescope sim on the above inequality:
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Here, we summarize the conditions and some constraints in the above conclusion. Like [Sun et al.
(2023c), we note that (1 — (1 — n;/a)®) < 1 when 1, < .. we have 1/y > 1. Whem K > a/7,
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This completes our proof of the Theorem [2]
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