
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Cardinality Counting in “Alcatraz”:
A Privacy-aware Federated Learning Approach

Anonymous Author(s)

ABSTRACT
The task of cardinality counting, pivotal for data analysis, endeav-

ors to quantify unique elements within datasets and has significant

applications across various sectors like healthcare, marketing, cy-

bersecurity, and web analytics. Current methods, categorized into

deterministic and probabilistic, often fail to prioritize data privacy.

Given the fragmentation of datasets across various organizations,

there is an elevated risk of inadvertently disclosing sensitive in-

formation during collaborative data studies using state-of-the-art

cardinality counting techniques. This study introduces an innova-

tive privacy-centric solution for the cardinality counting dilemma,

leveraging a federated learning framework. Our approach involves

employing a locally differentially private data encoding for initial

processing, followed by a privacy-aware federated 𝐾-means clus-

tering strategy, ensuring that cardinality counting occurs across

distinct datasets without necessitating data amalgamation. The effi-

cacy of our methodology is underscored by promising results from

tests on both real-world and simulated datasets, pointing towards a

transformative approach to privacy-sensitive cardinality counting

in contemporary data science.

1 INTRODUCTION
Cardinality counting problem involves determining the number

of distinct elements in a set, often referred to as the “cardinal-

ity” of the set, which is of paramount importance in contempo-

rary data analysis, supporting critical applications in various do-

mains, such as web mining, marketing, cybersecurity, and health-

care [4, 6, 9, 21, 24, 28, 37]. In the realm of web mining, it plays

a pivotal role in determining the number of unique visitors to

websites, enabling businesses to optimize content, enhance user

experiences, and refine marketing strategies [1, 19, 35]. In the cy-

bersecurity domain, counting the cardinality of unique host IP

addresses accessing a network resource is essential when a victim

server is flooded with an enormous number of incoming malicious

packets in the case of Distributed Denial of Service (DDoS) attack,

thus safeguarding the integrity and availability of online services

without violating honest users’ privacy [23, 27, 30]. Furthermore,

the problem is increasingly relevant in the smart healthcare field,

where it contributes to anonymizing and preserving patient privacy

in the context of large-scale medical research [20, 22]. By estimating

the number of distinct patients in healthcare datasets, researchers

can extract valuable insights while adhering to rigorous privacy

regulations, and facilitating groundbreaking medical discoveries

without compromising the confidentiality of sensitive patient in-

formation [32]. In the case of a young boy suffered with Asthma,

the privacy-preserving cardinality counting technology allows the

third party, for example The Department of Health, to investigate

or aggregate similar cases without violating individual patient’s

privacy.

Cardinality counting, a critical problem in data analysis, en-

compasses a range of methods designed to estimate the number

of unique elements within a dataset [1, 5, 14, 15, 17, 18]. These

methods can be broadly categorized into deterministic and prob-

abilistic approaches. Deterministic methods [2, 10, 25] target for

exact counts of distinct elements but often face limitations due

to memory constraints. On the other hand, probabilistic methods

offer cardinality estimates with substantially reduced memory us-

age by employing statistical and hashing techniques. Prominent

probabilistic methods include the HyperLogLog algorithm [16],

which leverages the distribution of leading zeros in hashed values,

MinHash [3], which uses random permutations to approximate car-

dinality, and Count-Min Sketch [11], a data structure that estimates

counts of elements. These techniques have diverse applications in

database management, network traffic analysis, and web analytics,

addressing the need for memory-efficient cardinality estimation

in large and complex datasets, ultimately contributing to more

efficient and scalable data processing.

However, the existing methods do not fully consider privacy

during the counting process [13]. While these techniques excel in

estimating cardinality with efficiency, they often fall short when it

comes to protecting sensitive information within the data from a

technical standpoint. Consider the MinHash algorithm, a widely

used probabilistic method for estimating cardinality by hashing ele-

ments and finding minimum hash values. In the context of a social

media platform, if user profiles are represented by sets of hashed

interests, MinHash can effectively estimate the number of distinct

user profiles. However, if an adversary possesses knowledge of a

specific user’s interests and their corresponding hash values, they

could query the system for the estimated cardinality of users with

those same hashed interests. This query would inadvertently reveal

whether that user’s profile is in the dataset [31]. This technical vul-

nerability can pose a significant privacy risk, especially in scenarios

where data security is paramount, such as protecting the anonymity

of individuals in medical research datasets or safeguarding user

preferences in online platforms [12]. As a result, privacy-preserving

cardinality counting methods are increasingly essential to address

these technical vulnerabilities and protect sensitive data [36].

Research Gap. The existing methods fail to provide strong pri-

vacy guarantees during the counting process. The situation where

data often resides in different silos and privacy regulations such

as GDPR [26] not allowing arbitrary or unrestricted data transfers

raises additional challenges for cardinality counting. Consider a

scenario where organizations collaborate on a data analysis project,

each holding valuable but sensitive information. Traditional car-

dinality counting methods, although efficient, may inadvertently

expose sensitive data when combined or compared across these

silos. Consequently, there is a growing need for the development of

a privacy-preserving cardinality counting method that can preserve

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13 – May 17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Summary of Notation

Notation Description

M The set of clients

D Raw dataset for each client

𝑏𝑓 Bloom filter

𝑏𝑓
ref

Selected reference Bloom filter

𝑏𝑓
dum

Generated dummy Bloom filter

𝑏 Each bit in a Bloom filter

B Encoded dataset

𝜖𝐿𝐷𝑃 Privacy budget for local Differential Privacy

[Flipping probability for random response

C The cluster centroids

𝑘𝑔 The number of clusters in 𝐾-means clustering

𝑘∗ The optimal cardinality estimation

𝜖
fed-DP

Privacy budget used in differentially privately gra-

dient updates in federated learning

privacy across disparate data sources, allowing organizations to

collaborate on insights without compromising individual privacy.

Contributions. In this paper, the main contributions are as follows:

• We propose the first federated cardinality counting framework

that allows cardinality counting to occur across distinct datasets

without necessitating data amalgamation, prioritizing data pri-

vacy and providing a strong privacy guarantee during the count-

ing process.

• We provide a strong privacy guarantee by utilizing data privati-

zation with Bloom filter encoding and local Differential privacy

during data encoding on the client side, and by using a federated

𝐾-means clustering with differentially private gradient updates.

• We conduct experimental evaluations on real and synthetic North

Carolina voter registration (NCVR) datasets to validate the ac-

curacy of the cardinality estimation with privacy-preserving

federated clustering. The extensive experiments demonstrate

that, even when datasets are corrupted and there are data er-

rors and variations, high accuracy in cardinality estimation is

achievable with small privacy budgets.

2 PRELIMINARIES
This section briefly overviews Bloom filter encoding, local differ-

ential privacy (LDP), federated learning, and 𝐾-means clustering

with cardinality counting. To help readers better understand this

paper, Table 1 lists the frequently used notations in this paper.

2.1 Data Privatization
In the realm of Smart Health, the collection and utilization of patient

data are integral for research, diagnostics, and treatment planning.

However, with the growing concerns surrounding data privacy

and security, it is imperative to implement robust data privatiza-

tion techniques that safeguard patient information while enabling

healthcare institutions to leverage data for research and analysis.

So, healthcare institutions are utilizing a data privacy technique

that combines Bloom filter encoding and local differential private

noise addition on the collected patient data, which includes medical

records, diagnostic results, treatment histories, and more.

2.1.1 Bloom Filter Encoding. To mitigate privacy concerns, Bloom

filter encoding is used in the first step in the data privatization.

In the context of patient data, individual pieces of personal infor-

mation (e.g., names and addresses) are mapped to Bloom filters.

This encoding process converts sensitive data into a binary format,

providing a level of anonymity.

Bloom filters are probabilistic data structures that are highly effi-

cient for storing, processing, and computation. They are composed

of bit vectors that are initially filled with zeros. To map an element

𝑥 , 𝑘 independent hash functions ℎ𝑖 (·) (with 1 ≤ 𝑖 ≤ 𝑘) are used to

set the corresponding bit positions in the Bloom filter 𝑏 to 1 (i.e.,

∀𝑖 𝑏 [ℎ𝑖 (𝑥)] = 1). This allows for a tunable false positive rate 𝑓 𝑝𝑟
so that a query returns either “definitely not” (with no error), or

"probably yes" (with a probability 𝑓 𝑝𝑟 of being wrong). The lower

𝑓 𝑝𝑟 is, the better the utility, but the more space the filter requires.

The false positive probability for encoding 𝑛 elements into a Bloom

filter of length ℓ bits using 𝑘 hash functions is 𝑓 𝑝𝑟 = (1 − 𝑒−𝑘𝑛/ℓ)𝑘 ,
which can be adjusted by tuning the parameters 𝑘 and ℓ . The main

advantage of Bloom filter encoding is that it preserves the simi-

larity/distance between records in the Bloom filter space (with a

minimal utility loss) [29, 33]. For example, with string values, the

𝑞-grams (sub-strings of length 𝑞) of string values can be hashed

into the Bloom filter 𝑏𝑓 using 𝑘 independent hash functions [29],

while for numerical values, the neighboring values (within a certain

interval to allow fuzzy matching) of values can be hashed into the

Bloom filter [33].

2.1.2 Locally Differentially Private Data Encoding. To further en-

hance privacy, local differential private noise is added to each en-

coded record. This technique ensures that even with access to the

encoded data, it remains challenging to infer specific details about

individual patients. Local Differential Privacy (LDP) mechanisms,

similar to Randomized Aggregatable Privacy-Preserving Ordinal

Response (RAPPOR), are employed to inject noise into the encoded

data. LDP guarantees that the privacy of each patient’s information

is preserved while enabling aggregate-level analysis. This tech-

nique provides 𝜖-local Differential Privacy guarantees by randomly

flipping each bit in the Bloom filter of encoded records locally by

the data providers with a probability of [= 1

1+𝑒𝜖LDP . To ensure

privacy, the randomized response technique is employed to alter

the Bloom filters, providing 𝜖-local Differential Privacy guarantees.

This is done by randomly flipping each bit in the Bloom filter of

encoded records locally by the data providers with a probability of

[= 1

1+𝑒𝜖LDP .

Definition 1 (Adjacent Bloom filters). Adjacent Bloom filters
are two Bloom filters 𝑏𝑓 and 𝑏𝑓 ′ of length ℓ bits that differ by only
one-bit position, i.e., ∀𝑖,1≤𝑖≤ℓ 𝑎𝑛𝑑 𝑖≠𝑗𝑏𝑖 = 𝑏′𝑖 𝑎𝑛𝑑 𝑏 𝑗 ≠ 𝑏

′
𝑗
.

Lemma 1 (𝜖-LDP for Bloom filters). Flipping the bits in Bloom
filters with 1

1+𝑒𝜖LDP probability makes the bits in the Bloom filters
𝜖-local differentially private.

The algorithm used for the two steps data privitization is shown

in Algorithm 1. By utilizing LDP on the bits of Bloom filters, we can

make them resistant to cryptanalysis attacks that target sensitive

bits [7]. So, with the incorporation of Bloom filter encoding and

local differential private noise addition, the healthcare institutions

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Cardinality Counting in “Alcatraz”: A Privacy-aware Federated Learning Approach WWW ’24, May 13 – May 17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Privacy-preserving Federated K-means Clustering

Data Privatization

D1 B1
!𝐵1

!𝐵1∪Bdum

D2 B2
!𝐵2

!𝐵2∪Bdum

Dm Bm !𝐵m !𝐵m∪Bdum

Client 1

Client 2

Client m

Raw dataset
Encoded
Bloom filters

Perturbed
BFs with LDP

… … …

Local K-means clustering centroids

C1=(C11, …, C1k)
Server K-means
clustering centroids

Cs=(Cs1, …, Csk)C2=(C21, …, C2k)

Cm=(Cm1, …, Cmk)

…

Purity_score1

Purity_score2

Purity_scorem

…
Purity_scorek

Figure 1: An outline of our system model for privacy-preserving cardinality estimation with federated 𝐾-means clustering.

Algorithm 1 Data Privatization for one client with Locally Differen-
tially Private Data Encoding
1: Inputs:

Raw dataset from a client: 𝐷 ,

Privacy budget: 𝜖𝐿𝐷𝑃

2: Outputs:
Encoded dataset: B

3: Initialize:
B ← Φ

4: for each record 𝑥 ∈ 𝐷 do ⊲ Do for each record in raw dataset

5: 𝑏𝑓𝑠𝑡𝑒𝑝1 = BloomFilterEncode(𝑥) , ⊲ First step: Bloom filter encoding

6: 𝑏𝑓𝑠𝑡𝑒𝑝2 ← 𝑏𝑓𝑠𝑡𝑒𝑝1 ⊲ Second step: add Local DP noise

7: for each bit 𝑏 in Bloom filter 𝑏𝑓𝑠𝑡𝑒𝑝2 do ⊲ For each bit in the Bloom filter

8: [= 1

1+𝑒𝜖𝐿𝐷𝑃

9: 𝑝 = 𝑟𝑎𝑛𝑑𝑜𝑚[0, 1] ⊲ Randomly generate a number between 0 and 1

10: if 𝑝 ≥ [then ⊲ flip each bit 𝑏 in the Bloom filter with flipping

probability [

11: 𝑏 = 𝑏 ⊕ 1

12: end if
13: end for
14: B = B ∪ 𝑏𝑓𝑠𝑡𝑒𝑝2
15: end for

achieve a level of data privatization that safeguards patient con-

fidentiality. This privatized data can now be utilized for various

purposes, including medical research, data analysis, and treatment

optimization, without compromising patient privacy. Researchers

and healthcare professionals can obtain valuable insights from the

data while complying with strict privacy regulations.

2.2 𝐾-means Clustering for Cardinality
Counting

Cardinality counting enables healthcare providers and adminis-

trators to comprehensively understand their patient populations,

such as patients with specific medical conditions, age groups, or

geographic locations. Accurately estimating the number of patients

helps to detect early diseases, track the spread of diseases, and eval-

uate the success of interventions. 𝐾-means clustering is a powerful

tool for determining the cardinality of health-related entities. This

technique groups similar health data points or entities into clusters

based on their shared characteristics, and the optimal number of

clusters implies the number of unique individuals across multi-

ple datasets from different sources. However, with the absence of

labeled data, it is difficult to find the optimal 𝑘∗ by using the tradi-

tional Elbowmethod. Previous studies have mainly concentrated on

centralized approaches, where a clustering algorithm is employed at

the linkage unit. In the previous work by [36], Differentially Private

Bloom filters were sent to the linkage unit for the 𝐾-means cluster-

ing. At the linkage unit, the dataset from multiple data providers is

integrated first, and additional reference and dummy Bloom filters

are added to the integrated dataset to help evaluate the purity and

completeness of each cluster, so as to help in determining the opti-

mal 𝑘∗ in the 𝐾-means clustering. For a reference Bloom filter, the

dummy Bloom filters are generated by randomly flipping each bit

in the Bloom filters with a flipping probability [.

3 PROPOSED METHODOLOGY
In this section, we first describe the centralized 𝐾-means method

for precise cardinality estimation. Then, we extend the centralized

𝐾-means method to federated 𝐾-means with privacy guarantees

during the federated learning process.

3.1 System Model
The system model of our proposed method for privacy-preserving

cardinality counting is illustrated in Fig. 1. There is a fixed set of𝑚

clientsM, each client 𝑖 ∈ {1, · · · ,𝑚} with a fixed local data set 𝐷𝑖
of size data 𝑛𝑖 , who want to cooperate with each other to train a 𝐾-

means clustering machine learning model. At client 𝑖 , the personal

identifying information (PII) in records 𝑟𝑖 is initially encoded into

Bloom filters 𝑏𝑓𝑖 and then perturbed with LDP as 𝑏𝑓 ′
𝑖
. One record

is used to generate one Bloom filter. In the previous work, the en-

coded and perturbed records from multiple different data owners

𝐵𝑖 , · · · , 𝐵𝑚 are sent to a linkage unit, which, to a certain extent,

could compromise privacy by potentially deducing the encoded data.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13 – May 17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 2 Privacy-preserving Federated 𝐾-means Clustering
1: Inputs:

𝑘𝑔 , 𝐵𝑖 , 𝑖 ∈ M
2: Outputs:

𝑘∗

3: for 𝑘 = 𝑘𝑚𝑖𝑛, · · · , 𝑘𝑚𝑎𝑥 do
4: 𝑘𝑔 = 𝑘

Initialization:
5: for each client 𝑖 ∈ M do
6: 𝑆𝑖,𝑟=0, C𝑖,𝑟=0 = kmeans++init(𝐵𝑖 , 𝑘𝑔) ⊲ Get cluster means using

kmeans++ initialization
7: end for
8: 𝑆𝑠,𝑟=0 = [S1,𝑟=0 |S2,𝑟=0 · · · S𝑚,𝑟=0]
9: C𝑠,𝑟=0 = 1

𝑚

∑𝑚
𝑖=1 C𝑖,𝑟=0 ⊲ Get global initial cluster centroids

10: for each round 𝑟 = 1, · · · , 𝑟max do
Server Executes:

11: Select a subset ofM′ ∈ M clients

12: Send C𝑠,𝑟 toM′ clients
13: Recieve 𝑆𝑖,𝑟+1, C𝑖,𝑟+1, P𝑖,𝑟+1 from clients 𝑖 ∈ M′
14: S𝑠,𝑎𝑔𝑔 = [S1 |S2 · · · S𝑚′]
15: C𝑠,𝑎𝑔𝑔 = 1

𝑚′
∑𝑚′

𝑖=1 C𝑖,𝑟+1 ⊲ Aggregate centroids from clients

16: P𝑠,𝑟+1 =
∑𝑚′
𝑖=1

𝑛
ref,𝑖P𝑖∑𝑚′

𝑖=1
𝑛
ref,𝑖

⊲ Aggregate purity scores

17: 𝑆𝑠,𝑟+1, C𝑠,𝑟+1 ← reallocate(𝑆𝑠,𝑎𝑔𝑔, C𝑠,𝑎𝑔𝑔) ⊲ Reallocate empty

clusters by randomly assigning low score points to form new clusters to maintain

𝑘𝑔 non-empty clusters

Client Executes:
18: for each client 𝑖 ∈ M′ do
19: while 𝐼𝑖 ≤ 𝐼𝑙𝑜𝑐 do
20: 𝑆𝑖,𝑟+1, C𝑖 ← kmeans(𝐵𝑖 , 𝑘𝑖 , C𝑠,𝑟) ⊲ Update locally cluster means

for each client using kmeans

21: end while
22: P𝑖,𝑟+1 ← purity_score(𝐵ref,𝑖 , 𝐵dum,𝑖 , 𝑆𝑖,𝑟+1,𝐶𝑖)⊲ Obtain purity score

by Equation (4)

23: C𝑖,𝑟+1 = C𝑖 + N𝑖 (0, 𝜎2

DP
) ⊲ Obtain DP-perturbed cluster means

24: Send 𝑆𝑖,𝑟+1, C𝑖,𝑟+1, P𝑖,𝑟+1 to the server

25: end for
26: end for
27: P𝑘 = P𝑠,𝑟max

28: end for
29: 𝑘∗ = argmax𝑘∈ [𝑘𝑚𝑖𝑛,· · · ,𝑘𝑚𝑎𝑥] P𝑘

We proposed a federated𝐾-means clustering approach that does not

require sharing encoded records or dummy Bloom filters. Instead,

a central server computes the centroids of the clusters by receiving

centroids gradient updates from the participating clients. Then, the

similar Bloom filters corresponding to the same individual/patient

are grouped into one cluster. The clustering centroids are deter-

mined by the server. For details, our proposed method stores the

perturbed bloom filters locally. And each client 𝑖 computes the local

𝐾-means clustering centroids C𝑖 ,= (𝐶𝑖1, · · · ,𝐶𝑖𝑘), 𝑖 ∈ {1, · · · ,𝑚}
when cluster number is 𝑘 . Then, the client only sends the centroids

updates gradient to the server to preserve data privacy. The server

aggregates the received centroids gradients C1, · · · , C𝑚 from the

𝑚 clients and computes the sever centroids C𝑠 = (𝐶𝑠1, · · · ,𝐶𝑠𝑘).
The server is responsible for determining the optimal number of

clustering centroids by checking the clustering performance for

each 𝑘 ∈ [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]. The optimal number 𝑘∗ is estimated as the

cardinality of records from multiple databases and reports.

3.2 Federated 𝐾-means Clustering Problem
The federated 𝐾-means clustering problem attempts to group simi-

lar Bloom filters into 𝐾 groups of equal variance across different

clients by minimizing a criterion known as the inertia or within-

cluster sum-of-squares. The means are commonly referred to as

the cluster “centroids” C = 𝐶1, · · · ,𝐶𝐾 . Given a set of Bloom filters

B = {B1, · · · ,B𝑚} distributed over𝑚 clients, where each client

𝑖 owns a Bloom filter 𝑏𝑓𝑖 ∈ B𝑖 , where 𝑏𝑓𝑖 is a ℓ dimension vector,

the federated 𝐾-means clustering aims to partition the |B| Bloom
filters owned by𝑚 clients into𝐾 (≤ |∪𝑖∈MB𝑖 |) setsS = 𝑆1, · · · , 𝑆𝐾
so as to minimize the within-cluster sum of squares. We assume

that 𝑚′ clients are randomly selected fromM for the federated

𝐾-means clustering for each round, and denote the selected client

set asM′. The federated𝐾-means clustering problem is formulated

by minimizing the within-cluster sum of squares averaged over all

clients, as given by

argmin

S,W

1

𝑚′

𝑚′∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝑤𝑖, 𝑗

∑︁
𝑏𝑓 ∈𝑆 𝑗

∥𝑏𝑓 −𝐶 𝑗 ∥2, (1)

where𝐶 𝑗 ∈ C is the centroid in cluster 𝑆 𝑗 ; and𝑤𝑖, 𝑗 is weight vector

of client 𝑖 for the 𝑗𝑡ℎ centroid.

3.3 Threat Model
By combining Bloom filter encoding and local differential privacy

with random response, the data providers utilize a two-step data

privatization process that offers two-layer privacy guarantees. The

initial layer provides privacy assurances due to the fact that different

elements being mapped to the same bits in the Bloom filters can

cause collisions, thus introducing uncertainty when decoding. The

second layer of privacy with LDP, offers a verifiable assurance of

privacy against cryptanalysis attacks as discussed in [7, 8].

Federated 𝐾-means clustering groups similar Bloom filters into

the same cluster across different clients without the need to share

the raw data to the centralized server, thus reducing the risks of

raw data leakage. However, it still faces potential threat models

that can compromise the privacy and security of participants, such

as membership inference attacks, model evasion attacks, and data

poisoning. Differential privacy is a technique that can help mitigate

these threats. Implementing differential privacy (DP) in federated

learning requires a delicate balance between privacy and utility.

Too much noise can be detrimental to the learning process and thus

the estimation of cardinality.

3.4 Privacy-preserving Federated 𝐾-means
Clustering for Cardinality Counting

In this subsection, we propose a privacy-preserving federated 𝐾-

means clustering algorithm for cardinality counting.

3.4.1 Privacy-preserving Federated 𝐾-means Clustering. Privacy-
preserving federated 𝐾-means clustering is a modern approach to

machine learning that allows data to be processed locally instead of

being sent to an external aggregator. This makes it more secure for

multiple entities, such as hospitals, diagnostic centers, clinics, and

laboratories, to work together to train machine learning models

without having to share their raw data with a third party.

In our proposed algorithm, each client 𝑖 ∈ M first computes

the initial centroids C𝑖,𝑟=0 kmeans++ with their encoded dataset

B𝑖 , then sends them to the server to aggregate the global initial

cluster centroids C𝑠,𝑟=0. Then, the server randomly selects a subset

of clientsM′ for local centroids aggregation and broadcasts the

aggregated global centroids to all clients. Each client uses the global

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Cardinality Counting in “Alcatraz”: A Privacy-aware Federated Learning Approach WWW ’24, May 13 – May 17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

centroids received from the server and updates the cluster centroids

using the local dataset. After finishing the local updates at each

selected client, a DP noise is added to the local obtained cluster

centroids. They then send the perturbed cluster centroids C𝑖,𝑟+1
to the server for aggregation. The server collects the new cluster

centroids that have been sent by the chosen clients. In the final

aggregation round, the clients report the completeness and accuracy

of the clusters by assessing the clustering status of the reference

and dummy Bloom filters. The server is able to calculate a total

purity score, which provides an understanding of the completeness

and purity of the global centroids clusters across all clients. In what

follows, we provide more details on the calculations of the DP noise

and the purity score.

3.4.2 Differential Privacy. Consider at most 𝑇 exposures of the

local models of the clients during the federated clustering process.

To guarantee the (𝜖, 𝛿)-DP demand of the individual dataset under𝑇

global aggregations, the standard deviation of the DP noises added

by the clients is given by [34]

𝜎DP =
𝑇Δ𝑠

𝜖

√︄
2 ln

(
1.25

𝛿

)
. (2)

A bigger 𝜎DP leads to a smaller 𝜖 , i.e., greater privacy protection,

while a bigger 𝑇 incurs a higher chance of privacy leakage. In

addition, the sensitivity Δ𝑠 depends on the sizes of local datasets.

An increase in the size of the data sets can lead to a decrease in Δ𝑠
and, in turn, a decrease in 𝜎DP.

3.4.3 Purity Score Calculation. In this research, we modify the

technique from [36] and expand it to suit the federated learning be-

tweenmultiple clients and a server to determine the ideal𝑘 value for

unsupervised 𝑘-means clustering. A set of reference Bloom filters

with known training labels is generated to evaluate the clustering

performance. For each client 𝑖 , a subset of 𝑛
ref,𝑖 numbers of Bloom

filters is selected as reference Bloom filters set 𝐵
ref,𝑖 . Then, for each

reference Bloom filter 𝑏𝑓
ref,𝑖, 𝑗 ∈ 𝐵ref,𝑖 , a set of 𝑛ref,𝑖, 𝑗 numbers of

corresponding dummy Bloom filters 𝐵
dum,𝑖, 𝑗 are generated.

The Euclidean distance between a reference Bloom filter 𝑏𝑓
ref

and its corresponding dummy Bloom filter 𝑏𝑓
dum

is:

∥𝑏𝑓
ref
, 𝑏 𝑓

dum
∥2 =

√√√
ℓ∑︁
𝑖=1

(𝑏
ref,𝑖 − 𝑏dum,𝑖)2,

where ℓ is the length of the Bloom filter, 𝑏
ref,𝑖 is the 𝑖

𝑡ℎ
bit in

the reference Bloom filter 𝑏𝑓
ref
, and 𝑏

dum,𝑖 is the 𝑖𝑡ℎ bit in the

dummy Bloom filter 𝑏𝑓
dum

. Assuming that the Euclidean distance

∥𝑏𝑓
ref
, 𝑏 𝑓

dum
∥2 is less than a constant integer value (threshold)

𝑟 ∈ [0, ℓ], then the original Bloom filter and the perturbed Bloom

filter are grouped into the same cluster. The probability of 𝑏𝑓
ref

and

𝑏𝑓
dum

being classified as the same entity is:

𝑃 (∥𝑏𝑓
ref
, 𝑏 𝑓

dum
∥2 ≤ 𝑟) =

1

2

+ 1

2

erf

(
𝑟2 − ℓ[√︁
2ℓ[(1 − [)

)
. (3)

The detailed proof is provided in [36].

Due to the feature of federated learning that all data are stored

and processed locally on the client side, the reference Bloom filters

are randomly selected from the encoded dataset. The corresponding

dummy Bloom filters are generated by randomly flipping each bit

in the reference Bloom filter with the flipping probability of [.

In a similar fashion to the research conducted in [36], this work

utilizes reference and dummy Bloom filters to assess the perfor-

mance of 𝐾-means clustering and to determine the optimal number

of clusters 𝑘∗ in unsupervised clustering techniques when labeled

data is scarce. In this study, the reference and dummy Bloom fil-

ters are stored locally on the client side, and only the size of the

reference Bloom filters 𝑛
ref

is shared with the server.

Following each 𝐾-means clustering process with 𝑘𝑔 , the Bloom

filter in client 𝑖 is assigned to a cluster with a centroid 𝑐 from the

set C𝑆 . The purity function for a reference Bloom filter 𝑏𝑓
ref,𝑖, 𝑗

clustered in the cluster with the centroid 𝑐 ∈ C𝑠 is defined as:

P(𝑏𝑓
ref,𝑖, 𝑗) =

𝑛 𝑗,dum,𝑐

𝑛 𝑗,dum+𝑛𝑐−𝑛 𝑗,dum,𝑐
, where 𝑛 𝑗,dum,𝑐 is the number of

dummy records for the reference Bloom filter 𝑏𝑓
ref,𝑖, 𝑗 of client 𝑖 that

are grouped in the same cluster with label 𝑐 , 𝑛𝑐 is the number of

Bloom filters that are grouped into the cluster with label 𝑐 , 𝑛 𝑗,dum
is the total number of dummy records for the reference Bloom filter

𝑏𝑓
ref,𝑖, 𝑗 . Then, the purity for client 𝑖 is given by:

P𝑖 =
∑︁

𝑏𝑓ref,𝑖,𝑗 ∈𝐵ref,𝑖
P(𝑏𝑓

ref,𝑖) . (4)

With this purity function, each client 𝑖 measures the purity and

the completeness of generated server cluster centroids by checking

whether each of their reference Bloom filters is grouped with the

corresponding dummy Bloom filters and sends the purity P𝑖 to
server. The server determines the overall purity at 𝑘𝑔 clusters in

𝐾-means clustering from all clients by:

P𝑘𝑔 =

∑
𝑏𝑓ref,𝑖,𝑗 ∈𝐵ref,𝑖 𝑛ref,𝑖P𝑖∑

𝑖∈M 𝑛
ref,𝑖

. (5)

The server then determines the optimal number of clustering cen-

troids by checking the overall purity score P𝑘𝑔 for each 𝑘𝑔 ∈
[𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥], and therefore the cardinality of the records of multi-

ple clients is given by:

𝑘∗ = argmax

𝑘𝑔∈[𝑘𝑚𝑖𝑛,· · · ,𝑘𝑚𝑎𝑥]
P𝑘𝑔 . (6)

The detailed steps of the privacy-preserving federated 𝐾-means

clustering for cardinality estimation are shown in Algorithm 2. This

algorithm outlines the complete process.

4 EXPERIMENTAL EVALUATION
Dataset.We conducted our experiments using data taken from the

North Carolina Voter Registration (NCVR) database
1
to simulate

patient records stored in various healthcare facilities. This data-

base contains records of voters in the North Carolina State, USA.

Ground-truth is available based on the voter registration identifiers

to evaluate the accuracy of our proposed cardinality estimator in

our experiments. Note that the ground truth is not always avail-

able in real applications. We used given name (string), surname

(string), suburb (string), postcode (string), and gender (categorical)

attributes as PII for the linkage. We obtained two collections of data

from the dataset, the clean datasets and the corrupted datasets, each

with 10 datasets for 10 clients. The ground truth cardinality for all

the ten datasets is 360, meaning that the datasets contained records

1
Available from http://dl.ncsbe.gov/data/

5

http://dl.ncsbe.gov/data/

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13 – May 17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Clean dataset

(b) Corrupted dataset

Figure 2: Estimated cardinality (𝑘∗) with federated clustering with different client sample fractions
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] versus flipping probabilities compared with the baseline method. In these experi-
ments, there is no noise added in data encoding or gradient updates in federated clustering.

for 360 distinct voters/patients. The first set of datasets consists of

duplicates of the same person with no changes or corrupted PII

values, while the second set of datasets includes duplicates with

altered or corrupted PII values (20% of records) to imitate real-world

data mistakes and discrepancies. We implemented the prototype of

our proposed algorithm in Python 3.9.4, and ran all experiments on

an AMD EPYC 7543 32-Core Processor. The authors provide access

to the programs and test datasets.

Baseline Method. We compare our federated clustering results

with the central clustering approach. In the central clustering ap-

proach, the clients sent their locally differentially private encoded

data to the server for aggregation, followed by 𝐾-means clustering.

Parameter Setting. We assume that there are 10 clients partic-

ipating in cardinality counting with a total ground truth of 360.

The 𝑞-gram length is 2 in Bloom filter encoding. The Bloom fil-

ter length is 500. The false positive probability is extremely low,

with a value of 𝑓 𝑝𝑟 = 6.5 × 10
−6

in the current Bloom filter en-

coding settings. Privacy budgets used for local DP are 𝜖LDP =

[1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 1000.0], where 𝜖 = 1000.0 implies no local

DP noise is added in data encoding. The default reference Bloom

filters pick ratio used is 0.1, the default dummy Bloom filter number

for each reference Bloom filter is set to be a uniformly distributed

randomized number between [1, 10], and the flipping probability for
the dummy/noisy Bloom filters is used in the range [0.0−0.32], with
a step of 0.02. For the federated clustering algorithm, the fractions

of clients sampled per round are varied in the range [0.1−1.0] with
a step size of 0.1. We vary the flipping probabilities in the dummy

Bloom filters and evaluate the 𝑘 value as it impacts the clustering

quality according to the data quality and privacy budget. We use

different values of the fractions of clients sampled per round, local

differential privacy values and federated clustering privacy budget

to check the cardinality counting accuracy.

Discussion.We first compare the optimal 𝑘∗ value provided by our
algorithm with the ground-truth cardinality with different flipping

probabilities used in the clustering algorithm with different values

of the fractions of clients sampled per round without any noise

added in either Bloom filter data encoding or gradient updates in

the federated clustering algorithm. The range of clients sampled for

federated clustering is in the range [0.1, 1.0] with a step size of 0.1.

The central 𝐾-means clustering is the benchmark and shown as the

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Cardinality Counting in “Alcatraz”: A Privacy-aware Federated Learning Approach WWW ’24, May 13 – May 17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

(a) Baseline, on clean dataset (b) client sampled fraction is 0.1, on clean dataset (c) client sampled fraction is 0.5, on clean dataset

(d) Baseline, on corrupted dataset (e) client sampled fraction is 0.1, on corrupted dataset(f) client sampled fraction is 0.5, on corrupted dataset

Figure 3: Estimated cardinality (𝑘∗ value) versus different flipping probabilities with local DP 𝜖𝐿𝐷𝑃 = [1.0, 2.0, 3.0, 4.0, 5.0, 10.0]
and no local DP in the data encoding

(a) [= 0.04, on clean dataset (b) [= 0.06, on corrupted dataset

Figure 4: Estimated cardinality (𝑘∗ value) versus clients
per round fractions with different Local DP 𝜖𝐿𝐷𝑃 =

[1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 100.0]

(a) [= 0.04, on clean dataset (b) [= 0.08, on corrupted dataset

Figure 5: Estimated cardinality (𝑘∗ value) versus clients per
round fractions with different federated privacy budget
𝜖𝐿𝐷𝑃 = [1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 1000.0]

baseline in the plots. The experiments are on both clean datasets and

corrupted datasets. As shown in Figure 2a, without noise added to

either the data encoding side on the clean datasets, or the gradient

updates in the learning process, the estimated cardinalities by the

baseline and federated clustering are very close to the ground truth

when the flipping probability ranges from approximately 0.02 to

0.08. For the corrupted datasets as shown in Figure 2b, the estimated

cardinalities by all methods are close to the ground truth when the

flipping probability ranges from approximately 0.06 to 0.08. When

the dataset contains errors, typos and mistakes, a higher flipping

probability is needed to get accurate estimations of the cardinality.

The optimal values of 𝑘∗ found by federated 𝐾-means clustering

and central clustering method are almost the same with trivial

differences. When the probability of flipping is higher than 0.28,

the cardinality estimation by federated 𝐾-means clustering with a

small fraction of clients sampled per round (e.g., 0.1, 0.2, and 0.3)

tends to converge towards the ground truth value.

We further evaluate how the cardinality estimation performance

is affected by the local DP 𝜖LDP in data privatization of the clients.

We compare the results between federated clustering and the Base-

line method for different 𝜖LDP values in the range [1.0, 10.0] with
a step size 0.1 as well as no local DP added with different flipping

probabilities, for both the clean and corrupted datasets. As illus-

trated in Figure 3, when the privacy budget is greater than or equal

to 4.0, the cardinality estimates from the federated clustering are

identical to the ground truth. For the clean datasets, when local

DP 𝜖LDP is no less than 3.0, the optimal 𝑘∗ can be achieved with

flipping probability [in range [0.02, 0.08] as shown in Figure 3b,

and Figure 3c. Note that with small local DP 𝜖LDP = 3.0, 24 out of

500 bits have been flipped, which implies strong privacy guarantees

provided by Data privatization for the clients. Compared to the

baseline central 𝐾-means clustering as shown in Figure 3a, fed-

erated clustering achieves good cardinality estimation with small

clients sampled per round fraction 0.1 and 0.5 in Figure 3b, and

Figure 3c, which means only one or five clients have been selected

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13 – May 17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) Baseline method, clean dataset (b) client fraction is 0.1, 𝜖LDP = 10.0, clean dataset (c) client fraction is 0.1, 𝜖LDP = 4.0, clean dataset

(d) Baseline method, corrupted dataset (e) client fraction is 0.1, 𝜖LDP = 10.0, corrupted dataset (f) client fraction is 0.1, 𝜖LDP = 4.0, corrupted dataset

Figure 6: Estimated cardinality (𝑘∗ value) versus different flipping probabilities with federated privacy budget 𝜖𝑓 𝑒𝑑−𝐷𝑃 =

[1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 1000.0]

for gradient updates with the server for each learning round. For

corrupted datasets, the cardinality estimation performances are

similar to clean datasets. As shown in Figure 3e, Figure 3f and Fig-

ure 3d, the privacy-preserving federated 𝐾-means clustering with

LDP greater than 4.0 can achieve good cardinality estimates as the

baseline central clustering method when the flipping probability

is around 0.06 to 0.08, which is slightly narrower than the optimal

flipping probability range found on clean datasets.

We evaluate the cardinality estimations resulting from the vary-

ing fractions of clients sampled per round by adjusting the flipping

probability value. The results are shown in Figure 4 and Figure 5.

The results of federated clustering and central clustering for both

the clean and corrupted datasets are similar, indicating that updat-

ing the gradient of the server with only a small number of clients

in each round does not significantly complicate the determination

of the optimal 𝑘∗ in 𝐾-means clustering. Similarly, in Figures 4a

and 4b, a smaller flipping probability is required to identify the op-

timal 𝑘∗ for the corrupted datasets ([= 0.04) compared to the clean

datasets ([= 0.06). Similarly, the flipping probability for optimal 𝑘∗

on the corrupted datasets is higher than that on the clean datasets,

as demonstrated in Figures 5a and 5b. The former is 0.08, while the

latter is 0.04. The average Euclidean distance between the reference

Bloom filter and its dummy Bloom filter is greater in corrupted

datasets with data errors and variance than in clean datasets with

no data errors.

We evaluate the impact of the values of federated privacy budgets

𝜖
fed-DP

on the accuracy of cardinality estimation. We compare the

results of federated clustering and the Baseline approach for various

𝜖
fed-DP

values in the range of [1.0, 2.0, 3.0, 4.0, 5.0, 10.0] and no DP

noise added to the gradient updates in the federated clustering

algorithm with different flipping probabilities. As demonstrated

in Figure 6, when the flipping probability is between 0.02 and 0.1,

the cardinality estimations are highly accurate for clean datasets,

and when the flipping probability is between 0.06 and 0.1, the

cardinality estimations are highly accurate for corrupted datasets.

When 𝜖LDP is set to 4.0, as illustrated in Figure 6c, the task of

estimating cardinality is not more difficult than when 𝜖LDP is set to

10.0, as demonstrated in Figure 6b.

5 CONCLUSION
In this paper we propose a privacy-preserving federated cluster-

ing approach for cardinality counting. The proposed methodology

leverages Bloom filter encoding and local differential privacy to en-

sure data privacy while enabling healthcare institutions to leverage

data for research and analysis. The approach utilizes a federated

learning framework that allows cardinality counting to occur across

distinct datasets without necessitating data amalgamation, prioritiz-

ing data privacy. The proposed methodology addresses the privacy

challenges and enables secure, real-world applications of cardinal-

ity counting in data analytics, providing a strong privacy guarantee

during the counting process. We conducted experimental evalua-

tion on real and synthetic North Carolina voter registration (NCVR)

datasets to verify its accuracy and show its resilience to data errors

when estimating cardinality across multiple data providers while

preserving individual privacy. Accurate cardinality estimation can

be achieved even when a small portion of clients (10%) take part in

each learning round, with a low level of data privacy and a small

federated privacy budget. One future work is to use federated 𝐾-

means clustering with a greater number of 𝐾 and further improve

the complexity of the implementation.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Cardinality Counting in “Alcatraz”: A Privacy-aware Federated Learning Approach WWW ’24, May 13 – May 17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. 2002.

Counting distinct elements in a data stream. In International Workshop on Ran-
domization and Approximation Techniques in Computer Science. Springer, 1–10.

[2] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.

[3] Andrei Z Broder. 1997. On the resemblance and containment of documents. In Pro-
ceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171).
IEEE, 21–29.

[4] Jing Cao, Yu Jin, Aiyou Chen, Tian Bu, and Z-L Zhang. 2009. Identifying high

cardinality internet hosts. In IEEE INFOCOM 2009. IEEE, 810–818.
[5] Yousra Chabchoub and Georges Hébrail. 2010. Sliding hyperloglog: Estimating

cardinality in a data stream over a sliding window. In International Conference
on Data Mining Workshops. IEEE, 1297–1303.

[6] Surajit Chaudhuri, Nilesh Dalvi, and Raghav Kaushik. 2006. Robust cardinality

and cost estimation for skyline operator. In 22nd International Conference on
Data Engineering (ICDE’06). IEEE, 64–64.

[7] Peter Christen, Thilina Ranbaduge, Dinusha Vatsalan, and Rainer Schnell. 2018.

Precise and fast cryptanalysis for Bloom filter based privacy-preserving record

linkage. IEEE Transactions on Knowledge and Data Engineering (2018), 1.

[8] Peter Christen, Anushka Vidanage, Thilina Ranbaduge, and Rainer Schnell. 2018.

Pattern-mining based cryptanalysis of Bloomfilters for privacy-preserving record

linkage. In PAKDD, Springer LNAI. Melbourne, 530–542.

[9] Reuven Cohen and Yuval Nezri. 2019. Cardinality estimation in a virtualized

network device using online machine learning. IEEE/ACM Transactions on
Networking 27, 5 (2019), 2098–2110.

[10] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

2022. Introduction to algorithms. MIT press.

[11] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream

summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[12] Jon P Daries, Justin Reich, Jim Waldo, Elise M Young, Jonathan Whittinghill,

Andrew Dean Ho, Daniel Thomas Seaton, and Isaac Chuang. 2014. Privacy,

anonymity, and big data in the social sciences. Commun. ACM 57, 9 (2014),

56–63.

[13] Damien Desfontaines, Andreas Lochbihler, and David Basin. 2019. Cardinality

estimators do not preserve privacy. Proceedings on Privacy Enhancing Technologies
2019, 2 (2019), 26–46.

[14] Otmar Ertl. 2017. New cardinality estimation algorithms for HyperLogLog

sketches. arXiv preprint arXiv:1702.01284 (2017).
[15] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-

perloglog: the analysis of a near-optimal cardinality estimation algorithm. In

Conference on Analysis of Algorithms (AofA). Nancy, France.
[16] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hyper-

loglog: the analysis of a near-optimal cardinality estimation algorithm. Discrete
mathematics & theoretical computer science Proceedings (2007).

[17] Nikolay Golov, Alexander Filatov, and Sergey Bruskin. 2019. Efficient Exact

Algorithm for Count Distinct Problem. In International Workshop on Computer
Algebra in Scientific Computing. Springer, 67–77.

[18] Stefan Heule, Marc Nunkesser, and Alexander Hall. 2013. HyperLogLog in

practice: algorithmic engineering of a state of the art cardinality estimation

algorithm. In International Conference on Extending Database Technology. 683–
692.

[19] Bernard J Jansen. 2006. Search log analysis: What it is, what’s been done, how

to do it. Library & information science research 28, 3 (2006), 407–432.

[20] Justin M Johnson and Taghi M Khoshgoftaar. 2021. Encoding techniques for

high-cardinality features and ensemble learners. In 2021 IEEE 22nd international
conference on information reuse and integration for data science (IRI). IEEE, 355–
361.

[21] Kenneth Kunen. 2014. Set theory an introduction to independence proofs. Elsevier.
[22] Tobias Kussel, Torben Brenner, Galina Tremper, Josef Schepers, Martin Lablans,

and Kay Hamacher. 2022. Record linkage based patient intersection cardinality

for rare disease studies using mainzelliste and secure multi-party computation.

Journal of Translational Medicine 20, 1 (2022), 458.
[23] David Moore, Colleen Shannon, Douglas J Brown, GeoffreyMVoelker, and Stefan

Savage. 2006. Inferring internet denial-of-service activity. ACM Transactions on
Computer Systems (TOCS) 24, 2 (2006), 115–139.

[24] Foster Provost and Tom Fawcett. 2013. Data Science for Business: What you need
to know about data mining and data-analytic thinking. " O’Reilly Media, Inc.".

[25] Raghu Ramakrishnan, Johannes Gehrke, and Johannes Gehrke. 2003. Database
management systems. Vol. 3. McGraw-Hill New York.

[26] Jeffrey Rosen. 2011. The right to be forgotten. Stan. L. Rev. Online 64 (2011), 88.
[27] Shuji Sannomiya, Akira Sato, Kenichi Yoshida, and Hiroaki Nishikawa. 2017.

Cardinality counting circuit for real-time abnormal traffic detection. In 2017 IEEE
41st Annual Computer Software and Applications Conference (COMPSAC), Vol. 1.
IEEE, 505–510.

[28] Nathaniel Schenker and Trivellore E Raghunathan. 2007. Combining information

from multiple surveys to enhance estimation of measures of health. Statistics in
medicine 26, 8 (2007), 1802–1811.

[29] Rainer Schnell. 2016. Privacy preserving record linkage. In Methodological
developments in data linkage, Katie Harron, Harvey Goldstein, and Chris Dibben

(Eds.). Wiley, Chichester, 201–225.

[30] Chengcheng Shao, Giovanni Luca Ciampaglia, Onur Varol, Alessandro Flammini,

and Filippo Menczer. 2017. The spread of fake news by social bots. arXiv preprint
arXiv:1707.07592 96 (2017), 104.

[31] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.

Membership inference attacks against machine learning models. In 2017 IEEE
symposium on security and privacy (SP). IEEE, 3–18.

[32] Sebastian Stammler, Tobias Kussel, Phillipp Schoppmann, Florian Stampe, Galina

Tremper, Stefan Katzenbeisser, KayHamacher, andMartin Lablans. 2022. Mainzel-

liste SecureEpiLinker (MainSEL): privacy-preserving record linkage using secure

multi-party computation. Bioinformatics 38, 6 (2022), 1657–1668.
[33] Dinusha Vatsalan and Peter Christen. 2016. Privacy-preserving matching of

similar patients. Journal of Biomedical Informatics 59 (2016), 285–298.
[34] K. Wei et al. 2020. Federated Learning With Differential Privacy: Algorithms and

Performance Analysis. IEEE Trans.Inf. Forensics Security 15 (2020), 3454–3469.

https://doi.org/10.1109/TIFS.2020.2988575

[35] Kyu-Young Whang, Brad T Vander-Zanden, and Howard M Taylor. 1990. A

linear-time probabilistic counting algorithm for database applications. ACM
Transactions on Database Systems (TODS) 15, 2 (1990), 208–229.

[36] Nan Wu, Dinusha Vatsalan, Mohamed Ali Kaafar, and Sanath Kumar Ramesh.

2023. Privacy-Preserving Record Linkage for Cardinality Counting. In Pro-
ceedings of the 2023 ACM Asia Conference on Computer and Communications
Security (Melbourne, VIC, Australia) (ASIA CCS ’23). Association for Computing

Machinery, New York, NY, USA, 53–64. https://doi.org/10.1145/3579856.3590338

[37] Wei Xi, Jizhong Zhao, Xiang-Yang Li, Kun Zhao, Shaojie Tang, Xue Liu, and

Zhiping Jiang. 2014. Electronic frog eye: Counting crowd using WiFi. In IEEE
INFOCOM 2014-IEEE Conference on Computer Communications. IEEE, 361–369.

9

https://doi.org/10.1109/TIFS.2020.2988575
https://doi.org/10.1145/3579856.3590338

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Data Privatization
	2.2 K-means Clustering for Cardinality Counting

	3 Proposed Methodology
	3.1 System Model
	3.2 Federated K-means Clustering Problem
	3.3 Threat Model
	3.4 Privacy-preserving Federated K-means Clustering for Cardinality Counting

	4 Experimental Evaluation
	5 Conclusion
	References

