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Abstract—Dynamic constrained multi-objective optimization
problems (DCMOPs) are common in engineering applications.
In these problems, objectives and constraints change over time,
requiring algorithms to adapt quickly and continuously track the
dynamic constrained Pareto front. However, existing DCMOEAs
mainly focus on predicting or perturbing individual solutions
or the centroid of the Pareto set, failing to exploit the overall
spatial structure of the population. Moreover, they insufficiently
utilize historical information, making it difficult to capture long-
term change patterns of the dynamic environment. To address
these issues, this paper proposes a dynamic constrained multi-
objective evolutionary algorithm based on graph-temporal neural
networks. Specifically, the algorithm constructs a population
topology by partitioning subspaces and uses graph convolutional
networks (GCNs) to extract topological features. Subsequently,
it employs gated recurrent units (GRUs) to learn the migration
trends of the Pareto set across historical environments, enabling
accurate prediction of its distribution in new environments. Ad-
ditionally, the algorithm integrates memory-based and diversity-
based strategies to generate initial populations that balance
convergence, feasibility, and diversity. Experimental results on
the DCP test suite show that the proposed algorithm outperforms
five representative DCMOEAs in most test scenarios, validating
its effectiveness in solving DCMOPs.

Index Terms—Evolutionary computation, Dynamic con-
strained multi-objective optimization, Graph convolutional net-
works.

I. INTRODUCTION

Dynamic constrained multi-objective optimization problems
(DCMOPs) have attracted increasing attention in recent years

∗ Corresponding authors.

[1]. These problems are characterized by multiple objectives
and constraints that change over time during the optimization
process [2]. Such problems are prevalent in real-world ap-
plications, such as cognitive radio networks [3] and resource
scheduling [4].

Generally, a DCMOP can be defined as follows:

minF(x, t) = (f1(x, t), . . . , fM (x, t))
T

s.t.

 x = (x1, x2, . . . , xD)T ∈ RD

gi(x, t) ≤ 0, i = 1, . . . , p
hj(x, t) = 0, j = 1, . . . , q

(1)

where x denotes the D-dimensional decision variable in
the decision space RD, and F(x, t) represents the objective
functions. gi(x, t) and hj(x, t) denote the i-th inequality and
j-th equality constraints, respectively. A solution satisfying all
the constraints is considered feasible. The discrete time step t
is defined as follows:

t =

⌊
τ

τt

⌋
1

nt
(2)

where τ is the generation counter, and τt and nt denote the
frequency and severity of environmental changes, respectively.

In environment t, a feasible solution x1 Pareto dominates
another feasible solution x2, denoted as x1 ≺t x2, if and only
if both of the following conditions are satisfied:{

fm(x1, t) ≤ fm(x2, t), ∀m = 1, . . . ,M,

fm(x1, t) < fm(x2, t), ∃m = 1, . . . ,M.
(3)



A feasible solution x∗ is termed a dynamic constrained
Pareto-optimal solution if it is not dominated by any other
feasible solution in the current environment. The set of all
such solutions constitutes the dynamic constrained Pareto set
(DCPS), defined as:

DCPS = {x∗ ∈ Ωt | ∄x ∈ Ωt, x ≺t x
∗} (4)

where Ωt denotes the feasible region at time t. Correspond-
ingly, the set of objective vectors of the DCPS forms the
dynamic constrained Pareto front (DCPF), defined as:

DCPF = {F(x∗, t) | x∗ ∈ DCPS} (5)

Solving DCMOPs requires strategies capable of tracking
the DCPS as environments shift while maintaining solution
feasibility under current constraints. Although DMOPs and
CMOPs have been examined extensively, research on DC-
MOPs remains limited and presents significant challenges [5].

DCMOPs lie at the intersection of DMOPs and CMOPs.
Consequently, designing dynamic constrained multi-objective
evolutionary algorithms (DCMOEAs) often integrates en-
vironmental change response mechanisms from DMOEAs
with constraint-handling techniques (CHTs) from CMOEAs.
Common response mechanisms include diversity-based meth-
ods that introduce random mutations [6], memory-based ap-
proaches that reuse historical high-quality solutions [7], and
prediction-based models that learn the DCPS trajectory to fore-
cast distributions in new environments [8]. Regarding CHTs,
critical approaches include penalty methods for balancing fea-
sibility and convergence [9], decoupling methods for assessing
constraints separately [10], and multi-objective reformulation
methods that treat constraints as additional objectives [11].
Furthermore, problem transformation methods recast CMOPs
into simpler forms, exemplified by CCMO [12] for coevolution
and PPS [13] for two-stage search.

Based on this, recent studies have proposed various DC-
MOEAs [14]. Azzouz et al. combined an adaptive penalty with
a diversity-based environmental change response mechanism
to propose DC-NSGAII [15]. Specifically, its variant DC-
NSGAII-A introduces random solutions after changes, while
DC-NSGAII-B perturbs existing ones. Subsequently, Chen et
al. proposed dCMOEA, which employs adaptive penalties
for constraint handling [16]. They also designed a hybrid
diversity–memory response mechanism that repairs archived
high-quality solutions using new information. Consequently,
the new initial population comprises half repaired solutions
and half random solutions. This mechanism was further cou-
pled with a reference-point based NSGA-III to form DC-
NSGA-III for comparative analysis. More recently, Chen et
al. developed an enhanced two-stage hybrid diversity–memory
mechanism [17]. The first stage introduces random solutions
to boost diversity, while the second stage perturbs solutions
based on the centroids of historical non-dominated sets. By
embedding this mechanism into the CCMO framework, they
proposed TDCEA. However, such mechanisms primarily rely
on mixing historical solutions with randomness, which may
be insufficient for tracking rapidly evolving environments.

To address this limitation, Zhang et al. proposed HATC,
which combines a prediction-based response mechanism with
multi-population coevolutionary constraint handling [17]. This
method analyzes historical non-dominated solutions to predict
promising regions in the new environment and initializes the
population accordingly.

However, current DCMOEAs still face certain limitations.
First, most environmental change response mechanisms focus
on predicting or perturbing individual solutions or the Pareto
centroid to adapt to the new environment, often overlooking
the population’s overall spatial structure and the topological
relationships among individuals. Second, when initializing
the population for the next environment, most mechanisms
utilize only one or two past generations, thereby failing to
capture long-term environmental change trends. Consequently,
these limitations hinder the ability of DCMOEAs to learn
environmental dynamics and accurately generate high-quality
initial populations.

In recent years, neural network-based learning methods
have gained significant attention in evolutionary optimization;
however, their application in DCMOEAs remains limited. In
particular, graph convolutional networks (GCNs) and gated
recurrent units (GRUs) offer the potential to address the
aforementioned limitations. In DCMOPs, dynamic objectives
and constraints shape population distributions that exhibit a
natural topology in the decision space [18]. Correlations exist
among individuals, and an adjacency matrix can be employed
to quantify these relationships [19]. GCNs aggregate features
from nodes and their neighbors via the adjacency matrix [20],
effectively capturing spatial topology and local information.
This provides a promising modeling tool for environmental
change response mechanisms to predict high-quality popula-
tions in new environments. Moreover, dynamic environments
in DCMOPs exhibit temporal correlations, thereby supporting
prediction-based response mechanisms. Unlike linear predic-
tors, GRUs utilize gating mechanisms to retain and update
historical information, allowing them to learn long-term de-
pendencies and more accurately forecast the evolution of
the Pareto set. Although prior work has demonstrated the
utility of GRUs in DMOPs [21], existing methods typically
predict only isolated non-dominated solutions, ignoring the
overall population topology, and fail to handle DCMOPs
with dynamic constraints. Consequently, effectively utilizing
population structure and historical change patterns to enhance
dynamic responses remains a key open challenge for DC-
MOEAs.

Motivated by these considerations, we develop a DCMOEA
that integrates GCNs and GRUs. The main contributions are
summarized as follows:

1) We propose a graph-temporal neural network framework
to predict population distributions in new environments.
This model employs GCNs to capture the spatial topol-
ogy of Pareto solutions in the decision space and utilizes
GRUs to learn temporal change patterns from multi-
ple historical environments, thereby enabling accurate



forecasting of the Pareto set’s evolution in the next
environment.

2) Based on the graph-temporal network, we design a
prediction-based environmental change response mecha-
nism. This mechanism is augmented with memory- and
diversity-based strategies to generate high-quality initial
populations, thereby enhancing performance and robust-
ness across various dynamic constrained scenarios.

3) Extensive experiments on the DCP benchmark suite
demonstrate that the proposed algorithm significantly
outperforms five representative state-of-the-art algo-
rithms in solving DCMOPs.

II. PROPOSED METHOD

This section outlines the proposed Method and the core
environmental change response mechanism based on a graph
temporal neural network.

A. Method Architecture

Fig.1 shows the overall framework of our dynamic con-
strained multi-objective optimization algorithm. Similar to
typical DCMOEAs, it cycles through environmental change
detection, environmental change response, and static optimiza-
tion. The detection step monitors shifts in objectives and
constraints; once a change is found, the response mechanism
seeds a population suited to the new environment; during
the static phase, the constrained MOEA drives the population
toward the current constrained Pareto front. The main novelty
lies in the response mechanism, centered on a GCN–GRU
graph temporal predictor. It captures the topology of Pareto
solutions, learns temporal change patterns from past environ-
ments, and predicts high-quality initial populations for the next
environment. Two auxiliary response strategies are combined
to balance convergence, feasibility, and diversity. Notably, the
prediction-based response is modular: it can plug into diverse
constrained MOEAs to form DCMOEAs for different dynamic
constrained settings.

The algorithm proceeds as outlined in pseudocode Algo-
rithm 1. It first randomizes the N individuals in P and the graph
temporal network parameters (line 2). Because training sam-
ples are scarce in dynamic optimization, it partitions the ob-
jective space with uniform weight vectors Λ = {λ1, . . . , λM}
into M subspaces and builds an adjacency matrix A over
subspace nodes (line 3), reducing topology from individuals to
subspaces. In each generation, the algorithm checks whether
the environment has changed (line 5). If a change is detected,
the response mechanism triggers: the graph temporal network
forecasts the shift of the Pareto population, and memory-
based plus diversity-based auxiliaries jointly build an initial
population suited to the new environment (line 7), detailed in
Section II-B. It then enters static optimization, using a suitable
CMOEA to produce the next generation as needed (line 10).
After each evolution, it extracts nondominated solutions of P ,
computes and stores subspace centers Ct = {Ct

1, . . . , C
t
M}

over M subspaces (line 11); these centers feed the graph
temporal network for training and prediction. This loop repeats

until termination, outputting the constrained Pareto set in the
final environment.
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Fig. 1. Framework of the proposed algorithm.

Algorithm 1: Graph-Temporal Neural Network Based
DCMOEA Framework
Input: the DCMOP, population size N , number of

subspaces M , prediction subpopulation size
Np, memory subpopulation size Nm, random
subpopulation size Nr

Output: the DCPOSt at the final environment step t
1 set the environment step t← 0;
2 initialize population P0 with size N and

graph-temporal neural network;
3 partition objective space into M subspaces;
4 compute adjacency matrix A;
5 while termination condition is not met do

// Static optimization phase
6 Pt ← CMOEA(Pt);
7 compute and store the centroids of non-dominated

solutions Ct;
8 environment detection ← ChangeDetection(Pt);
9 if environmental change is detected then

10 t← t+ 1;
11 EnvironmentResponseStrategy ; // Algorithm 2
12 end
13 end
14 return DCPOSt;

B. Environmental change response mechanism based on a
graph temporal neural network

The core of the proposed environmental change response
mechanism is a graph temporal neural network that cascades
a GCN and a GRU. To realize this mechanism, the algorithm
first builds the population topology. Specifically, it partitions
the objective space into M subspaces using uniformly dis-
tributed weight vectors. Each subspace is one node of the
population topology. Pareto-optimal solutions are assigned to



the nearest subspace by distance to its weight vector. Edges are
built according to subspace affinity. The edge weight between
subspace nodes i and j, Aij , depends on the normalized
Euclidean distance between wi and wj :

Aij = 1− ∥wi − wj∥2
maxi,j∥wi − wj∥2

(6)

Thus, closer subspaces have larger edge weights, indicating
stronger affinity. In the population topology, each node feature
records the offsets of that subspace’s Pareto cluster centers
across three consecutive past environments. Concretely, it uses
[∆Ct−2

m ,∆Ct−1
m ,∆Ct

m] to capture the movement direction
and magnitude between adjacent environments, which is com-
puted as:

∆Ct
m = Ct

m − Ct−1
m (7)

Here, Ct
m is the cluster center of subspace m in environment

t. Compared with raw centers, these offsets show stronger
continuity across dynamic environments. Their variation am-
plitude is also smaller, which helps reduce learning difficulty
and improve prediction accuracy.

Based on the above topology, the graph temporal network
uses two inputs: the three-environments offset series of sub-
space cluster centers [∆Ct−2,∆Ct−1,∆Ct], and the adjacency
matrix A. It then predicts the next-environment offset ∆Ct+1

for the Pareto cluster centers. In the network, the GCN layer
extracts subspace topology features, with a forward pass:

H(l+1) = σ(ÂH(l)W (l)) (8)

Here, Â is the normalized adjacency, H(l) is the node feature
matrix at layer l, the input layer H(0) is the offset matrix
of cluster centers. W (l) is a learnable weights, and σ the
activation. The GCN uses the adjacency to extract spatial
features from each historical offset and captures inter-subspace
topology. Then the GRU layer takes the topology feature
sequence from each environment. It uses gating to learn
temporal migration patterns of the subspaces, with a forward
pass:

St = (1− ut)⊙ St−1 + ut ⊙ S̃t (9)

Here St is the hidden state at environment t, ut is the update
gate, S̃t is the candidate state, and ⊙ denotes element-wise
multiplication.

For network training, we adopt an incremental scheme to
cope with the few samples available in dynamic optimiza-
tion. At each environmental change, [∆Ct−3,∆Ct−2,∆Ct−1]
serve as train inputs and ∆Ct as the train label; Then we
apply several gradient-descent steps to adjust the network
weights, so that the network can keeps prior knowledge
while adapting the newest pattern. After training, the network
takes [∆Ct−2,∆Ct−1,∆Ct] as input and predicts the next-
environment offset ∆Ct+1.

Once ∆Ct+1 is obtained, the algorithm shifts the Pareto
solutions accordingly. For the i-th Pareto solution in subspace
m, the update is:

xi
m ← xi

m +∆Ct+1
m (10)

To keep the population size, the algorithm updates Np

Pareto solutions and forms the predicted subpopulation PPt.
Meanwhile, two auxiliary strategies balance feasibility and
diversity: keep Nm feasible solutions in the new environment
as the memory subpopulation PMt to secure feasibility;
randomly generate Nr solutions as the random subpopulation
PRt to widen the search and avoid local optima. Finally, these
three subpopulations are merged into the initial population Pt

for the new environment. Notably, during the first four envi-
ronmental changes, historical data are insufficient to train the
network, so a simplified change response mechanism is used:
only the memory and random subpopulations (each 0.5N ) are
combined to ensure basic responsiveness early on. Algorithm
2 presents the detailed procedure of the graph temporal net-
work–based environmental change response mechanism.

Algorithm 2: Graph-Temporal Neural Network-based
Environment Response Strategy
Input: population Pt, adjacency matrix A,

graph-temporal neural network network,
historical centroids Ct−4 . . . Ct, prediction
subpopulation size Np, memory subpopulation
size Nm, random subpopulation size Nr,
number of subspaces M

Output: updated population Pt, updated
graph-temporal neural network

1 if t ≥ 5 then
2 compute centroid shifts ∆Ct−3 . . .∆Ct;
3 network ← Train(network,

[∆Ct−3,∆Ct−2,∆Ct−1], A;∆Ct);
4 ∆Ct+1 ← Predict(network,

[∆Ct−2,∆Ct−1,∆Ct], A);
5 for k = 1 to M do
6 for Np non-dominated individual xi

k in
subspace k do

7 xi
k ← xi

k +∆Ct+1
k ;

8 PPt ← PPt ∪ {xi
k};

9 end
10 end
11 select Nm feasible solutions from Pt to form

memory subpopulation PMt;
12 randomly generate Nr individuals as random

subpopulation PRt;
13 Pt ← PPt ∪ PMt ∪ PRt;
14 end
15 else
16 select 0.5N feasible solutions from Pt to form

memory subpopulation PMt;
17 randomly generate 0.5N individuals as random

subpopulation PRt;
18 Pt ← PMt ∪ PRt;
19 end
20 return Pt, network;



III. EXPERIMENTA STUDY

A. Experimental Setup

To assess effectiveness, we compare the proposed algo-
rithm with five advanced DCMOEAs: DC-NSGAII-A [15],
DC-NSGAII-B [15], DC-NSGAIII [16], dCMOEA [16], and
TDCEA [17]. For fair comparison, parameter settings for all
baselines follow their original papers. In the static optimization
phase, we embed CCMO in our framework and use differential
evolution and polynomial mutation operators for population
evolution.

In the graph-temporal network, both the GCN and GRU use
single layers to keep training simple under scarce dynamic-
optimization samples. Specifically, the GCN input size equals
the decision dimension D, its hidden size is 1.5D with ReLU
activation; the GRU hidden state is size D, matching the
output. Training uses Adam with a learning rate of 0.002.
Each incremental training step applies 30 gradient-descent
updates with mean squared error loss. Meanwhile, A Dropout
layer follows the GRU to reduce overfitting. Experiments use
the DCP suite [17] (DCP1–DCP9) covering diverse dynamic
patterns of constraints and objectives. The experiments use
a decision dimension of D = 10 and a population size of
N = 100. Environmental change frequency τt ∈ {10, 20, 30}
and amplitude nt ∈ {5, 10, 20} , span 81 dynamic constrained
scenarios. Each algorithm runs 30 independent times per test,
with 30 environmental changes per run. No environmental
change occurs in the first 80 generations.

Algorithm performance is evaluated with mean inverted
generational distance (MIGD) [22]. Smaller MIGD indicates
better performance. Statistical significance is assessed with the
Wilcoxon rank-sum test at a 0.05 level. In the result table, “+”,
“-”, and “=” denote significantly better, significantly worse, or
no significant difference relative to our method.

B. Experimental Results Analysis

Table I reports MIGD significance results for our method
versus five comparators across nine tests. The statistics show
our method wins in 81, 81, 81, 81, and 65 scenarios against the
five baselines, indicating clear overall gains in convergence,
feasibility, and diversity. These gains stem from the graph tem-
poral network capturing both spatial topology and historical
change patterns, enabling fast seeding of high-quality popu-
lations after an environmental shift. Further analysis shows
that DC-NSGAII-A and DC-NSGAII-B perform similarly in
most cases because they share the same constrained MOEA
in the static phase. By contrast, although both our method and
TDCEA use CCMO for static optimization, ours outperforms
TDCEA in most scenarios. TDCEA perturbs around historical
nondominated centroids, making limited use of full historical
population information. Our approach learns whole-population
trends in dynamic environments via the graph temporal net-
work, allowing more accurate prediction of Pareto population
shifts in new environments.

In some DCP4, DCP5, and DCP9 scenarios, our method
does not reach the best populations. These cases have narrow,

scattered feasible regions, posing higher demands on dynamic
constraint handling. Our graph temporal model still has limits
on such special problems. Especially when changes are mild,
it cannot clearly outperform other response mechanisms.

To visualize the optimization effect more clearly, Fig.2
shows the final DCPOFs produced by six algorithms on
DCP7 (τt=10, nt=5). DCP7 involves time-varying objectives
and constraints. Even with mild changes, methods like DC-
NSGAII-A with simple responses fail to reach the true
DCPOFs. TDCEA covers the DCPOFs overall but shows
noticeable deviations in some environments. By contrast, our
approach tracks the DCPOFs more accurately and balances
convergence, feasibility, and diversity.
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Fig. 2. DCPOFs of environments obtained by the comparative algorithms on
DCP7 (nt = 5, τt = 10). Red points are true DCPOFs, and blue ones are
DCPOFs obtained by algorithms.

IV. CONCLUSION

This paper proposes a graph-temporal neural network-based
DCMOEA to address the insufficient utilization of historical
population information in existing approaches. The method
first partitions the objective space into subspaces to construct a
population topology. Subsequently, a GCN captures the topo-
logical relationships among subspaces, while a GRU learns
the temporal evolutionary patterns of the Pareto set, enabling
the accurate prediction of a high-quality population for the
next environment. Additionally, memory-based and diversity-
based response strategies are integrated to maintain population
feasibility and diversity. Experimental results demonstrate that
the proposed method outperforms several representative algo-
rithms in overall performance. Future work will focus on: (1)
designing more robust feasibility-maintenance strategies for
dynamic constrained scenarios with complex feasible regions;
(2) refining the model architecture and training scheme by
exploring deeper networks and data augmentation to enhance
prediction accuracy and generalization; and (3) applying the
method to engineering problems to validate its practicality in
solving real-world DCMOPs.
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