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Abstract

The UMLS Metathesaurus integrates more
than 200 biomedical source vocabularies. Dur-
ing the Metathesaurus construction process,
synonymous terms are clustered into concepts
by human editors, assisted by lexical similar-
ity algorithms. This process is error-prone
and time-consuming. Recently, a deep learn-
ing model (LexLM) has been developed for
the UMLS Vocabulary Alignment (UVA) task.
This work introduces UBERT, a BERT-based
language model, pretrained on UMLS terms
via a supervised Synonymy Prediction (SP)
task replacing the original Next Sentence Pre-
diction (NSP) task. The effectiveness of
UBERT for UMLS Metathesaurus construc-
tion process is evaluated using the UMLS Vo-
cabulary Alignment (UVA) task. We show that
UBERT outperforms the LexLM, as well as
biomedical BERT-based models. Key to the
performance of UBERT are the synonymy pre-
diction task specifically developed for UBERT,
the tight alignment of training data to the UVA
task, and the similarity of the models used for
pretrained UBERT.

1 Introduction

The Unified Medical Language System (UMLS)
Metathesaurus is a large biomedical thesaurus de-
veloped by the US National Library of Medicine'.
It clusters synonymous terms from different
biomedical source vocabularies into concepts. The
current UMLS Metathesaurus construction process
relies heavily on lexical similarity algorithms to
identify candidates for synonymy and the final deci-
sion for synonymy or non-synonymy among terms
comes from the domain experts through manual
curation. Given the current scale of the UMLS
Metathesaurus, with millions of terms from 214
source vocabularies, it is shown that the current con-
struction process is undoubtedly costly and error-
prone (Cimino, 1998; Cimino et al., 2003; Jimeno-

'https://uts.nlm.nih.gov/

Yepes et al., 2009; Morrey et al., 2009; Mougin
et al., 2009).

Motivation. Clustering biomedical terms into con-
cepts in the UMLS Metathesaurus was formalized
into a vocabulary alignment problem identified as
UMLS Vocabulary Alignment (UVA) or synonymy
prediction task by (Nguyen et al., 2021). The UVA
is different from other biomedical ontology align-
ment efforts by the Ontology Alignment Evaluation
Initiative (OAEI) due to the extremely large prob-
lem size of the UVA with the need to compare 8.7M
biomedical terms pairwise (as opposed to tens of
thousands of pairs in OAEI datasets). The authors
of (Nguyen et al., 2021) also introduced a scalable
supervised learning approach based on the Siamese
neural architecture which leverages the lexical in-
formation present in the terms.

Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019) is a language
model (LM), based on the multi-layer, bidirectional
architecture of Transformers (Vaswani et al., 2017).
BERT is originally trained on two self-supervised
tasks named Masked Language Modelling (MLM)
and Next Sentence Prediction (NSP). Recently
BERT has been pretrained on several biomedical
and clinical corpora resulting in models, such as
BioBERT (Lee et al., 2019), BlueBERT (Peng et al.,
2019), SapBERT (Liu et al., 2021) and UmlsBERT
(Michalopoulos et al., 2020), which have been used
successfully on several biomedical NLP tasks, such
as biomedical named entity recognition, biomed-
ical relation extraction, biomedical question an-
swering, biomedical sentence similarity, biomedi-
cal document classification and medical entity link-
ing to provide state-of-the-art (SOTA) results. We
believe that a parallel can be drawn between Entity
Linking (EL) and UVA, because both tasks try to
link an entity to a specific term in a reference ter-
minology. The difference is that, in EL, the entity
to be linked is found in context (embedded in a sen-
tence or paragraph), whereas, in UVA, the entity
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is provided without any context (i.e., just the term
itself). Our motivation for this work is to inves-
tigate how BERT, pretrained on similar data (i.e.,
UMLS data and biomedical literature) performs in
the context of UVA.

Objectives. The first objective of this work is to
improve upon the performance of current baselines
for the UVA task. To this end, we develop UBERT,
a novel BERT-based language model specifically
trained for synonymy prediction.

The second objective is to assess the contribution
of two elements of UBERT, namely whether the
MLM is beneficial and which datasets provide op-
timal training for the MLM.

The third objective is to explore how UBERT per-
forms when further pretrained on several BERT-
based models initially pretrained on a variety of
biomedical data (BioBERT), clinical data (Blue-
BERT) and UMLS data (SapBERT, UmlIsBERT).
Our last objective is to assess the generalizability of
UBERT to the entire UMLS Metathesaurus, by an-
alyzing whether overall performance gains realized
by UBERT over baselines are conserved across the
entire testing dataset.

Approach. We identify BERT-based models (in
this work BERT-based models refer to BioBERT,
BLUEBERT, SapBERT and UmlIsBERT) and use
them as baselines without further pretraining or
fine-tuning on the UVA task. Another baseline used
in our work is the LexLM provided by (Nguyen
et al., 2021). Then we design experiments to
pretrain UBERT from scratch (without using any
trained weights from other biomedical or clinical
BERT-based models) resulting in three variants of
UBERT. We evaluate the performance of each vari-
ant on a test dataset provided in section 4.2.3. In
addition, we further pretrain UBERT on top of
already trained weights from four existing BERT-
based models and evaluate their performance on
the same test datasets. Finally, we perform a semi-
qualitative analysis of the performance of UBERT
on the testing dataset by computing the usual per-
formance metrics for specific subsets of the testing
dataset across the spectrum of lexical similarity
between terms in the pairs of terms evaluated for
synonymy.

Contributions. We introduce UBERT, a novel
BERT-based language model, and three variants of
UBERT based on the pretraining tasks and pretrain-
ing data used. We show that SapBERT+UBERT
outperforms the previous LexLM baseline and "off-

the-shelf" BERT-based baselines. We also demon-
strate that, for the UVA task, without further pre-
training with UBERT, "off-the-shelf" BERT-based
models perform poorly.

We show that pretraining with the MLM task first
and then pretraining with the SP task results in
better performance compared to UBERT without
the MLM task. And we further demonstrate that
UBERT performs better when the MLM task is
trained with UMLS data only (without biomedical
literature data).

We demonstrate that UBERT variants that are fur-
ther pretrained on BERT-based models perform bet-
ter than the variants that are not. Further, we show
that, among the various biomedical BERT-based
models used for pretraining, SapBERT yields the
best performance.

We show that overall performance gains (F1 score)
realized by UBERT over baselines are conserved
across the entire testing dataset across the spec-
trum of lexical similarity between terms in the pairs
of terms evaluated for synonymy, indicating that
UBERT performance is likely to generalize to the
entire UMLS Metathesaurus.

2 Background

Nguyen et al. (Nguyen et al., 2021) have elabo-
rated the background knowledge required to under-
stand the UVA task. In this section we will briefly
summarize it. In this work, we use the 2020AA
version of the UMLS Metathesaurus which con-
tains 15.5 million atoms, the building block of the
UMLS Metathesaurus, from 214 souce vocabular-
ies grouped into 4.28 million concepts. An atom
(atom string) coming from a source vocabulary is
uniquely identified in the UMLS Metathesaurus by
an atom unique identifier (AUI). The same term can
appear in the UMLS Metathesaurus with different
AUIs if it comes from different source vocabular-
ies. Atoms that have the same meaning are clus-
tered into the same concept identified by a concept
unique identifier (CUI). In the UVA task, given two
atom strings, a computational model is expected to
predict their synonymy (or non-synonymy).

The UMLS Metathesaurus contains approxi-
mately ten million English atom strings, each of
which being linked to a concept. Since the au-
thors of (Nguyen et al., 2021) focus on assessing
whether two atoms are synonymous and should
be associated with the same concept, the problem
is formulated as a similarity task. We maintain



this same problem definition from (Nguyen et al.,
2021).

3 Related Work

In this section we briefly review previous work on
the UVA task, BERT and how BERT-based LMs
are used in BioNLP tasks.

3.1 LexLM for the UVA Task

Nguyen et al. (Nguyen et al., 2021) have intro-
duced UVA as a new task in the BioNLP do-
main and demonstrated that LexLM, a Siamese
architecture-based Bidirectional Long Short Term
Memory (Bi-LSTM) network with BioWordVec
embeddings (Zhang et al., 2019). LexLLM has a
F1-score of 94.8%, precision of 94.64%, recall of
94.96% and outperforms a rule-based approach
(RBA) described in the same work, in F1 score
(+14.1%), precision (+2.4%) and recall (+23%).

3.2 BERT: Bidirectional Encoder
Representations from Transformers

BERT (Devlin et al., 2019) is a language model,
based on the multi-layer, bidirectional architecture
of Transformers (Vaswani et al., 2017), which pro-
vides contextual word representations as opposed
to context independent distributed word represen-
tations introduced by Word2Vec (Mikolov et al.,
2013), Glove (Pennington et al., 2014), fasttext
(Bojanowski et al., 2017) and Biowordvec (Zhang
et al., 2019) (in the biomedical context). BERT is
trained on two unsupervised training tasks, namely
Masked Language Modeling (MLM) and Next Sen-
tence Prediction (NSP).

The MLM task allows the model to learn the
bidirectional context of a target word in the training
process. An input sequence is passed to the model
with 15% of the tokens masked and the masked
tokens are predicted by the model. In order to
reduce the mismatch between training and testing
data, a masked word is replaced by a [MASK]
token only 80% of the time. Ten percent of the time,
the masked word is replaced by a random word and
the remaining 10% of the time, the masked word is
unchanged.

The NSP task allows the model to learn the re-
lationship between two consecutive segments of a
document (e.g., consider segment A and segment
B). This is configured as a binarized classification
task where 50% of the time, segment B actually
follows segment A in a document and in the other
50% it does not.

3.3 BERT-based Language Models and
Biomedical NLP (BioNLP) tasks

In the biomedical domain, BERT is pretrained on
large biomedical corpora to create language models
(presented below) that have performed successfully
on downstream BioNLP tasks, such as named entity
recognition, natural language inference and entity
linking. This demonstrates the importance of pre-
training BERT-based models on domain specific
data to achieve better performance.

SapBERT (Liu et al., 2021) and UmlsBERT
(Michalopoulos et al., 2020) are two recent BERT-
based models that leverage UMLS Metathesaurus
data for pretraining BERT. SapBERT pretrains on
synonymous and non-synonymous pairs of English
entries in the UMLS Metathesaurus belonging to
the same concept for the downstram task of Medi-
cal Entity Linking. The authors have introduced a
metric learning framework to self-align the synony-
mous biomedical entities. UmIsBERT augments
the MLLM task for pretraining with UMLS Metathe-
saurus terms by taking into consideration the asso-
ciations between the words specified in the UMLS
Metathesaurus. Instead of predicting a single word
in the MLLM task, UmIsBERT tries to predict all
the acceptable words for the masked token through
words associated with the same CUL

4 UBERT

UBERT is the novel BERT-based LM architecture
we are introducing. In the subsequent subsection,
we describe the novel additions we made to BERT
to create UBERT as well as the datasets used to
train UBERT.

4.1 UBERT Architecture

As illustrated in Figure 1, we use the MLM task as
it is and change the NSP task to a binarized syn-
onymy prediction task when pretraining UBERT.
Pretraining on the MLM task is directly inherited
from the original BERT architecture’. Datasets
used for pretraining and testing are presented in

section 4.2

4.1.1 Synonymy Prediction (SP)

We are re-purposing the binarized classification
task of NSP to SP. This is a supervised task
whereas the original NSP was an unsupervised
task. Atom string pairs annotated as synonymous

“We have used the Transformers implementation of BERT
for pretraining
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Figure 1: General UBERT Architecture; In UBERT-
A, Masked Language Modelling is not used and in
UBERT-B1 and UBERT-B2, Masked Language Mod-
elling is used, but trained on different biomedical
datasets

or non-synonymous are used as training data in
the pretraining process. Two atoms are considered
synonymous if they belong to the same concept and
non-synonymous otherwise. In place of sequence 1
and sequence 2 in NSP, we use atom string 1 and
atom string 2 and in place of next sentence label,
the state of synonymy (or non-synonymy) between
atom string 1 and atom string 2 is used (binary
label [0 or 1]). Similar to NSP, where special
[CLS] and [SEP] tokens are used to separate two
input sequences, in SP we use them to separate the
two atom strings.

The input is processed as following for UBERT’s
SP task before it is sent through the model. A
[CLS] token is added to the beginning of the first
atom string and a [SEP] token is added to the end
of each atom string. Another embedding indicating
atom string 1 or atom string 2 is then added to each
token. Finally a positional embedding is added to
tokens indicating the position of each token. This
processing is similar to how BERT preprocesses
its input and we direct the reader to (Devlin et al.,
2019) for a full explanation of the concept and
implementation.

When predicting whether two atom strings are
synonymous or not, the following actions are taken
by UBERT. (1) The input sequence presented
above is sent through the UBERT model. (2) The
output of the [CLS] token is then transformed
to a 2X1 vector using a fully connected, binary
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classification layer. (3) Finally, to calculate
the probability of synonymy, the output of the
classification layer is sent through a softmax
function.

' 4.1.2 Tokenizer

. Input sequences to both MLM and SP tasks of all
. the UBERT variants are tokenized using Wordpiece
| tokenization approach (Wu et al., 2016) with a

50000 token vocabulary. The tokenizer was trained
on UMLS atom strings described in section 4.2.1
and a biomedical literature dataset described in sec-
tion 4.2.2. For other BERT-based models, the tok-
enizers provided online by the respective authors
were used.

We combine both UMLS atom strings and the
biomedical literature when training the tokenizer,
because we have identified that 56% of the words
in the UMLS are not found in the biomedical lit-
erature and 86% of the words in the biomedical
literature are not found in the UMLS.

4.2 Datasets

This section discusses the three datasets used in the
pretraining and testing of the UBERT variants.

4.2.1 UMLS atom strings dataset

This consists of 8,713,194 English UMLS atom
strings extracted from the 2020AA release of the
UMLS Metathesaurus.

4.2.2 Biomedical literature dataset

In this work we use the dataset of PubMed abstracts
and PubMed Central (PMC) full-text articles pro-
vided by (Lee et al., 2019) with 4.5 billion and 13.5
billion words respectively.

4.2.3 Annotated synonymy datasets

We thank (Nguyen et al., 2021) for providing the
training, development and testing datasets used
in this work. These datasets consist of English
atom strings from active source vocabularies of
the 2020AA release of the UMLS Metathesaurus.
Annotated datasets are constructed by including
synonymous atom string pairs (atom strings linked
to the same concept) and non-synonymous atom
string pairs (atom strings linked to different con-
cepts). There are approximately 27.9M syn-
onymous pairs (positive samples) and 104 non-
synonymous atom pairs (negative samples). The
ratio between non-synonymous atom string pairs
and synonymous atom string pairs is high since



most atoms do not share the same CUI. Therefore
to create more balanced datasets (Nguyen et al.,
2021) have reduce the negative (non-synonymous)
samples to approximately 170M.

In this work, we use the GEN_ALL dataset
from (Nguyen et al., 2021). The training and
testing datasets do not contain overlapping data
points. The training dataset consists of 118,789,005
annotated (for synonymy and non-synonymy)
atom string pairs and testing dataset consists of
171,991,918 annotated atom string pairs. Statistics
of the training, development and testing datasets
are listed in Table 1.

Training Development Testing
Synonyms 16,743,627 5,581,208 5,581,208
Non-synonyms 102,045,378 34,015,125 166,410,710
Total 118,789,005 39,596,333 171,991,918

Table 1: Number of synonymous and non-synonymous
atom string pairs in the training, development and test-
ing dataset (GEN_ALL).

5 Experimental Setup and Evaluations

In this section we present the pretraining and eval-
uation setup of UBERT variants and pretrained
variants (see Figure 2).

5.1 UBERT Variants

We create three UBERT variants, UBERT-A,
UBERT-B1 and UBERT-B2 depicted in Figure 2.
UBERT-A only uses the SP task, while the other
two variants also use the MLM task for pretraining.
The difference between UBERT-B1 and UBERT-
B2 lies in the dataset used to pretrain the MLM
task.

5.1.1 UBERT-A

This variant of UBERT is pretrained using only the
SP task, i.e., without the MLM task. We first ini-
tialize UBERT-A with random weights and further
pretrain it with the SP task on annotated synonymy
dataset described in section. 4.2.1.

5.1.2 UBERT-B1 and UBERT-B2

These two UBERT variants are similar in the fol-
lowing sense. Both models are initialized on ran-
dom weights and further pretrained on MLM task
and then the resulting checkpoint from training the
MLM task is used consecutively to initialize the
pretraining of SP task with annotated synonymy
dataset 4.2.1.

The difference between UBERT-B1 and UBERT-
B2 lies in the datasets used for pretraining the
MLM task. In UBERT-B1 the MLM task is pre-
trained using the combined dataset of UMLS atom
strings and biomedical literature. In UBERT-B2,
the MLM task is pretrained using only UMLS
atom strings (see section 4.2.1). Once the mod-
els are trained on the MLM task with different
datasets, each resulting model is then used to ini-
tialize the weights for further pretraining with
the synonymy prediction task using the annotated
synonymy dataset in 4.2.3 (which use the same
resources and the input sequence length as the
UBERT-A model).

5.2 Pretrained Variants

In pretrained variants the UBERT-A model is
further pretrained on top of already trained weights
of four BERT-based models.

We initialize each pretrained variant with the
pretrained weights and the tokenizer released by
the corresponding BERT-based model, and further
pretrain using the annotated synonymy dataset on
SP task with the same hardware requirements as
UBERT-A and the same maximum input sequence
length.

All the UBERT variants and pretrained variants
are tested on the synonymy prediction task using
the test dataset from Table 1. The best performing
model (with regard to F1-score) is selected from
the training epochs or steps for each experiment.
Testing is done on this best performing model.

5.3 Implementation Details

We use the Transformers® API to develop the train-
ing, evaluation and testing scripts of all the models
mentioned in this paper. Since training, evaluation
and testing of BERT-based architectures with mil-
lions of data points, is computationally expensive,
we do distributed training, evaluation and testing
utilizing the Pytorch* framework. The physical in-
frastructure used for the experiments is the Biowulf
high-performance computing cluster’ at the Na-
tional Institute of Health (NIH). We use Slurm®
workload manager to submit the training, evalu-

Shttps://huggingface.co/transformers/
v4.5.1/index.html

*https://pytorch.org/

Shttps://hpc.nih.gov/

®https://slurm.schedmd.com/
documentation.html
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Figure 2: Experimental setup for training UBERT variants and pretrained variants. The datasets used for pretrain-

ing are indicated inside the dotted line boxes

Model GPUs Batch Size per GPU  Input Sequence Length  Num. of Days Trained Num. of Epochs/ Steps Trained
UBERT-A 16 v100x GPUs (32GB of RAM) 256 32 8 50 epochs
UBERT-B1 (MLM task) 16 v100x GPUs (32GB of RAM) 8 512 7 410 steps
UBERT-B2 (MLM task) 16 v100x GPUs (32GB of RAM) 256 32 8 3.5k steps

Table 2: Resource utilization

ation and testing jobs to Biowulf. If not stated
specifically, all the training parameters are set to
defaults as mentioned in Transformers API docu-
ments’ (e.g., learning rate, gradient accumulation
steps, optimizer, etc.). Table 2 summarizes the
computing resources required by the models.

Our code will be available at https://github.

com/naaclubert/UBERT. We recommend
reaching out to Nguyen et al. (Nguyen et al., 2021)
for training and testing data.

5.4 Semi-quantitative Evaluation

We divide the large testing dataset into 10 subsets
based on the degree of lexical similarity (measured
by the Jaccard score based on normalized words)
between the pairs of atoms being evaluated for
synonymy. Since the Jaccard score varies between
0 and 1, we use 10 intervals of 0.10. Using the
best performing UBERT model, we compute the
usual performance metrics (precision, recall and
F1 score) for the pairs of atoms in each interval of
lexical similarity.

"nttps://huggingface.co/transformers/
v4.5.1/main_classes/trainer.html

5.5 Statistical Analysis

To assess the statistical significance of the dif-
ference in overall performance between the
best UBERT and the reference LexLLM on the
GEN_ALL dataset, we perform a McNemar test.
This test compares the distribution of positive and
negative predictions between the two models.

6 Results

Table 3 consolidates the best F1-score, precision,
recall and accuracy values for all the models. We
categorize models into three categories, baselines
(LexLM and "off-the-shelf" biomedical BERT
models), UBERT variants and pretrained variants.

6.1 Opverall Performance of UBERT

As shown in Table 3, SapBERT+UBERT shows
a significant performance improvement over the
LexLLM. The McNemar statistics (5615042.0) indi-
cates that the difference is statistically significant
(p <0.001). SapBERT+UBERT also outperforms
all the "off-the-shelf" BERT-based baselines.
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Variant Category  Model Best F1 Precision Recall Accuracy
LexLM 0.9061  0.8875  0.9254 0.9938

Baseline SapBERT 0.0538  0.0286  0.4484 0.4882
UmlIsBERT 0.0617  0.0325  0.6093 0.3983

BioBERT 0.0688  0.0361  0.7421 0.3479

BlueBERT 0.0818  0.0428  0.9479 0.3098

UBERT-A 0.9319  0.8920 0.9756 0.9954

UBERT Variant UBERT-B1 09316 08935 09731  0.9954
UBERT-B2 0.9340  0.8963  0.9749 0.9955

SapBERT + UBERT 0.9420 0.9089  0.9775 0.9961

Pretrained Variant UmIsBERT+UBERT 09351  0.8977  0.9757 0.9956
BioBERT+UBERT 09376  0.9018  0.9764 0.9958

BlueBERT+UBERT 0.9391  0.9041  0.9768 0.9959

Table 3: Results for all the experimented models. Models are categorized into three groups. The baseline category
consists of the previous LexLM baseline and BERT-based models tested for the UVA task (without any pretraining
or fine-tuning). The UBERT Variant category consists of the three UBERT variants. The pretrained Variant
category lists the results for BERT-based models further pretrained using UBERT.

6.2 UBERT Variants

Among the three UBERT variants, UBERT-B2
perform slightly better than the other two variants
in the same category indicating the MLM task
pretrained using UMLS data has a positive impact
on the training of UBERT.

6.3 Pretrained Variants

The results in the pretrained variant category
in Table 3 show that further pretraining of the
BERT-based models using UBERT improves the
performance of these models on the UVA task.

6.4 Semi-quantitative Evaluation

As shown in Figure 3, the F1-score is consistently
higher for UBERT compared to the LexLM
baseline, at all levels of lexical similarity. The
same can be said of recall, with the exception
of the highest level of lexical similarity, where
LexLLM performs better. For precision, however,
LexLLM performs better at low levels of lexical
similarity, whereas UBERT performs better at
medium and high levels of lexical similarity.
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Figure 3: Performance across levels of lexical similar-
ity

7 Discussion

7.1 Findings and Insights

Overall performance. We find that UBERT fur-
ther pretrained on SapBERT significantly outper-
forms the previous SOTA for the UVA task interms
of Fl-score (+3.6%), precision (+2.1%) and recall



(+5.2%). Such performance gains will decrease
the number of false positives and false negatives,
reducing the need for manual curation.

MLM training data. We find that training on the
MLM task improves the performance of UBERT if
only UMLS data is used to train the MLM task. If
UMLS data and the biomedical literature are used
in combination, the performance drops. As we
have indicated in section 4.1.2, most of the terms
present in the biomedical literature are not found
in the UMLS Metathesaurus and we believe that
those words might act as noise rather than added
knowledge, confusing the model. When including
knowledge to improve the performance of a lan-
guage model, it is important to make sure the data
align well with the specific task and have enough
coverage.

Knowledge transfer. We find that BERT-based
models, although previously trained on biomedi-
cal, clinical and UMLS data, perform poorly on
the UVA task if not further pretrained. This poor
performance indicates that the knowledge gained
by these models is not directly transferable to the
UVA task.

Best performing models. We also find that among
these BERT-based models, SapBERT+UBERT per-
forms best. There could be two reasons for this per-
formance. One is that both SapBERT and UBERT
are based on the same BERT architecture, there-
fore well-aligned with each other for better perfor-
mance. The second reason could be the similarities
of the training knowledge between SapBERT and
UBERT, namely the fact that both use atom strings,
CUIs and synonymy information.
Generalizability. A majority of the atom pairs in
the testing dataset exhibit low and very low levels
of lexical similarity, which reflects the composition
of the UMLS Metathesaurus. Therefore, this anal-
ysis indicates that UBERT is likely to perform well
across the entire UMLS Metathesaurus.

7.2 Limitations and Future Work

Contextual information. In this work, the syn-
onymy between terms in a given atom string pair is
identified only by incorporating the lexical cues
present in the atom strings as identified by the
UBERT model. Yet the human experts, when iden-
tifying synonymy, incorporate contextual informa-
tion about the atom strings. We believe that devis-
ing a mechanism to incorporate the terminological
context of the atom strings (namely hierarchical

relations, source synonymy and semantic catego-
rization) would further improve the performance
of UBERT.

Computational cost. Even though UBERT pro-
vides better performance than the baselines, it is
extremely expensive to train. We believe that a
knowledge distillation approach (Gou et al., 2021)
could effectively reduce the cost of training. We
have not explored the hyper-parameter optimiza-
tion in this work due to the time taken to train the
models. We plan to incorporate hyper-parameter
optimization in combination with knowledge distil-
lation in the future.

Application. We also plan to test UBERT on sev-
eral Medical Entity Linking (MEL) tasks since we
believe that UVA has elements similar to EL.
Combining models. We have not combined
UBERT with LexLM since the two architectures
are vastly different from each other, but we will
test an ensemble approach in the future.

8 Conclusion

This work introduces UBERT, a BERT-based lan-
guage model, pretrained on UMLS terms via a su-
pervised Synonymy Prediction (SP) task replacing
the original Next Sentence Prediction (NSP) task,
which provides significant performance improve-
ment over the LexLLM introduced by (Nguyen et al.,
2021). Key to its performance are the synonymy
prediction task specifically developed for UBERT,
the tight alignment of training data to the UVA task,
and the similarity of the models used for pretrained
UBERT.
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