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Abstract

The UMLS Metathesaurus integrates more001
than 200 biomedical source vocabularies. Dur-002
ing the Metathesaurus construction process,003
synonymous terms are clustered into concepts004
by human editors, assisted by lexical similar-005
ity algorithms. This process is error-prone006
and time-consuming. Recently, a deep learn-007
ing model (LexLM) has been developed for008
the UMLS Vocabulary Alignment (UVA) task.009
This work introduces UBERT, a BERT-based010
language model, pretrained on UMLS terms011
via a supervised Synonymy Prediction (SP)012
task replacing the original Next Sentence Pre-013
diction (NSP) task. The effectiveness of014
UBERT for UMLS Metathesaurus construc-015
tion process is evaluated using the UMLS Vo-016
cabulary Alignment (UVA) task. We show that017
UBERT outperforms the LexLM, as well as018
biomedical BERT-based models. Key to the019
performance of UBERT are the synonymy pre-020
diction task specifically developed for UBERT,021
the tight alignment of training data to the UVA022
task, and the similarity of the models used for023
pretrained UBERT.024

1 Introduction025

The Unified Medical Language System (UMLS)026

Metathesaurus is a large biomedical thesaurus de-027

veloped by the US National Library of Medicine1.028

It clusters synonymous terms from different029

biomedical source vocabularies into concepts. The030

current UMLS Metathesaurus construction process031

relies heavily on lexical similarity algorithms to032

identify candidates for synonymy and the final deci-033

sion for synonymy or non-synonymy among terms034

comes from the domain experts through manual035

curation. Given the current scale of the UMLS036

Metathesaurus, with millions of terms from 214037

source vocabularies, it is shown that the current con-038

struction process is undoubtedly costly and error-039

prone (Cimino, 1998; Cimino et al., 2003; Jimeno-040

1https://uts.nlm.nih.gov/

Yepes et al., 2009; Morrey et al., 2009; Mougin 041

et al., 2009). 042

Motivation. Clustering biomedical terms into con- 043

cepts in the UMLS Metathesaurus was formalized 044

into a vocabulary alignment problem identified as 045

UMLS Vocabulary Alignment (UVA) or synonymy 046

prediction task by (Nguyen et al., 2021). The UVA 047

is different from other biomedical ontology align- 048

ment efforts by the Ontology Alignment Evaluation 049

Initiative (OAEI) due to the extremely large prob- 050

lem size of the UVA with the need to compare 8.7M 051

biomedical terms pairwise (as opposed to tens of 052

thousands of pairs in OAEI datasets). The authors 053

of (Nguyen et al., 2021) also introduced a scalable 054

supervised learning approach based on the Siamese 055

neural architecture which leverages the lexical in- 056

formation present in the terms. 057

Bidirectional Encoder Representations from Trans- 058

formers (BERT) (Devlin et al., 2019) is a language 059

model (LM), based on the multi-layer, bidirectional 060

architecture of Transformers (Vaswani et al., 2017). 061

BERT is originally trained on two self-supervised 062

tasks named Masked Language Modelling (MLM) 063

and Next Sentence Prediction (NSP). Recently 064

BERT has been pretrained on several biomedical 065

and clinical corpora resulting in models, such as 066

BioBERT (Lee et al., 2019), BlueBERT (Peng et al., 067

2019), SapBERT (Liu et al., 2021) and UmlsBERT 068

(Michalopoulos et al., 2020), which have been used 069

successfully on several biomedical NLP tasks, such 070

as biomedical named entity recognition, biomed- 071

ical relation extraction, biomedical question an- 072

swering, biomedical sentence similarity, biomedi- 073

cal document classification and medical entity link- 074

ing to provide state-of-the-art (SOTA) results. We 075

believe that a parallel can be drawn between Entity 076

Linking (EL) and UVA, because both tasks try to 077

link an entity to a specific term in a reference ter- 078

minology. The difference is that, in EL, the entity 079

to be linked is found in context (embedded in a sen- 080

tence or paragraph), whereas, in UVA, the entity 081
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is provided without any context (i.e., just the term082

itself). Our motivation for this work is to inves-083

tigate how BERT, pretrained on similar data (i.e.,084

UMLS data and biomedical literature) performs in085

the context of UVA.086

Objectives. The first objective of this work is to087

improve upon the performance of current baselines088

for the UVA task. To this end, we develop UBERT,089

a novel BERT-based language model specifically090

trained for synonymy prediction.091

The second objective is to assess the contribution092

of two elements of UBERT, namely whether the093

MLM is beneficial and which datasets provide op-094

timal training for the MLM.095

The third objective is to explore how UBERT per-096

forms when further pretrained on several BERT-097

based models initially pretrained on a variety of098

biomedical data (BioBERT), clinical data (Blue-099

BERT) and UMLS data (SapBERT, UmlsBERT).100

Our last objective is to assess the generalizability of101

UBERT to the entire UMLS Metathesaurus, by an-102

alyzing whether overall performance gains realized103

by UBERT over baselines are conserved across the104

entire testing dataset.105

Approach. We identify BERT-based models (in106

this work BERT-based models refer to BioBERT,107

BLUEBERT, SapBERT and UmlsBERT) and use108

them as baselines without further pretraining or109

fine-tuning on the UVA task. Another baseline used110

in our work is the LexLM provided by (Nguyen111

et al., 2021). Then we design experiments to112

pretrain UBERT from scratch (without using any113

trained weights from other biomedical or clinical114

BERT-based models) resulting in three variants of115

UBERT. We evaluate the performance of each vari-116

ant on a test dataset provided in section 4.2.3. In117

addition, we further pretrain UBERT on top of118

already trained weights from four existing BERT-119

based models and evaluate their performance on120

the same test datasets. Finally, we perform a semi-121

qualitative analysis of the performance of UBERT122

on the testing dataset by computing the usual per-123

formance metrics for specific subsets of the testing124

dataset across the spectrum of lexical similarity125

between terms in the pairs of terms evaluated for126

synonymy.127

Contributions. We introduce UBERT, a novel128

BERT-based language model, and three variants of129

UBERT based on the pretraining tasks and pretrain-130

ing data used. We show that SapBERT+UBERT131

outperforms the previous LexLM baseline and "off-132

the-shelf" BERT-based baselines. We also demon- 133

strate that, for the UVA task, without further pre- 134

training with UBERT, "off-the-shelf" BERT-based 135

models perform poorly. 136

We show that pretraining with the MLM task first 137

and then pretraining with the SP task results in 138

better performance compared to UBERT without 139

the MLM task. And we further demonstrate that 140

UBERT performs better when the MLM task is 141

trained with UMLS data only (without biomedical 142

literature data). 143

We demonstrate that UBERT variants that are fur- 144

ther pretrained on BERT-based models perform bet- 145

ter than the variants that are not. Further, we show 146

that, among the various biomedical BERT-based 147

models used for pretraining, SapBERT yields the 148

best performance. 149

We show that overall performance gains (F1 score) 150

realized by UBERT over baselines are conserved 151

across the entire testing dataset across the spec- 152

trum of lexical similarity between terms in the pairs 153

of terms evaluated for synonymy, indicating that 154

UBERT performance is likely to generalize to the 155

entire UMLS Metathesaurus. 156

2 Background 157

Nguyen et al. (Nguyen et al., 2021) have elabo- 158

rated the background knowledge required to under- 159

stand the UVA task. In this section we will briefly 160

summarize it. In this work, we use the 2020AA 161

version of the UMLS Metathesaurus which con- 162

tains 15.5 million atoms, the building block of the 163

UMLS Metathesaurus, from 214 souce vocabular- 164

ies grouped into 4.28 million concepts. An atom 165

(atom string) coming from a source vocabulary is 166

uniquely identified in the UMLS Metathesaurus by 167

an atom unique identifier (AUI). The same term can 168

appear in the UMLS Metathesaurus with different 169

AUIs if it comes from different source vocabular- 170

ies. Atoms that have the same meaning are clus- 171

tered into the same concept identified by a concept 172

unique identifier (CUI). In the UVA task, given two 173

atom strings, a computational model is expected to 174

predict their synonymy (or non-synonymy). 175

The UMLS Metathesaurus contains approxi- 176

mately ten million English atom strings, each of 177

which being linked to a concept. Since the au- 178

thors of (Nguyen et al., 2021) focus on assessing 179

whether two atoms are synonymous and should 180

be associated with the same concept, the problem 181

is formulated as a similarity task. We maintain 182
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this same problem definition from (Nguyen et al.,183

2021).184

3 Related Work185

In this section we briefly review previous work on186

the UVA task, BERT and how BERT-based LMs187

are used in BioNLP tasks.188

3.1 LexLM for the UVA Task189

Nguyen et al. (Nguyen et al., 2021) have intro-190

duced UVA as a new task in the BioNLP do-191

main and demonstrated that LexLM, a Siamese192

architecture-based Bidirectional Long Short Term193

Memory (Bi-LSTM) network with BioWordVec194

embeddings (Zhang et al., 2019). LexLM has a195

F1-score of 94.8%, precision of 94.64%, recall of196

94.96% and outperforms a rule-based approach197

(RBA) described in the same work, in F1 score198

(+14.1%), precision (+2.4%) and recall (+23%).199

3.2 BERT: Bidirectional Encoder200

Representations from Transformers201

BERT (Devlin et al., 2019) is a language model,202

based on the multi-layer, bidirectional architecture203

of Transformers (Vaswani et al., 2017), which pro-204

vides contextual word representations as opposed205

to context independent distributed word represen-206

tations introduced by Word2Vec (Mikolov et al.,207

2013), Glove (Pennington et al., 2014), fasttext208

(Bojanowski et al., 2017) and Biowordvec (Zhang209

et al., 2019) (in the biomedical context). BERT is210

trained on two unsupervised training tasks, namely211

Masked Language Modeling (MLM) and Next Sen-212

tence Prediction (NSP).213

The MLM task allows the model to learn the214

bidirectional context of a target word in the training215

process. An input sequence is passed to the model216

with 15% of the tokens masked and the masked217

tokens are predicted by the model. In order to218

reduce the mismatch between training and testing219

data, a masked word is replaced by a [MASK]220

token only 80% of the time. Ten percent of the time,221

the masked word is replaced by a random word and222

the remaining 10% of the time, the masked word is223

unchanged.224

The NSP task allows the model to learn the re-225

lationship between two consecutive segments of a226

document (e.g., consider segment A and segment227

B). This is configured as a binarized classification228

task where 50% of the time, segment B actually229

follows segment A in a document and in the other230

50% it does not.231

3.3 BERT-based Language Models and 232

Biomedical NLP (BioNLP) tasks 233

In the biomedical domain, BERT is pretrained on 234

large biomedical corpora to create language models 235

(presented below) that have performed successfully 236

on downstream BioNLP tasks, such as named entity 237

recognition, natural language inference and entity 238

linking. This demonstrates the importance of pre- 239

training BERT-based models on domain specific 240

data to achieve better performance. 241

SapBERT (Liu et al., 2021) and UmlsBERT 242

(Michalopoulos et al., 2020) are two recent BERT- 243

based models that leverage UMLS Metathesaurus 244

data for pretraining BERT. SapBERT pretrains on 245

synonymous and non-synonymous pairs of English 246

entries in the UMLS Metathesaurus belonging to 247

the same concept for the downstram task of Medi- 248

cal Entity Linking. The authors have introduced a 249

metric learning framework to self-align the synony- 250

mous biomedical entities. UmlsBERT augments 251

the MLM task for pretraining with UMLS Metathe- 252

saurus terms by taking into consideration the asso- 253

ciations between the words specified in the UMLS 254

Metathesaurus. Instead of predicting a single word 255

in the MLM task, UmlsBERT tries to predict all 256

the acceptable words for the masked token through 257

words associated with the same CUI. 258

4 UBERT 259

UBERT is the novel BERT-based LM architecture 260

we are introducing. In the subsequent subsection, 261

we describe the novel additions we made to BERT 262

to create UBERT as well as the datasets used to 263

train UBERT. 264

4.1 UBERT Architecture 265

As illustrated in Figure 1, we use the MLM task as 266

it is and change the NSP task to a binarized syn- 267

onymy prediction task when pretraining UBERT. 268

Pretraining on the MLM task is directly inherited 269

from the original BERT architecture2. Datasets 270

used for pretraining and testing are presented in 271

section 4.2 272

4.1.1 Synonymy Prediction (SP) 273

We are re-purposing the binarized classification 274

task of NSP to SP. This is a supervised task 275

whereas the original NSP was an unsupervised 276

task. Atom string pairs annotated as synonymous 277

2We have used the Transformers implementation of BERT
for pretraining
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Tokenizer

Masked Language 
Modelling

Next Sentence 
Prediction

Synonymy 
Prediction

Synonymy Prediction (SP)
atom 1 atom 2 Synonyms?

Lung disease 
and disorder

Head disease and 
disorder

No

Addison’s 
disease

Primary adrenal 
deficiency Yes

Input Data to train UBERT

UBERT

Masked Language Modelling (MLM)

head [MASK] and disorder

Masked Language Modelling

head disease and disorder

Figure 1: General UBERT Architecture; In UBERT-
A, Masked Language Modelling is not used and in
UBERT-B1 and UBERT-B2, Masked Language Mod-
elling is used, but trained on different biomedical
datasets

or non-synonymous are used as training data in278

the pretraining process. Two atoms are considered279

synonymous if they belong to the same concept and280

non-synonymous otherwise. In place of sequence 1281

and sequence 2 in NSP, we use atom string 1 and282

atom string 2 and in place of next sentence label,283

the state of synonymy (or non-synonymy) between284

atom string 1 and atom string 2 is used (binary285

label [0 or 1]). Similar to NSP, where special286

[CLS] and [SEP] tokens are used to separate two287

input sequences, in SP we use them to separate the288

two atom strings.289

The input is processed as following for UBERT’s290

SP task before it is sent through the model. A291

[CLS] token is added to the beginning of the first292

atom string and a [SEP] token is added to the end293

of each atom string. Another embedding indicating294

atom string 1 or atom string 2 is then added to each295

token. Finally a positional embedding is added to296

tokens indicating the position of each token. This297

processing is similar to how BERT preprocesses298

its input and we direct the reader to (Devlin et al.,299

2019) for a full explanation of the concept and300

implementation.301

When predicting whether two atom strings are302

synonymous or not, the following actions are taken303

by UBERT. (1) The input sequence presented304

above is sent through the UBERT model. (2) The305

output of the [CLS] token is then transformed306

to a 2X1 vector using a fully connected, binary307

classification layer. (3) Finally, to calculate 308

the probability of synonymy, the output of the 309

classification layer is sent through a softmax 310

function. 311

312

4.1.2 Tokenizer 313

Input sequences to both MLM and SP tasks of all 314

the UBERT variants are tokenized using Wordpiece 315

tokenization approach (Wu et al., 2016) with a 316

50000 token vocabulary. The tokenizer was trained 317

on UMLS atom strings described in section 4.2.1 318

and a biomedical literature dataset described in sec- 319

tion 4.2.2. For other BERT-based models, the tok- 320

enizers provided online by the respective authors 321

were used. 322

We combine both UMLS atom strings and the 323

biomedical literature when training the tokenizer, 324

because we have identified that 56% of the words 325

in the UMLS are not found in the biomedical lit- 326

erature and 86% of the words in the biomedical 327

literature are not found in the UMLS. 328

4.2 Datasets 329

This section discusses the three datasets used in the 330

pretraining and testing of the UBERT variants. 331

4.2.1 UMLS atom strings dataset 332

This consists of 8,713,194 English UMLS atom 333

strings extracted from the 2020AA release of the 334

UMLS Metathesaurus. 335

4.2.2 Biomedical literature dataset 336

In this work we use the dataset of PubMed abstracts 337

and PubMed Central (PMC) full-text articles pro- 338

vided by (Lee et al., 2019) with 4.5 billion and 13.5 339

billion words respectively. 340

4.2.3 Annotated synonymy datasets 341

We thank (Nguyen et al., 2021) for providing the 342

training, development and testing datasets used 343

in this work. These datasets consist of English 344

atom strings from active source vocabularies of 345

the 2020AA release of the UMLS Metathesaurus. 346

Annotated datasets are constructed by including 347

synonymous atom string pairs (atom strings linked 348

to the same concept) and non-synonymous atom 349

string pairs (atom strings linked to different con- 350

cepts). There are approximately 27.9M syn- 351

onymous pairs (positive samples) and 1014 non- 352

synonymous atom pairs (negative samples). The 353

ratio between non-synonymous atom string pairs 354

and synonymous atom string pairs is high since 355
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most atoms do not share the same CUI. Therefore356

to create more balanced datasets (Nguyen et al.,357

2021) have reduce the negative (non-synonymous)358

samples to approximately 170M.359

In this work, we use the GEN_ALL dataset360

from (Nguyen et al., 2021). The training and361

testing datasets do not contain overlapping data362

points. The training dataset consists of 118,789,005363

annotated (for synonymy and non-synonymy)364

atom string pairs and testing dataset consists of365

171,991,918 annotated atom string pairs. Statistics366

of the training, development and testing datasets367

are listed in Table 1.368

Training Development Testing

Synonyms 16,743,627 5,581,208 5,581,208

Non-synonyms 102,045,378 34,015,125 166,410,710

Total 118,789,005 39,596,333 171,991,918

Table 1: Number of synonymous and non-synonymous
atom string pairs in the training, development and test-
ing dataset (GEN_ALL).

5 Experimental Setup and Evaluations369

In this section we present the pretraining and eval-370

uation setup of UBERT variants and pretrained371

variants (see Figure 2).372

5.1 UBERT Variants373

We create three UBERT variants, UBERT-A,374

UBERT-B1 and UBERT-B2 depicted in Figure 2.375

UBERT-A only uses the SP task, while the other376

two variants also use the MLM task for pretraining.377

The difference between UBERT-B1 and UBERT-378

B2 lies in the dataset used to pretrain the MLM379

task.380

5.1.1 UBERT-A381

This variant of UBERT is pretrained using only the382

SP task, i.e., without the MLM task. We first ini-383

tialize UBERT-A with random weights and further384

pretrain it with the SP task on annotated synonymy385

dataset described in section. 4.2.1.386

5.1.2 UBERT-B1 and UBERT-B2387

These two UBERT variants are similar in the fol-388

lowing sense. Both models are initialized on ran-389

dom weights and further pretrained on MLM task390

and then the resulting checkpoint from training the391

MLM task is used consecutively to initialize the392

pretraining of SP task with annotated synonymy393

dataset 4.2.1.394

The difference between UBERT-B1 and UBERT- 395

B2 lies in the datasets used for pretraining the 396

MLM task. In UBERT-B1 the MLM task is pre- 397

trained using the combined dataset of UMLS atom 398

strings and biomedical literature. In UBERT-B2, 399

the MLM task is pretrained using only UMLS 400

atom strings (see section 4.2.1). Once the mod- 401

els are trained on the MLM task with different 402

datasets, each resulting model is then used to ini- 403

tialize the weights for further pretraining with 404

the synonymy prediction task using the annotated 405

synonymy dataset in 4.2.3 (which use the same 406

resources and the input sequence length as the 407

UBERT-A model). 408

5.2 Pretrained Variants 409

In pretrained variants the UBERT-A model is 410

further pretrained on top of already trained weights 411

of four BERT-based models. 412

We initialize each pretrained variant with the 413

pretrained weights and the tokenizer released by 414

the corresponding BERT-based model, and further 415

pretrain using the annotated synonymy dataset on 416

SP task with the same hardware requirements as 417

UBERT-A and the same maximum input sequence 418

length. 419

420

All the UBERT variants and pretrained variants 421

are tested on the synonymy prediction task using 422

the test dataset from Table 1. The best performing 423

model (with regard to F1-score) is selected from 424

the training epochs or steps for each experiment. 425

Testing is done on this best performing model. 426

5.3 Implementation Details 427

We use the Transformers3 API to develop the train- 428

ing, evaluation and testing scripts of all the models 429

mentioned in this paper. Since training, evaluation 430

and testing of BERT-based architectures with mil- 431

lions of data points, is computationally expensive, 432

we do distributed training, evaluation and testing 433

utilizing the Pytorch4 framework. The physical in- 434

frastructure used for the experiments is the Biowulf 435

high-performance computing cluster5 at the Na- 436

tional Institute of Health (NIH). We use Slurm6 437

workload manager to submit the training, evalu- 438

3https://huggingface.co/transformers/
v4.5.1/index.html

4https://pytorch.org/
5https://hpc.nih.gov/
6https://slurm.schedmd.com/

documentation.html
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UBERT Tokenizer
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UBERT-A UBERT-B2UBERT-B1 BERT-based model + UBERT

Figure 2: Experimental setup for training UBERT variants and pretrained variants. The datasets used for pretrain-
ing are indicated inside the dotted line boxes

Model GPUs Batch Size per GPU Input Sequence Length Num. of Days Trained Num. of Epochs/ Steps Trained

UBERT-A 16 v100x GPUs (32GB of RAM) 256 32 8 50 epochs

UBERT-B1 (MLM task) 16 v100x GPUs (32GB of RAM) 8 512 7 410 steps

UBERT-B2 (MLM task) 16 v100x GPUs (32GB of RAM) 256 32 8 3.5k steps

Table 2: Resource utilization

ation and testing jobs to Biowulf. If not stated439

specifically, all the training parameters are set to440

defaults as mentioned in Transformers API docu-441

ments7 (e.g., learning rate, gradient accumulation442

steps, optimizer, etc.). Table 2 summarizes the443

computing resources required by the models.444

Our code will be available at https://github.445

com/naaclubert/UBERT. We recommend446

reaching out to Nguyen et al. (Nguyen et al., 2021)447

for training and testing data.448

5.4 Semi-quantitative Evaluation449

We divide the large testing dataset into 10 subsets450

based on the degree of lexical similarity (measured451

by the Jaccard score based on normalized words)452

between the pairs of atoms being evaluated for453

synonymy. Since the Jaccard score varies between454

0 and 1, we use 10 intervals of 0.10. Using the455

best performing UBERT model, we compute the456

usual performance metrics (precision, recall and457

F1 score) for the pairs of atoms in each interval of458

lexical similarity.459

7https://huggingface.co/transformers/
v4.5.1/main_classes/trainer.html

5.5 Statistical Analysis 460

To assess the statistical significance of the dif- 461

ference in overall performance between the 462

best UBERT and the reference LexLM on the 463

GEN_ALL dataset, we perform a McNemar test. 464

This test compares the distribution of positive and 465

negative predictions between the two models. 466

6 Results 467

Table 3 consolidates the best F1-score, precision, 468

recall and accuracy values for all the models. We 469

categorize models into three categories, baselines 470

(LexLM and "off-the-shelf" biomedical BERT 471

models), UBERT variants and pretrained variants. 472

473

6.1 Overall Performance of UBERT 474

As shown in Table 3, SapBERT+UBERT shows 475

a significant performance improvement over the 476

LexLM. The McNemar statistics (5615042.0) indi- 477

cates that the difference is statistically significant 478

(p < 0.001). SapBERT+UBERT also outperforms 479

all the "off-the-shelf" BERT-based baselines. 480

6
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Variant Category Model Best F1 Precision Recall Accuracy

Baseline

LexLM 0.9061 0.8875 0.9254 0.9938

SapBERT 0.0538 0.0286 0.4484 0.4882

UmlsBERT 0.0617 0.0325 0.6093 0.3983

BioBERT 0.0688 0.0361 0.7421 0.3479

BlueBERT 0.0818 0.0428 0.9479 0.3098

UBERT Variant
UBERT-A 0.9319 0.8920 0.9756 0.9954

UBERT-B1 0.9316 0.8935 0.9731 0.9954

UBERT-B2 0.9340 0.8963 0.9749 0.9955

Pretrained Variant

SapBERT + UBERT 0.9420 0.9089 0.9775 0.9961

UmlsBERT+UBERT 0.9351 0.8977 0.9757 0.9956

BioBERT+UBERT 0.9376 0.9018 0.9764 0.9958

BlueBERT+UBERT 0.9391 0.9041 0.9768 0.9959

Table 3: Results for all the experimented models. Models are categorized into three groups. The baseline category
consists of the previous LexLM baseline and BERT-based models tested for the UVA task (without any pretraining
or fine-tuning). The UBERT Variant category consists of the three UBERT variants. The pretrained Variant
category lists the results for BERT-based models further pretrained using UBERT.

6.2 UBERT Variants481

Among the three UBERT variants, UBERT-B2482

perform slightly better than the other two variants483

in the same category indicating the MLM task484

pretrained using UMLS data has a positive impact485

on the training of UBERT.486

487

6.3 Pretrained Variants488

The results in the pretrained variant category489

in Table 3 show that further pretraining of the490

BERT-based models using UBERT improves the491

performance of these models on the UVA task.492

493

6.4 Semi-quantitative Evaluation494

As shown in Figure 3, the F1-score is consistently495

higher for UBERT compared to the LexLM496

baseline, at all levels of lexical similarity. The497

same can be said of recall, with the exception498

of the highest level of lexical similarity, where499

LexLM performs better. For precision, however,500

LexLM performs better at low levels of lexical501

similarity, whereas UBERT performs better at502

medium and high levels of lexical similarity.503

504
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Figure 3: Performance across levels of lexical similar-
ity

7 Discussion 505

7.1 Findings and Insights 506

Overall performance. We find that UBERT fur- 507

ther pretrained on SapBERT significantly outper- 508

forms the previous SOTA for the UVA task interms 509

of F1-score (+3.6%), precision (+2.1%) and recall 510
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(+5.2%). Such performance gains will decrease511

the number of false positives and false negatives,512

reducing the need for manual curation.513

MLM training data. We find that training on the514

MLM task improves the performance of UBERT if515

only UMLS data is used to train the MLM task. If516

UMLS data and the biomedical literature are used517

in combination, the performance drops. As we518

have indicated in section 4.1.2, most of the terms519

present in the biomedical literature are not found520

in the UMLS Metathesaurus and we believe that521

those words might act as noise rather than added522

knowledge, confusing the model. When including523

knowledge to improve the performance of a lan-524

guage model, it is important to make sure the data525

align well with the specific task and have enough526

coverage.527

Knowledge transfer. We find that BERT-based528

models, although previously trained on biomedi-529

cal, clinical and UMLS data, perform poorly on530

the UVA task if not further pretrained. This poor531

performance indicates that the knowledge gained532

by these models is not directly transferable to the533

UVA task.534

Best performing models. We also find that among535

these BERT-based models, SapBERT+UBERT per-536

forms best. There could be two reasons for this per-537

formance. One is that both SapBERT and UBERT538

are based on the same BERT architecture, there-539

fore well-aligned with each other for better perfor-540

mance. The second reason could be the similarities541

of the training knowledge between SapBERT and542

UBERT, namely the fact that both use atom strings,543

CUIs and synonymy information.544

Generalizability. A majority of the atom pairs in545

the testing dataset exhibit low and very low levels546

of lexical similarity, which reflects the composition547

of the UMLS Metathesaurus. Therefore, this anal-548

ysis indicates that UBERT is likely to perform well549

across the entire UMLS Metathesaurus.550

7.2 Limitations and Future Work551

Contextual information. In this work, the syn-552

onymy between terms in a given atom string pair is553

identified only by incorporating the lexical cues554

present in the atom strings as identified by the555

UBERT model. Yet the human experts, when iden-556

tifying synonymy, incorporate contextual informa-557

tion about the atom strings. We believe that devis-558

ing a mechanism to incorporate the terminological559

context of the atom strings (namely hierarchical560

relations, source synonymy and semantic catego- 561

rization) would further improve the performance 562

of UBERT. 563

Computational cost. Even though UBERT pro- 564

vides better performance than the baselines, it is 565

extremely expensive to train. We believe that a 566

knowledge distillation approach (Gou et al., 2021) 567

could effectively reduce the cost of training. We 568

have not explored the hyper-parameter optimiza- 569

tion in this work due to the time taken to train the 570

models. We plan to incorporate hyper-parameter 571

optimization in combination with knowledge distil- 572

lation in the future. 573

Application. We also plan to test UBERT on sev- 574

eral Medical Entity Linking (MEL) tasks since we 575

believe that UVA has elements similar to EL. 576

Combining models. We have not combined 577

UBERT with LexLM since the two architectures 578

are vastly different from each other, but we will 579

test an ensemble approach in the future. 580

8 Conclusion 581

This work introduces UBERT, a BERT-based lan- 582

guage model, pretrained on UMLS terms via a su- 583

pervised Synonymy Prediction (SP) task replacing 584

the original Next Sentence Prediction (NSP) task, 585

which provides significant performance improve- 586

ment over the LexLM introduced by (Nguyen et al., 587

2021). Key to its performance are the synonymy 588

prediction task specifically developed for UBERT, 589

the tight alignment of training data to the UVA task, 590

and the similarity of the models used for pretrained 591

UBERT. 592
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