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Abstract

Integrating large pre-trained models into federated learning (FL) can significantly
improve generalization and convergence efficiency. A widely adopted strategy
freezes the pre-trained backbone and fine-tunes a lightweight task head, thereby
reducing computational and communication costs. However, this partial fine-tuning
paradigm introduces new security risks, making the system vulnerable to poisoned
updates and backdoor attacks. To address these challenges, we propose FEDRACE,
a unified framework for robust FL with partially frozen models. FEDRACE com-
prises two core components: HStat-Net, a hierarchical network that refines frozen
features into compact, linearly separable representations; and DevGuard, a server-
side mechanism that detects malicious clients by evaluating statistical deviance in
class-level predictions modeling generalized linear models (GLMs). DevGuard
further incorporates adaptive thresholding based on theoretical misclassification
bounds and employs randomized majority voting to enhance detection reliability.
We implement FEDRACE on the FedScale platform and evaluate it on CIFAR-100,
Food-101, and Tiny ImageNet under diverse attack scenarios. FEDRACE achieves
a true positive rate of up to 99.3% with a false positive rate below 1.2%, while
preserving model accuracy and improving generalization.

1 Introduction

Federated learning (FL) [1} 2} 3] enables multiple clients to collaboratively train a global model while
keeping data on-device. By keeping raw data local, this decentralized approach preserves privacy,
making it well-suited for privacy-sensitive applications such as voice recognition, healthcare, and
human activity monitoring [4} 5, 6. Recent advances have shown that integrating large pre-trained
models into FL can significantly improve generalization and convergence speed. Models such as
CLIP [[7] and BERT [8] act as powerful feature extractors across various domains and tasks. Their
ability to encode rich, transferable knowledge is particularly valuable in federated settings, where data
distributions across clients are typically non-IID (Independent and Identically Distributed) [9, [10].

While pre-trained models enhance generalization in federated learning, fine-tuning the entire model on
each client is often impractical due to limited computational and communication resources. To address
this, a widely adopted approach is to freeze the pre-trained backbone and fine-tune only a small,
task-specific head [8, [11, [12} [13]]. This strategy maintains the utility of large models while reducing
training overhead. However, this partial adaptation approach introduces new security risks. Since the
backbone is fixed and shared across clients, adversaries can exploit its stable representation space to
introduce poisoned updates or embed backdoors [[14}[15[16]]. Our experiments reveal that untargeted
attacks [[17] can reduce model accuracy by over 11.7%, while distributed backdoor attacks [[18] can
achieve a success rate exceeding 80% with minimal impact on clean model performance.
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Existing defenses such as Trimmed-Mean [19], Multi-Krum [20], and reputation-based methods
like FLShield [21]] and FLAIR [22] often rely on gradient statistics or fixed heuristics. While
these methods are effective in some settings, they struggle to detect subtle semantic manipulations,
especially when only the head is trainable [23}[24]]. These limitations raise a key research question:

How can we integrate large pre-trained models into FL while enabling reliable and
adaptive detection of malicious clients?

To answer this question, we propose FEDRACE, a unified framework for Federated Representation-
based Adaptive Client Evaluation. FEDRACE combines hierarchical representation learning with
statistical client evaluation to improve FL robustness. It consists of two main components: (1)
HStat-Net, a Hierarchical Statistical Network that transforms fixed features into compact and linearly
separable representations using a triplet loss, and (2) DevGuard, a server-side evaluation mechanism
that uses a generalized linear model (GLM) to identify clients with abnormal semantic behavior
through deviance analysis.

As illustrated in Figure [T} HStat-Net is composed
of three parts: a frozen pre-trained feature ex-
tractor ¢, a trainable statistical projection layer
s, and a lightweight task head h implemented as
a GLM. This modular design supports efficient
fine-tuning and enables interpretable predictions.
DevGuard evaluates clients by comparing their
prediction outputs to global class-wise embed-
dings. It calculates log-likelihood deviations to

o

assign deviance scores, providing a principled and
explainable measure of client reliability. To im-
prove robustness, DevGuard uses adaptive thresh-

Figure 1: HStat-Net architecture (w = hoso ¢),
supporting robust federated learning. Local Data
samples are from Tiny ImageNet [25].

olding informed by theoretical misclassification bounds and applies majority voting over client
subsets to reduce the impact of noise and adversarial updates.

Our contributions are summarized as follows. First, we propose HStat-Net, a hierarchical architecture
that enables secure and efficient federated learning by transforming frozen representations into
features suitable for statistical detection and model training. Second, we design DevGuard, a
deviance-based client evaluation mechanism that leverages generalized linear modeling to identify
semantic inconsistencies and malicious behaviors in a principled and interpretable manner. Finally,
we develop FEDRACE, an integrated framework that combines representation refinement with
adaptive client evaluation, offering strong security and generalization.

We also implement FEDRACE on the FedScale platform [26] and conduct extensive evaluations on
CIFAR-100, Food-101 [27]], and Tiny ImageNet [25]]. The experiments cover various attack types,
including untargeted, targeted, and backdoor scenarios, under realistic conditions. Results show that
FEDRACE achieves a true positive rate of up to 99.3% and a false positive rate below 1.2%, while
maintaining high model accuracy and fast convergence.

2 Background and Motivation

2.1 Federated Learning and Pre-trained Models

Federated learning is a distributed training framework that enables multiple clients, denoted by
N = {1,..., N}, to collaboratively train a global model without sharing raw data. The overall
objective is to minimize the global loss:

Dyl
D] Li(w, D), (D

N
min L(w, D) = Z

v i=1
where D; is the local dataset of client ¢, and w denotes the global model parameters. A commonly
used optimization algorithm is FedAvg [[1], which proceeds in communication rounds. In each round,
the server selects a subset of clients A/(*), distributes the current global model, and aggregates the
returned updates through weighted averaging.



Recent work has shown that integrating large pre-trained models into FL can improve generalization
and accelerate convergence. Models such as CLIP [[7]], which builds on the ViT-B/32 backbone [11]],
provide strong and transferable representations. These models are particularly effective in federated

settings, even under non-IID data distributions [9} [10].

A typical deployment strategy
is to freeze the pre-trained fea-

Table 1: Comparison of training strategies on CIFAR-100.

ture extractor ¢ and train only a Method Prl;rrilrr;zlt)el:fs T{;l:::g Arl;isltlrggy
lightweight, task-specific head h, Retrain ~ 86.62M | 0.0423 sec | 58.32%
{i’rmmgv‘; m"d}ﬂar ml?.del W = Fully Fine-Tuned | ~ 86.62M | 0.0411 sec | 68.04%

© ¢. We evaluate this strategy  p, 01y Fine-Tuned | ~ 0.05M | 0.0130 sec | 75.99%

on the CIFAR-100 dataset [28] by
comparing three training modes: (1) training from scratch, (2) full fine-tuning of all parameters, and
(3) partial fine-tuning of only the task head h. As shown in Table[l] partial fine-tuning achieves the
highest test accuracy (75.99%) and reduces training time by 68.37% compared to full fine-tuning.
These results confirm that updating only the task head is both efficient and effective in FL settings.
The effectiveness of partial fine-tuning is largely due to the stable and transferable representations
provided by ¢. By keeping ¢ fixed, we reduce the risk of overfitting and lower the computational and
communication overhead, which is critical for practical FL deployments.

2.2 Threat Models and Poisoning Strategies

Although federated learning keeps data local, it remains vulnerable to adversarial threats. Mali-
cious clients can manipulate local computations to degrade global performance or induce specific
misbehavior. We consider three common attack types:

Untargeted attacks aim to reduce overall model accuracy without targeting specific inputs [17, 23|
29,30]]. Their impact is measured by classification accuracy (ACC):

ACC = E(x,y)ND [H (G(X) = y)] y (2)
where y is the true label, G(x) is the model’s prediction, and I(-) indicates correctness.

Targeted attacks aim to misclassify selected inputs into attacker-specified labels while maintaining
clean accuracy [31, 132,133} 134]. Their success is measured by the Attack Success Rate (ASR):

ASR = E(x ) Dy |1 (G(x) = )] . 3)

Backdoor attacks inject triggers into inputs to control model outputs, while keeping performance on
clean data unaffected [18} 135, 36} 137, 38]]. Effectiveness is measured by Backdoor Accuracy (BA):

BA = E(x,y)~ Dyt []I (G(Ttrigger(x)) = ytarget)} ) “@
where Tigeer(+) applies the backdoor trigger to the input x.

In this work, we adopt a practical threat model where up to M < 0.5N clients may be compromised.
This constraint aligns with assumptions in Byzantine-robust FL [23} 24, |30]. Compromised clients
may modify local data, manipulate gradients, or submit crafted updates [29} 131,135, 39, 140]. Unlike
stronger threat models [29, 30, 40, 41], we assume adversaries act independently and do not have
access to global aggregation logic or benign clients’ data.

2.3 Existing Defenses in Federated Learning

To address adversarial threats in federated learning, a range of defenses has been proposed to address
adversarial threats in federated learning. Early methods such as Trimmed-Mean [19} 40] and Multi-
Krum [20] filter anomalous updates based on statistical or geometric criteria. More recent approaches
incorporate dynamic analysis or auxiliary signals. For example, FedRoLA [42] measures layer-wise
similarity to detect outliers, while FLShield [21] and FLAIR [22] leverage validation feedback and
client reputation. Additional methods like WPCRA [43], FedGT [44], and MAB-RFL [45]] apply
cross-round analysis, group testing, or adaptive client selection.

However, most existing defenses are designed for full-model training and do not address the challenges
of partial fine-tuning. In many practical deployments, the feature extractor ¢ is frozen and only the
task-specific head h is trained to reduce communication and computation overhead [15]. While



efficient, this setup exposes new vulnerabilities. The shared frozen representation space can be
exploited to embed triggers or introduce structured deviations. As shown in [14], even a few poisoned
samples can achieve nearly 100% backdoor success with minimal impact on clean accuracy.

Our experiments confirm this risk. On CIFAR-100, an untargeted attack [[17] reduces accuracy from
75.99% to 64.24%, while a distributed backdoor attack [18]] reaches over 80% backdoor accuracy
without significantly affecting clean performance. These findings reveal a key limitation in current
FL defenses, which lack effective protection for systems using partial fine-tuning.

3 Proposed Design

To mitigate the security vulnerabilities introduced by partial fine-tuning in federated learning, we
propose FEDRACE, a unified framework that integrates robust representation learning with adaptive
client evaluation. FEDRACE comprises two core components:

1. HStat-Net, a hierarchical statistical network that refines frozen features into compact,
linearly separable representations adapted to the downstream task.

2. DevGuard, a server-side detection mechanism that evaluates client updates based on
semantic consistency and statistical deviance under a generalized linear model.

By combining local representation refinement with global statistical evaluation, FEDR ACE enhances
robustness in non-1ID and adversarial federated settings. We now detail each component.

3.1 HStat-Net: Hierarchical Statistical Network

To mitigate the limitations of frozen representations in partially fine-tuned FL systems, HStat-Net
refines features to improve task adaptation and enhance representation structure. As shown in Figure[]
it adopts a modular architecture composed of three components:

1. Pre-trained Feature Extractor (¢): The extractor ¢» maps raw input x to a feature vector z:

z = ¢(x). (%)

This module is fixed during training to ensure consistency across clients and reduce compu-
tation and communication overhead.

2. Statistical Net (s): The net transforms z into a compact, linearly separable representation:
r =s(z), (6)

where z € RP is projected to r € R? with d < D. This transformation reduces dimension-
ality and abstracts feature information, which can help improve privacy [46, 47].

3. Task Net (h): The Task Net produces task-specific predictions from r:
j =h(r). @)

This component is lightweight and trained locally to support downstream tasks with minimal
computational cost.

For each client ¢, the complete forward pipeline is defined as:

9i = hi(si(o(x))) = vi(p(x)), 3
where 1); denotes the client-specific transformation applied after the shared extractor ¢.

Training Methodology. To effectively train the modular components of HStat-Net while preserving
their distinct roles, we adopt a two-stage training procedure that decouples the optimization of the
Statistical Net (s) and the Task Net (h). To promote a discriminative feature space, the Statistical Net
is optimized using the Triplet Loss [48149], which encourages intra-class compactness and inter-class
separation. The loss is defined as:

['Triplet = Z max (”rl - r;lDHg - HI‘[ - I'?”% + 5’ 0) ) ®)
1 € Dbatch

where r; is the representation of anchor x;, r} is a positive sample from the same class, r}* is a
negative sample from a different class, and ¢ is a margin parameter, empirically set to 0.1.
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Figure 2: Two-stage training procedure for HStat-Net.
where C' is the number of classes, y;

is the one-hot ground-truth label, and 3 is the predicted probability for class c¢. During each
communication round ¢, client 7 initializes local training from the global model h'~! o s'~1. As
illustrated in Figure 2] training proceeds in two steps:

* Step 1: The Task Net is updated by minimizing Lcg with s'~! fixed.
* Step 2: With h! fixed, the Statistical Net is updated by minimizing Lryipie-

After local updates, each client transmits the composed transformation ¢! = h! o s! to the server,
which performs uniform aggregation over the participating clients N'(*) to obtain the global .
This decoupled training strategy enables independent optimization of the Statistical Net and Task
Net, mitigating objective interference and promoting stable convergence. It also facilitates efficient
onboarding of new clients, as fine-tuning only the Task Net h is typically sufficient to achieve strong
performance, further reducing computational and communication overhead [S0].

Experimental Validation. We eval- 100 100 10 1.00
uate HStat-Net on the CIFAR-100 o @ 80 0.75
dataset [28]] using 64 clients, where 7 eo 60 0.50
data is partitioned according to a ® 40 40 0.25
Dirichlet distribution Dirgy(a) with  © 2 20 0.00
@ = 0.5, representing moderate sta- 1720 40 60 80 100 1 20 40 60 80 100 1

tistical heterogeneity [51} I52]]. The Class ID Class ID Class ID

CLIP model (ViT-B/32) [11]] is used (a) Raw Data (b) CLIP (c) HStat-Net

Figure 3: Visualization of class-wise cosine similarity.
as a frozen feature extractor. We com-

pare three types of representations: raw inputs, CLIP features, and HStat-Net outputs. Figure 3]
shows the class-wise cosine similarity across these representations. As features progress through the
architecture, class separation becomes more pronounced. The average inter-class similarity decreases
from 0.976 (raw inputs) to 0.908 (CLIP) and further to 0.339 (HStat-Net), indicating improved
discriminability.

To quantitatively assess the quality of learned features, Tyble 2: Representation quality analysis.
we compute Fisher’s Criterion and Mutual Information Vethod T Raw | CLIP | HStaiNet

MDD [5.3, 54, 155] for the three representation types. As Fishor 1 0.149 1 0480 1.602
shown in Table@ HStat-Net achieves the highest scores, MI 0162 | 0275 0.556
yielding a 3.34 x improvement in Fisher’s Criterion and a : : :
2.02x gain in MI compared to raw inputs. These results demonstrate that the hierarchical refinement
introduced by HStat-Net produces a more structured and linearly separable feature space.

We further assess HStat-Net’s generalization Taple 3: Performance on new clients under differ-
ability by simulating a deployment scenario ept data distributions.

in which ten previously unseen clients are in-
troduced aftef initial tilaining. These clients Method | a=01]a=05|a=09
are not involved in the original training with Traditional | 23.78% | 12.90% | 9.67%
. : HStat-Net | 66.85% | 55.64% | 52.60%
a = 0.5 and receive data drawn from Dir;g(«)
with a € {0.1,0.5,0.9}, reflecting different levels of non-IID heterogeneity. Each client fine-tunes
only its Task Net for one local epoch. As shown in Table [3] HStat-Net consistently outperforms the
baseline h o ¢ across all settings.

3.2 DevGuard: Deviance-based Guard Mechanism

While HStat-Net improves task utility by producing structured and linearly separable representations,
the resulting stable feature space may be exploited by adversaries to insert subtle manipulations that
retain local accuracy but deviate from global semantics. To mitigate this, we propose DevGuard, a
server-side mechanism that detects semantic inconsistencies through statistical deviance analysis.



Unlike gradient-based defenses [20} 42| 56]], DevGuard evaluates the alignment between client-level
features and global class-wise representations.

Representation-Driven Evaluation. To capture semantic deviations introduced by malicious clients,
each client 7 computes class-wise feature centroids using its local Statistical Net s'~! from the
previous round and sends them to the server for aggregation:

ne
1 < ,_

r{ = EZst 1(zf7l), (11)
vl=1

where z7, is the [-th sample in class ¢, and n{ is the number of local samples from that class. The
server aggregates these vectors across clients using an element-wise median to obtain the global
class-level representation:

r g = Median ({rg‘ lie N “)}) , (12)

which provides a robust estimate of the shared semantic structure while suppressing outlier effects [[19].
Given that HStat-Net produces linearly separable features, the Task Net h can be modeled as a
generalized linear model (GLM) [57]. Specifically, the probability for class c is computed as:

g(B[Y]) =R wp, (13)

where R is the input feature vector, wy, is the class-specific coefficient vector, and g_1 is the inverse
link function (e.g., softmax [58]]). GLMs are widely used in tasks such as multinomial regression
and anomaly detection [59,60], offering both interpretability and robustness. These properties are
especially valuable for evaluating client-level consistency in federated settings.

Deviance-Based Client Evaluation. Given the linearly separable representations generated by HStat-
Net, DevGuard evaluates client reliability by applying deviance analysis under the GLM framework.
Each client models the conditional distribution P(Y" | R) using a linear transformation followed by a
softmax activation:

. exp(r wi)

" chzl exp(rTwp) ’
where r is the input feature (e.g., rglobal), wi, is the coefficient vector for class ¢, and C'is the number
of classes. Under this GLM formulation, we compute the deviance, a standard statistical metric that
quantifies the goodness-of-fit by measuring the discrepancy between predicted probabilities and true
labels [59]. For client i, the global representation rg,,, is passed through its Task Net to produce

s, the predicted probability for class c. The true label is encoded as an indicator variable yg, which
equals 1 if c is the correct class and 0 otherwise. The log-likelihood for class c is given by:

(14)

C
LE = yelog(is), (15)
c=1

where g is the predicted probability produced by client’s Task Net. In the saturated model, which
represents a perfect fit to the data, the prediction for the correct class is yg = 1, resulting in a
log-likelihood of L = log(1) = 0. The class-wise deviance residual is thus computed as:

saturated
Azc =2 (L:aturated - ch) = _210g (Q;) . (16)

To obtain a robust client-level reliability score, we aggregate the residuals across all classes using an

entropy-inspired formulation:
c

Ai =Y Af-log (AS). (17)
c=1
This approach amplifies the impact of large residuals, ensuring that clients with strongly misaligned
predictions are penalized more heavily. A high A; indicates that client ¢ deviates significantly from
the global semantic structure, suggesting possible poisoning or manipulation.

Adaptive Thresholding with Theoretical Guarantees. Building on the deviance scores {A;},c s
computed for each client, we now describe how DevGuard distinguishes malicious participants using
an adaptive thresholding strategy grounded in statistical analysis. Specifically, the scores are first
sorted in ascending order:

App <A < - < Apy, (18)



where n = |N®)| and Ay denotes the i-th smallest residual. Let B and M denote the sets of benign
and malicious clients, respectively. We assume that the residuals from benign clients are centered
around a lower mean p 3, while those from malicious clients are centered around a higher mean g4,
where paq > p. This separation pattern can be expressed as:

us +0,(1), ifie B,
A = 19
i {uM+Op(1), ifi e M, (19

where O,(1) denotes bounded variation due to random sampling or model variance. Our goal is to
determine a threshold index p such that all clients with A;; > A, are flagged as suspicious. To
guide the threshold selection, we establish the following theoretical result:

Theorem 1. Assume the deviance residuals of benign and malicious clients are drawn from distribu-
tions with means g and jipq, respectively, and bounded variance o, where jiaq > up. Then, the
total misclassification rate (TMR) is bounded by:

402

TMR < ———.
(i — pB)?

(20)

This result provides a theoretical guarantee for separating benign and malicious clients based on
their deviance scores. Since the exact means i and paq are unknown, we approximate the optimal
index p by evaluating all candidate indices p € {1,2,...,n} and selecting the one that minimizes
the empirical upper bound in Equation 20).

To enhance robustness against noise and outliers, DevGuard employs a multi-step voting procedure. In

each of K steps, a random subset ./\fb(utb) C N'® is sampled, and corresponding global representations

are recalculated. Within each step &, clients compute fresh residuals {Agk) }, and the threshold py, is

determined using the same optimization process. Clients with Agk) > Ay, are flagged as suspicious
in that step. Final classification is based on majority voting:

K w K
Votesizg IA;Y > Ay, ) > =,
— ( [Pk]) 2

where [(+) is the indicator function. A client is classified as malicious if it is flagged in more than
half of the steps (see Algorithm I). This adaptive strategy combines statistical rigor with practical
robustness, ensuring reliable detection under non-stationary or adversarial conditions.

3.3 Putting Everything Together

FEDRACE combines semantic representation learning on the client side with statistical evaluation
on the server side to support reliable detection of malicious clients and robust model aggregation.
The system is implemented using the FedScale platform [26] with PyTorch [61], and leverages
GPU acceleration for efficient training and inference. In each communication round, after receiving
class-wise centroids and corresponding model updates from participating clients, the server initiates

a K-step detection procedure. In each step £, a random subset of clients /\/S(jg is selected. The
server aggregates centroids from this subset using element-wise median to form global class-level
representations. It then evaluates each client by computing class-wise deviance residuals from its Task
Net predictions, which are aggregated into a client-level score A; to measure semantic consistency.

After calculating client scores, the server sorts the values and selects a threshold index p that
minimizes the empirical bound on the TMR, as defined in Theorem[I] Clients with scores greater than
the threshold, A; > Ay, are flagged as suspicious in that step. This procedure is repeated across K
steps. A client is ultimately classified as malicious if it is flagged in more than half of the steps. Only
clients identified as benign are included in the global aggregation. The server-side computational
complexity per round is O (K N(C+log N )), where IV is the number of clients and C'is the number
of classes. This ensures that FEDRACE is scalable for large federated learning deployments.



Table 4: Performance of defense methods against different attacks, evaluated across multiple metrics.

Untargeted Targeted
Dataset Defense Min-Max [ IPMA TLFA [ ECBA [ DBA
ACC | ACC ASR | ACC | BA [ ACC | BA | ACC

Multi-krum 72.590_27 76.160_32 1.520_10 75.930_28 20‘050_11 7603031 23~200.28 75‘680_27
Trimmed-mean 75.150.35 76.430.27 1.790_25 75.830,24 10.340,25 76.530,25 124160,29 76.650,25
FLAIR 73.0709.29 | 75.740.27 | 0.610.16 | 74.490.30 | 1.300.23 | 76.219.320 | 0.960.17 | 75.650.28

CIFAR-100 FedRoLA 76.050_33 76.84028 11-920.28 74.880_29 39.280_28 76.470_30 2.890_28 77.040_27
FLShield 76.860.24 | 76.660.25 | 2.27929 | 75.63028 | 1.67928 | 76.81g27 | 1.460.27 | 76.990.31

FEDRACE | 76.69).35 | 769903 | 0.07010 | 77.020.55 | 0.06011 | 7698031 | 036023 | 77.210.51

Multi-krum 52.31p.33 | 55.700.27 | 2.07p.13 | 55.850.27 | 20.220.13 | 55.870.28 | 49.130.30 | 95.230.29

Trimmed-mean 54.370_31 56.37031 2-340.26 56.080_23 27.580_29 56.220_32 30.84(),29 56.540_29

Food-101 FLAIR 53.160.30 | 54.270.30 | 043015 | 52.099.20 | 5.670.30 | 55.2d0.20 | 148025 | 53.330.20

FedRoLA | 56.400 29 | 5559029 | 12.740.20 | 54.10029 | 45.270.96 | 56.16031 | 8.1400s | 56.510.05
FLShield 56.240.29 | 56.079.31 | 14.029.32 | 54.760.30 | 6.360.29 | 56.250.31 | 1.440.28 | 56.650.27
FEDRACE 56.380.27 | 56.76¢ 26 0.27¢.16 56.68 27 0.310.16 56.70¢ .26 1.01¢ 31 56.72) .27
Multikrum | 71.040.92 | 72.3%0.258 | 0.630.10 | 72.700.27 | 1927015 | 72.850.27 | 4571020 | 72.050.25
Trimmed-mean 71.950_28 72.440_29 0.950_22 72~740.28 33‘060_28 7233030 350902'5 72.670_25
Tiny FLAIR 71.230.35 | 72.590.05 | 0.28010 | 70.580.25 | 443028 | 71.89005 | 0.249.15 | 70.910.30
ImageNet FedRoLA 73.360.21 | 72.780.29 | 4.87g.27 | 71.920.09 | 47.140.28 | 72.730.25 | 4.750.28 | 73.130.21
FLShield 73.29024 | 73.190.32 | 9.85005 | 71.840.20 | 5.840.2s | 73.11005 | 0.530.10 | 73.210.32
FEDRACE 73.060.29 | 73.400.29 | 0.070.10 | 73.249.31 | 0.080.10 | 73.44029 | 0.130.13 | 73.42 .99

4 Experiments

4.1 Experimental Setup

Datasets and Models. We evaluate our framework on three widely used image classification
benchmarks: CIFAR-100 [28]], Food-101 [27], and Tiny ImageNet [25]. CIFAR-100 contains 100
classes with 600 images per class, divided into 500 training and 100 testing samples. Food-101
includes 101 food categories with 750 training and 250 testing images per class, and presents
significant variation in appearance. Tiny ImageNet is a subset of ImageNet [62]], consisting of 200
classes with 500 training and 50 validation images per class, offering a good trade-off between
diversity and computational cost. For feature extraction, we use the CLIP model with a ViT-B/32
backbone and remove its final classification layer following standard transfer learning practice. The
Statistical Net (s) and the Task Net (h) are implemented as single fully connected layers with output
dimension d = 256, resulting in representations r € R?56. To evaluate scalability, we also experiment
with ResNet-152 [63] as an alternative backbone for ¢.

Parameter Settings. We simulate a FL system with N = 64 clients, selecting n = 16 clients
randomly in each communication round. Following prior work [23| 29| 30], we assume M = 16
malicious clients, keeping the malicious ratio below 50%. These clients are randomly chosen in each
round to reflect dynamic adversarial behavior. Client datasets are partitioned in a non-IID manner
using a Dirichlet distribution with concentration parameter o« = 0.5. Local training uses a learning
rate of 0.001, batch size 128, and three epochs per round across all datasets. All experiments are
conducted on NVIDIA RTX A4500 GPUs and repeated with four random seeds (1, 12, 123, 1234).

Baseline Attacks. We evaluate FEDR ACE under five representative attack scenarios in federated
learning. The Min-Max Attack [23] generates updates that remain within acceptable bounds while
introducing harmful behavior. The Inner Product Manipulation Attack (IPMA) [[17] alters gradient
directions to disrupt learning. The Targeted Label Flipping Attack (TLFA) [34] modifies labels to
influence specific classification outcomes. The Edge-Case Backdoor Attack (ECBA) [36] embeds
hidden triggers by leveraging rare or atypical input patterns. The Distributed Backdoor Attack
(DBA) [18]] involves coordination among multiple malicious clients to implant consistent backdoors.

Baseline Defenses. We compare our framework against five defense baselines: FLShield [21],
FedRoLA [42], FLAIR [22], Trimmed-mean [19, 40], and Multi-Krum [20]. FLShield verifies local
models using a reference dataset. FedRoL A analyzes update similarity to identify anomalies. FLAIR
maintains dynamic reputations to weigh client contributions. Trimmed-mean discards extreme values
for robust aggregation. Multi-Krum selects a subset of updates with minimal pairwise distances to
exclude outliers. We omit the Median aggregator since recent studies [42} 56| report its performance
is generally comparable to Trimmed-mean.



Table 5: Comparison of detection performance (TPR/FPR) under various scenarios.
Untargeted Targeted
Min-Max | IPMA TLFA | ECBA | DBA
Multi-krum | 0.783/0.223 | 0.817/0.192 | 0.853/0.148 | 0.804/0.197 | 0.732/0.263
FLAIR 0.847/0.352 | 0.882/0.318 | 0.943/0.357 | 0.912/0.383 | 0.867/0.342
FedRoLA | 0.931/0.118 | 0.907/0.133 | 0.648/0.353 | 0.613/0.387 | 0.583/0.412

Dataset Defense

CIFAR-100 FLShield | 0.935/0.183 | 0.927/0.157 | 0.912/0.173 | 0.887/0.187 | 0.872/0.213
FEDRACE | 0.987/0.072 | 0.983/0.018 | 0.973/0.012 | 0.977/0.032 | 0.968/0.101

Multi-krum | 0.773/0.227 | 0.808/0.204 | 0.842/0.163 | 0.793/0.218 | 0.724/0.267

FLAIR 0.834/0.367 | 0.857/0.343 | 0.927/0.354 | 0.893/0.392 | 0.847/0.364

Food-101 FedRoLA | 0.934/0.127 | 0.893/0.147 | 0.634/0.373 | 0.578/0.423 | 0.547/0.442

FLShield | 0.922/0.193 | 0.918/0.168 | 0.904/0.182 | 0.873/0.214 | 0.863/0.227
FEDRACE | 0.992/0.063 | 0.987/0.023 | 0.988/0.018 | 0.983/0.024 | 0.978/0.112
Multi-krum | 0.787/0.214 | 0.827/0.184 | 0.857/0.143 | 0.813/0.187 | 0.743/0.248

FLAIR 0.864/0.338 | 0.887/0.313 | 0.947/0.342 | 0.923/0.368 | 0.883/0.334
Tiny FedRoLA | 0.948/0.113 | 0.917/0.123 | 0.663/0.338 | 0.617/0.384 | 0.587/0.403
ImageNet FLShield | 0.953/0.174 | 0.932/0.153 | 0.918/0.164 | 0.893/0.183 | 0.878/0.204
FEDRACE | 0.993/0.048 | 0.988/0.013 | 0.987/0.028 | 0.992/0.023 | 0.983/0.085

4.2 Experimental Results

Main Results. Table [ presents the performance of all defense methods under both untargeted and
targeted attacks across CIFAR-100, Food-101, and Tiny ImageNet. For untargeted attacks, such as
Min-Max and IPMA, traditional aggregation methods like Multi-Krum and Trimmed-mean achieve
moderate accuracy (e.g., 72.59% and 75.15% on CIFAR-100 under Min-Max), while more recent
defenses such as FLShield and FedRoLA offer improved results. FEDR ACE consistently achieves
the highest accuracy under IPMA, with 76.99% on CIFAR-100, 56.76% on Food-101, and 73.40%
on Tiny ImageNet. For targeted attacks, metrics such as ASR and BA reveal clearer differences.
While FedRoLA yields an ASR of 11.92% on CIFAR-100 under TLFA, and FLShield reduces this to
2.27%, both still allow some attack success. FLAIR lowers ASR further (e.g., 0.61%) but at the cost
of high FPR. In contrast, FEDRACE reduces ASR and BA to below 0.4% across most datasets and
attacks, while maintaining competitive accuracy (e.g., 77.21% under DBA on CIFAR-100).

Table [5] reports the detection performance of all methods in terms of true positive rate (TPR) and
false positive rate (FPR). FEDRACE achieves the best balance, with TPRs consistently above 0.97
and FPRs below 0.1 in most scenarios. For instance, under TLFA on CIFAR-100, FEDRACE
achieves a TPR of 0.973 with a FPR of only 0.012, significantly outperforming FedRoLA (TPR:
0.648, FPR: 0.353) and FLAIR (TPR: 0.943, FPR: 0.357). Similar trends hold across Food-101 and
Tiny ImageNet. These results demonstrate that FEDRACE not only enhances robustness against
diverse attacks but also offers reliable detection with minimal false alarms. Beyond standard attack
scenarios, additional tests against adaptive and stealthy attacks, including IBA [64], A3FL [635],
and our Statistical-Net-only variant, show that FEDRACE keeps attack success below 2.5% and
true-positive rates above 93%, demonstrating robustness even under adaptive adversaries.

Evaluation of Detection Threshold. Theorem [[] Table 6: Evaluation of threshold estimation.
guides the selection of the *dgtection threshqld. Ta— 7= | CIFAR-100 | Food-101 | TmageNet
ble@shows the error |p — p*| in threshold estimation  —yfn-Max 0113005 | 0.102 20 | 0.1680 23
under different attack types and datasets. For tar- IPMA 0.0290.12 | 0.0430.14 | 0.0320.16
geted attacks like ECBA, the error is very small (at TLFA 0.041p.20 | 0.038p.15 | 0.0399.13
most 0.033). For untargeted attacks such as Min-Max EDCBIXA 8-?230.12 8»822014 8»(1)33041
and for DBA, the error is higher but still acceptable. o | s | e
These results show that FEDRACE can estimate the threshold accurately in most cases.

Evaluation of Scalability. We evaluate the scalabil- Min-Max IPMA W TLFA BN ECBA BN DBA

ity of FEDRACE by replacing the CLIP feature ex- 1.0 0.12
tractor with ResNet-152. As shown in Figure [d] FE- g 0.10
DRACE maintains strong detection performance across 4 0.08
all datasets. For untargeted attacks, the TPR remains & 0.06
0.04
0.02

‘AR-100 Food-101 ImageNet 0.00 CIFAR-100 Food-101 ImageNet

o
above 0.98, while the FPR stays below 0.07. For tar- 04

geted attacks such as TLFA and ECBA, TPR is consis- 02
tently between 0.97 and 0.99, with FPR between 0.02 ~ 0.0%cr
and 0.03. Even under the more challenging DBA at- (2) True Positive Rate (b) False Positive Rate
tack, TPR stays above 0.97, with only a minor increase ~ Figure 4: FEDRACE under ResNet-152.



in FPR. These results confirm that HStat-Net ensures robust detection across different backbone
models, making FEDRACE independent of specific feature extractors.

Evaluation of Parameters. Table [ Typle 7: Detection performance of FEDRACE under differ-
presents the impact of two key parame- et parameter settings.

ters 1n FEDRACE: the client subset size '
IV Y| and the number of voting steps WO K Min-Max TLFA DBA
K The results show that smaller sub- o TPR__FPR | TPR _FPR | TPR _FPR

: n/4 10.883 0.167 [ 0.862 0.178 | 0.843 0.192
set sizes, such as n/4, generally lead /3 | 0902 0152 | 0887 0.156 | 0.868 0173

to lower detection performance. For 4 | ;5 | 0923 0128 | 0901 0.143 | 0.887 0.165

example, under the DBA attack with 2n/3 | 0938 0.113 | 0917 0.128 | 0.902 0.149

K = n/2, the TPR is 0.887 when 3n/4 | 0942 0.108 | 0922 0.122 | 0.908 0.142

VY| = n/4, while it improves to n/4 [ 0943 0.103 | 0.921 0.087 | 0.903 0.142
sul ?

s n/3 | 0.968 0.084 | 0.952 0.043 | 0.941 0.118
0.968 when the subset size increases n/2 | n/2 | 0987 0072 | 0973 0012 | 0968 0.101

to TL/Q Further increasing the subset 2n/3 0.992 0.066 | 0.981 0.008 | 0.975 0.088
size to 3n/4 does not consistently yield 3n/4 | 0.994 0.063 | 0.984 0.007 | 0.978 0.082
better performance and sometimes re- n/4 [ 0932 0.142 [ 0913 0.092 [ 0.892 0.157
sults in higher FPR. Across different n/3 | 0958 0.112 | 0.937 0.063 | 0.923 0.138

attacks, the best trade-off is achieved 3n/4 | n/2 | 0975 0.096 | 0.952 0.045 | 0.943 0.127
2n/3 | 0.981 0.092 | 0.958 0.042 | 0.948 0.122

t
when both |/ N{i| and K are setto n/2, 3n/4 | 0983 0.088 | 0.961 0.038 | 0.951 0.118
which provides a high TPR and a low

FPR. These findings indicate that a moderate subset size and a balanced number of detection steps
are sufficient to ensure reliable performance without introducing unnecessary overhead.

Impact of Data Heterogeneity. We evaluate the effect Min-Max IPMA = TLFA SN ECBA W= DBA
of data heterogeneity by varying the Dirichlet concen-
tration parameter o on Tiny ImageNet. As shown in
Figure[5] we consider three settings: extreme non-IID
(o = 0.1), moderate non-IID (« = 0.5), and near-1ID
(o = 0.9). Across all settings and attack types, FE-
DRACE consistently achieves a true positive rate of
at least 0.968, indicating strong detection performance
even under severe distribution shifts. Moreover, the
false positive rate decreases as « increases, suggesting Figure 5: Detection performance under dif-
that more balanced data distributions improve detection ferent non-IID settings.

precision by reducing semantic divergence across clients.

(a) True Posmve Rate (b) False Posmve Rate

Robustness to Attack Scale. To assess robustness un- Min-Max IPMA B TLFA BES ECBA B DBA
der varying attack intensity, we vary the number of mali- 1.0 0.12

cious clients M on Tiny ImageNet, testing with M =8 (4 0.10
(12.5%), M = 16 (25%), and M = 24 (37.5%) out .4 0.08
of 64 total clients. As shown in Figure @ FEDRACE & 04 0.06
maintains a TPR above 0.97 across all scenarios and 0.04
attack types. Although the FPR slightly increases with 02 0.02 i

a larger number of attackers, the overall performance 00 M g m=16 M=24 0.00-M=g m=16m=24
remains stable. These results confirm that FEDRACE a) True Positive Rate (b) False Positive Rate
is resilient to changes in both data heterogeneity and ad- Figur e 6: Detection performance under dif-
versarial scale, making it effective in diverse federated ferent numbers of malicious clients.
learning environments.

5 Conclusions and Limitations

In conclusion, FEDRACE is a robust FL framework that integrates HStat-Net for representation
learning with GLM-based deviance analysis for secure client evaluation. It leverages pre-trained
models to improve generalization and identifies malicious clients through statistical residuals. While
effective for classification tasks, extending this framework to domains such as text generation or
retrieval requires new strategies for semantic representation. Future work will focus on adapting the
model to support broader tasks and enabling robust, multi-modal FL in diverse settings.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the contributions of the paper,
including the integration of HStat-Net and DevGuard in a unified framework for robust
federated learning. These claims are supported by both theoretical analysis and empirical
results (Sections 3] [).
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses limitations in the conclusion (Section[5), noting challenges
in extending the method beyond classification tasks and the need for future work on broader
modalities and tasks.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Theoretical results, including the bound on misclassification rate in DevGuard,
are stated with assumptions and proven in Appendix. All notations are defined and the
derivation is correct.
Guidelines:
» The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.
* All assumptions should be clearly stated or referenced in the statement of any theorems.
* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes detailed descriptions of datasets, parameter settings, model
architectures, and evaluation protocols in Section @} enabling reproducibility.

Guidelines:
» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All datasets used in this study are publicly available, including CIFAR-
100, Food-101, and Tiny ImageNet. Upon acceptance, we will release the source code,
training scripts, and detailed instructions as part of the supplementary material. Replication
procedures and dataset specifications are provided in the main paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all hyperparameters, training settings, client configurations,
data partitioning methods, and evaluation metrics in Section 4}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Results include standard deviations over multiple seeds (four runs) and are
reported for each metric in Tables [4]
Guidelines:
* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper reports that experiments were run on NVIDIA RTX A4500 GPUs
and describes the scale of experiments in Section ]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work complies with the NeurIPS Code of Ethics. It uses publicly available
datasets and does not involve human subjects, sensitive content, or deployment.

Guidelines:
e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: While the main focus is on system robustness, the paper includes a discussion
of potential societal implications, such as improving privacy and security in distributed
systems and the risk of misuse for model manipulation.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any new generative models or high-risk datasets
that would require safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets (CIFAR-100, Food-101, Tiny ImageNet) and models (CLIP,
ResNet-152) used in the paper are publicly available and cited with proper attribution and
licensing.
Guidelines:

» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new datasets or models; it builds upon existing
architectures and datasets.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve crowdsourcing or human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The work does not involve human subjects and thus does not require IRB
approval.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used as part of the method development. They may have been
used for minor writing support, but not for any scientific content or experiments.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Algorithm Overview of the Multi-step Voting

Algorithm 1 Multi-step Voting

Require: Client set N'(Y), voting steps K, subset size /3
Ensure: Detection results indicating malicious clients
1: Initialize Votes < zeros(|JN(*)]), with |./\/s(utg| = |N®|/2
2: for k =1to K do
3 N RandomSelect(NV'®) | [N, )

sub

4: for each class ¢ do
5: Tglobal < median({rf |ie ./\/S(utb) })
6: end for
7: for each client i € N'® do
8: for each class c do
9: A+ —2log(75)
10: end for
11 A+ S0 A¢ - log(AY)
12: end for
13: Sort residuals: Ay < -+ < Apy
14: For each candidate threshold p € {1,...,n}, compute estimates: HB,ps M, p» and 012)
2
15: Select adaptive threshold pj, < argmin, wji#p)z
16: for each client i € N do
17: if Az > A[ﬁk] then
18: Votes|[i] + Votes[i] + 1
19: end if
20: end for
21: end for

22: Declare clients as malicious: M = {i | Votes[i] > £}
23: Perform global aggregation using benign clients:

t_; t
STV PO

PIENO\M

A.2 Details for Equation[16]

In this work, we treat the task net h in HStat-Net as a Generalized Linear Model, where feature
representations refined by the statistical net s are linearly transformed and passed through a softmax
function to produce class probabilities. The linearly separable representation space generated by
statistical net s renders the task net equivalent to a multinomial logistic regression. Following
previous works [57, 166} [67], we analyze model fit using deviance residuals, which quantify the
model’s alignment with expected prediction.

For each aggregated global representation rg,,, of class c, the true class label is denoted by the
indicator variable yg:

1, if global representation belongs to class c;

. 21
Yr {O, otherwise. @D

The task net trained on client ¢ predicts the probability that representation rg,, belongs to class c,

denoted by ¢;. The log-likelihood function of the trained task net for representation rg,, is:

C
LE = yslog(gs) = log(§5), (22)

c=1
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which resembles the log-likelihood of multinomial logistic regression in the GLM framework. Assume
a saturated model that perfectly fits the representation, where the predicted probabilities match the
observed labels, which are one-hot encoded:

gs,saturated = Yps (23)
Then, the log-likelihood for the saturated model is:
c
Liuratea = Z Yr log(glc‘,saturated) = log(glc‘,saturated)7 (24)
c=1

Since y¢ is either 0 or 1, and log(1) = 0, only the terms where y¢ = 1 contribute, leading to a
log-likelihood of zero for the saturated model:

Lscalurated =0. (25)

The deviance residual A is defined as twice the difference between the log-likelihoods of the
saturated model and the task net:

AS = 2(L

saturated

o (26)
The deviance residual for each representation on a task net is given by:
Af = —2log({y) 27)

This shows that the deviance residual for each observation depends solely on the predicted probability
of the true class. A larger deviance residual indicates a worse fit for that representation, potentially
signaling malicious activity on client ¢’s task net.

A.3 Proof of Theorem [l

Proof. Our detection algorithm sorts clients based on their deviance residuals A;. We aim to
determine a threshold 7 such that clients with A; < 7T are classified as benign, and clients with
A; > T are classified as malicious. To analyze the misclassification rates, we define the following:

(i) The false positive rate (FPR) is the probability that a benign client is misclassified as malicious:
FPR=P(A; > T | i € B).

(i1) The false negative rate (FNR) is the probability that a malicious client is misclassified as benign:
FNR =P(A; < T |i e M).

Our goal is to choose the threshold 7 that minimizes the total misclassification rate (TMR), defined
as
TMR = 75 - FPR + w4 - FNR,

where mp = 1 — ma is the proportion of benign clients.

Since we do not assume a specific distribution for the deviation residuals, we apply Chebyshev’s
inequality to bound the probabilities of misclassification. For any random variable X with expected
value 1 and variance o2, Chebyshev’s inequality states that for any § > 0,

o2
PUX -4l 20)< 5.
Applying Chebyshev’s inequality to the deviation residuals:
For benign clients:
2
_ o
P(|A; — psl Z(S|ZEB)§§—2.
For malicious clients: )
) o

We choose the threshold 7 as the midpoint between the expected residuals of benign and malicious
clients: n
T = KB 5 HM )
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This choice sets § = £ E Substituting ¢ into the bounds:

2
FPR < LQ’
(trm — ps)
2
FNR< — 7
(b — 1B)
Therefore, the total misclassification rate is bounded by
402
TMR =75 -FPR+ o -FNR < ————.
(m — pB)

This bound shows that the total misclassification rate decreases as the square of the difference between
the mean residuals increases. Specifically, as the separation pnq — 3 becomes larger relative to the
variance o2, the misclassification rate approaches zero. O
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