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ABSTRACT

The rapid growth of high-resolution, meticulously crafted AI-generated images
poses a significant challenge to existing detection methods, which are often trained
and evaluated on low-resolution, automatically generated datasets that do not align
with the complexities of high-resolution scenarios. A common practice is to resize
or center-crop high-resolution images to fit standard network inputs. However,
without full coverage of all pixels, such strategies risk either obscuring subtle,
high-frequency artifacts or discarding information from uncovered regions, lead-
ing to input information loss. In this paper, we introduce the High-Resolution
Detail-Aggregation Network (HiDA-Net), a novel framework that ensures no
pixel is left behind. We use the Feature Aggregation Module (FAM), which fuses
features from multiple full-resolution local tiles with a down-sampled global view
of the image. These local features are aggregated and fused with global representa-
tions for final prediction, ensuring that native-resolution details are preserved and
utilized for detection. To enhance robustness against challenges such as localized
AI manipulations and compression, we introduce Token-wise Forgery Localiza-
tion (TFL) module for fine-grained spatial sensitivity and JPEG Quality Factor
Estimation (QFE) module to disentangle generative artifacts from compression
noise explicitly. Furthermore, to facilitate future research, we introduce HiRes-
50K, a new challenging benchmark consisting of 50,568 images with up to 64
megapixels. Extensive experiments show that HiDA-Net achieves state-of-the-
art, increasing accuracy by over 13% on the challenging Chameleon dataset and
10% on our HiRes-50K.

1 INTRODUCTION

The rapid advancement of AI-generated image (AIGI) technologies, particularly diffusion models
proposed in recent works (Sohl-Dickstein et al., 2015; Ho et al., 2020; Dhariwal & Nichol, 2021;
Podell et al., 2023; Rombach et al., 2022), has led to a surge in the generation and sharing of
hyper-realistic, high-resolution images online. Unlike the outputs of early generative models Karras
et al. (2017), generated images on social platforms are often carefully selected, edited, or even
upscaled Saharia et al. (2022) by users, making them nearly indistinguishable from real photographs
to the human eye (Kamali et al., 2025). This new reality poses significant risks to information
authenticity Ferreira et al. (2020), societal trust, and copyright protection Ren et al. (2024), making
the development of robust detectors for high-resolution generated images a priority.

Despite significant strides in AIGI detection Wang et al. (2020); Frank et al. (2020); Ojha et al.
(2023), the generalization ability of existing methods has notably degraded on modern, high-
resolution benchmarks like the Chameleon dataset (Yan et al., 2024a). We attribute the performance
collapse to two key challenges: Input Degradation and Limited Generalization.

Input Degradation. A primary cause for the failure of current detectors on high-resolution images
is an architectural bottleneck. Most frameworks resize large inputs to a fixed, low resolution (e.g.,
224× 224) to fit standard backbones (Ojha et al., 2023; Tan et al., 2024a; Liu et al., 2024; Tan et al.,
2025). As shown in Sec. 3, resizing introduces a strong low-pass effect, irreversibly erasing the
subtle, high-frequency fingerprints that are most indicative of AI-generated artifacts. While some
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methods attempt to mitigate this by cropping limited regions, such as TextureCrop’s Konstantinidou
et al. (2025) region selection approach or SAFE’s Li et al. (2024) center-cropping, they only analyze
a few selected regions. This partial analysis discards potentially crucial evidence from the rest of the
image. We argue that a truly comprehensive analysis requires systematically examining the entire
image at its native resolution to ensure no detail is overlooked.

TFL

QFE
FAM

Ours

Center
Crop Only

Frequency

Informationor or

Previous

Figure 1: Comparison between our model and
previous approaches. Many existing methods ei-
ther resize high-resolution images to fit a visual
backbone or crop only the central region. In con-
trast, our method processes full-resolution tiles
covering the entire image, preserving fine-grained
details and utilizing all pixel information for more
accurate detection on high-resolution images.

Limited Generalization. As research Zheng
et al. (2024) has shown, models can learn
“shortcuts” by overfitting to dataset-specific
cues, such as the generation source model or
generation prompts, rather than universal syn-
thetic artifacts. This problem is severely exac-
erbated by mismatched JPEG compression his-
tories between real and fake images Grommelt
et al. (2025), which teaches the model to be-
come a compression detector rather than a syn-
thesis detector. While naive JPEG augmenta-
tion offers partial relief, it often fails to gener-
alize to unseen compression levels. Moreover,
the rise of localized forgeries like AI-driven in-
painting Chen et al. (2024) demands that detec-
tors possess fine-grained spatial awareness to
identify manipulated regions within otherwise
authentic high-resolution images, posing a sig-
nificant challenge for models trained solely on
datasets with fully synthesized images.

To address these multifaceted challenges,
we introduce the High-Resolution Detail-
Aggregation Network (HiDA-Net), a frame-
work designed for comprehensive and robust
detection of high-resolution AI-generated im-
ages. As illustrated in Fig. 1, HiDA-Net avoids input downsampling by processing the entire image
as a series of full-coverage, native-resolution tiles. It utilizes a novel Feature Aggregation Module
(FAM) to fuse features from these local tiles with a global contextual view, ensuring no pixel is left
behind. To combat shortcut learning and enhance generalization, we incorporate two extra training
tasks. Token-wise Forgery Localization (TFL) endows the model with fine-grained spatial aware-
ness to pinpoint manipulated regions, making it robust against localized forgeries like inpainting.
And the JPEG Quality Factor Estimation (QFE) module, utilizing the preserved pristine JPEG
artifacts within each crop tiles, forces the model to disentangle generative traces from compression
noise, enhancing the robustness facing JPEG compression. To facilitate rigorous and realistic evalu-
ation, we also present HiRes-50K, a new challenging benchmark of 50,568 high-resolution images
(up to 64 megapixels) with carefully aligned compression distributions and image sizes. Our main
contributions are:

• A Novel Detail-Preserving Architecture: We propose HiDA-Net, a network that pro-
cesses full-coverage, native-resolution tiles to prevent information loss. Its key compo-
nents: the Feature Aggregation Module (FAM), Token-wise Forgery Localization (TFL),
and JPEG Quality Factor Estimation (QFE), work in synergy to achieve robust, detail-
aware detection on high-resolution images.

• A New High-Resolution Benchmark: We introduce the HiRes-50K dataset, featuring
50,568 images of up to 64 megapixels with paired sizes and JPEG compression levels,
providing a more realistic and challenging benchmark for future research.

• State-of-the-Art Performance: HiDA-Net establishes a new state-of-the-art across
multiple benchmarks, demonstrating significant gains of over 13% on the challenging
Chameleon dataset and over 10% on our HiRes-50K, proving its superior robustness and
generalization.
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2 RELATED WORKS

2.1 EXISTING FEATURE EXTRACTION METHODOLOGIES

Existing detection methods differ in how they process input images to extract synthetic-related fea-
tures. Early approaches utilized traditional CNNs Wang et al. (2020); Liu et al. (2020), while more
recent works have leveraged pretrained vision-language or modern CNN models Liu et al. (2022)
to capture global image inconsistencies. For example, UnivFD Ojha et al. (2023) builds a linear
classifier on frozen CLIP features Radford et al. (2021), and C2P-CLIP Tan et al. (2025) fine-tunes
the model with carefully designed prompts. These resizing-based methods tend to suppress high-
frequency components and degrade detection performance. To prevent this information loss, an-
other line of research analyzes low-level features. Methods like PatchCraft Zhong et al. (2023a) and
AIDE Yan et al. (2024a) propose strategies to select the most informative patches based on texture
or frequency content. Similarly, TextureCrop Konstantinidou et al. (2025) and SAFE Li et al. (2024)
demonstrated that cropping improves performance. However, these methods typically focus on lim-
ited regions, overlooking valuable information from the global context. B-Free Guillaro et al. (2025)
processes multiple crops independently and obtains the final prediction by simply averaging their
results. Our HiDA-Net addresses this by integrating local high-frequency details from all image tiles
with global context in an end-to-end architecture.

2.2 RECONSTRUCTION-BASED DETECTION

Reconstruction error provides a strong detection signal. DIRE Wang et al. (2023) detects diffusion-
generated images by first applying a diffusion-based noise and denoise reconstruction process, then
computing the residual between the original and reconstructed image, which is used as input to a
trainable classifier. Follow-up work simplifies this idea, Aeroblade Ricker et al. (2024) finds that
the pretrained autoencoder (AE) from a latent diffusion model alone reconstructs generated images
with lower error than real ones, avoiding the costly denoising process. DRCT Chen et al. (2024)
operationalizes this by using diffusion-reconstructed real images as fake images in a contrastive
framework, encouraging the model to learn subtle distinctions between real images and visually
similar reconstructions. Rajan et al. (2025) used an autoencoder to construct paired training data.
Inspired by this philosophy, we leverage VAE-based reconstructions and a randomized patch swap
strategy to generate partially manipulated images with token-level labels, which we couple with our
Token-wise Forgery Localization (TFL) objective to sharpen spatial sensitivity to localized edits.

2.3 GENERALIZATION ABILITY RESEARCH FOR DETECTION

Real world images undergo diverse degradations (e.g., JPEG recompression, resizing, blur), posing
significant challenges to detector robustness. A common practice is to augment training data with
different distortions Wang et al. (2020); Yan et al. (2024a), yet this may teach the model tolerance to
artifacts rather than distinguishing them from synthesis traces. Recent analyses reveal deeper biases
that detectors often exploit dataset biases such as mismatched compression histories Grommelt et al.
(2025) or superficial distributional signals tied to source models or prompt styles Zheng et al. (2024),
hindering generalization beyond curated benchmarks. To mitigate these issues, we introduce a JPEG
Quality Factor Estimation (QFE) task that encourages the model to separate compression noise from
synthesis artifacts. We also propose HiRes-50K, a high-resolution dataset in which real and fake
images are aligned in both image size and JPEG compression level, allowing for more realistic and
controlled evaluation.

3 MOTIVATION: AN INFO-PRESERVING VIEW

Resizing introduces a strong low-pass effect that discards high-frequency cues critical for detection,
while cropping preserves and redistributes this content via spectral leakage.

We compare two downsampling method on the SDv1.4 subset of GenImage: (i) resiz-
ing a 448×448 image to 224×224, and (ii) random cropping a 224×224 patch from the
original. For each method, we visualize the spectral energy ratio between real and gen-
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Figure 2: Overview of HiDA-Net. Input images are processed by two paths: (i) a global path
that resizes I to input size, and (ii) a local path that crops K tiles. Both are fed into a shared,
frozen ViT backbone and refined by a small trainable Transformer. The [CLS] tokens from all tiles
are aggregated by the Feature Aggregation Module (FAM) for classification. Two tasks are trained
jointly: Token-wise Forgery Localization (TFL) supervises patch tokens for localized manipulations,
and JPEG Quality Factor Estimation (QFE) regresses the JPEG quality from fdetail.

erated images (Fig. 3). Red indicates higher energy for real images and blue indicates
higher energy for generated ones. Real images exhibit stronger high-frequency components.
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Figure 3: Resizing vs Cropping in the Fre-
quency Domain. Visualization of spectral energy
differences when downsampling from 448×448
to 224×224.

Resizing truncates the outer regions of the
frequency spectrum, removing high-frequency
differences critical for detection. In contrast,
random cropping retains high-frequency cues
for detection.

Resizing an image I is equivalent in the
frequency domain to truncating its Discrete
Fourier Transform (DFT), F{I}, retaining only
the central low-frequency coefficients, which
irreversibly removes high-frequency informa-
tion. When downsampling an image from N1×
N2 to M1×M2 with an ideal low-pass filter, the
DFT of the new image, Y [r1, r2], is a centered
crop of the original DFT X[r1, r2], scaled by a
constant:

Y [r1, r2] =

(
M1 ·M2

N1 ·N2

)
X[r1, r2], |r1| <

M1

2
, |r2| <

M2

2
. (1)

All high-frequency components beyond this central region are discarded.

In contrast, cropping a tile Pk from I is equivalent to multiplying I by a window function Wk of
width M1 and height M2. By the convolution theorem:

DM (ω) =
sin(Mω/2)

sin(ω/2)
, F{Pk} = F{I ·Wk} = F{I} ∗ F{Wk}. (2)

F{Wk} = e−
jω1(M1−1)

2 +
jω2(M2−1)

2 DM1
(ω1)DM2

(ω2). (3)
where ∗ denotes convolution. The term F{Wk} is a Dirichlet kernel. This causes spectral leakage,
effectively spreading information from all original frequencies, including high frequencies, across
the entire spectrum of the cropped tile.

We further consider a partition of I into n0 × n1 non-overlapping tiles indexed by (a, b), a ∈
{0, . . . , n0−1} and b ∈ {0, . . . , n1−1}. The (a, b)-th tile has size M (1)

a ×M
(2)
b and top-left starting

coordinates ∆(1)
a =

∑
i<a M

(1)
i and ∆

(2)
b =

∑
j<b M

(2)
j . Let Y(a,b)(e

jω1 , ejω2) be the DTFT of tile
(a, b). The DTFT of the full image can be reconstructed from the tiles via appropriate phase shifts:

X(ejω1 , ejω2) =

n0−1∑
a=0

n1−1∑
b=0

e−j(ω1∆
(1)
a +ω2∆

(2)
b ) · Y(a,b)(e

jω1 , ejω2). (4)
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Thus, processing a sufficient set of tiles retains access to the full frequency content of the original
image. Practically, we implement this by cropping tiles to cover the entire image, ensuring full-
spectrum coverage. Compared with resizing, the cropped tiles collectively cover the full image and
are fed into the model, preserving high-frequency information for accurate detection. The complete
mathematical derivations can be found in the supplementary materials D.1.

4 METHODOLOGY

We propose the High-Resolution Detail-Aggregation Network (HiDA-Net), a dual-path detector for
high-resolution images illustrated in Fig. 2. A global view provides semantic context, while a set
of lossless, full-resolution tiles covers all pixels to preserve subtle high-frequency generation cues.
Both paths share a frozen ViT backbone with a lightweight refinement layer. The Feature Aggre-
gation Module (FAM) fuses tile-level and global [CLS] tokens for the final decision. To improve
reliability in real-world conditions, we add two extra tasks: Token-wise Forgery Localization (TFL)
for spatial sensitivity to localized edits, and JPEG Quality Factor Estimation (QFE) to disentangle
compression artifacts from generative traces.

4.1 INPUT PREPROCESSING AND FEATURE EXTRACTION

Given an input image I ∈ RH×W×3 of arbitrary resolution, we extract its features via two parallel
paths:

Global Path: The image I is resized to the standard input dimension of our backbone network (a
Vision Transformer(ViT) with 224×224 input), yielding a global-view image Iglobal, which provides
overall semantic information.

Local Path: To preserve high-frequency details, the original image I is divided into K tiles
{I1, I2, . . . , IK}, each of size 224 × 224. These tiles are cropped directly from the source im-
age without any resizing, thus maintaining pixel-level information. The tiling strategy ensures that
the union of all tiles fully covers the original image.

Both the global image Iglobal and the local tiles {Ik}Kk=1 are passed through a shared and frozen
pre-trained ViT backbone. The output tokens from the ViT’s final layer are then refined by a small,
trainable Transformer for subsequent tasks. For a tile Ik, this produces Tk = {tkcls, t

k
1 , . . . , t

k
N},

where tkcls is the [CLS] token and the others are ViT image patch tokens. For the global image
Iglobal, we obtain Tglobal = {tglobal

cls , tglobal
1 , . . . , tglobal

N }. During training, we randomly sample K ∈
[Kmin,Kmax] tiles to encourage robustness, and during inference, we deterministically cover the
whole image to ensure no area is missed.

4.2 FEATURE AGGREGATION MODULE (FAM)

We fuse global semantics and high-fidelity local details to make the final classification.

Local Detailed Feature Aggregation: We collect the [CLS] tokens from all local patches to form a
variable length sequence {t1cls, t

2
cls, . . . , t

K
cls}. A lightweight Transformer encoder Local Aggregator

encodings processes this sequence. We prepared a learnable output token tout and get the aggregated
local detailed feature:

fdetail = LocalAggregator([tout, t
1
cls, . . . , t

K
cls])[0]. (5)

Global-Detail Fusion and Classification: We concatenate the global [CLS] token fglobal = tglobal
cls

and fdetail to obtain the final discriminative feature vector ffinal:

ffinal = Concat(fglobal, fdetail) (6)

which is fed to an MLP head to produce the binary probability p. ytrue ∈ {0, 1} indicates real/fake.
The loss is:

Lcls = CrossEntropy(p, ytrue) (7)

5
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4.3 TOKEN-WISE FORGERY LOCALIZATION (TFL)

We introduce the Token-wise Forgery Localization (TFL) task to provide token-level supervision
for localized manipulations. We adopt a Random Patch Swap (RPS) augmentation. For a given
pair of real and fake images, we randomly swap a proportion of the corresponding image to form a
composite with both real and fake regions. When image pairs are unavailable, we swap patches be-
tween a random real and a random fake image. This augmentation yields a “soft” label ytoken ∈ [0, 1]
for each ViT patch token, computed as the average of binary pixel labels within the corresponding
patch. See supplementary materials for more details.

For all non [CLS] tokens tki from both local tile Ik and the global image Iglobal, a shared linear head
with a Sigmoid function predicts the token’s forgery probability pktoken,i. The TFL loss Ltfl is the
mean Binary Cross-Entropy (BCE) over all tokens:

Ltfl =
1

Mtotal

∑
k,i

BCE(pktoken,i, y
k
token,i) (8)

where Mtotal is the total number of patch tokens.

4.4 JPEG QUALITY FACTOR ESTIMATION (QFE)

To improve the model’s robustness against JPEG compression, we introduce the QFE task, which
trains the model to actively perceive the degree of compression. Using the aggregated local feature
fdetail, which is rich in high-frequency details most affected by compression. We regress the JPEG
Quality Factor (QF) via:

qpred = MLPqf(fdetail). (9)

Since some training images were compressed and then saved as a lossless format like PNG, we do
not rely on file metadata. Instead, a pre-trained estimator in FBCNN Jiang et al. (2021) to provides
qtrue for supervision, and the loss is:

Lqfe = MSE(qpred, qtrue). (10)

This guides the model to distinguish grid-like quantization artifacts and disentangle content from
compression during classification.

Overall Loss The final loss function is as below:

Lall = Lcls + αLtfl + βLqfe. (11)

5 HIRES-50K: A NEW HIGH-RESOLUTION BENCHMARK FOR AIGI
DETECTION

Dataset Overview.
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Figure 4: Samples images and resolution dis-
tribution in HiRes-50K. Left: generated images.
Right: image long-edge resolution distribution.

To evaluate detectors under realistic high-
resolution conditions, we introduce HiRes-
50K, a challenging benchmark of high-quality
images collected from accessible AIGI commu-
nities Freepik (2025); LiblibAI (2025); Civitai
(2025) and a real-image community Unsplash
(2025). The collection complied with the Terms
of Service and privacy policies of each source
at the time of access. HiRes-50K includes
50,568 images spanning long-edge resolutions
from below 1K to over 10K pixels, with some
reaching up to 64 megapixels. As shown in
Fig. 4, it features diverse content including portraits, landscapes, architecture, vehicles, and animals.
For analysis, we divide the dataset into eight resolution subsets: [0, 900), [900, 1200), [1200, 1500),
[1500, 2000), [2000, 2500), [2500, 3000), [3000, 5000), and [5000,∞), covering both common and
extreme cases for stress-testing robustness. This dataset is used exclusively for evaluation.
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Table 1: Cross-model accuracy (Acc) performance on the Chameleon testset. For each training
dataset, the first row indicates the Acc evaluated on the Chameleon testset, and the second row gives
the Acc for “fake image/real image” for detailed analysis.

Training Dataset CNNSpot FreDect UnivFD DIRE PatchCraft NPR AIDE Ours

SD v1.4
60.11 56.86 55.62 59.71 56.32 58.13 62.60 73.44

8.86/98.63 1.37/98.57 17.65/93.50 11.86/95.67 3.07/96.35 2.43/100.00 20.33/94.38 65.47/79.44

All GenImage
60.89 57.22 60.42 57.83 55.70 57.81 65.77 79.10

9.86/99.25 0.89/99.55 85.52/41.56 2.09/99.73 1.39/96.52 1.68/100.00 26.80/95.06 76.77/82.20

Construction principles. We estimate the JPEG compression level of generated images and apply
similar compression to low-compression real images after resizing them to match in pixel count.
This process aligns real and fake images in both size and JPEG compression level within each
resolution subset. Each subset maintains a 1:1 balance between real and fake images.

6 EXPERIMENT

6.1 IMPLEMENTATION DETAILS

Input Tile Split We use the pre-trained CLIP Radford et al. (2021) ViT-L/14 model as the backbone.
We set the cropping resolution to 224 × 224 to align with the input resolution. Images with either
side less than 224 are resized to 224 on the shorter side with preserved aspect ratio before applying
tile cropping and augmentation. Other images keep their original resolution. During training, we
randomly crop 1 to 16 tiles from one input image. During inference, we adopt a full-coverage tiling
strategy. Specifically, if the input image has length L along a spatial dimension and the tile size is
P , we generate N =

⌈
L
P

⌉
tiles along that dimension. The starting position of the i-th tile is:

xi =

⌊
L

N
· (i− 1)

⌋
, for i = 1, 2, . . . , N − 1. (12)

and the last tile starts at xN = L − P . This ensures that the entire image is fully covered without
missing any pixels.

Data Augmentation We adopt data augmentations including random JPEG compression (QF∼
U(60, 100)),random Gaussian Blur (σ ∼ U(0.1, 2.5)), random scaling (scale factor∼ U(0.25, 2))
and Random Patch Swap augmentation (Swap ratio∼ U(0.2, 0.98)) to improve robustness. Each
augmentation is conducted with 10% probability. Inspired by prior works Rajan et al. (2025); Chen
et al. (2024), we synthesize paired fake images on certain benchmarks using the VAE of a diffusion
model that was used to generate the corresponding training data, which helps improve performance.

6.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We conducted cross-model experiments on four different datasets to evaluate the generalizability of
our method. Accuracy (ACC) is calculated using a threshold of 0.5.

Comparisons on Chameleon The Chameleon dataset poses a significant challenge for AIGI de-
tection due to its high-resolution and visually indistinguishable synthetic images. As shown in Ta-
ble. 1, the previous SOTA method Yan et al. (2024a) achieves only 65.77% accuracy, with most
existing methods achieving results below 60%, indicating limited discriminative capacity under
such a high-resolution scenario. In contrast, our proposed HiDA-Net, specifically expert in han-
dling high-resolution inputs, delivers substantial performance improvements. Notably, even when
trained exclusively on the SD v1.4 subset, HiDA-Net outperforms competing methods trained on
the entire GenImage dataset, while maintaining balanced accuracy across both real and generated
samples. When trained on the full GenImage dataset, HiDA-Net achieves an accuracy of 79.10%,
outperforming the previous best by a substantial margin of 13%.

Comparisons on HiRes-50K. To evaluate performance under challenging high-resolution condi-
tions, we conduct experiments on our HiRes-50K dataset. All models are trained on the full GenIm-
age training sets and evaluated on HiRes-50K. Results are summarized in Table 2. Our method con-
sistently outperforms all competing approaches. Relative to the input-resizing baseline, it yields an
average gain of 13.16%. Compared with TextureCrop Konstantinidou et al. (2025), which also crops

7
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Table 2: Cross-model accuracy (Acc) performance on our HiRes-50K Dataset.
Resolution Range 0-900 900-1200 1200-1500 1500-2000 2000-2500 2500-3000 3000-5000 >5000 Avg
CNNSpot 58.46 56.37 58.73 63.14 67.42 60.90 66.30 58.90 61.28
FreDect 63.67 55.63 57.31 58.90 58.16 67.78 57.23 51.06 59.72
UnivFD 67.00 58.35 62.20 65.95 66.05 58.20 58.15 60.05 62.05
DIRE 59.11 64.25 62.10 66.66 75.84 63.40 69.31 62.18 65.36
AIDE 65.87 57.29 49.90 58.23 51.88 65.31 61.04 42.16 56.46
DRCT(ConvB) 65.30 66.19 68.78 68.85 68.78 75.79 69.65 54.03 67.17
TextureCrop(CNNDetect) 57.45 52.81 59.83 63.17 65.31 55.56 70.65 69.49 60.67
Ours 82.98 81.39 78.16 78.99 88.26 80.18 82.88 69.84 80.33

Table 3: Cross-model accuracy (Acc) performance on the GenImage Dataset.
Method Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN Avg
Swin-T Liu et al. (2021) 62.1 99.9 99.8 49.8 67.6 99.1 62.3 57.6 74.8
CNNSpot Wang et al. (2020) 52.8 96.3 95.9 50.1 39.8 78.6 53.4 46.8 64.2
Spec Zhang et al. (2019) 52.0 99.4 99.2 49.7 49.8 94.8 55.6 49.8 68.8
F3Net Qian et al. (2020) 50.1 99.9 99.9 49.9 50.0 99.9 49.9 49.9 68.7
UnivFD Ojha et al. (2023) 93.9 96.4 96.2 71.9 85.4 94.3 81.6 90.5 88.8
NPR Tan et al. (2024b) 81.0 98.2 97.9 76.9 89.8 96.9 84.1 84.2 88.6
FreqNet Tan et al. (2024a) 89.6 98.8 98.6 66.8 86.5 97.3 75.8 81.4 86.8
FatFormer Liu et al. (2024) 92.7 100.0 99.9 75.9 88.0 99.9 98.8 55.8 88.9
DRCT Chen et al. (2024) 91.5 95.0 94.4 79.4 89.1 94.6 90.0 81.6 89.4
AIDE Yan et al. (2024a) 79.4 99.7 99.8 78.5 91.8 98.7 80.3 66.9 86.8
Effort Yan et al. (2024b) 82.4 99.8 99.8 78.7 93.3 97.4 91.7 77.6 91.1
SAFE Li et al. (2024) 95.3 99.4 99.3 82.1 96.3 98.2 96.3 97.8 95.6
C2P-CLIP Tan et al. (2025) 88.2 90.9 97.9 96.4 99.0 98.8 96.5 98.7 95.8
Ours/No VAE 97.8 98.4 98.3 86.2 98.0 98.4 95.6 96.2 96.1
Ours/SDv1.4 94.2 99.1 99.2 92.7 99.1 98.0 96.9 97.8 97.1

inputs but selects only limited regions and averages the predictions of every tile, shows improved
performance at higher resolutions. However, our method still achieves a notable 18% improvement
on average. Experiment results show our method’s scalability and robustness.

Comparisons on GenImage Our method achieves consistently strong performance across both
high-resolution and standard low-resolution benchmarks. Following the evaluation protocol of
PatchCraft Zhong et al. (2023a), all models are trained on the GenImage SD v1.4 subset and evalu-
ated on the full GenImage dataset. As reported in Table 3, our approach yields results comparable
to the current SOTA, C2P-CLIP Tan et al. (2025), on individual subsets and surpasses it in terms of
average accuracy. Moreover, incorporating fake-real image pairs synthesized by the SD v1.4 VAE
further boosts performance by 1.3%, achieving a new SOTA.

Comparisons on DRCT. All models are trained on the DRCT SD v1.4 subset and evaluated on
all testsets. As shown in Table. 4, DRCT achieves high accuracy by reconstructing each training
image to form paired hard examples and applying contrastive training, which reveals subtle diffusion
artifacts. Our plain HiDA-Net surpasses the DRCT with SD v1.4 reconstruction but falls short of the
SD v2 variant. But by adopting a similar strategy, we construct paired training data with the SD v1.4
VAE, matching each real image to a subtly different synthetic counterpart, and apply Random Patch
Swap (RPS) augmentation. The resulting model performs strongly, especially for high-resolution
SDXL images at 1024 × 1024 and DR variants (partially inpainted images), achieving a state-of-
the-art average accuracy of 98.4%.

6.3 ROBUSTNESS & ABLATION STUDY

Robustness Evaluation We conducted a series of experiments to assess the robustness of our
method against common image perturbations. We trained our model on the SD v1.4 subset of Gen-
Image and evaluated it under various perturbations, including JPEG compression, Gaussian blur,
and image scaling. The results are summarized in Fig. 5.

For JPEG compression, we evaluate robustness in two settings: testing on the SD v1.4 subset and on
the entire GenImage test set. For Gaussian blur and scaling perturbations, evaluations are performed
on the SD v1.4 subset only. This broader evaluation shows that our method generalizes well across
varying compression levels and datasets. In all cases, our method demonstrates strong resilience,
maintaining high accuracy under moderate degradation. These results validate the robustness and
generalization capabilities of our approach in real-world conditions.
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Table 4: Cross-model accuracy performance on the testing subsets of DRCT. See supplementary
materials for more comparison.

Method LDM SDv1.4 SDv1.5 SDv2 SDXL SDXL
Refiner

SD
Turbo

SDXL
Turbo

LCM
SDv1.5

LCM
SDXL

SDv1
Ctrl

SDv2
Ctrl

SDXL
Ctrl

SDv1
DR

SDv2
DR

SDXL
DR Avg

CNNSpot 99.9 99.9 99.9 97.6 66.3 86.6 86.2 72.4 98.3 61.7 98.0 85.9 82.8 60.9 51.4 50.3 81.1
F3Net 99.9 99.8 99.8 88.7 55.9 87.4 68.3 63.7 97.4 55.0 98.0 72.4 82.0 65.4 50.4 50.3 77.1
Conv-B 99.9 100.0 99.9 95.8 64.4 82.0 80.8 60.8 99.2 62.3 99.8 83.4 73.3 61.7 51.8 50.4 79.1
UnivFD 98.3 96.2 96.3 93.8 91.0 93.9 86.4 85.9 90.4 89.0 90.4 81.1 89.1 52.0 51.0 50.5 83.5
DRCT/SDv1.4 99.9 99.9 99.9 96.3 83.9 85.6 91.9 70.0 99.7 78.8 99.9 95.0 81.2 99.9 95.4 75.4 90.8
DRCT/SDv2 99.7 98.6 98.5 99.9 96.1 98.7 99.6 83.3 98.5 93.8 96.7 99.9 97.7 93.9 99.9 90.4 96.6
Ours/No VAE 98.7 98.8 98.8 98.7 98.8 98.8 97.7 97.6 98.6 98.8 98.8 98.4 98.2 90.4 74.8 71.2 94.8
Ours/SDv1.4 98.8 98.9 98.9 98.0 99.0 98.8 98.5 98.8 98.4 98.9 98.5 98.7 98.4 99.0 97.4 94.9 98.4

Table 5: Ablation study on the number of crop
tiles in FAM.

Tile Nums 1 2 4 8 16 FAM

ACC (%) 92.14 93.34 95.63 95.69 95.89 96.10

Table 6: Ablation study of TFL and QFE tasks
on GenImage.

Module FAM FAM+TFL FAM+QFE ALL

ACC (%) 93.92 94.36 94.73 96.10
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Figure 5: Model Accuracy Against Diverse Perturbation.

Effect of FAM Module We conduct an ablation study on the number of cropped tiles sent to the
FAM module during both training and inference. Evaluation uses the same settings as comparisons
on the GenImage. We evaluate fixed sampling strategies with n ∈ {1, 2, 4, 8, 16} tiles. When n = 1,
a single center crop is used when inference. For other cases, tiles are randomly sampled during both
training and inference. In contrast, our FAM Module samples 1–16 tiles during training and uses
a full-coverage crop during inference. As shown in Table. 5, increasing the number of tiles leads
to better performance. FAM’s full-coverage strategy achieves the best performance, validating that
aggregating more high-frequency tiles benefits detection.

Effectiveness of TFL and QFE We ablate the effects of Token-wise Forgery Localization (TFL) and
JPEG Quality Factor Estimation (QFE) using the same GenImage setup. As shown in Table 6, both
modules independently improve performance, their combination achieves the best results. QFE’s
impact on JPEG robustness is visualized in Fig. 5. QFE shows limited gains on SD v1.4 since the
model was trained and tested on the same JPEG augmented SD v1.4 data. But it greatly improves
robustness on the unseen GenImage set, showing better generalization. Table 4 shows that com-
bining TFL with Random Patch Swap (RPS) further enhances its sensitivity to partially inpainted
fine-grained manipulations, yielding strong performance.

7 CONCLUSION & LIMITATION

In this paper, we propose HiDA-Net, a network designed to detect high-resolution AI-generated
images without sacrificing fine-grained artifacts. It fuses features from full-resolution local tiles
and a global context view via the Feature Aggregation Module (FAM), and introduces two addi-
tional tasks: Token-wise Forgery Localization (TFL) and JPEG Quality Factor Estimation (QFE).
Our model achieves state-of-the-art performance across multiple benchmarks, with notable gains on
the challenging Chameleon dataset. To support future research, we introduce HiRes-50K, a high-
resolution benchmark. While HiDA-Net demonstrates strong effectiveness, a key limitation is the
increased inference time on large images due to tile-wise processing. Our future work will optimize
tile fusion and efficiency for real-world deployment.
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REPRODUCIBILITY STATEMENT

We have taken extensive measures to facilitate the reproducibility of our work. An anonymized
implementation code is included in the supplementary materials, together with the generated sam-
ples. The main text and appendix provide detailed descriptions of the algorithms, optimization
procedures, ablation studies, all hyperparameter settings, and experimental protocols to ensure trans-
parency. With these resources, independent researchers should be able to replicate our results and
validate the claims presented in this paper.
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Table 7: Comparisons between different testsets. Our HiRes-50K dataset encompasses high-
quality, real-world scenarios with a broad range of high resolutions, covering image dimensions
from 512 pixels up to 10K in edge length. Compared to the AIGCDetectBenchmark Zhong et al.
(2023b) and the latest Chameleon Yan et al. (2024a) dataset, ours surpasses them in resolution. (IN
represents ImageNet.)

ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN StyleGAN2 WFIR ADM Glide Midjourney SD v1.4 SD v1.5 VQDM Wukong DALLE2 Chameleon HiRes-50K

Magnitude 8.0k 12.0k 4.0k 2.6k 4.0k 10.0k 15.9k 2.0k 12.0k 12.0k 12.0k 12.0k 16.0k 12.0k 12.0k 2.0k 26.0k 50.05k
Resolution 256 256 256 256 256 256 256 1024 256 256 1024 512 512 256 512 256 720P-4K 500-10,000
Variety LSUN LUSN IN IN CelebA COCO LSUN FFHQ IN IN IN IN IN IN IN IN Real-life Category-Rich Real-life

A APPENDIX

Our implementation is included in the code folder of the supplementary zip. The HiRes-50K dataset
will be released soon, and we plan to open-source the full codebase.

B IMPLEMENTATION DETAILS

Training Platform. All experiments are conducted on a server equipped with dual AMD EPYC
7543 CPUs, 512 GB of RAM, and four NVIDIA RTX 3090 GPUs.

Model Parameters. We utilize the ViT-L/14 variant of the pretrained vision backbone from OpenAI
CLIP Radford et al. (2021) as our feature extractor. Our model incorporates a lightweight, trainable
feature refinement Transformer composed of 2 layers and 2 attention heads. The local aggregation
modules are implemented with a single Transformer layer and 2 attention heads. Additionally, we
employ a 2-layer token-level classification MLP and a 2-layer output classification MLP with ReLU
activation functions. For JPEG quality factor estimation, we adopt a 4-layer MLP.

Training Settings. The model is optimized using the AdamW optimizer with a base learning rate
of 1e-4 and a weight decay of 0.05. We use a dropout rate of 0.1 throughout the network to prevent
overfitting. The batch size is set to 64, and the model is trained for a total of 10 epochs. For the loss
function, we set α = β = 1.

Augmentation Settings. We adopt data augmentations including random JPEG compression (QF∼
U(60, 100)),random Gaussian Blur (σ ∼ U(0.1, 2.5)), random scaling (scale factor∼ U(0.25, 2))
and Random Patch Swap augmentation (Swap ratio∼ U(0.2, 0.98)) to improve robustness. Each
augmentation is conducted with 10% probability. Inspired by prior works Rajan et al. (2025); Chen
et al. (2024), we further synthesize paired fake images on certain benchmarks using the VAE com-
ponent of the diffusion model originally used to generate the data. Specifically, we use the VAE
from Stable Diffusion v1.4 to perform these augmentations.

C INTRODUCTION FOR THE HIRES-50K DATASET

C.1 INTRODUCTION
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Figure 6: Resolution distribution. Image long-
edge resolution distribution in our HiRes-50K
dataset.

With the rapid advancement of image generation
models, the visual fidelity of AI-generated con-
tent has significantly improved. Image resolu-
tions have progressed from 512 × 512 to over
1000×1000. Earlier methods were mostly trained
and evaluated on low-resolution AI-generated im-
ages because image synthesis models were not
able to produce high-resolution outputs at that
time. To overcome the common limitations of
existing AI-generated image detection datasets,
such as low-resolution datasets and the simplistic
nature of images generated from basic prompts,
we introduce a high-quality dataset comprising
high-resolution and diverse images that are of-
ten indistinguishable from real photographs to the
human eye, designed to evaluate detection mod-
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els under high-resolution settings and support the
development of more robust detection techniques.

C.2 DATASET COMPOSITION

C.2.1 AI-GENERATED IMAGES

The AI-Generated part contains over 25,000 images spanning diverse categories, including portraits,
landscapes, architecture, vehicles and animals. Among these, portraits constitute the majority and
encompass a wide range of subjects such as facial close-ups, upper-body shots, full-body images,
group portraits, and human figures embedded in natural or social contexts. Landscape images cover
environments such as mountains, beaches, cities, rural areas, and deserts under various weather
conditions (e.g., clear skies, snow, sunrise, sunset). Architectural images mainly depict modern
urban scenes, such as skyscrapers, villas, and urban neighborhoods. The sample images are shown
in Figure 7.

The long side resolution of images ranges from under 900 pixels to over 10,000 pixels. To analyze
resolution-specific performance, we group images into eight resolution bins: [0, 900], [900, 1200],
[1200, 1500], [1500, 2000], [2000, 3000], [3000, 5000], [5000, ∞], with corresponding sample
counts of 845, 6665, 6399, 5262, 3674, 571, 1196 and 472, respectively. Notably, the majority
of AI-Generated images fall within the [900, 2500] range, which reflects typical image resolutions
encountered online and exceeds those used in traditional benchmarks (e.g., 224–512 pixels). This
broad resolution coverage supports comprehensive evaluation across scales. To ensure visual fi-
delity, we estimate JPEG quality factors for all images and filter out those below 75. This selection
process removes low-quality content and guarantees a high-quality dataset suitable for rigorous de-
tection model assessment.

C.2.2 REAL IMAGES

To ensure a fair and balanced comparison, we align the real images with the generated ones in
both resolution and JPEG compression level. For each image class, we first select high-quality
real images with larger dimensions and higher fidelity than the corresponding AI-generated images.
These real images are then resized to the total pixel count which matches the AI-generated images
by multiplying a pixel scaling factor. This operation maintains the aspect ratio of real images. After
resizing, we apply JPEG compression using the same quality levels observed in the synthetic data.
This procedure ensures that within each subcategory, the real and AI-generated images have similar
distributions in terms of both resolution and compression. We also maintain a one-to-one ratio
between real and generated images for every class. As a result, our benchmark supports controlled
and meaningful evaluations across the two domains. Sample images are shown in Figure 7.

C.3 COMPARISONS WITH EXISTING DATASET

In Table 7, we present a comprehensive comparative analysis between our HiRes-50K dataset and
AIGC test sets. The HiRes-50K dataset exhibits three distinguishing characteristics: (i) Magnitude.
Encompassing 50,658 test images, our dataset constitutes the most extensive collection to date, sig-
nificantly surpassing existing single test sets in scale and thereby enhancing robustness in evaluation.
(ii) Variety. The data set incorporates a diverse array of real-world images, spanning categories such
as portraits, landscapes, architecture, vehicles and animals. This breadth of coverage exceeds the
narrow categorical scope of comparable datasets. (iii) Resolution. The images exhibit a wide res-
olution spectrum, ranging from 512 pixels to over 10K pixels on the long side. In summary, the
HiRes-50K dataset establishes a more rigorous and pragmatically relevant benchmark, advancing
the development of AI-generated image detection methodologies.

C.4 DATA SOURCES

Our dataset is primarily constructed from several widely used online communities that provide either
AI-generated or real images. We are grateful for their free and open contributions, which signifi-
cantly support academic research in this field.

• AI-generated Image Communities:
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– Freepik
– Liblib AI
– Civitai

• Real Image Community:
– Unsplash

C.5 LICENSING AND COMPLIANCE

We adhere strictly to the terms of service and licensing agreements associated with each image
source:

• Freepik: All images were obtained through paid downloads under Freepik’s licensing
terms, which permit legal use of selected AI-generated content for research purposes.

• Civitai: We comply with the Civitai Terms of Service (Section 9.2), ensuring that all se-
lected AI-generated images are publicly available and approved for reuse.

• Liblib AI: We follow the Liblib AI User Agreement (Section 6.2.2) and only use images
that are openly accessible and permitted for public use.

• Unsplash: All real-world photographs from Unsplash are used under their openly licensed
terms, which support research and educational purposes.

D THEORETICAL PROOF OF INFO-PRESERVING

D.1 FOURIER PRELIMINARIES

DTFT/DFT. For a 1D sequence x[n], its DTFT and N -point DFT are

X(ejω) =

∞∑
n=−∞

x[n]e−jωn, (13)

X[k] =

N−1∑
n=0

x[n]e−j 2π
N kn, k = 0, . . . , N − 1. (14)

The DFT samples the 2π-periodic DTFT:

X[k] = X
(
ejωk

)
, ωk =

2πk

N
. (15)

Rectangular Window and Dirichlet Kernel. Let the length-M rectangular window be:

wM [n] =

{
1, 0 ≤ n ≤ M − 1,

0, otherwise.
(16)

Its DTFT is the Dirichlet kernel with a centering phase

WM (ejω) = e−jωM−1
2 DM (ω), DM (ω) =

sin
(
Mω
2

)
sin

(
ω
2

) . (17)

DTFT under rate change (real D > 0). We define decimation by a real factor D > 0 as ban-
dlimited resampling: let Xlp(e

jω) be X(ejω) low-pass filtered to |ω| < π/D. Then

Y (ejω) =
1

D
Xlp

(
ejω/D

)
, |ω| < π. (18)

In the rational case D = N/M with M,N ∈ Z+,

Y (ejω) =
M

N
Xlp

(
ejωM/N

)
. (19)

(Proof sketch: interpret y[m] as ideal bandlimited interpolation of x[n] followed by sampling on the
grid mD; time-rate change by D maps ω 7→ ω/D and introduces the factor 1/D.)
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Figure 7: HiRes-50K Dataset Samples. Our HiRes-50K dataset combines various categories from
real world scenarios, including human, architectures, animals, vehicles and landscapes. The first
row displays the fake image collected from internet communities, while the second row indicates
the real images.

D.2 RESIZING AS LOW-PASS TRUNCATION

1D derivation. Evaluating the DTFT relationship from equation 19 on the respective DFT grids
shows that the DFT of the resized signal is a scaled version of the low-frequency coefficients of the
original signal’s DFT. To formalize this, we consider the frequency indices centered around the DC
component (r = 0). The relationship between the M -point DFT Y [r] and the N -point DFT X[r] is:

Y [r] =
M

N
X[r], for − M

2
≤ r <

M

2
, (20)

and is zero for all out-of-band frequencies. This explicitly states that the M -point spectrum is formed
by taking the M lowest-frequency components of the N -point spectrum (properly centered), scaling
them, and discarding all others. This corrected formulation aligns with the standard understanding
of ideal resampling and is consistent with the 2D case below.
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2D extension. For an N1 × N2 image downsampled by (D1, D2) to M1 ×M2 (Di =
Ni

Mi
) with

ideal separable low-pass prefilters, the 2D DTFT obeys the rate-change rule, including the amplitude
scaling:

Y (ejω1 , ejω2) =
M1M2

N1N2
Xlp

(
ej

ω1
D1 , ej

ω2
D2

)
, |ωi| < π. (21)

Here, Xlp is the low-pass filtered version of the original signal’s DTFT. Sampling this relationship
on the M1 × M2 DFT grid and applying equation 15 along both axes gives the centered low-pass
truncation:

Y [r1, r2] =

(
M1M2

N1N2

)
X[r1, r2], |r1| < M1

2 , |r2| < M2

2 , (22)

and Y [r1, r2] = 0 outside this region. Thus, resizing preserves only the in-band (low-frequency)
coefficients and irretrievably discards high-frequency content.

D.3 CROPPING AS WINDOWING & SPECTRAL LEAKAGE

1D crop. Cropping the length-M segment that starts at index ∆ is the same as multiplying x[n]
by a shifted rectangular window:

v[n] = wM [n−∆] (so v[n] = 1 for n ∈ [∆,∆+M − 1]),

i.e.,
y[n] = x[n] v[n]. (23)

The DTFT of the shifted window is a linear phase times the Dirichlet kernel,

V (ejω) = e−jω∆ WM (ejω) = e−jω∆ e−jωM−1
2 DM (ω), (24)

where WM and DM are given in equation 17. By the convolution theorem:

Y (ejω) =
1

2π

∫ π

−π

X(ejν)V
(
ej(ω−ν)

)
dν =

(
X ∗ V

)
(ω) =

(
X ∗

[
e−j(·)∆WM

])
(ω). (25)

Since WM is the Dirichlet kernel, equation 25 convolves X with a broad mainlobe plus sidelobes;
this spreads (leaks) energy from all frequencies of x across the spectrum of y. The linear phase
e−jω∆ only shifts phase and does not change magnitudes, so cropping preserves rather than removes
high-frequency content. Hence the spectral-leakage effect that preserves high-frequency cues.

2D crop. For a tile of width M1 and height M2 with top-left offset (∆1,∆2),

y[m1,m2] = I[∆1 +m1, ∆2 +m2] wM1
[m1] wM2

[m2]. (26)

Let
WM1,M2

(ejω1 , ejω2) = e−jω1
M1−1

2 −jω2
M2−1

2 DM1
(ω1)DM2

(ω2) (27)
be the 2D window DTFT. Then

F{y}(ejω1 , ejω2) =
(
X(ejω1 , ejω2) ej(ω1∆1+ω2∆2)

)
∗WM1,M2

(ejω1 , ejω2). (28)

i.e., windowing induces Dirichlet-kernel convolution (spectral leakage) together with a phase term
from the spatial offset.

D.4 RECONSTRUCTION FROM CROPPED TILES

Consider a partition of I into n0×n1 non-overlapping tiles indexed by (a, b), with sizes M (1)
a ×M (2)

b

and top-left coordinates ∆
(1)
a =

∑
i<a M

(1)
i and ∆

(2)
b =

∑
j<b M

(2)
j . Define the tile (a, b) in its

local coordinates by

y(a,b)[m1,m2] = I
(
∆(1)

a +m1, ∆
(2)
b +m2

)
, 0 ≤ m1 < M (1)

a , 0 ≤ m2 < M
(2)
b . (29)
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Its DTFT is

Y(a,b)(e
jω1 , ejω2) =

M(1)
a −1∑

m1=0

M
(2)
b −1∑

m2=0

y(a,b)[m1,m2] e
−j(ω1m1+ω2m2). (30)

The DTFT of the full image equals the phase-aligned sum of tile DTFTs:

X(ejω1 , ejω2) =

n0−1∑
a=0

n1−1∑
b=0

e
−j

(
ω1∆

(1)
a +ω2∆

(2)
b

)
Y(a,b)(e

jω1 , ejω2). (31)

Proof. Embed each tile back to global coordinates via

x(a,b)[n1, n2] ≜ y(a,b)

(
n1 −∆(1)

a , n2 −∆
(2)
b

)
,

which equals I[n1, n2] on the tile support and 0 elsewhere. Since the tiles are non-overlapping and
cover the image,

I[n1, n2] =

n0−1∑
a=0

n1−1∑
b=0

x(a,b)[n1, n2].

(Linearity) Taking the DTFT yields

X(ejω1 , ejω2) =

n0−1∑
a=0

n1−1∑
b=0

F{x(a,b)}(ejω1 , ejω2).

(Shift) By the 2D shift property,

F{x(a,b)}(ejω1 , ejω2) = e−j(ω1∆
(1)
a +ω2∆

(2)
b ) · F{y(a,b)}(ejω1 , ejω2). (32)

Using equation 30, we have F{y(a,b)} = Y(a,b), hence

X(ejω1 , ejω2) =

n0−1∑
a=0

n1−1∑
b=0

e−j(ω1∆
(1)
a +ω2∆

(2)
b ) Y(a,b)(e

jω1 , ejω2), (33)

which proves equation 31.

D.5 PUTTING IT TOGETHER: CROP VS. RESIZE

Resizing (§D.2) truncates the spectrum per equation 22 and discards high-frequency content. Crop-
ping (§D.3) multiplies the signal by a rectangular window whose DTFT is the Dirichlet kernel
equation 17, yielding the convolution equation 25 that redistributes (rather than removes) high-
frequency energy across the band. Finally, combining non-overlapping tiles with the phase factors
in equation 31 exactly reconstructs the global DTFT, guaranteeing full-spectrum coverage.

Therefore, by operating on tiled crops with explicit full-spectrum coverage and phase-consistent
aggregation, HiDA-Net is intrinsically suited to retain fine-grained high-frequency cues. While this
analysis is based on ideal filters, its conclusion holds in practice, as standard resizing algorithms
(e.g., bicubic interpolation) approximate this low-pass filtering and thus inevitably attenuate the
very high-frequency details that cropping preserves via spectral leakage. This ability to exploit
information across the full spectrum leads to stronger detection on high-resolution images.

E MORE COMPARISONS

To further assess the generalization ability of our method, we conduct additional experiments across
four representative datasets. Accuracy (ACC) is reported using a fixed decision threshold of 0.5.

Evaluation on Chameleon. We first evaluate models trained on the Stable Diffusion v1.4 (SD v1.4)
subset and the complete GenImage dataset. Testing is conducted on the Chameleon dataset, with
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Table 8: Dataset Details in Benchmark GenImage.
Dataset Image Size Number Source

Train SD v1.4 (StableDiffusion, 2022) 512× 512 324.0k ImageNet Deng et al. (2009)

Test

BigGAN (Brock et al., 2019) 256× 256 12.0k ImageNet (Deng et al., 2009)
ADM (Dhariwal & Nichol, 2021) 256× 256 12.0k ImageNet (Deng et al., 2009)

Glide (Nichol et al., 2022) 256× 256 12.0k ImageNet (Deng et al., 2009)
Midjourney (Midjourney, 2025) 1024× 1024 12.0k ImageNet (Deng et al., 2009)
SD v1.4 (StableDiffusion, 2022) 512× 512 12.0k ImageNet (Deng et al., 2009)
SD v1.5 (StableDiffusion, 2022) 512× 512 16.0k ImageNet (Deng et al., 2009)

VQDM (Gu et al., 2022) 256× 256 12.0k ImageNet (Deng et al., 2009)
Wukong (Wukong, 2023) 512× 512 12.0k ImageNet (Deng et al., 2009)

Table 9: Cross-model accuracy (Acc) performance on the Chameleon testset. For each training
dataset, the first row indicates the Acc evaluated on the Chameleon testset, and the second row gives
the Acc for “fake image/real image” for detailed analysis. All results of former methods can be
sourced from the paper Yan et al. (2024a).

Training Dataset CNNSpot FreDect Fusing UnivFD DIRE PatchCraft NPR AIDE Ours

SD v1.4
60.11 56.86 57.07 55.62 59.71 56.32 58.13 62.60 73.44 (+10.84%)

8.86/98.63 1.37/98.57 0.00/99.96 17.65/93.50 11.86/95.67 3.07/96.35 2.43/100.00 20.33/94.38 65.47/79.44

All GenImage
60.89 57.22 57.09 60.42 57.83 55.70 57.81 65.77 79.10 (+13.33%)

9.86/99.25 0.89/99.55 0.02/99.98 85.52/41.56 2.09/99.73 1.39/96.52 1.68/100.00 26.80/95.06 76.77/82.20

results summarized in Table 9. When trained on the full GenImage dataset, HiDA-Net achieves an
accuracy of 79.10%, outperforming the previous best by a substantial margin of 13%.

Evaluation on HiRes-50K. Next, we train all models on the full GenImage dataset and evaluate
them on our proposed HiRes-50K benchmark. As shown in Table 10, our method outperforms all
competing approaches. Notably, accuracy sometimes increases with resolution as richer cues expose
synthetic artifacts, underscoring our method’s scalability and robustness at extreme resolutions.

Evaluation on GenImage. For the public GenImage benchmark, models are trained on the SD v1.4
subset and tested across all official subsets. Detailed dataset statistics are provided in Table 8. The
evaluation results are shown in Table. 11. This experiment verifies the model’s consistency under
varying generative styles and semantic contents.

Evaluation on DRCT. In addition, we evaluate performance on the DRCT dataset. All models are
trained on the SD v1.4 subset of DRCT and tested across all available test sets. The results, presented
in Table 12, demonstrate our model performs strongly, especially for high-resolution SDXL images
at 1024× 1024 and DR variants (partially inpainted images) showing the model’s robustness under
partially inpainted image conditions and domain-specific artifacts.

To summarize, our method consistently achieves strong performance across various benchmarks,
particularly in high-resolution settings. Incorporating fake-real pairs via VAE reconstruction further
boosts accuracy, confirming HiDA-Net’s scalability and generalization.

F DETECTION OF LOCAL MANIPULATION ARTIFACTS

Real Image

Paired
Fake Image

Reconstructed
Image

Random
Patch

Assemble Detail
Crop

Resize
Global Image

Pixel Level Image

Figure 8: Random Patch Swap (RPS) Aug-
mentation. Real and fake images (e.g., VAE-
reconstructed pairs) are blended by swapping
small local regions between them.

We introduce the Token-wise Forgery Localiza-
tion (TFL) task to provide token-level supervision
for localized manipulations and to enhance model
interpretability.

As illustrated in Fig. 8, we adopt a Random
Patch Swap (RPS) augmentation strategy. For
a given pair of real and fake images, we ran-
domly swap a portion of the corresponding re-
gions to form a composite image that contains
both authentic and manipulated content. When
such paired samples are not available, we instead
secelt a random real image and a random fake im-
age for patch swapping. This process yields a
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Table 10: Cross-model accuracy (Acc) performance on our HiRes-50K Dataset. All methods were
trained on all available training subsets of GenImage and evaluated on HiRes-50K subsets with
different resolutions.

Resolution Range [0, 900) [900, 1200) [1200, 1500) [1500, 2000) [2000, 2500) [2500, 3000) [3000, 5000) [5000,∞) Avg

Image Numers 1690 13330 12798 10524 7748 1142 2329 944 50568
CNNSpot Wang et al. (2020) 58.46 56.37 58.73 63.14 67.42 60.90 66.30 58.90 61.28
FreDect Frank et al. (2020) 63.67 55.63 57.31 58.90 58.16 67.78 57.23 51.06 59.72
UnivFD Ojha et al. (2023) 67.00 58.35 62.20 65.95 66.05 58.20 58.15 60.05 62.05
DIRE Wang et al. (2023) 59.11 64.25 62.10 66.66 75.84 63.40 69.31 62.18 65.36
AIDE Yan et al. (2024a) 65.87 57.29 49.90 58.23 51.88 65.31 61.04 42.16 56.46
DRCT(UnivFD) Chen et al. (2024) 57.81 61.67 62.26 62.26 62.31 59.72 58.74 46.40 58.90
DRCT(ConvB) Chen et al. (2024) 65.30 66.19 68.78 68.85 68.78 75.79 69.65 54.03 67.17
TextureCrop(CNNDetect) 57.45 52.81 59.83 63.17 65.31 55.56 70.65 69.49 60.67
TextureCrop(UnivFD) 64.14 58.90 61.16 62.82 66.48 59.32 59.11 66.30 62.28
Ours 82.98 81.39 78.16 78.99 88.26 80.18 82.88 69.84 80.33 (+13.16%)

Table 11: Cross-dataset accuracy on the GenImage Dataset. All methods are trained on SDv1.4 and
evaluated on all GenImage.

Method Time Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN Avg
ResNet-50 He et al. (2016) CVPR2016 54.9 99.9 99.7 53.5 61.9 98.2 56.6 52.0 72.1
DeiT-S Touvron et al. (2021) ICML2021 55.6 99.9 99.8 49.8 58.1 98.9 56.9 53.5 71.6
Swin-T Liu et al. (2021) ICCV2021 62.1 99.9 99.8 49.8 67.6 99.1 62.3 57.6 74.8
CNNSpot Wang et al. (2020) CVPR2020 52.8 96.3 95.9 50.1 39.8 78.6 53.4 46.8 64.2
Spec Zhang et al. (2019) WIFS2019 52.0 99.4 99.2 49.7 49.8 94.8 55.6 49.8 68.8
F3Net Qian et al. (2020) ECCV2020 50.1 99.9 99.9 49.9 50.0 99.9 49.9 49.9 68.7
GramNet Liu et al. (2020) CVPR2020 54.2 99.2 99.1 50.3 54.6 98.9 50.8 51.7 69.9
UnivFD Ojha et al. (2023) CVPR2023 93.9 96.4 96.2 71.9 85.4 94.3 81.6 90.5 88.8
PatchCraft Zhong et al. (2023a) Arxiv 79.0 89.5 89.3 77.3 78.4 89.3 83.7 72.4 82.3
NPR Tan et al. (2024b) CVPR2024 81.0 98.2 97.9 76.9 89.8 96.9 84.1 84.2 88.6
FreqNet Tan et al. (2024a) AAAI2024 89.6 98.8 98.6 66.8 86.5 97.3 75.8 81.4 86.8
FatFormer Liu et al. (2024) CVPR2024 92.7 100.0 99.9 75.9 88.0 99.9 98.8 55.8 88.9
DRCT Chen et al. (2024) ICML2024 91.5 95.0 94.4 79.4 89.1 94.6 90.0 81.6 89.4
AIDE Yan et al. (2024a) ICLR2025 79.4 99.7 99.8 78.5 91.8 98.7 80.3 66.9 86.8
Effort Yan et al. (2024b) ICML2025 82.4 99.8 99.8 78.7 93.3 97.4 91.7 77.6 91.1
SAFE Li et al. (2024) KDD2025 95.3 99.4 99.3 82.1 96.3 98.2 96.3 97.8 95.6
C2P-CLIP Tan et al. (2025) AAAI2025 88.2 90.9 97.9 96.4 99.0 98.8 96.5 98.7 95.8
Ours/No VAE Augmentation - 97.8 98.4 98.3 86.2 98.0 98.4 95.6 96.2 96.1 (+0.3%)
Ours/SDv1.4 VAE - 94.2 99.1 99.2 92.7 99.1 98.0 96.9 97.8 97.1 (+1.3%)

continuous-valued “soft” supervision label ytoken ∈ [0, 1] for each ViT patch token, calculated as
the average of binary pixel-level labels within the corresponding patch area.

We present prediction results from our HiDA-Net model on partially manipulated images in Fig. 9.
This image are generated via AI-based inpainting using Stable Diffusion v1.4. Specifically, we
partially overwrite regions in the real image by adding noise to its latent representations, followed
by reconstruction through the diffusion process. The resulting synthetic regions are then blended
with the original image using a predefined binary mask to obtain partially forged samples.

Our model accurately localizes the manipulated regions at the tile level. As shown in the prediction
maps, regions with higher mask intensity (brighter areas) correspond to higher predicted likelihoods
of being fake. This demonstrates the model’s fine-grained localization capability and its sensitivity
to subtle, localized modifications.

G MORE ABLATION STUDY

We conduct a comprehensive ablation study to systematically evaluate the impact of varying the
number of cropped image tiles that are fed into the FAM module during both the training and
inference stages. The evaluation protocol follows the same experimental settings as those used
in the comparisons on the GenImage benchmark, ensuring the results are directly comparable. As
illustrated in Table 13, the findings reveal a clear and consistent trend: increasing the number of
local tiles leads to noticeable improvements in detection performance. This improvement can be
attributed to the model’s enhanced ability to capture more detailed and spatially diverse cues as
additional tiles are introduced.

Notably, the full-coverage configuration, in which the FAM module receives the maximum number
of non-overlapping high-frequency tiles extracted from the image, achieves the highest accuracy
among all tested settings. This outcome provides strong evidence that incorporating fine-grained
local information is highly beneficial for manipulation detection. In particular, by aggregating and
integrating localized features across multiple regions, the model is able to construct a richer and more
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Method
SD Variants Turbo Variants LCM Variants ControlNet Variants DR Variants

AvgLDM SDv1.4 SDv1.5 SDv2 SDXL SDXL-
Refiner

SD-
Turbo

SDXL-
Turbo

LCM-
SDv1.5

LCM-
SDXL

SDv1-
Ctrl

SDv2-
Ctrl

SDXL-
Ctrl

SDv1-
DR

SDv2-
DR

SDXL-
DR

CNNSpot Wang et al. (2020) 99.87 99.91 99.90 97.55 66.25 86.55 86.15 72.42 98.26 61.72 97.96 85.89 82.84 60.93 51.41 50.28 81.12
F3Net Qian et al. (2020) 99.85 99.78 99.79 88.66 55.85 87.37 68.29 63.66 97.39 54.98 97.98 72.39 81.99 65.42 50.39 50.27 77.13
CLIP/RN50 Radford et al. (2021) 99.00 99.99 99.96 94.61 62.08 91.43 83.57 64.40 98.97 57.43 99.74 80.69 82.03 65.83 50.67 50.47 80.05
GramNet Liu et al. (2020) 99.40 99.01 98.84 95.30 62.63 80.68 71.19 69.32 93.05 57.02 89.97 75.55 82.68 51.23 50.01 50.08 76.62
De-fake Sha et al. (2023) 92.10 99.53 99.51 89.65 64.02 69.24 92.00 93.93 99.13 70.89 58.98 62.34 66.66 50.12 50.16 50.00 75.52
Conv-B Liu et al. (2022) 99.97 100.0 99.97 95.84 64.44 82.00 80.82 60.75 99.27 62.33 99.80 83.40 73.28 61.65 51.79 50.41 79.11
UnivFD Ojha et al. (2023) 98.30 96.22 96.33 93.83 91.01 93.91 86.38 85.92 90.44 88.99 90.41 81.06 89.06 51.96 51.03 50.46 83.46
DIRE/SDv1 Wang et al. (2023) 98.19 99.94 99.96 68.16 53.84 71.93 58.87 54.35 99.78 59.73 99.65 64.20 59.13 51.99 50.04 49.97 71.23
DIRE/SDv2 Wang et al. (2023) 54.62 75.89 76.04 99.87 59.90 93.08 99.77 57.55 87.29 72.53 67.85 99.69 64.40 49.96 52.48 49.92 72.55
DRCT/SDv1.4 Chen et al. (2024) 99.91 99.90 99.90 96.32 83.87 85.63 91.88 70.04 99.66 78.76 99.90 95.01 81.21 99.90 95.40 75.39 90.79
DRCT/SDv2 Chen et al. (2024) 99.66 98.56 98.48 99.85 96.10 98.68 99.59 83.30 98.45 93.78 96.68 99.85 97.66 93.91 99.87 90.39 96.55
Ours/No VAE Augmentation 98.66 98.75 98.75 98.73 98.76 98.75 97.74 97.56 98.55 98.75 98.75 98.37 98.15 90.36 74.78 71.17 94.79 (-1.76%)
Ours/SDv1.4 VAE 98.82 98.91 98.90 97.95 98.99 98.84 98.45 98.82 98.40 98.89 98.52 98.65 98.44 98.99 97.38 94.91 98.37 (+1.82%)

Table 12: Cross-model accuracy (Acc) performance on the different testing subsets of DRCT. Meth-
ods are trained on the SDv1.4 subset of DRCT. Results of former methods can be sourced from the
paper DRCT Chen et al. (2024).

(a) AI-Inpainted Image (b) Predicted Inpainting Mask (c) GT Inpainting Mask
Figure 9: Visual comparison between the AI-inpainted image, the predicted inpainting mask, and
the ground-truth mask.

discriminative representation, thereby significantly enhancing its robustness and overall detection
effectiveness.

Furthermore, when the FAM module is executed without incorporating any local tile inputs and in-
stead depends solely on the information provided by the global branch, the overall detection accuracy
on the GenImage benchmark experiences a notable decline, dropping to 84.24%. This considerable
reduction clearly demonstrates that global features alone are insufficient for achieving optimal per-
formance, and it further emphasizes the crucial role that localized visual cues play in strengthening
the model’s detection capability. In other words, fine-grained local details extracted from image tiles
are indispensable for complementing global representations and ensuring robust performance.

To gain a deeper understanding of how the number of cropped tiles influences model effectiveness,
we conduct a systematic investigation into the relationship between tile quantity and detection per-
formance. Specifically, we evaluate the impact of different tile sampling strategies on both our
HiRes-50K dataset and the GenImage benchmark. In this study, we fix the number of tiles n to one
of the following values: {1, 2, 4, 8, 16}. When n = 1, the model is restricted to using only a single
center crop during inference, which provides a limited view of the image. For larger values of n, i.e.,
when n > 1, multiple tiles are randomly sampled, and this sampling process is consistently applied
during both the training and inference stages.

In contrast to these fixed strategies, our proposed FAM module employs a more flexible and adaptive
approach. During training, instead of adhering to a predetermined number of tiles, it dynamically
samples a variable number ranging from 1 to 16. This stochastic sampling not only introduces
greater data diversity but also improves the model’s ability to generalize. At inference time, rather
than relying on random selection, the module adopts a full-coverage tile cropping strategy, ensuring
that all relevant local regions are exhaustively considered. This combination of dynamic sampling
in training and comprehensive coverage during inference represents a key factor in the effectiveness
of the FAM module.

Table 14 presents the experimental results obtained on the GenImage benchmark, where all models
are trained using the complete training set and subsequently evaluated under different tile configu-
rations during inference. From the reported results, we observe a clear and consistent trend: as the
number of cropped tiles increases, the detection performance steadily improves. Specifically, when
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Table 13: Ablation study on the number of crop tiles in FAM.

Tile Nums 1 2 4 8 16 FAM

ACC (%) 92.14 93.34 95.63 95.69 95.89 96.10

Table 14: Cross-model accuracy (Acc) performance on our HiRes-50K Dataset with different tile
crop strategies.

Resolution Range [0, 900) [900, 1200) [1200, 1500) [1500, 2000) [2000, 2500) [2500, 3000) [3000, 5000) [5000,∞) Avg

Image Numbers 1690 13330 12798 10524 7748 1142 2329 944 50568
1 Crop Tile 75.3 74.9 72.8 75.1 81.6 73.7 77.2 62.1 74.09
2 Crop Tiles 79.9 81.4 76.7 76.0 88.4 74.7 79.4 66.8 77.91
4 Crop Tiles 83.4 82.1 78.8 78.9 88.6 78.1 80.2 68.1 79.78
8 Crop Tiles 83.4 83.4 79.5 78.4 89.1 78.3 81.2 68.7 80.25
16 Crop Tiles 83.6 84.3 79.5 78.0 89.5 77.2 82.1 67.7 80.24
Ours FAM 82.98 81.39 78.16 78.99 88.26 80.18 82.88 69.8 80.33

the model is restricted to a single tile, the accuracy reaches only 74.09%. However, as the number of
tiles is gradually increased, the model is able to capture a richer set of localized features, leading to
progressively better performance. At the maximum setting of n = 16 tiles, the accuracy improves to
80.33%, corresponding to a relative gain of more than six percentage points compared to the single-
tile baseline. These findings highlight the importance of incorporating multiple localized views of
an image, which provide complementary information to global representations and thereby enhance
the robustness and effectiveness of the detection model.

Table 15: Intra-Dataset accuracy (Acc) performance on our HiRes-50K Dataset with different test-
time tile crop strategies.

Resolution Range [0, 900) [900, 1200) [1200, 1500) [1500, 2000) [2000, 2500) [2500, 3000) [3000, 5000) [5000,∞) Avg

Image Numbers 1690 13330 12798 10524 7748 1142 2329 944 50568
1 Crop Tile 97.8 97.6 98.2 98.1 97.7 97.8 96.4 94.3 97.24
2 Crop Tiles 98.3 97.2 98.9 98.2 98.5 97.7 97.7 95.2 97.71
4 Crop Tiles 98.2 98.1 98.7 99.0 98.7 97.9 97.6 95.7 97.99
8 Crop Tiles 98.4 98.3 99.0 98.6 98.7 98.3 98.2 96.0 98.19
16 Crop Tiles 98.4 98.4 99.1 98.7 98.7 98.6 98.1 96.3 98.29
Ours FAM 98.5 99.2 97.8 99.0 99.1 99.5 97.3 96.0 98.30

Table 15 shows results on the HiRes-50K dataset, where we split the data into 50% for training, 25%
for validation, and 25% for testing. A similar trend is observed: increasing the number of tiles used
during inference leads to clear performance improvements.

Overall, performance improves as more random crops are utilized, demonstrating the importance
of diverse spatial coverage. Our FAM-based strategy consistently achieves the highest accuracy,
highlighting the effectiveness of its adaptive sampling mechanism.

H POTENTIAL SOCIETAL IMPACTS

The release of the HiRes-50K dataset introduces both valuable opportunities and important responsi-
bilities. As one large-scale, high-resolution benchmark for AI-generated image detection, it enables
rigorous evaluation under realistic visual conditions and fosters the development of more robust
forensic tools. This can greatly assist in identifying synthetic media in journalism, legal investiga-
tions, and content moderation. However, by making such data widely available, there is also the
risk that generative model developers may exploit it to enhance the realism of forgeries and evade
detection. To mitigate misuse, we encourage responsible dataset use aligned with research ethics
and advocate for transparent licensing, access control, and ongoing dialogue with policymakers and
interdisciplinary stakeholders.

I DETAILS ON LARGE LANGUAGE MODEL USAGE

In this work, a Large Language Model (LLM) was used only as an auxiliary tool to polish writing,
improve grammar, and refine expressions for clarity. It was not used to generate scientific content,
design experiments, analyze results, or write substantive parts of the paper. All conceptual ideas,
technical contributions, and experiment analyses were conducted entirely by the authors, with the
LLM serving solely as a language aid rather than a content creator.
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