

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING GLOBAL HYPOTHESIS SPACE FOR EN- HANCING SYNERGISTIC REASONING CHAIN

Anonymous authors

Paper under double-blind review

ABSTRACT

Chain-of-Thought (CoT) has become an effective paradigm for enhancing the reasoning ability of large language models (LLMs) on complex tasks. However, existing approaches still face two critical limitations: first, the absence of a global mechanism to integrate and coordinate diverse reasoning hypotheses, which often leads to fragmented reasoning and vulnerability to local biases or misleading signals; and second, the lack of structured analysis techniques to filter redundancy and extract key reasoning features, resulting in unstable or less interpretable reasoning chains. To address these challenges, we propose GHS-TDA, a two-stage reasoning framework that combines global integration with topological analysis (TDA). In the first stage, a semantically enriched global hypothesis graph is constructed through agenda-driven multi-agent interactions, enabling systematic integration of diverse hypotheses and their semantic relations. In the second stage, topological data analysis is applied to capture persistent multi-scale structures, identify stable backbones and self-consistent loops, and derive a redundancy-free reasoning skeleton. By combining reasoning diversity with topological stability, GHS-TDA achieves self-adaptive convergence and generates high-confidence, interpretable reasoning paths. Experimental results on multiple reasoning benchmarks demonstrate that GHS-TDA significantly outperforms strong baselines in both accuracy and robustness, highlighting its effectiveness and competitiveness in complex reasoning scenarios.

1 INTRODUCTION

LLMs have shown remarkable potential in tasks such as logical reasoning, mathematical proof, and multi-hop question answering. Among them, CoT prompting (Wei et al., 2022) has been demonstrated to improve interpretability and accuracy by decomposing complex problems into coherent intermediate steps. Despite these advances, CoT and its extensions still face critical limitations.

On the one hand, structured approaches such as Tree-of-Thought (ToT) (Yao et al., 2023a), Graph-of-Thought (GoT) (Besta et al., 2024), and Atom-of-Thought (AoT) (Teng et al., 2025) expand the reasoning space beyond single-path CoT and enrich reasoning diversity. However, they lack mechanisms for global integration and interaction across hypotheses, which limits evidence reuse, complicates conflict resolution, and leaves reasoning largely driven by local heuristics. As a result, these methods often fail to achieve systematic semantic integration and remain prone to logical divergence and inconsistency in complex tasks. On the other hand, several systematic frameworks have been proposed to improve efficiency and robustness. For example, ReAct (Yao et al., 2023b) integrates reasoning with acting for interactive tasks, AFlow (Zhang et al., 2024) employs Monte Carlo tree search for reasoning workflows, and ReCEval (Prasad et al., 2023) evaluates reasoning chains for correctness and informativeness. While these approaches provide performance gains, they mostly focus on task-specific outcomes and lack a unified analytical perspective to characterize structural properties of reasoning chains, such as connectivity, cyclicity, and consistency.

Although these methods have achieved certain improvements in performance and efficiency, reasoning chains, as explicit representations of the reasoning process, inherently encode the semantic and logical organization of problem solving and thus hold intrinsic value for structural analysis. However, the absence of a unified analytical framework to systematically characterize the struc-

054 tural properties of reasoning chains makes it difficult to comprehensively evaluate and enhance the
 055 reliability, robustness, and interpretability of reasoning outcomes.
 056

057 To address these challenges, this work introduces a new perspective: the reliability of reasoning
 058 depends not only on the correctness of locally generated results but also on the structural robustness
 059 exhibited by candidate paths within the global solution space. Unlike local heuristics, we adopt
 060 a topological perspective to model the reasoning space. Fundamentally, the reasoning space con-
 061 stitutes a high-dimensional complex structure formed by multiple interdependent candidate paths,
 062 which cannot be fully characterized by local indicators such as confidence scores or shortest-path
 063 length alone. TDA is capable of capturing stable connectivity and cyclic patterns across multiple
 064 scales, thereby providing a noise-insensitive and globally coherent structural measure. This per-
 065 spective enables us to formalize concepts such as “logical backbones” and “self-consistent loops”
 066 as topological invariants, offering a principled basis for selecting and composing reasoning paths.
 067

068 We propose GHS-TDA (Global Hypothesis Space with Topological Data Analysis), a two-stage
 069 framework that first constructs a global hypothesis graph through multi-role interactions to integrate
 070 diverse reasoning paths, and then applies topological analysis via persistent homology to extract sta-
 071 ble backbones and self-consistent loops for interpretable reasoning chains. In the construction stage,
 072 we introduce a multi-role agenda mechanism consisting of explorers, verifiers, and bridges to dy-
 073 namically generate and optimize a Global Hypothesis Graph (GHS). This process enables systematic
 074 integration and interaction of diverse reasoning information. Through unification, conflict detection,
 075 and closure inference, GHS enhances semantic connections among nodes and overcomes the isola-
 076 tion of traditional path-based generation. In the analysis stage, we leverage TDA (Munch, 2017;
 077 Chazal & Michel, 2021), specifically persistent homology, to extract robust reasoning skeletons and
 078 self-consistent cycles from the GHS. Analyzing the persistence of connected components (H_0) and
 079 loops (H_1) allows us to systematically capture backbone reasoning paths and self-verification struc-
 080 tures, ultimately yielding reasoning chains with high confidence and interpretability.
 081

082 Our key contributions are as follows:
 083

- 084 • We introduce TDA into the reasoning chain, leveraging its scale invariance and structural
 085 robustness to provide a new perspective for analyzing and improving complex reasoning.
- 086 • We propose the GHS-TDA framework, a two-stage automated paradigm: the construction
 087 stage builds a Global Hypothesis Graph (GHS) via multi-role agenda mechanisms, and the
 088 analysis stage employs persistent homology with Betti stability checks to extract robust H_0
 089 backbones and H_1 loops.
- 090 • We validate GHS-TDA on benchmarks including GSM8K, MATH, OlympiadBench, Hot-
 091 potQA, MuSiQue, BBH, and LongBench, where it consistently outperforms existing meth-
 092 ods in accuracy, consistency, and interpretability.

093 2 RELATED WORK

094 2.1 LLM REASONING OPTIMIZATION

095 LLMs demonstrate remarkable potential in complex reasoning tasks such as mathematical problem
 096 solving, logical deduction, and multi-hop question answering. However, their performance still
 097 heavily depends on carefully designed prompting strategies and reasoning structures (Brown et al.,
 098 2020; Achiam et al., 2023; Vaswani et al., 2017). A seminal advance in this direction is Chain-of-
 099 Thought (CoT) prompting (Wei et al., 2022), which shows that decomposing complex problems into
 100 explicit intermediate steps significantly improves both the accuracy and interpretability of reasoning.
 This finding establishes prompting as a critical factor in eliciting reasoning capabilities from LLMs.

101 Building on CoT, researchers propose a range of structured extensions to further enrich the rea-
 102 soning process. Tree-of-Thought (ToT) (Yao et al., 2023a), Graph-of-Thought (GoT) (Besta et al.,
 103 2024), and Atom-of-Thought (AoT) (Teng et al., 2025) introduce tree, graph, and atomic reasoning
 104 structures, respectively. These paradigms allow the model to explore multiple reasoning branches in
 105 parallel, reuse evidence across paths, and dynamically adjust reasoning trajectories, thereby alleviat-
 106 ing the limitations of single-path CoT reasoning. Beyond structural extensions, frameworks such as
 107 ReAct (Yao et al., 2023b) and AFlow (Zhang et al., 2024) further integrate reasoning with external
 actions or search mechanisms. By combining reasoning with environment interaction or systematic

108 search, these methods achieve stronger robustness and higher efficiency in complex tasks such as
 109 multi-hop QA and interactive problem solving.
 110

111 Despite these advances, existing approaches still rely primarily on local heuristics for path selection
 112 and conflict resolution. They lack mechanisms for globally integrating diverse hypotheses or sys-
 113 tematically analyzing the structural properties of reasoning chains, such as connectivity, consistency,
 114 and redundancy (Wang et al., 2022). This limitation often leads to fragmented reasoning, redundant
 115 exploration, or unstable convergence, especially in tasks that require reconciling multiple sources of
 116 evidence. Addressing these challenges motivates the development of new frameworks that combine
 117 global integration mechanisms with principled analytical tools for structural reasoning evaluation.
 118

2.2 APPLICATIONS OF TOPOLOGICAL DATA ANALYSIS

120 TDA provides a powerful and principled framework for the structured analysis of high-dimensional
 121 data. Its core technique, persistent homology, captures the evolution of connected compo-
 122 nents and loops across multiple scales, thereby extracting structural features that remain sta-
 123 ble under noise and local perturbations [munch2017user](#),[chazal2021introduction](#). Over the past
 124 decade, TDA has achieved successful applications in diverse fields, including bioinformat-
 125 ics [nicolau2011topology](#), material science [hiraoka2016hierarchical](#), and neural network analy-
 126 sis [rieck2018neural](#),[naitzat2020topology](#). Beyond these domains, TDA also demonstrates broad
 127 potential in feature extraction, representation learning, and robustness evaluation within machine
 128 learning pipelines [hofer2017deep](#),[carriere2020perslay](#).
 129

130 However, its potential for reasoning research remains largely unexplored (Munch, 2017; Chazal &
 131 Michel, 2021). Reasoning chains produced by LLMs naturally exhibit graph-structured or sequen-
 132 tial semantic and logical organization. Analyzing their topological properties through TDA offers
 133 the opportunity to identify stable connected components and self-consistent loops that persist across
 134 scales. These structures can then be mapped to backbone reasoning paths and consistency mech-
 135 anisms, providing a principled way to filter redundant hypotheses, highlight critical connections, and
 136 improve both the stability and interpretability of reasoning processes. This perspective opens up a
 137 new line of inquiry into how topological robustness can complement semantic reasoning in LLMs.
 138

3 METHOD

139 We propose **GHS-TDA**, a two-stage “construct–analyze” reasoning framework (Figure 1). In the
 140 *construction stage*, multiple reasoning paths sampled from an LLM are semantically aligned and
 141 merged into a unified Global Hypothesis Graph (GHS), which systematically integrates diverse in-
 142 formation and manages conflicts. In the *analysis stage*, topological data analysis (TDA) is applied
 143 to extract stable backbones and self-consistent loops from the GHS, yielding high-confidence and
 144 interpretable reasoning paths. The construction ensures coherent integration, while the analysis ex-
 145 ploits topological stability as a structural constraint and convergence criterion.
 146

3.1 GLOBAL HYPOTHESIS SPACE MODELING

147 **Problem setup.** Given a problem Q , we first sample N candidate reasoning paths
 148

$$\mathcal{P} = \{P_1, \dots, P_N\}, \quad P_i = (s_1^{(i)}, s_2^{(i)}, \dots, s_{m_i}^{(i)}), \quad (1)$$

149 where each P_i denotes a stepwise sequence of intermediate hypotheses with variable length m_i .
 150 These paths may differ substantially in surface form, semantic fidelity, and logical coverage. Our
 151 goal is to integrate them into a single global structure that preserves diversity while eliminating
 152 redundancy.
 153

154 **Graph definition.** We define the *Global Hypothesis Graph* (GHG) as
 155

$$G = (V, E). \quad (2)$$

156 Each node $v \in V$ is represented as
 157

$$v = (\text{text}, \text{canon}, c, r), \quad (3)$$

Figure 1: The method consists of two stages: (1) Global Hypothesis Space Modeling, where multiple reasoning paths sampled from an LLM are semantically aligned and merged into a unified Global Hypothesis Graph encoding adjacency, support, and refutation relations; and (2) Skeleton Extraction, where the graph is embedded into a feature space, analyzed via Vietoris–Rips filtration and persistent homology, and reduced to stable backbones and self-consistent loops. The resulting skeleton provides both accurate answers and interpretable reasoning structures.

where: (i) `text` stores the natural-language expression of the step; (ii) `canon` is its canonicalized form (e.g., symbolic or normalized logical representation) used for equivalence testing; (iii) $c \in [0, 1]$ is the confidence score estimated from the LLM or aggregated statistics; (iv) $r \in [0, 1]$ is a normalized progress indicator reflecting how far the step is from the final answer. Edges $e = (v_i, v_j) \in E$ represent semantic–logical dependencies, typically arising from path adjacency, explicit usage (e.g., s_i uses s_j), or inferred support/refutation. We elaborate the definition of "support" and "refutation" in the Appendix A.2.

This construction yields a directed multigraph in which all hypotheses generated by the model are placed into a shared reasoning space.

Node alignment and merging. A central step is to align semantically equivalent hypotheses across different paths. For two nodes s_a and s_b , we compute the similarity of their canonicalized forms. If

$$\text{Sim}(\text{canon}(s_a), \text{canon}(s_b)) > \theta_{\text{merge}}, \quad (4)$$

the two nodes are merged into a single representative vertex, inheriting all incident edges. This merging criterion ensures that semantically equivalent reasoning steps, possibly expressed in different surface forms (e.g., "2 + 2 = 4" vs. "the sum is four"), are unified.

After merging, the confidence c of the resulting node is computed as the average of its sources, while the progress r is assigned as the maximum progress value among them to preserve downstream completeness. We also maintain a record of provenance (i.e., which original paths contributed) to enable later attribution and evidence tracking.

Resulting properties. The resulting graph G compactly encodes the union of all sampled reasoning paths without duplication, while retaining their semantic and logical structure. It preserves alternative hypotheses in a unified space, allowing systematic comparison of competing reasoning attempts and their interdependencies. At the same time, it provides a coherent foundation for subsequent topological analysis, where connected clusters naturally correspond to stable reason-

216 ing backbones and cycles capture self-consistent or cross-validating structures within the reasoning
 217 process.
 218

219 **3.2 SKELETON EXTRACTION**
 220

221 **Point-cloud representation.** Each node v is embedded into a joint feature vector:

$$222 \quad \mathbf{z}_v = [\mathbf{e}_v \parallel \phi_{\text{graph}}(v) \parallel u_v], \quad (5)$$

224 where: (i) \mathbf{e}_v is an L2-normalized semantic embedding; (ii) $\phi_{\text{graph}}(v)$ encodes graph structure
 225 (progress r_v , BFS-based positional encoding, centrality), standardized per instance; (iii) $u_v =$
 226 $-\log(\text{confidence}_v + 10^{-6})$ denotes uncertainty. All features are normalized to ensure balanced
 227 contributions.
 228

229 **Distance metric and filtration.** We define a mixed distance:

$$230 \quad d(v_i, v_j) = \alpha(1 - \langle \mathbf{e}_i, \mathbf{e}_j \rangle) + \beta \|\phi_{\text{graph}}(i) - \phi_{\text{graph}}(j)\|_1 + \nu(u_i + u_j). \quad (6)$$

231 A k -nearest-neighbor graph ($k \approx 15$) is constructed and pruned by a global threshold τ (95th per-
 232 centile of distances). A Vietoris–Rips filtration is then built on this sparsified graph, which preserves
 233 salient topological features (H_0, H_1) while reducing complexity.
 234

235 **Persistent homology and feature selection.** We compute persistent homology up to H_1 , obtain-
 236 ing barcodes for connected components (H_0) and loops (H_1). Significant features are selected by
 237 lifespan $L = \text{death} - \text{birth}$ (Top- $q\%$), with H_0 capturing major clusters and H_1 reflecting self-
 238 consistent loops.
 239

240 **Operating scales and skeleton construction.** To map features back into the graph, we define
 241 operating thresholds:

$$242 \quad \varepsilon_{H_0} = \text{median}\{\text{death}(b) \mid b \in B_0\}, \quad \varepsilon_b = 0.99 \cdot \text{death}(b), \quad \forall b \in B_1. \quad (7)$$

243 This yields a thresholded subgraph $\mathcal{G}(\varepsilon)$ for cluster and loop analysis:
 244

245 - *Clusters and anchors.* On $\mathcal{G}(\varepsilon_{H_0})$, we retain components C with $|C| > 3$ that cover at least two
 246 reasoning paths. Anchors are chosen as

$$247 \quad s_C = \arg \min_{v \in C} r_v, \quad g_C = \arg \max_{v \in C} r_v, \quad (8)$$

249 corresponding to start and goal nodes.
 250

251 - *Loop assignment.* Each loop $b \in B_1$ is localized at ε_b and assigned to the cluster with maximal
 252 overlap:
 253

$$C(b) = \arg \max_C |V_b \cap C|. \quad (9)$$

254 - *Skeleton backbone.* For each C , we compute the shortest path \mathcal{P}_C from s_C to g_C as the backbone.
 255 If a principal loop b_C is assigned, we reroute via a pivot near median progress:
 256

$$257 \quad s_C \rightarrow v \rightarrow (\text{tour of } b_C) \rightarrow v \rightarrow g_C, \quad (10)$$

258 explicitly embedding a verification loop to enhance self-consistency. Loops are instantiated by
 259 minimum-weight cycle basis (Horton’s algorithm) or by stitching heuristics if fragmented.
 260

261 When multiple clusters are available, we prioritize: (i) clusters with principal loops; (ii) larger loop
 262 lifespan; (iii) larger cluster size; (iv) smaller backbone cost.
 263

264 **Answer aggregation.** Candidate answers are aggregated along the skeleton using
 265 confidence/persistence-weighted voting. If loops are present, additional numeric substitution
 266 or entailment checks are applied. The final output includes the high-confidence answer, skeleton
 267 structure, and key statistics (e.g., contributing paths, average edge weight, loop lifespan).
 268

269 **Implementation details.** Embeddings: text-embedding-3-large; persistent homology:
 270 GUDHI (VR up to H_1); random seeds: 5; temperature: 0.7; top-p: 0.95; maximum LLM calls:
 271 16 per example. Settings are fixed across baselines unless specified.

270 4 EXPERIMENT
271272 We evaluate GHS-TDA through four research questions:
273274 (1) *Q1: Does the global hypothesis–space framework outperform strong multi-path baselines*
275 *in overall accuracy?*
276 (2) *Q2: Does topology-aware path selection outperform local confidence–based selection?*
277 (3) *Q3: Does the method yield more robust and interpretable reasoning?*
278 (4) *Q4: Is H_1 persistence quantitatively predictive of reasoning correctness?*
279 (5) *Q5: How does GHS-TDA perform in terms of efficiency 4.7, Stability A.4 and generaliza-
280 tion A.5?*
281283 4.1 EXPERIMENTAL SETUP
284285 **Models** We select three representative LLMs as backbones for reasoning: **GPT-4o-mini** OpenAI
286 (2024), **Qwen-Turbo** Bai et al. (2023a), and **DeepSeek-V3** DeepSeek-AI (2025). These models
287 differ in architecture and optimization strategies, which reduces bias from model-specific behaviors.
288 All experiments run under unified decoding and budget constraints to ensure comparability.
289290 **Baseline models** We compare GHS-TDA with nine representative baselines that cover chain-based,
291 tree-based, graph-based, forest-based, and atomic reasoning paradigms: CoT (Wei et al., 2022)
292 and its self-consistency variant CoT-SC (Wang et al., 2022), Self-Refine (Madaan et al., 2023),
293 Analogical Prompting (Yasunaga et al., 2023), the search-based framework AFlow (Zhang et al.,
294 2024), and the structured approaches ToT (Yao et al., 2023a), GoT (Besta et al., 2024), FoT (Bi et al.,
295 2024), and AoT (Teng et al., 2025). Together, these baselines provide a comprehensive benchmark
296 for systematic comparison.
297298 **Datasets** We adopt eight widely used benchmarks covering arithmetic, mathematics, multi-hop, and
299 long-context reasoning: GSM8K Cobbe et al. (2021), MATH Hendrycks et al. (2021a), Olympiad-
300 Bench Zheng et al. (2024), BBH Srivastava et al. (2022), MMLU-CF Hendrycks et al. (2021b),
301 LongBench Bai et al. (2023b), HotpotQA Yang et al. (2018), and MuSiQue Trivedi et al. (2022)
302303 **Evaluations** We report Exact Match (EM, %) and four auxiliary metrics. For interpretability, three
304 trained annotators rate clarity, logical coherence, credibility, and conciseness on a 1–5 Likert scale
305 following a written rubric (IAA reported via Krippendorff’s α). Node confidence is the model-
306 reported step probability calibrated on a held-out set; Confidence Stability is the standard deviation
307 across steps on a path (lower is better). Computation Cost is the average number of LLM calls per
308 problem. Statistical significance is assessed via paired t -tests against AoT with $\alpha = 0.05$ (per-
309 dataset details in Appendix).
310311 4.2 MAIN RESULTS
312313 To address **Q1**, we evaluate GHS-TDA on eight reasoning and question-answering bench-
314 marks, namely MATH, OlympiadBench, GSM8K, BBH, MMLU-CF, LongBench, HotpotQA, and
315 MuSiQue. The comparison involves nine representative baselines: CoT, CoT-SC, Self-Refine, An-
316 alogical Prompting, AFlow, ToT, GoT, FoT, and AoT. Experiments are conducted across three back-
317 bone models: gpt-4o-mini, qwen-turbo, and deepseekV3. The evaluation metric is exact match
318 (EM) accuracy.
319320 As shown in Table 1, GHS-TDA consistently delivers the best or near-best results across datasets
321 and backbones. On gpt-4o-mini, it achieves 83.9% on MATH, surpassing AoT by 0.3 percent-
322 age points and CoT by 5.6 points. On HotpotQA, it reaches 81.4%, improving over AFlow by
323 nearly eight points. On MuSiQue, it obtains 39.8%, outperforming ToT by 0.7 points and AoT by
324 1.4 points. On qwen-turbo, GHS-TDA achieves 87.9% on BBH, exceeding GoT by 3.0 points
325 and AoT by 2.5 points, and reaches 80.3% on HotpotQA, a gain of over seven points compared
326 to AFlow. On deepseekV3, it records 14.7% on OlympiadBench, surpassing GoT by one
327 point, and achieves 81.7% on HotpotQA, slightly higher than AoT at 80.6%. In terms of over-
328 all performance, GHS-TDA attains average EM scores of 68.0% on gpt-4o-mini, 67.6% on
329

324
325
326 Table 1: Performance comparison across datasets (EM %).
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Method	MATH	OlympiadBench	gsm8k	BBH	MMLU-CF	LongBench	HotpotQA	MuSiQue	Avg
gpt-4o-mini									
CoT	78.3	9.3	90.9	78.3	69.6	57.6	67.2	34.1	60.7
CoT-SC ($n=5$)	81.8	10.2	92.0	83.4	71.1	58.6	66.2	33.8	62.1
Self-Refine	78.7	9.4	91.7	80.0	69.7	58.2	68.3	35.1	61.4
Analogical Prompting	65.4	6.5	87.2	72.5	65.8	52.9	64.7	32.8	56.0
AFlow	83.0	12.4	93.5	76.0	69.5	61.0	73.5	38.1	63.4
ToT	79.2	11.4	94.9	84.1	69.9	62.8	76.8	39.1	64.8
GoT	83.0	13.1	94.5	85.9	70.2	63.1	74.2	36.5	65.1
FoT ($n=8$)	82.5	12.5	94.0	82.4	70.6	59.1	66.7	35.8	63.0
AoT	83.6	12.1	95.0	86.0	70.9	68.5	80.6	38.4	66.9
GHS-TDA (Ours)	83.9	14.5	95.2	88.4	71.6	69.5	81.4	39.8	68.0
qwen-turbo									
CoT	78.1	8.9	90.7	78.1	69.4	57.3	66.8	33.6	60.4
CoT-SC ($n=5$)	81.4	9.9	91.5	83.2	70.8	58.4	65.9	33.5	61.8
Self-Refine	78.5	9.4	91.4	79.8	69.5	58.0	68.2	35.0	61.2
Analogical Prompting	65.2	6.2	87.0	72.2	65.2	52.7	64.5	32.6	55.7
AFlow	82.4	12.1	93.1	75.7	69.3	60.4	73.2	37.8	63.0
ToT	78.9	11.3	94.2	83.7	69.6	62.4	76.4	38.4	64.4
GoT	82.7	13.0	93.8	84.9	70.1	62.8	74.0	36.4	64.7
FoT ($n=8$)	82.2	12.3	93.9	82.3	70.4	59.0	66.4	35.8	62.8
AoT	83.5	12.6	94.7	85.4	70.5	68.1	80.0	39.2	66.8
GHS-TDA (Ours)	83.7	14.4	94.8	87.9	71.2	68.6	80.3	39.6	67.6
deepseekV3									
CoT	78.5	9.5	91.3	78.5	69.9	57.7	67.4	34.2	60.9
CoT-SC ($n=5$)	82.0	10.4	92.1	83.6	71.5	58.9	66.6	34.0	62.4
Self-Refine	78.9	9.5	91.9	80.4	70.1	58.4	69.1	35.1	61.7
Analogical Prompting	65.6	6.7	87.6	72.8	66.1	53.4	64.9	33.1	56.3
AFlow	83.4	12.5	93.6	76.4	69.8	61.4	74.0	38.2	63.7
ToT	79.1	11.6	95.0	84.4	70.4	63.2	76.9	39.4	65.0
GoT	83.2	13.7	94.5	86.2	70.3	63.4	74.2	36.7	65.3
FoT ($n=8$)	82.7	12.6	94.2	82.6	70.5	59.3	66.8	36.2	63.1
AoT	84.0	13.1	95.1	86.1	70.8	68.7	80.6	39.6	67.3
GHS-TDA (Ours)	84.5	14.7	95.2	88.7	71.6	69.9	81.7	40.1	68.3

qwen-turbo, and 68.3% on deepseekV3. These values consistently surpass the strongest baselines, with AoT reaching 66.9%, 66.8%, and 67.3% under the same settings. This demonstrates that the proposed global hypothesis-space framework outperforms representative multi-path reasoning methods in overall accuracy.

4.3 PATH SELECTION ANALYSIS

Table 2: Comparison of different path selection strategies within the Global Hypothesis Graph (GHS), combining quantitative evaluation and human-centered interpretability assessment.

Path Type	Accuracy %	Avg. Length	Avg. Conf.	Conf. Std \downarrow	Clarity	Coherence	Credibility	Conciseness
Shortest Path (GHS)	75.2	5.8	0.81	0.12	3.6	2.9	3.4	4.3
Max-Confidence Path (GHS)	82.1	11.5	0.93	0.21	4.1	4.2	4.3	3.9
Human-Selected Path (GHS)	83.6	9.2	0.88	0.07	4.5	4.6	4.7	4.4
TDA Skeleton (Ours)	83.9	8.7	0.90	0.07	4.4	4.5	4.7	4.3

To address **Q2**, we examine whether topology-aware path selection outperforms local confidence-based selection. As shown in Table 2, we compare four strategies on the MATH dataset: shortest path, max-confidence path, human-selected path, and the TDA Skeleton from our GHS-TDA framework. Evaluation considered both quantitative indicators—accuracy, path length, confidence, and stability—and human judgments of clarity, coherence, credibility, and conciseness.

The shortest path was most concise with an average of 5.8 steps, but accuracy dropped to 75.2 percent and confidence was unstable with a variance of 0.12. The max-confidence path reached the highest confidence of 0.93, yet required 11.5 steps and showed high variance of 0.21. The human-selected path balanced these trade-offs, achieving 83.6 percent accuracy with 9.2 steps and a stable variance of 0.07. The TDA Skeleton slightly outperformed it, with 83.9 percent accuracy, 8.7 steps, and the same low variance, yielding compact and reliable chains.

Figure 2: Global relation between H_1 persistence and reasoning correctness. Left: binned correct rate with logistic fit, showing a monotonic increase. Right: raw samples confirm the same trend across datasets.

Human evaluation aligned with these findings. The shortest path was concise but incoherent, the max-confidence path was moderately rated but verbose, while the human-selected path achieved the best overall scores. The TDA Skeleton closely matched human ratings, with clarity at 4.4, coherence at 4.5, credibility at 4.7, and conciseness at 4.3.

These results show that topological analysis enables automatic extraction of reasoning chains that are nearly as accurate and interpretable as those chosen by humans, while avoiding both under- and over-extension.

As shown in Table 3, we further evaluate the robustness of different path selection strategies under adversarial perturbations. Specifically, reasoning steps were paraphrased with semantically equivalent but lexically altered expressions to introduce local noise. Results show that the path selected by GHS-TDA achieves an accuracy drop of only 2.4 points with an answer change rate of 2.9%, significantly lower than the 7.4% observed for the Max-Confidence baseline. This indicates that paths identified by topological stability exhibit stronger internal logical connectivity and are less sensitive to superficial wording variations, whereas confidence-based paths are more vulnerable to semantic perturbations. These findings highlight the robustness advantage of structural evaluation beyond local heuristics.

Table 3: Robustness under adversarial perturbations.

Strategy	Before (%)	After (%)	Change (%)
Max-Confidence	82.1	77.1	7.4
GHS-TDA (Ours)	83.9	81.5	2.9

4.4 ROBUSTNESS AND INTERPRETABILITY OF REASONING PROCESSES

To address **Q3**, we examine whether the proposed framework produces reasoning processes that are more robust and interpretable. We systematically evaluate the association between topological persistence and reasoning correctness across diverse tasks and difficulty levels. As shown in Fig. 2, we analyze pooled samples from multiple datasets under a unified framework. The left panel aggregates instances into bins with a logistic regression fit, revealing a clear monotonic trend: higher persistence consistently predicts higher accuracy. The right panel confirms this result using raw samples with binned means, showing that the trend is robust and not an artifact of binning. This global analysis indicates that topological persistence serves as a principled, task-agnostic signal of reasoning reliability.

As shown in Fig. 3, we further validate the predictive value of topological persistence through both distributional and classification analyses. The boxplot analysis (Fig. 3a) demonstrates that correct reasoning chains consistently exhibit higher H_1 persistence values than incorrect ones, indicating that persistent topological structures capture stronger logical robustness. The ROC analysis (Fig. 3b) quantifies this effect, with persistence alone reaching an AUC of 0.74. These results confirm that H_1 persistence not only provides discriminative power but also enhances robustness and interpretability of reasoning processes. More detailed, per-dataset visualizations are presented in Appendix A.3, further illustrating the consistency of these findings across diverse benchmarks.

Figure 3: Validation of the predictive role of topological persistence. Left: correct reasoning chains have consistently higher H₁ persistence values than incorrect ones. Right: ROC analysis shows persistence alone achieves an AUC of 0.74.

Table 4: Predictive power of H₁ persistence for reasoning correctness. Higher persistence consistently correlates with better performance.

Analysis Item	Value	Interpretation
Global Spearman ρ	0.349 ($p \approx 0$)	Moderate positive correlation
Logistic regression (std. H ₁)	1.247 (OR ≈ 3.48)	Strong effect: +1 SD $\Rightarrow \sim 3.5 \times$ odds
ROC-AUC (H ₁ only)	0.74	Good discriminative ability
Per-dataset ROC-AUC		
GSM8K	0.748	Robust
MATH	0.704	Robust
OlympiadBench	0.703	Robust
BBH	0.729	Robust
MMLU-CF	0.733	Robust
LongBench	0.737	Robust
HotpotQA	0.778	Strongest
MuSiQue	0.709	Robust

4.5 CORRELATION BETWEEN TOPOLOGY AND REASONING ACCURACY

To address **Q4**, we investigate whether topological persistence is quantitatively associated with reasoning correctness. As shown in Table 4, H₁ persistence emerges as a strong predictor. A global Spearman correlation of 0.349 confirms a significant positive relationship: more persistent topological features correspond to higher accuracy. Logistic regression further shows that a one-standard deviation increase in persistence raises the odds of correctness by roughly 3.5 times, indicating a substantial effect size. Using persistence alone, ROC analysis yields an AUC of 0.74, demonstrating solid discriminative power.

This effect is consistent across all eight benchmarks. Per-dataset AUC values remain within the 0.70–0.78 range, with HotpotQA reaching 0.778. Such stability across arithmetic, symbolic, and multi-hop reasoning indicates that topological persistence provides a task-agnostic and statistically significant signal of reliability, offering a principled way to estimate correctness beyond ground-truth supervision.

4.6 ABALATION STUDY

As shown in Table 5, we conduct an ablation study on the distance weights under the constraint $\alpha + \beta + \gamma = 1$. The full model with weights (0.6, 0.3, 0.1) achieves an average accuracy of 83.9%. Removing the structural term ($\beta = 0$) reduces the accuracy to 81.2%, while removing the semantic term ($\alpha = 0$) causes the largest drop, down to 77.4%, indicating its dominant contribution. Removing the uncertainty term ($\gamma = 0$) results in an accuracy of 83.5%, suggesting a smaller but consistent gain in robustness. Overall, semantic similarity is the most critical factor, structural features provide complementary benefits, and the uncertainty term, although lightweight, improves stability.

486
487
488 Table 5: Ablation study of distance weights under the constraint $\alpha + \beta + \gamma = 1$.
489
490
491
492

Method	α	β	γ	Accuracy (Avg.)
GHS-TDA (Ours)	0.6	0.3	0.1	83.9%
Without β	0.9	0.0	0.1	81.2%
Without α	0.0	0.9	0.1	77.4%
Without γ	0.7	0.3	0.0	83.5%

493
494
495 4.7 EFFICIENCY PERFORMANCE EXPERIMENT
496

497 To answer **Q5**, as shown in Table 6, our method maintains a stable and fixed upper bound of 19
498 LLM calls across all tasks, substantially reducing inference cost compared with existing multi-path
499 reasoning approaches. Under the same settings, GHS-TDA reduces the number of calls by approx-
500 imately 25%–30% relative to ToT and 35%–40% relative to AoT, indicating that our discriminative
501 relation inference effectively replaces the large amount of recursive generative evaluation used in
502 prior work.

503 Since the actual computational cost of LLMs is more closely tied to token usage than to call count
504 alone, we further report total token consumption in Table 7. The results show that GHS-TDA uses
505 about 26.8% fewer tokens than ToT and 35.7% fewer tokens than AoT on average, confirming
506 the efficiency advantage of our approach in reducing redundant generation and improving overall
507 reasoning efficiency.

508
509 Table 6: Comparison of LLM Call Computational Costs

Method	MATH	Olymp.	GSM8K	BBH	MMLU-CF	LongB.	HotpotQA	MuSiQue
CoT	1	1	1	1	1	1	1	1
CoT-SC ($n = 16$)	16	16	16	16	16	16	16	16
ToT	25.8	27.2	13.5	24.1	19.3	14.2	20.7	26.4
GoT	21.6	23.5	14.8	22.9	18.4	13.9	17.8	20.3
AoT	29.7	32.4	17.2	28.6	24.9	16.8	23.5	29.1
GHS-TDA (Ours)	19							

516
517 Table 7: Comparison of token consumption.
518

Method	MATH	OlympiadBench	GSM8K	BBH	MMLU-CF	LongBench	HotpotQA	MuSiQue
CoT	2290	4590	278	642	1235	83	1305	485
CoT-SC	36640	73440	4448	10272	19760	1328	20880	7760
ToT	88623	187272	5630	23208	35753	1768	40520	19206
GoT	64303	140225	5349	19112	29541	1500	30198	12799
AoT	68013	148716	4782	18361	30752	1394	30668	14114
GHS-TDA	51411	83309	7709	15793	28862	1685	28358	10263

525
526 5 CONCLUSION
527

528 In this work, We presented GHS-TDA, a two-stage framework that integrates Global Hypothesis
529 Graph construction with topological data analysis for robust reasoning. By unifying diverse reason-
530 ing paths into a coherent hypothesis space and extracting stable backbones and self-consistent loops
531 via persistent homology, the framework improves both accuracy and interpretability. Experiments
532 across multiple benchmarks demonstrate consistent gains over strong baselines, while analysis of
533 topological persistence establishes it as a task-agnostic indicator of reasoning reliability. This work
534 highlights the value of combining structural integration with topological robustness, providing a
535 principled foundation for more reliable and transparent reasoning systems.

536
537
538
539

540 REPRODUCIBILITY STATEMENT
541542 To ensure the reproducibility of our work, we have undertaken systematic efforts in multiple aspects:
543544 **Methodological Details.** In Section 3, we provide a comprehensive description of the two-phase
545 GHS-TDA framework, including the construction of the Global Hypothesis Graph (GHG) and the
546 subsequent topological analysis (Persistent Homology). Relevant mathematical definitions, formu-
547 las, and pseudocode are presented in the main text (Equations (1)–(11)) and Appendix G, enabling
548 precise reproduction of the algorithmic workflow.
549550 **Implementation and Parameter Settings.** Implementation details are documented in the “Im-
551 plementation Notes” section and Appendix E. These include the embedding model employed
552 (`text-embedding-3-large`), the topological analysis toolkit (GUDHI), random seeds (seeds
553 = 5), decoding parameters (temperature = 0.7, top-p = 0.95), the maximum number of path samples
554 (16 LLM calls), as well as default values and tuning strategies for key hyperparameters (e.g., node
555 merging threshold θ_{merge} , distance weighting factors $\alpha/\beta/\gamma$, number of significant features K , and
556 cycle embedding threshold δ).
557558 **Datasets and Experimental Configuration.** All experiments are conducted on publicly available
559 benchmark datasets (GSM8K, MATH, OlympiadBench, BBH, MMLU-CF, LongBench, HotpotQA,
560 MuSiQue), following their official splits and license agreements. Dataset versions and license in-
561 formation are documented in the appendix to ensure that other researchers can access the same
562 resources.
563564 **Verifiability and Interpretability.** We provide interpretable representations of reasoning chains
565 (skeleton paths and critical loops), along with cross-dataset visualizations in Appendix D. These
566 materials allow independent researchers to verify whether intermediate reasoning processes are con-
567 sistent with our reported results.
568569 **Supplementary Materials.** The supplementary materials include the complete prompts and en-
570 vironment specifications, which facilitate the replication of experiments and further verification of
571 results.
572573 REFERENCES
574

575 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
576 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
577 report. *arXiv preprint arXiv:2303.08774*, 2023.

578 Junjie Bai et al. Qwen: A large-scale chinese-english aligned language model. *arXiv preprint
arXiv:2309.16609*, 2023a.

579 Yuwei Bai, Shuofei Li, Yuxuan Xie, et al. Longbench: A bilingual, multitask benchmark for long
580 context understanding. *arXiv preprint arXiv:2308.14508*, 2023b.

581 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
582 inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
583 thoughts: Solving elaborate problems with large language models. In *Proceedings of the AAAI
conference on artificial intelligence*, volume 38, pp. 17682–17690, 2024.

584 Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling
585 test-time compute for enhancing ILM reasoning. *arXiv preprint arXiv:2412.09078*, 2024.

586 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
587 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
588 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

589 Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis: fundamental
590 and practical aspects for data scientists. *Frontiers in artificial intelligence*, 4:667963, 2021.

591

592 Karl Cobbe, Vineet Kosaraju, Jacob Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
593 Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math
594 word problems. *arXiv preprint arXiv:2110.14168*, 2021.

594 DeepSeek-AI. Deepseek-v3: Scaling open large language models with efficient training and infer-
 595 ence. *arXiv preprint arXiv:2501.00001*, 2025.
 596

597 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
 598 cob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv preprint*
 599 *arXiv:2103.03874*, 2021a.

600 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 601 and Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*
 602 *arXiv:2009.03300*, 2021b.
 603

604 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 605 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 606 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

607 Elizabeth Munch. A user’s guide to topological data analysis. *Journal of Learning Analytics*, 4(2):
 608 47–61, 2017.
 609

610 OpenAI. Gpt-4o-mini: A lightweight gpt-4o variant for efficient inference. <https://openai.com>, 2024. Accessed: 2025-09-25.

612 Archiki Prasad, Swarnadeep Saha, Xiang Zhou, and Mohit Bansal. Receval: Evaluating reasoning
 613 chains via correctness and informativeness. *arXiv preprint arXiv:2304.10703*, 2023.

615 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, et al. Beyond the imitation game: Quantifying
 616 and extrapolating the capabilities of language models. *arXiv preprint arXiv:2206.04615*, 2022.

618 Fengwei Teng, Zhaoyang Yu, Quan Shi, Jiayi Zhang, Chenglin Wu, and Yuyu Luo. Atom of thoughts
 619 for markov lilm test-time scaling. *arXiv preprint arXiv:2502.12018*, 2025.

620 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 621 questions via single-hop question composition. *Transactions of the Association for Computational
 622 Linguistics (TACL)*, 10:539–554, 2022.

624 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 625 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 626 tion processing systems*, 30, 2017.

627 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 628 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 629 *arXiv preprint arXiv:2203.11171*, 2022.

631 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 632 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 633 neural information processing systems*, 35:24824–24837, 2022.

634 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
 635 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 636 answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language
 637 Processing (EMNLP)*, pp. 2369–2380, 2018.

639 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 640 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-
 641 vances in neural information processing systems*, 36:11809–11822, 2023a.

642 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 643 React: Synergizing reasoning and acting in language models. In *International Conference on
 644 Learning Representations (ICLR)*, 2023b.

646 Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang,
 647 Ed H Chi, and Denny Zhou. Large language models as analogical reasoners. *arXiv preprint*
arXiv:2310.01714, 2023.

648 Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
 649 Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
 650 tion. *arXiv preprint arXiv:2410.10762*, 2024.

651
 652 Xiaohan Zheng, Jiawei Zhang, Zihan Zhao, et al. Olympiadbench: A benchmark for olympiad-level
 653 mathematical reasoning. *arXiv preprint arXiv:2402.14081*, 2024.

655 A APPENDIX

656 A.1 ACKNOWLEDGE

659 This article used large language models (such as ChatGPT) as an auxiliary tool in the language
 660 polishing process, but did not use them in research conception and academic content generation.

662 A.2 DEFINITION OF SUPPORT AND REFUTATION

664 To efficiently incorporate logical relations into the TDA distance, we avoid evaluating all $\mathcal{O}(|V|^2)$
 665 node pairs. Instead, we construct a reduced candidate set $\mathcal{L} = \mathcal{L}_{\text{long}} \cup \mathcal{L}_{\text{lat}}$ consisting of two types
 666 of pairs. The longitudinal set $\mathcal{L}_{\text{long}}$ contains existing derivation edges (v_i, v_j) in the GHG, which
 667 correspond to potential “premise \rightarrow conclusion” relations. The lateral set \mathcal{L}_{lat} includes unconnected
 668 node pairs (v_a, v_b) that satisfy

$$669 |r(v_a) - r(v_b)| < \epsilon,$$

670 which typically represent competing hypotheses at the same reasoning stage and may potentially
 671 contradict each other.

673 The resulting candidate set has size $K \ll |V|^2$. To infer logical relations efficiently, we partition
 674 \mathcal{L} into C chunks of size S (e.g., $S = 20$) and process each chunk with a single LLM call. For
 675 each node pair (v_i, v_j) , the model assigns one of three labels: SUPPORT, REFUTE, or NEUTRAL,
 676 yielding a logical code $R(v_i, v_j)$. The inferred logical relation is then integrated as an additional
 677 term into the TDA distance function:

$$678 d(v_i, v_j) = \alpha (1 - \langle e_i, e_j \rangle) + \beta \|\phi_{\text{graph}}(i) - \phi_{\text{graph}}(j)\|_1 + \nu(u_i + u_j) + \delta \cdot R(v_i, v_j).$$

680 Specifically, if a pair is labeled REFUTE, we set $R(v_i, v_j) = +M$, where M is a large positive
 681 constant, thereby pushing the corresponding nodes far apart in the embedding space. If a pair is
 682 labeled SUPPORT, we set $R(v_i, v_j) = -W$ (e.g., $W = 1$), which draws the nodes closer and
 683 encourages logically coherent connections. If a pair is labeled NEUTRAL or does not belong to the
 684 candidate set, we set $R(v_i, v_j) = 0$, reducing the distance to its original form.

686 A.3 PERSISTENCE-ACCURACY ANALYSIS ACROSS DATASETS

701
 702 Figure 4: Overall results across eight experimental settings.

702 Figure 4 presents logistic fits of reasoning accuracy as a function of H_1 persistence, with binned
 703 means overlaid. Across all eight datasets, we consistently observe a monotonic increase, demon-
 704 strating that more persistent topological loops reliably predict higher correctness. The effect is most
 705 pronounced in the low-to-moderate persistence regime ($H_1 \in [0, 2]$), where small increases in per-
 706 sistence correspond to sharp gains in accuracy. At higher values, curves gradually saturate, reflecting
 707 a ceiling effect once loop stability is sufficient.

708
 709 **Arithmetic and short-chain reasoning.** On **GSM8K**, the curve rises steeply and quickly saturates
 710 near perfect accuracy. This suggests that persistent loops in arithmetic tasks effectively function as
 711 self-verification mechanisms (e.g., numeric substitution or equation consistency checks). Similarly,
 712 **MATH** exhibits a monotonic increase but with a smoother slope, indicating that more complex
 713 derivations require higher persistence levels to capture the complete reasoning backbone.

714
 715 **Long-context and multi-hop reasoning.** Datasets such as **HotpotQA**, **LongBench**, and
 716 **MuSiQue** show the steepest slopes at low persistence and saturate earlier than other tasks. This
 717 pattern highlights the importance of stable loop structures for integrating multiple evidence sources
 718 and maintaining coherence across extended reasoning chains. **HotpotQA**, in particular, reaches
 719 near-perfect accuracy once persistence exceeds moderate values, reflecting the decisive role of struc-
 720 tural self-consistency in cross-document reasoning.

721
 722 **Knowledge-intensive tasks.** For **MMLU-CF**, persistence provides a strong positive signal, with
 723 accuracy steadily rising as loops become more stable. The trend indicates that persistence mitigates
 724 the effects of noisy or uncertain knowledge retrieval by reinforcing structurally coherent reasoning
 725 paths.

726
 727 **Challenging and creative reasoning.** **OlympiadBench** exhibits a clear upward trend but with a
 728 slightly lower plateau compared to other datasets. This suggests that while loop persistence improves
 729 correctness, certain Olympiad-level problems involve creative steps or lengthy derivations that may
 730 not be fully captured by first-order topological features alone. Nonetheless, persistence remains a
 731 robust predictor of accuracy.

732
 733 **Summary.** Taken together, these results confirm that H_1 persistence serves as a task-agnostic
 734 reliability signal across diverse benchmarks. In arithmetic tasks it captures self-verification, in long-
 735 context reasoning it enforces multi-evidence integration, and in knowledge-intensive settings it sup-
 736 presses noisy paths. We therefore recommend persistence-aware path selection strategies, using
 737 thresholding (e.g., $H_1 \geq 1$) or weighted scoring, to enhance both robustness and interpretability of
 738 reasoning chains.

739 A.4 STABILITY ANALYSIS

740 To assess the stability of the proposed GHS-TDA pipeline, we evaluate both its computational cost
 741 and the robustness of the resulting topological features. In our experiments on **GSM8K** and **MATH**,
 742 each problem instance produces roughly 80–120 nodes, with the KNN neighborhood size fixed at 15.
 743 End-to-end graph construction—including canonicalization, node merging, node embedding, and
 744 KNN graph building—requires only 25–60 ms per instance on a system equipped with an RTX 4090
 745 GPU and 32 GB of CPU memory, with embedding computation and KNN construction dominating
 746 the runtime. The subsequent Vietoris–Rips filtration, computed up to the first homology group,
 747 operates on these sparse graphs and exhibits a peak memory usage of 150–400 MB for graphs with
 748 around 100 nodes, and remains below 1 GB even when the graph size grows to approximately 200
 749 nodes. Persistent-homology computation is also efficient: computing the zeroth and first homology
 750 groups with GUDHI takes 10–25 ms per instance, corresponding to only 10–30% of the overall
 751 pipeline time. These results indicate that the method scales well within typical LLM-reasoning
 752 workloads.

753 We further evaluate numerical stability by perturbing node embeddings with isotropic Gaussian
 754 noise of magnitude between 0 and 0.1 and recomputing the persistence diagrams. The resulting bot-
 755 tleneck distances lie in the range 0.01–0.10, depending on the noise level, and remain significantly
 756 smaller than the lifetimes of the dominant first-homology features, which typically range from 0.3 to

0.8. This demonstrates that the extracted topological signatures are highly robust to embedding perturbations, consistent with the theoretical stability properties of persistent homology. Overall, the pipeline exhibits low computational overhead, favorable scaling behavior, and strong robustness, supporting its suitability for large-scale multipath reasoning analysis.

A.5 GENERALIZATION

The Table 8 shows that GHS-TDA delivers consistent and significant improvements on both models. On Llama 3-8B, it achieves an average score of 63.88, outperforming CoT, ToT, and AoT by 6.9, 3.0, and 1.1 points, respectively. On Qwen2-14B, it reaches 62.35, with gains of 6.75, 2.7, and 1.5 points over the corresponding baselines. Notably, these improvements are obtained without any additional supervision or external knowledge, indicating that the benefits come from the reasoning mechanism itself rather than model size. Overall, while all methods improve as the base model scales from 8B to 14B, the relative gains of GHS-TDA remain stable, demonstrating strong transferability and robustness across model sizes and architectures.

Table 8: Generalization ability of GHS-TDA.

Backbone	Method	MATH	OlympiadBench	GSM8K	BBH	MMLU-CF	LongBench	HotpotQA	MuSiQue	Avg
Llama 3-8B	CoT	72.04	8.37	87.26	74.38	65.42	53.57	63.17	31.71	56.99
	ToT	72.86	10.26	91.10	79.89	65.71	58.40	72.19	36.36	60.85
	GoT	76.36	11.79	90.72	81.61	65.99	58.68	69.75	33.95	61.10
	AoT	76.91	10.89	91.20	81.70	66.65	63.71	75.76	35.71	62.82
Qwen 2-14B	GHS-TDA	77.19	13.05	91.39	83.98	67.30	64.64	76.52	37.01	63.88
	CoT	60.80	6.40	86.70	75.80	65.10	52.70	64.90	32.40	55.60
	ToT	65.00	7.20	89.80	79.70	67.60	59.30	70.80	37.90	59.66
	GoT	65.70	8.40	89.10	80.40	67.80	58.10	72.10	35.40	59.62
	AoT	66.20	7.80	90.80	80.90	68.90	61.20	73.40	37.30	60.81
	GHS-TDA	68.40	9.70	91.20	82.50	69.80	62.80	75.80	38.60	62.35

We conducted additional experiments with GHG-TDA on different base large language models, using GPT-4o and Claude 3.5 Sonnet.

The Table 9 shows that GHG-TDA consistently achieves the best overall performance on both models, with an average score of 72.4 on GPT-4o and 72.8 on Claude 3.5 Sonnet, outperforming AoT, GoT, ToT, and CoT on all benchmarks. The consistent gains across different datasets and model backbones indicate that the effectiveness of GHG-TDA is not tied to a single powerful LLM, but instead stems from its graph-guided hierarchical reasoning mechanism. These results demonstrate the strong cross-model generalization capability of the proposed method.

A.6 CORRELATION ANALYSIS

Tables 10 and 11 present the statistical analysis of the relationship between H_1 persistence and reasoning correctness. Table 10 shows correlation metrics across our primary dataset collection, while Table 11 provides the same analysis specifically for the deepseek-V3 model. The tables report global correlation measures and dataset-specific discrimination ability, quantifying how topological features in reasoning traces relate to successful problem-solving across diverse reasoning tasks.

A.7 PARAMETER SETTINGS AND TUNING STRATEGIES

Hyperparameter settings directly affect both the degree of structural compression in the Global Hypothesis Graph (GHG) and the sensitivity of the topological analysis. The key parameters include:

- node merging threshold θ_{merge} , - hybrid distance weights (α, β, γ) , - number of significant topological features K , - loop embedding threshold δ .

These are designed under the principle of “*semantics-dominant, structure-assisted, uncertainty-corrected*” reasoning.

Hybrid distance construction. We constrain

$$\alpha + \beta + \gamma = 1,$$

810 Table 9: Performance comparison of different reasoning methods on two base models.
811

812 Base Model	813 Method	814 MATH	815 OlympiadBench	816 GSM8K	817 BBH	818 MMLU-CF	819 LongBench	820 HotpotQA	821 MuSiQue	822 Avg
823 GPT-4o	CoT	85.4	12.5	92.7	82.0	72.1	62.0	71.9	36.2	64.4
	ToT	86.9	14.1	96.0	89.1	73.0	66.0	82.1	40.5	68.5
	GoT	88.4	15.3	95.2	90.5	73.2	66.8	80.4	39.6	68.7
	AoT	89.1	15.0	96.5	92.0	74.3	72.6	86.0	42.1	71.0
	GHG-TDA	90.0	18.3	96.9	94.2	75.0	73.8	87.4	43.6	72.4
824 Claude 3.5 Sonnet	CoT	84.1	12.9	93.5	84.2	73.0	61.7	72.8	37.1	64.9
	ToT	86.0	14.8	96.2	90.8	74.1	66.4	83.3	41.5	68.9
	GoT	87.3	16.0	95.4	92.1	74.4	67.0	81.0	40.6	69.2
	AoT	88.0	15.7	96.8	93.4	75.2	72.2	86.7	43.2	71.3
825 GHG-TDA	88.1	19.0	97.1	95.4	75.9	73.5	73.5	88.0	44.6	72.8

826 Table 10: Correlation between H_1 persistence and reasoning correctness across datasets.
827

828 Analysis Item	829 Result	830 Interpretation
831 Global Spearman correlation (ρ)	832 0.314 ($p \approx 0$)	Moderate correlation with correctness.
833 Logistic regression coefficient	834 0.736 (OR ≈ 2.09 per $\uparrow 1\text{SD}$)	+1SD nearly doubles correctness odds.
835 ROC-AUC (H_1 persistence only)	0.671	Good discrimination ability.
836 Dataset-level AUC		Stable across tasks.
837 GSM8K	0.699	Robust.
838 MATH	0.597	Robust.
839 OlympiadBench	0.686	Robust.
840 BBH	0.663	Robust.
841 MMLU-CF	0.703	Robust.
842 LongBench	0.764	Robust.
843 HotpotQA	0.617	Robust.
844 MuSiQue	0.627	Robust.

836 so that semantic similarity, structural consistency, and uncertainty are comparable on the same scale.
837 The default setting is $(\alpha, \beta, \gamma) = (0.6, 0.3, 0.1)$. - Semantic similarity (α) dominates clustering, thus
838 receives the highest weight. - Structural consistency (β) is crucial in multi-hop or cross-document
839 reasoning. - Uncertainty (γ) down-weights low-confidence nodes and acts as regularization.

840 Tuning guideline: - Increase α for arithmetic or short logical inference. - Increase β for long-chain
841 or cross-document reasoning. - Increase γ under noisy outputs or fluctuating confidence.

842 **Node merging threshold.** The default $\theta_{\text{merge}} = 0.85$ balances redundancy removal and connec-
843 tivity. - Too low (< 0.8): risk of merging non-equivalent expressions. - Too high (> 0.9): graph
844 becomes sparse, losing connectivity. Empirically: - Use 0.75–0.8 in noisy tasks, - Use 0.9 in precise
845 reasoning (math, code).

846 **Number of significant topological features.** We use $K = 5$ by default to capture diverse back-
847 bones without redundancy. - Too small K : omits plausible reasoning chains. - Too large K : intro-
848 duces noisy cycles, weakening interpretability. Practical range: $K \in [3, 8]$, tuned by task complexity
849 and candidate path size.

850 **Loop embedding threshold.** The default $\delta = 0.15$ controls which loops are embedded into the
851 backbone. We further adopt adaptive scaling:

$$852 \delta = \lambda \cdot \epsilon_b, \quad \lambda \in [0.1, 0.2],$$

853 where ϵ_b is the persistence scale of loop features. - Large δ : may introduce noisy, distant loops. -
854 Small δ : may discard important verification loops.

855 **Summary.** The default hyperparameters provide a balanced configuration for general tasks. Prac-
856 tical tuning follows the order: 1. Fix $\alpha + \beta + \gamma = 1$, redistribute according to task. 2. Tune θ_{merge}
857 and K via grid search. 3. Set δ adaptively using ϵ_b scaling.

858 This strategy ensures robustness and reproducibility across diverse reasoning scenarios.

864
865
866
Table 11: Correlation analysis between H_1 persistence and reasoning correctness across datasets,
deepseek-V3.
867

867 Analysis Item	868 Result	869 Interpretation
870 Global Spearman correlation (ρ)	871 0.391 ($p \approx 0$)	Moderate correlation with correctness.
872 Logistic regression coefficient	873 1.046 (OR ≈ 2.847 per $\uparrow 1\text{SD}$)	+1SD triples correctness odds.
874 ROC-AUC (H_1 persistence only)	875 0.726	Good discrimination ability.
876 Dataset-level AUC	877	Consistent across tasks.
878 GSM8K	879 0.641	Robust discrimination.
880 MATH	881 0.770	Robust discrimination.
882 OlympiadBench	883 0.689	Robust discrimination.
884 BBH	885 0.690	Robust discrimination.
886 MMLU-CF	887 0.791	Robust discrimination.
888 LongBench	889 0.770	Robust discrimination.
890 HotpotQA	891 0.741	Robust discrimination.
892 MuSiQue	893 0.734	Robust discrimination.

882
883
A.8 PARAMETER SETTINGS AND TUNING STRATEGIES884
885
Hyperparameters affect both graph compression and topological sensitivity. The key ones are
886
the node merging threshold θ_{merge} , distance weights (α, β, γ) , number of topological features K ,
887
and loop threshold δ , designed under the principle of “*semantics-dominant, structure-assisted,*
888
“*uncertainty-corrected*” reasoning.889
890
891
Hybrid distance. We constrain $\alpha + \beta + \gamma = 1$ with default $(0.6, 0.3, 0.1)$. Semantic similarity
892
(α) dominates, structure (β) supports long or multi-hop tasks, and uncertainty (γ) regularizes noise.
893
Adjust by increasing α for precise reasoning, β for long dependencies, and γ for noisy outputs.894
895
896
897
898
899
900
901
902
We tested various combinations of Hybrid distance. As shown in Table 12 our node representation
integrates semantic embeddings, graph-structural features, and an uncertainty term. This design
enables TDA to simultaneously capture semantic coherence, structural consistency, and potential
sources of noise. The confidence component is defined as $u_v = -\log(\text{confidence})$ and is assigned
a small weight in the hybrid distance metric ($\gamma = 0.1$). Thus, even if the confidence estimates
are imperfect, their overall influence remains limited. Moreover, persistent homology is inherently
robust to local perturbations: erroneous confidence values lead only to short-lived topological fea-
tures, which are automatically filtered out and do not appear in the final skeleton. As a result, the
final reasoning outcome is determined primarily by topological persistence and structural consis-
tency rather than by confidence itself. Consequently, imperfect confidence scores neither distort
node representations nor degrade.903
904
Table 12: Study of the distance metric.

905 α (Semantic)	906 β (Structural)	907 γ (Uncertainty)	908 Accuracy (%)
909 0.60	910 0.30	911 0.10	912 83.9
913 0.90	914 0.00	915 0.10	916 77.4
917 0.00	918 0.90	919 0.10	920 75.2
921 0.70	922 0.30	923 0.00	924 82.6
925 0.53	926 0.27	927 0.20	928 83.4
929 0.70	930 0.20	931 0.10	932 83.7
933 0.50	934 0.40	935 0.10	936 82.9

937
938
939
Node merging. Default $\theta_{\text{merge}} = 0.85$ balances redundancy and connectivity. Use 0.75–0.8 for
940
noisy tasks, 0.9 for precise domains (e.g., math, code).941
942
We examine how the node-merging threshold influences the construction of the Global Hypothe-
943
sis Graph. The results are shown in Table 13 A low threshold (around the 0.70 range) induces

918 overly aggressive consolidation, where semantically different reasoning steps are forced into a single node. This leads to semantic collapse, reduced path diversity, and weakened topological structure, ultimately degrading accuracy. As the threshold moves into a moderate region (approximately 919 0.80–0.90), semantically aligned steps are merged reliably while the graph remains well connected. 920 In this regime, the resulting structure preserves both diversity and coherence, enabling persistent H0 921 backbones and H1 verification loops to be detected consistently. This balance produces the most 922 stable and accurate reasoning performance across datasets. When the threshold becomes overly 923 conservative (around the 0.95 range), the graph becomes fragmented due to insufficient merging of 924 near-equivalent steps. Such sparsity reduces the emergence of meaningful topological features and 925 limits the ability of TDA to extract coherent reasoning skeletons. These observations collectively 926 indicate that moderate thresholds naturally yield the best trade-off between semantic integration and 927 structural robustness. 928

930 Table 13: Effect of the node-merging threshold θ_{merge} on EM accuracy. 931

θ_{merge}	EM Accuracy (%)
0.70	72.6
0.80	83.1
0.85 (default)	83.9
0.90	83.4
0.95	78.3

940 **Topological features.** Default $K = 5$ captures diverse backbones without noise; practical range 941 3–8, tuned by task complexity. 942

943 **Loop threshold.** Default $\delta = 0.15$, with adaptive scaling 944

$$945 \delta = \lambda \cdot \epsilon_b, \lambda \in [0.1, 0.2], \\ 946$$

947 where ϵ_b is loop persistence. Larger δ risks noisy loops; smaller may drop useful ones. 948

949 **Summary.** Defaults are balanced for general use. Tuning priority: (1) redistribute (α, β, γ) ; (2) 950 grid search θ_{merge}, K ; (3) adapt δ via persistence scaling. 951

952 A.9 PSEUDOCODE

955 Algorithm 1 GHS-TDA: Construct–Analyze Pipeline

956 **Require:** Problem Q ; number of sampled paths N ; merge threshold θ_{merge} ; distance weights 957 (α, β, ν) ; KNN size k ; truncation percentile τ ; topological feature budget K ; loop-embedding 958 threshold δ

959 **Ensure:** Final answer \hat{a} ; reasoning skeleton \mathcal{S}

960 1: $\mathcal{P} \leftarrow \text{SAMPLEPATHS}(Q, N)$ \triangleright LLM-based sampling of candidate reasoning paths

961 2: $G \leftarrow (V, E) \leftarrow \text{BUILDGHG}(\mathcal{P}, \theta_{\text{merge}})$ \triangleright Global Hypothesis Graph with merged equivalent

962 nodes

963 3: $\{\mathbf{z}_v\}_{v \in V} \leftarrow \text{EMBEDNODES}(G)$ $\triangleright \mathbf{z}_v = [\mathbf{e}_v \parallel \phi_{\text{graph}}(v) \parallel u_v]$

964 4: $d(\cdot, \cdot) \leftarrow \alpha(1 - \langle \cdot, \cdot \rangle) + \beta \|\cdot\|_1 + \nu(\cdot + \cdot)$ \triangleright Hybrid distance over $(\mathbf{e}, \phi_{\text{graph}}, u)$

965 5: $\mathcal{G}_{\text{KNN}} \leftarrow \text{BUILDKNN}(\{\mathbf{z}_v\}, d, k); \mathcal{G}_\tau \leftarrow \text{TRUNCATE}(\mathcal{G}_{\text{KNN}}, \tau)$

966 6: $\text{VR} \leftarrow \text{VIETORISRIPS}(\mathcal{G}_\tau, d)$ \triangleright Filtration over sparsified metric graph

967 7: $(\mathcal{D}_{H_0}, \mathcal{D}_{H_1}) \leftarrow \text{PERSISTENTHOMOLOGY}(\text{VR})$ \triangleright Persistence diagrams/barcodes

968 8: $B_0^*, B_1^* \leftarrow \text{SELECTTOPBYLIFESPAN}(\mathcal{D}_{H_0}, \mathcal{D}_{H_1}, K)$ \triangleright Top- K significant features

969 9: $\varepsilon_{H_0}^* \leftarrow \text{median}\{\text{death}(b) : b \in B_0^*\}; \forall b \in B_1^*: \varepsilon_b^* \leftarrow 0.99 \cdot \text{death}(b)$

970 10: $\mathcal{S} \leftarrow \text{EXTRACTSKELETON}(G, d, \varepsilon_{H_0}^*, \{\varepsilon_b^*\}, B_1^*, \delta)$

971 11: $\hat{a} \leftarrow \text{AGGREGATEANSWERS}(\mathcal{S})$ \triangleright Confidence/persistence-weighted voting with validation

972 12: **return** (\hat{a}, \mathcal{S})

972 **Algorithm 2** BUILDGHG: Construct Global Hypothesis Graph with Node Alignment

973

974 **Require:** Paths $\mathcal{P} = \{P_i\}_{i=1}^N$; merge threshold θ_{merge}

975 **Ensure:** Graph $G = (V, E)$

976 1: $V \leftarrow \emptyset, E \leftarrow \emptyset$

977 2: **for** $i = 1$ to N **do**

978 3: **for** $j = 1$ to m_i **do**

979 4: $s \leftarrow s_j^{(i)}$; $(\text{text}(s), \text{canon}(s), c(s), r(s)) \leftarrow \text{ANNOTATE}(s)$

980 5: $v^* \leftarrow \arg \max_{v \in V} \text{Sim}(\text{canon}(s), \text{canon}(v))$ \triangleright Search best canonical match

981 6: **if** $V = \emptyset$ **or** $\text{Sim}(\text{canon}(s), \text{canon}(v^*)) \leq \theta_{\text{merge}}$ **then**

982 7: $v_{\text{new}} \leftarrow (\text{text}(s), \text{canon}(s), c(s), r(s))$; $V \leftarrow V \cup \{v_{\text{new}}\}$

983 8: INITPROVENANCE(v_{new}, i, j)

984 9: **else**

985 10: $v^* \leftarrow \text{MERGE}(v^*, s)$ \triangleright Avg confidence; max progress; provenance union

986 11: **end if**

987 12: **if** $j > 1$ **then**

988 13: Add $e = (v_{j-1}^{(i)}, v_j^{(i)})$ to E \triangleright Temporal/deductive edge along P_i

989 14: **end if**

990 15: **end for**

991 16: **end for**

992 17: **return** (V, E)

993

994

995

996

997

998

999 **Algorithm 3** EXTRACTSKELETON: Backbone and Loop Embedding

1000 **Require:** Graph $G = (V, E)$; distance d ; cluster scale $\varepsilon_{H_0}^*$; loop scales $\{\varepsilon_b^*\}$; loop set B_1^* ; embedding threshold δ

1001 **Ensure:** Reasoning skeleton \mathcal{S}

1002 1: $\mathcal{G}(\varepsilon_{H_0}^*) \leftarrow \text{THRESHOLDGRAPH}(G, d, \varepsilon_{H_0}^*)$

1003 2: $\{C_m\} \leftarrow \text{CONNECTEDCOMPONENTS}(\mathcal{G}(\varepsilon_{H_0}^*))$

1004 3: $\mathcal{C}_{\text{keep}} \leftarrow \{C_m \mid |C_m| > 3 \wedge \text{COVERSATLEASTTWOPATHS}(C_m)\}$

1005 4: **for** each $C \in \mathcal{C}_{\text{keep}}$ **do**

1006 5: $s_C \leftarrow \arg \min_{v \in C} r_v$ \triangleright Tie-broken by minimum avg. distance in C

1007 6: $g_C \leftarrow \arg \max_{v \in C} r_v$

1008 7: $\mathcal{P}_C \leftarrow \text{SHORTESTPATH}(C, s_C, g_C; \text{edge weights } d_{ij})$ \triangleright Backbone

1009 8: $\mathcal{B}_C \leftarrow \emptyset$

1010 9: **for** each $b \in B_1^*$ **do**

1011 10: $\mathcal{G}(\varepsilon_b^*) \leftarrow \text{THRESHOLDGRAPH}(G, d, \varepsilon_b^*)$

1012 11: $V_b \leftarrow \text{LOCALIZELOOP SUPPORT}(b, \mathcal{G}(\varepsilon_b^*))$

1013 12: **if** $|V_b \cap C|$ is maximal among clusters **then**

1014 13: $\mathcal{B}_C \leftarrow \mathcal{B}_C \cup \{b\}$ \triangleright Assign loop b to C

1015 14: **end if**

1016 15: **end for**

1017 16: **if** $\mathcal{B}_C \neq \emptyset$ **then**

1018 17: $b_C^* \leftarrow \arg \max_{b \in \mathcal{B}_C} L(b)$ \triangleright Principal loop by lifespan

1019 18: $v^* \leftarrow \arg \min_{v \in V_{b_C^*}} |r_v - \text{median}\{r_u : u \in C\}|$ \triangleright Pivot near median progress

1020 19: tour $\leftarrow \text{MINWEIGHTCYCLEBASISTOUR}(V_{b_C^*}, d)$ \triangleright Horton-based restricted cycle

1021 20: $\mathcal{P}_C \leftarrow \text{SPLICE}(\mathcal{P}_C, v^*, \text{tour}, \delta)$ \triangleright Embed loop if $\min_{v \in \text{tour}, u \in \mathcal{P}_C} d(v, u) < \delta$

1022 21: **end if**

1023 22: Add \mathcal{P}_C to skeleton set \mathcal{S}

1024 23: **end for**

1025 24: **return** $\mathcal{S} \leftarrow \bigcup \mathcal{P}_C$

We provide pseudocode for the full GHS-TDA pipeline to complement the formal description in Section A.9. The pseudocode explicitly specifies data flow, intermediate representations, and termination criteria, ensuring clarity and reproducibility. Each subroutine corresponds directly to one of the methodological components: Global Hypothesis Graph construction, point-cloud embedding and hybrid distance, Vietoris–Rips filtration and persistent homology, skeleton extraction with loop embedding, and final answer aggregation.

Overall pipeline. Algorithm 1 summarizes the two-stage “construct–analyze” procedure. It begins with sampling multiple reasoning paths and building the Global Hypothesis Graph (GHG) by merging semantically equivalent hypotheses. The graph is then mapped into a joint metric space that integrates semantics, structural encodings, and uncertainty. A sparsified k -nearest-neighbor (KNN) graph with global truncation serves as the foundation for Vietoris–Rips filtration, upon which persistent homology is computed. Significant features (H_0 clusters and H_1 loops) are selected by lifespan, and operating scales are determined adaptively. The final skeleton is extracted by combining shortest-path backbones with loop embeddings, and candidate answers are aggregated through persistence- and confidence-weighted voting.

Global Hypothesis Graph construction. Algorithm 2 details the GHG construction process. It systematically unifies reasoning steps across sampled paths by canonical-form similarity, controlled by a merge threshold θ_{merge} . Provenance tracking ensures that each merged node retains information about its original sources, supporting later interpretability. Edge inheritance preserves deductive and temporal relations, yielding a compact but comprehensive graph.

Skeleton extraction. Algorithm 3 describes how significant topological features are mapped back to the graph. For each cluster, we identify anchor nodes based on progress values and compute a shortest-path backbone. Loops are localized at feature-specific scales and embedded into the backbone if sufficiently close under the hybrid metric. This ensures that the extracted skeleton captures both the global flow of reasoning and local self-consistency structures.

Answer aggregation. Algorithm 4 presents the final aggregation stage. Candidate answers along the skeleton are weighted by node confidence while penalizing highly connected hubs. This design balances precision and robustness, yielding a single high-confidence answer supported by a topologically stable skeleton.

Complexity and guarantees. The pipeline is polynomial in the number of nodes. GHG construction is $O(|V|^2)$ in the worst case but optimized by approximate nearest-neighbor search in canonical space. Persistent homology is computed up to dimension one (H_1), which is tractable on the sparsified KNN graph. Loop embedding relies on a minimum-weight cycle basis with a known polynomial-time Horton implementation. Conflict resolution in node merging satisfies the $(1 - 1/e)$ approximation bound for hitting set.

Reproducibility. Default hyperparameter settings are provided in Appendix ??, together with recommended ranges for task-specific tuning. Full prompts, random seeds, and environment details are included in the supplementary material.

1080 A.10 A GHS-TDA ANALYSIS EXAMPLE
10811082 **Reasoning Log for Problem:** $n^2 + 1 \mid n!$ 1083 **Problem Statement** Given integer $n \geq 1$, determine all n such that $n^2 + 1 \mid n!$.1084 **Final Answer** No solution exists. For all $n \geq 1$, $n^2 + 1 \nmid n!$.1085 **Reasoning Log (Multi-Path Traces)**1086 **Path 1.** - Small cases: $n = 1 : 2 \nmid 1!$; $n = 2 : 5 \nmid 2!$; $n = 3 : 10 \nmid 3!$; $n = 4 : 17 \nmid 4!$. - For $n \geq 5$,
1087 any prime divisor p of $n^2 + 1$ with $p > n$ cannot divide $n!$. - Example: $n = 7$, $n^2 + 1 = 50 = 2 \cdot 5^2$
1088 but $v_5(7!) = 1 < 2$. - Conclusion: no solution.
10891090 **Path 2.** - Exhaustive check for $n = 1, 2, 3, 4$: none valid. - For $n \geq 5$, if $p > n$ divides $n^2 + 1$,
1091 contradiction. - Otherwise, prime exponent condition fails (e.g., $n = 7$ case). - Conclusion: no
1092 solution.
10931094 **Path 3.** - Explicitly verify $n = 1, 2, 3, 4, 5, 6, 7, 8$: all fail. - For general n , prime factors of $n^2 + 1$
1095 are either too large ($p > n$) or require higher multiplicities than available in $n!$. - Conclusion: no
1096 solution.
10971098 **Path 4.** - Cross-checked small n values: all fail. - Structural fact: if $p \mid n^2 + 1$, then $n^2 \equiv -1$
1099 $(\bmod p)$, so order of n mod p is 4, implying $p \equiv 1 \pmod{4}$. - Such primes are often larger than n ,
1100 so cannot appear in $n!$. - Conclusion: no solution.
11011102 **Path 5.** - Small cases $n = 1, 2, 3, 4$ all fail. - For $n \geq 5$, prime exponent mismatch occurs (e.g.,
1103 $n = 7$ with factor 5^2 but $v_5(7!) = 1$). - Conclusion: no solution.
11041105 **Global Hypothesis Graph (GHG) and TDA Extraction**1106 **Clusters.** - Small- n check cluster: $n = 1, 2, 3, 4$ all fail. - Structural cluster: $p \mid n^2 + 1 \implies p \equiv 1$
1107 $(\bmod 4)$. - Counterexample cluster: $n = 6$ ($37 > 6$), $n = 7$ (exponent deficit for 5^2). - General
1108 obstruction: either $p > n$ or exponent deficit.
11091110 **Skeleton Path (TDA Backbone).** Example backbone extraction:
11111112 $n = 1 \rightarrow n = 2 \rightarrow n = 3 \rightarrow$ structural fact $\rightarrow n = 6 \rightarrow n = 7 \rightarrow$ general obstruction \rightarrow final conclusion.
11131114 **Conclusion Nodes.** - Z_1 : No solution (supported by all clusters). - Z_2 : $\{1, 2, 3\}$ (false candidate,
1115 rejected). - Final skeleton selects Z_1 .
11161117 **Consolidated Conclusion** All reasoning paths converge:
11181119

No integer $n \geq 1$ satisfies $n^2 + 1 \mid n!$

11201121 A.11 ANALYSIS OF REPRESENTATIVE FAILURE CASES
11221123 Failure cases can be broadly categorized into two main types. **Semantic ambiguity**, illustrated using
1124 examples from the HotpotQA dataset. For instance, in the question “Did the actress who starred
1125 in *The Ring* also appear in *King Kong*?", the base model forms incorrect semantic clusters due to
1126 ambiguity between the Japanese and U.S. versions of *The Ring*, leading to an erroneous answer.
1127 **Numerical perturbation**, illustrated using GSM8K. In some arithmetic problems, the model
1128 occasionally generates minor numerical mistakes (e.g., writing “9” instead of “7”), and the resulting
1129 structural similarity between intermediate steps causes such clusters to be incorrectly merged.
11301131 These errors primarily stem from ambiguities in the underlying LLM and the inherent stability
1132 properties of persistent homology, rather than from structural deficiencies in our framework. As
1133 noted in the revised manuscript, increasing sampling diversity (e.g., $n = 10$) substantially reduces
the frequency of such errors.
1134

1134
1135
1136A.12 QUALITATIVE ANALYSIS AND HUMAN-CENTERED INTERPRETABILITY (SUCCESS
CASES)1137
1138
1139
1140
1141

Complementary to the failure case analysis in the appendix, we further provide representative qualitative examples to illustrate how GHS-TDA behaves in well-posed scenarios and how its topological mechanism successfully suppresses noisy reasoning paths while preserving globally consistent structures. These examples demonstrate how the proposed framework identifies concise, coherent, and human-preferred reasoning structures from multiple LLM-generated trajectories.

1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153

MATH: Extracting Concise and Expert-Like Reasoning Skeletons We first examine a representative problem from the MATH dataset. When prompted with this problem, the underlying LLM generates multiple correct but heterogeneous reasoning trajectories, and high-confidence baselines often produce verbose and logically tangled solutions that mix derivation with verification or introduce unnecessary “guess-and-check” steps. In contrast, the GHS-TDA framework aggregates all sampled trajectories and identifies the most persistent structural cluster in the global hypothesis space. The resulting skeleton corresponds to a canonical case-splitting strategy typically used by human solvers: it separates the equation into the non-negative and negative cases, solves each branch, and filters the resulting solutions using appropriate domain constraints. This extracted reasoning path is shorter, logically cleaner, and more closely aligned with standard mathematical reasoning practices. The example illustrates how the TDA component suppresses locally confident yet logically noisy steps while preserving the globally stable reasoning core.

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163

HotpotQA: Capturing Robust and Self-Consistent Multi-Hop Reasoning We also examine a multi-hop question from HotpotQA, where the model must retrieve and verify information across multiple entities. Among the sampled trajectories, unreliable paths (e.g., hallucinating directors, skipping verification steps, or producing incomplete hops) form weakly connected, low-persistence components in the GHS representation. In contrast, paths that correctly retrieve and cross-validate both film directors and their birthplaces form a highly persistent H_1 loop. This loop captures a structurally robust pattern: multiple independent paths reconverge on the same factual nodes (e.g., the same director and birthplace). Such cross-path consistency is naturally expressed as a stable topological cycle, enabling TDA to distinguish reliable reasoning from brittle or speculative alternatives.

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Human-Centered Interpretability We evaluate interpretability through human annotations along four criteria: conciseness, logical coherence, necessity of steps, and faithfulness to human reasoning practices. Across both MATH and HotpotQA examples, annotators consistently judged the TDA-extracted skeletons to be more interpretable than high-confidence baselines. They noted that GHS-TDA effectively removes redundant or noisy steps, enforces appropriate structural constraints (such as case conditions and entity verification), and highlights cross-path consistency that aligns with human intuitions about trustworthy reasoning. Taken together, these qualitative assessments demonstrate that GHS-TDA provides not only improved accuracy but also a topologically grounded and human-interpretable summary of multipath reasoning. By isolating persistent structural components—such as stable clusters and cycles—the framework yields reasoning skeletons that are concise, coherent, and robust, thereby offering clear interpretive advantages over confidence-based or single-path approaches.