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ABSTRACT

We introduce EgoMem, the first lifelong memory agent tailored for full-duplex
models that process real-time omnimodal streams. EgoMem enables real-time
models to recognize different users from raw audiovisual streams, to provide person-
alized response, and to maintain long-term knowledge of users’ facts, preferences,
and social relationships extracted from audiovisual history. EgoMem operates with
three asynchronous processes: (i) a retrieval process that dynamically identifies
user via face and voice, and gathers relevant context from a long-term memory; (ii)
an omnimodal dialog process that generates personalized audio responses based
on the retrieved context; and (iii) a memory management process that automati-
cally detects dialog boundaries from omnimodal streams, and extracts necessary
information to update the long-term memory. Unlike existing memory agents for
LLMs, EgoMem relies entirely on raw audiovisual streams, making it especially
suitable for lifelong, real-time, and embodied scenarios. Experimental results
demonstrate that EgoMem’s retrieval and memory management modules achieve
over 95% accuracy on the test set. When integrated with a fine-tuned RoboEgo
omnimodal chatbot, the system achieves fact-consistency scores above 87% in
real-time personalized dialogs, establishing a strong baseline for future research.

1 INTRODUCTION

A wide range of AI applications involve lifelong omnimodal streams. A notable example is a robot
deployed in homes and public spaces (AgiBot-World-Contributors et al., 2025; Bu et al., 2025). In
similar scenarios, the models are required not only to follow instructions swiftly, but also to recognize
users, remember their histories, understand social relationships, and deliver personalized services.
Technically, the crucial capabilities to meet these requirements include omnimodality, real-time
responsiveness, and humanoid cognition (Wang & Sun, 2025). For real-time responsiveness, there
have been solutions to achieve full duplexity, either based on time-division multiplexing (Wang et al.,
2024; Zhang et al., 2024b), or on native duplex (Défossez et al., 2024; Yao et al., 2025a) schemes. Yet,
humanoid cognition remains an underexplored capability for current omnimodal, full-duplex systems.
In this work, we study the lifelong memory capability as a critical step towards humanoid cognition,
since memory is the foundation of both human and advanced artificial intelligence (Jimenez Gutierrez
et al., 2024). We focus on real-time personalized dialog as a major task to validate the effectiveness
of lifelong memory in omnimmodal scenarios.

We showcase the role of lifelong memory in personalized omnimodal dialogs as follows. (1) When a
user Emily shows up, a polling process detects the user identity as Emily directly from the audiovisual
stream (e.g., camera and microphone inputs); (2) The profile of Emily is encoded and put into the
dialog context of an omnimodal chatbot; (3) When Emily asks “does any of my colleagues love tennis?”,
a query regarding the relation “colleague” and keyword “tennis” is generated by the chatbot, activating
a textual retrieval to the knowledge base containing Emily’s social relation graph, which returns a
dialog record of “John, colleague, 2024-05-13, user discussed a tennis game he played 2 days ago”. This
record is further encoded as dialog context; (4) The chatbot answers “Yes, Emily, your colleague John
loves tennis” based on the available context; (5) The system extracts user facts: “Emily shows interest in
tennis”, and dialog record “2024-05-14, user asked if any of her colleagues loves tennis.”, from the raw
audiovisual stream of the recent dialog, and updates Emily’s profile memory with these contents for
future use; (6) When Emily shows up on another day, the model is able to greet with: “Hi Emily, did you
talk to John about tennis?”.
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Figure 1: Textual memory agents vs. full-duplex omnimodal memory agents (ours).

In literature, two primary approaches have been explored to equip textual large language models
(LLMs) with long-term memory: extended context windows (Su et al., 2021; Wu et al., 2024) and
memory agents (Zhong et al., 2024; Chhikara et al., 2025; Xu et al., 2025b; Kang et al., 2025).
However, neither method transfers well to lifelong omnimodal scenarios. On one hand, extended
context windows can retain long sequences encoding full omnimodal information (He et al., 2024).
Yet, in lifelong settings, the length of audiovisual streams grows without bound, making even million-
token contexts insufficient (Men et al., 2024). On the other hand, memory agent methods (Figure 1
(a)) are well-suited for lifelong operation (Lee et al., 2024; Wang & Chen, 2025; Li et al., 2025b),
but typically rely on several strong assumptions: user identities are explicitly known, dialog sessions
have clear boundaries, and all inputs are textual (Figure 1 (b)). Unfortunately, these assumptions
do not hold in full-duplex omnimodal applications (Défossez et al., 2024; Zhang et al., 2024a; Lin
et al., 2025), in which the user identities are implicitly encoded in audiovisual streams, and there is
no well-defined boundaries for dialog turns or user sessions (Figure 1 (c)). Furthermore, existing
memory agents generally overlook the multiuser social relation graph (Au et al., 2025), which is an
important element for humanoid cognition in lifelong scenarios.

To address these issues, we propose EgoMem, the first lifelong memory system tailored for omnimodal
scenarios and designed to facilitate full-duplex personalized dialog. EgoMem operates through three
asynchronous processes. First, a Retrieval Process is responsible for real-time polling recognition of
users, implemented with an audiovisual retrieval mechanism. It also contains a content-driven text
retrieval module to gather related textual documents. This process facilitates efficient integration
of both user-specific and RAG-style (Gao et al., 2023) information into the dialog flow. Second,
an Omnimodal Dialog Process uses a fine-tuned dialog model to deliver full-duplex, personalized
responses in real time, grounded in the retrieved context. Third, a Memory Management Process
handles dialog boundary detection, information extraction, and memory updating, based on real-time
raw audiovisual streams. This process ensures up-to-date memory over time.

We integrate EgoMem memory system to RoboEgo (Yao et al., 2025b), a native full-duplex model
that is best aligned with our target scenarios. We fine-tune RoboEgo under our EgoMem framework
to deliver real-time, lifelong, and personalized responses to arbitrary user. We conduct automated
evaluations across the audio, textual, and visual retrieval modules, the memory management module,
and the system’s personalization abilities, considering either single-user profile (Level-1) and multi-
user social graph (Level-2) as reference contexts. Evaluation results show that these modules exhibit
high accuracy and robustness, and that the incorporation of EgoMem enhances personalization
without compromising RoboEgo’s original dialog capabilities.

Our contributions are as follows: (1) framework: we propose EgoMem, a lifelong memory agent
for full-duplex, omnimodal interaction, which to the best of our knowledge is the first of its kind;
(2) implementation: we provide a concrete implementation of EgoMem based on the RoboEgo
backbone, including detailed module designs, data construction pipelines, and training configurations;
(3) evaluation: we demonstrate that EgoMem achieves robust performance on personalization tasks
in lifelong omnimodal scenarios, establishing a solid baseline for future research.
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2 PRELIMINARIES

2.1 FULL-DUPLEX OMNIMODAL MODELS

Full-duplex omnimodal models are able to process real-time audiovisual inputs and demonstrate
capabilities to listen and speak simultaneously. In each time step t, a full-duplex omnimodal model
F takes as input a listening audio at, video frames vt, and optionally a textual input lt. It generates a
slice of spoken audio response rt:

rt = Fθ(at, vt, lt). (1)

We adopt RoboEgo (Yao et al., 2025b) as our primary dialog model, as it supports a native full-duplex
scheme at least for audio. The native scheme features lower response latency and better scalability
(Défossez et al., 2024; Lin et al., 2025; Yao et al., 2025a), compared to time-division multiplexing
(TDM) schemes. Also, in general instruction-following tasks, RoboEgo’s response quality and user
experiences are comparable to state-of-the-art systems such as Qwen-2.5-Omni (Xu et al., 2025a).

In RoboEgo, both the listening and speaking stream are processed with a frame rate of 12.5 fps, each
frame corresponding to one autoregressive forward step t. In each step, 17 tokens are merged into one
embedding: the listening and speaking audio frame are both encoded by 8 tokens, and the text channel
contributes 1 token. Please refer to Appendix A for more details on the model’s structure and stream
organization. Note that EgoMem’s framework and methodology can be applied to other full-duplex
omnimodal models F or to different organizations of at, vt, and lt beyond our implementation.

2.2 MEMORY AGENT PARADIGM

EgoMem is designed to facilitate full-duplex, personalized chat for lifelong-deployed omnimodal
models. As a first step, we focus on the case where there is only one active speaker at a time, leaving
the more complex cocktail party problem (Haykin & Chen, 2005) for future work. In this setting,
in each time step t, the main dialog model F takes two additional inputs: the user profile pt, and
reference information ct:

rt = Fθ(at, vt, lt, pt, ct). (2)
Here, pt and ct are encoded in the text channel, commonly referred to as the context or short-term
memory in current literature, delivered to F as part of its KV-cache (Vaswani et al., 2017; Dao, 2023).

EgoMem manages a textual memory M with three core functions: retrieval, writing, and updating.

Retrieval. The retrieval function provides pt and ct to the dialog model by searching related informa-
tion in M based on current dialog content:

pt, ct = EgoMem.retr(at, vt,M ). (3)

In traditional textual memory agents (Gao et al., 2023), pt is naively accessible from user accounts,
while the retrieval process for ct is always activated after the user’s textual input. In lifelong
omnimodal scenarios, however, both user identities and dialog boundaries are implicit. The memory
agent should directly detect user identities and session boundaries from raw audiovisual streams.

Writing. The writing function extracts important events from lifelong multimodal streams and stores
them in the memory unit M :

Episode = EgoMem.extract(a0∼t, v0∼t, l0∼t), (4)
M ← EgoMem.write(M,Episode). (5)

In EgoMem, memory writing is asynchronous to the main dialog, executed through independent
processes. Unlike traditional memory agents, EgoMem takes as input the raw multimodal stream
fragments in the dialog history (“episodic memory”), and extracts textual descriptions for the events,
user persona, and other useful information.

Updating. EgoMem periodically performs online or offline memory consolidation: it integrates
existing memory into new, consolidated representations, and solves potential conflicts:

M ← EgoMem.update(M ). (6)

3
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Figure 2: System illustration for EgoMem Level-1 (Profile-only).

3 EGOMEM

The design of EgoMem can be divided to two levels: Level-1 EgoMem facilitates profile-based
personalization; and Level-2 EgoMem supports additional references such as users’ social networks.
Compared to Level-1, Level-2 is particularly suited for application scenarios where users are more
interconnected, such as home robots. We introduce the implementation of each level based on our
dialog flow outlined in Section 2.1.

3.1 LEVEL-1 EGOMEM: PROFILE-ONLY

In Level-1, M contains only the profile information for each of its recognized users. Formally, it
sets ct = None in equations 2 and 3. The profile of each user in a key-value pair: the key contains
one visual embedding vuf for face verification and one audio embedding vus for speaker verification;
the value is a dictionary storing the users’ name, personal facts, summary of previous dialogs, and
preferences. The operation flow of Level-1 EgoMem is illustrated in Figure 2. It is driven by the three
component processes running asynchronously: the retrieval process (Section 3.1.1), the omnimodal
dialog process (Section 3.1.2), and the memory management process (Section 3.1.3).

3.1.1 RETRIEVAL

To identify the current user, a retrieval process runs in a lifelong “polling” manner with fixed intervals
of 2 seconds. This is a critical design enabling the dialog model to actively start talking to the user
(e.g., “Greetings John!”). In every 2 seconds, EgoMem processes a chunk of audio and visual signals
with length τ , and extracts query vectors:

vqf = visual_encoder(v(t−τ):t), (7)

vqs = speech_encoder(a(t−τ):t). (8)

vqf and vqs are used for face and speaker verification with each user’s key (vuf and vus ), respectively.
If a valid user is found, its profile is tokenized with a textual tokenizer and pushed to the textual
channel of a special Level-1 MemChunk field in the main dialog’s token stream (Figure 2, top left).
This special chunk occupies a maximum length of 512 time steps, with its 16 audio tokens always
filled with <empty>. It is attended by every forward pass of the RoboEgo model. Note that Level-1
MemChunk is managed exclusively by the retrieval process: its textual content is refreshed only when
the current recognized user differs from the previous one. Every time Level-1 MemChunk is refreshed,
EgoMem triggers one additional forward pass for RoboEgo that updates the KV cache for the entire
dialog history. This operation introduces ignorable overhead in inference.

Face Verification. We leverage an open-sourced pipeline from DeepFace (Serengil & Ozpinar,
2024) to extract faces from video frames. Specifically, we use Retinaface (Deng et al., 2020) as
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a face detection backend, and Facenet512 (Schroff et al., 2015) as the visual encoder, resulting in
512-dimensional face features. The retrieval quits if no face is detected; otherwise, we first find the
closest existing user u with the minimal cosine distance d = 1− cosine_similarity(vqf , v

u
f ) to the

query vector vqf , and then verify with a pre-tuned threshold δ = 0.3:

current user =
{
u, if d < δ,

new user, else.
(9)

Speaker Verification. We leverage a wavelm_large (Chen et al., 2022) model fine-tuned specifically
for speaker verification (Anastassiou et al., 2024) as our speech feature extractor, producing 256-
dimensional vqs and vus vectors. We combine cosine similarity with adaptive s-norm (Karam et al.,
2011; Cumani et al., 2011) for best performance and robustness (Section 5.1).

3.1.2 OMNIMODAL DIALOG

This is the main process running the RoboEgo chat service. Level-1 MemChunk is attended by
RoboEgo in each step. If no user profile is returned by the retrieval process, Level-1 MemChunk’s text
channel is filled with <pad> tokens. We fine-tune RoboEgo with the corresponding streaming data
format (Section 4) to generate personalized spoken responses based on the user’s profile information.

3.1.3 MEMORY MANAGEMENT

The memory management process instantiates EgoMem’s extract, write, and update functions (eq. 4 - 6).
With a fixed time interval, it conducts content extraction on the 17-way audio-language token stream
from the main dialog process. For a 8192-step stream chunk (∼11 minutes) in history, each time step
is labeled by a sequence tagging model (namely Episodic Trigger) to mark the boundaries of dialog
sessions for each user. Next, an external LLM, serving as Memory Extractor, is prompted to extract
events, user facts, and user preferences from the fragmented streams of each session. Afterwards, the
memory management process calls the retrieval functions to identify the user of this session. If a
new user is found, EgoMem creates a new memory item in M , stores the face/speech embedding as
keys, and initializes the user’s profile with the extracted contents. Otherwise, the user identity and the
extracted memory contents are provided to a Memory Update Agent, which is an external LLM
prompted to figure out potential conflicts and update the user’s profile in M .

Episodic Trigger. The episodic trigger is used to find the boundaries of dialog sessions in which the
user’s identity is consistent. It not only detects the start and end of dialog sessions, but also splits the
sessions from different users. Specifically, the episodic trigger predicts tags for each time step in the
audio stream (the aligned listen and speak audio tokens):

Tag0∼t = episodic_trigger(a0∼t, r0∼t). (10)

Specifically, the episodic trigger assigns a label to each time step with the following paradigm: {0:
no dialog; 1: start of a new user’s dialog session; 2: in-session step; 3: end of current user’s session}.
The detailed model structure is explained in Appendix B.1.

The Memory Extractor and Memory Update Agent are also detailed in Appendix B.1.

3.2 LEVEL-2 EGOMEM: CONTENT-DRIVEN

In Level-2 EgoMem, M maintains not only the user profiles, but also the social relation graph among
them. For each user, we add a field containing a list of triplets representing the graph edges from the
current user to others. Optionally, any other useful information can be added to M for a similar RAG
processes. Formally, Level-2 EgoMem provides both pt and ct in equations 2 and 3. While pt comes
from a polling user recognition, ct comes from the the primary model (RoboEgo)’s active retrieval
to M . We exemplify Level-2 EgoMem in Figure 3, showing its major differences to Level-1. We
specify the comparison to Level-1 for each of the core processes (Section 3.1.1 - 3.1.3) as follows:

Level-2 Retrieval. As shown in Figure 3, the Level-1 MemChunk maintains its function in the
Level-2 system; it is driven by the external polling retrieval process. An Level-2 MemChunk with

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

“user name”: XXX,
“personal facts”: [“the user is a 

student born in 2013”, …]
“dialog summary”: [“2024-05-13: the 

user asked about swimming.”]
“preferences” :[”energy: high”]

“connections”: [(A, father, B), (A, 
friend, C), …]

User A

RoboEgo

Listen

Speak

Textual Monologue

Visual

Level-1
MemChunk

key value

User D

Text 
Encoder

BM25

Rerank

Life-long Omnimodal Stream

Text Retrieval

Text Retrieval Encoded Text

Level-2
MemChu

nk

Query Words

“relation”: father
“keyword”: sport, holiday 

User CUser B

Relation 
Graph

father friend

colleague

Retrieval
Clip

Verification 
Models

Face/Speaker Retrieval

Figure 3: System illustration for EgoMem Level-2 (Content-driven). We focus on showing the
differences in retrieval process and hide the details for other processes like memory management.

a maximum length of 256 is added to the reserved field in the stream; unlike Level-1 MemChunk,
Level-2 MemChunk is driven by active textual queries from the RoboEgo dialog model. For example,
in a dialog session between user A and RoboEgo, Level-1 MemChunk is kept the same (user A’s
profile). In contrast, after each user instruction, RoboEgo can activate an independent Textual
Retrieval process to memory M . A textual query is generated by RoboEgo on its monologue channel
based on the current dialog. The retrieval result is tokenized and cached in Level-2 MemChunk. The
implementation of this Textual Retrieval sub-module is provided in Appendix B.2.

Level-2 Omnimodal Dialog. In Level-2, the primary dialog model is allowed to actively generate
textual queries in arbitrary time. Specifically, we fine-tune RoboEgo to generate two groups of query
words formatted as <retr>:\n<group1>\n<group2><answer>, with group1 being the “relation query” and
group2 being the “keyword query”. Each group is a sequence of query words separated by comma.
When the final <answer> token is generated, EgoMem activates a textual retrieval process to update
the Level-2 MemChunk. The training process is introduced in Section 4.

Level-2 Memory Management. The only differences to Level-1 include the Memory Extractor is
prompted to also extract new relation facts from the raw dialog contents (e.g., User A says he is the
boyfriend of User B now), and the Memory Update Agent is prompted to link the user to existing
users accordingly, updating the edges of the social graph.

4 TRAINING APPROACH

We fine-tune RoboEgo to generate personalized response with Level-1/2 EgoMem. We also train the
Episodic Trigger to label the dialog boundary for memory extraction. Interestingly, the data collection
for these three tasks can be unified by different supervision masks on the same token stream.

4.1 DATA COLLECTION

Audio Dialogs. We collect textual transcripts simulating the lifelong personalized scenarios utilizing
both Level-1 and Level-2 EgoMem. We synthesize user profiles and social graphs, collect open-
sourced dialog datasets, and generate ground-truth personalized answers using large (visual-)language
models. The textual transcripts are converted to audiovisual dialogs using text-to-speech (TTS)
models, followed by audio augmentation to improve robustness. Details are provided in Appendix C.

Token Stream Organization. Multiple dialog sessions from different users are tokenized and
concatenated, forming token streams. With a probability of 0.3, a later user instruction interrupts
an ongoing model response, simulating the most widely-considered full-duplex scenario. The
concatenated waveform are tokenized with a Mimi tokenizer (Défossez et al., 2024), formatted
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Figure 4: Token stream structure and supervision mask for EgoMem training data.

as described in Appendix A, and truncated to a maximum length of 8192 steps. For the textual
monologue channel, we record the actual start point of each audio response, and position the textual
response tokens to start 2 steps earlier. We follow the natural monologue strategy (Yao et al.,
2025a) instead of applying word-level alignment between text and audio (Défossez et al., 2024).
For each training sample with 8192 steps, positions 0-511 are reserved for the Level-1 MemChunk,
and positions 512-768 for the Level-2 MemChunk, with dialogs beginning after these reserved slots.
Figure 4 (top left) illustrates our token stream organization.

4.2 TRAINING WITH SUPERVISION MASKS

We apply three different kinds of supervision masks on the token streams introduced above, supporting
the following three tasks:

For Level-1 EgoMem, for each of the N multi-turn dialogs in a token stream, we position the
corresponding user’s profile in Level-1 MemChunk, and set the supervision mask to 1 for the textual
and speak tokens only in the time span of the corresponding dialog, and 0 for other time steps,
producing N distinct training samples in total (Figure 4, top right).

For Level-2 EgoMem, more fine-grained supervision mask is applied to each turn ti, i ∈ [0, Tj) for
each dialog dj , j ∈ [0, N) in a token stream. Specifically, for query word generation, we maintain the
content of Level-1 MemChunk and Level-2 MemChunk for the previous turn, position the ground-truth
query words right before the textual response for current turn, and set supervision mask to 1 from the
audio start point of the current turn until the end of query words span (Figure 4, bottom left). For
personalized response generation, we conduct textual retrieval with the ground-truth query words,
gather the supporting fact from the connected users in the relation graph, and fill them into the Level-2
MemChunk. Level-1 MemChunk is filled with current user profile. With these contexts, we supervise
on the textual and speaking tokens from the end of query words to the audio end point of dialog,
including the full response utterance (Figure 4, bottom right). To summarize, for each turn, the
query words and personalized response are supervised separately with different contexts, yielding
2 ∗

∑N
j=0 Tj distinct training samples from each token stream.

For Episodic Trigger, we leverage a full supervision mask. Each time step in the token stream is
labeled following the paradigm in Section 3.1.3.

The training configurations for the above three tasks are introduced in Appendix D.

5 EXPERIMENTS

We focus on the following three research questions: (1) Do our retrieval sub-modules correctly
identify users and recall the relevant contents? (2) Does the episodic trigger detect the correct
boundaries of omnimodal dialogs? (3) Does the fine-tuned RoboEgo model effectively leverage the
Level-1 and Level-2 EgoMem to deliver lifelong personalized responses? We answer these questions
with quantitative results on dedicated benchmarks. As the first work in lifelong memory agents for
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Table 1: Face verification, speaker recognition, and text retrieval results for EgoMem sub-modules.

Tasks Face Verification Speaker Recognition Text Retrieval

Metrics Accuracy pass@1
w/o s-norm

pass@1
w/ s-norm EER pass@5

Results 0.984 0.958 0.965 0.00892 0.960
Elapsed time (s) 0.2 0.1 0.1

full-duplex omnimodal systems, we will also release part of our test set for personalized omnimodal
dialog generation to benefit future research.

5.1 RETRIEVAL EVALUATION

We present the benchmark and settings to evaluate the retrieval capabilities for EgoMem. The retrieval
results are summarized in Table 1.

Face Verification. We benchmark the face retrieval module on the Labeled Faces in the Wild (LFW,
(Huang et al., 2008)) dataset, achieving an accuracy of 98.4%, which is consistent with public results
1. As the open-sourced solution demonstrates satisfying face verification performance and robustness
to variations in pose and angle, we directly integrate it in our system without additional fine-tuning.
The face retrieval module processes one query within 0.2 seconds with a single Nvidia H100 GPU.

Speaker Verification. We construct our evaluation benchmark from the public VoxCeleb (Nagrani
et al., 2017) speaker verification dataset. To enable adaptive s-norm (Karam et al., 2011; Cumani
et al., 2011) which is widely agreed to benefit the task, we leverage SeedTTS-eval (Anastassiou et al.,
2024) as the source of imposter cohorts, using 1,000 Chinese speech embeddings as the candidate
cohort set for the queries, and 2,000 embeddings for the keys. We set up a cohort number of 200
(i.e., for both the queries and the keys, the 200 closest utterances in the candidate cohorts are used to
compute the mean and variance statistics for adaptive s-norm).

To assess the impact of adaptive s-norm, we first synthesize a retrieval task with 1,000 query utterances
and 120 key utterances from different speakers in VoxCeleb, and compare the pass@1 with or without
adaptive s-norm. We observe a moderate improvement from 95.8% to 96.5% with adaptive s-norm,
confirming its benefit for retrieval stability.

Next, we sample a more challenging speaker verification test set from VoxCeleb with a highly
imbalanced ratio of positive (same-speaker) to negative (different-speaker) pairs of 1:119, yielding
5,000 samples in total. Our speaker verification module achieves an Equal Error Rate (EER) of 0.89%
on this benchmark with a decision threshold of 4.63. For deployment, we adjust the threshold to 6
based on human case studies to balance precision and recall. The whole speaker verification system
takes less than 0.1 seconds for a retrieval run with more than 1,000 candidate entries.

Text Retrieval. In Level-2 EgoMem, text retrieval is used to gather relevant information w.r.t the
relation and keyword queries. We therefore focus on the pass@5 metric, as it measures the ability of
the system to return all relevant facts within a textual window shorter than 256 tokens (the size of the
Level-2 MemChunk). We construct a benchmark of 200 queries sampled from our personalized dialog
transcripts, with a candidate entry pool of 500 (relation, personal fact) texts. Using the straightforward
retrieval strategy described in Appendix B.2, the system achieves a pass@5 score of 96%. The full
system latency is controlled to be under 0.1s with a single Nvidia H100 GPU.

5.2 EPISODIC TRIGGER EVALUATION

We hold out a test set from the collected token streams (Section 4.1) for episodic trigger evaluation,
containing 1,000 samples. We use two types of metrics: (1) Jaccard score measuring the overlap
of dialog session spans; (2) span_match@N which measures precision, recall, and F1 scores for
detected dialog boundaries, allowing a tolerance of ±N steps from the ground truth.

1https://github.com/serengil/deepface/tree/master/benchmarks
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Table 2: Episodic trigger evaluation results.

Metrics Jaccard P/R/F1@0 P/R/F1@5 P/R/F1@10 Elapsed time (s)

Clean 0.992 0.857/0.857/0.857 0.986/0.986/0.986 0.986/0.986/0.986 0.08Noised 0.989 0.790/0.788/0.789 0.983/0.981/0.982 0.984/0.982/0.983

Table 3: Personalized dialog evaluation results.

Models Level-1 Level-2

Metrics Fact Score Answer Quality Throughput (fps) Fact Score Answer Quality Throughput (fps)

Clean 0.959 9.170 21.73 0.895 8.970 20.56Noised 0.931 9.020 0.876 8.820

The results are presented in Table 2. At N = 5, our episodic trigger achieves an F1 score of more than
0.98 under both clean and noised environments, indicating robust “Valid Audio Detection” (VAD)
and user session splitting capabilities within a deviation of less than (5/12.5 = 0.4) seconds. Notably,
noisy environments can significantly affect the prediction of more fine-grained boundaries (i.e., less
than 0.2s), as we observe a large gap on span_match@0. This is intuitive since it takes time to figure
out whether a voice indicates the start of a new user’s session or just another period of noise. The
episodic trigger takes 0.08 seconds to annotate a 10-minute chunk with 8192 time steps.

5.3 PERSONALIZED DIALOG EVALUATION

We hold out a test set from the masked token streams (Section 4.1) to assess the quality of personalized
responses produced by RoboEgo, integrated with Level-1 and Level-2 EgoMem. For each dialog turn,
we provide an evaluator model with the following inputs: the user instruction (textual transcript), the
ground-truth textual response, the contents of the MemChunks, and the textual monologue response
generated by RoboEgo. The evaluator is implemented with the DeepSeek-V3 API, prompted to
return two scores: (1) Fact Score: A binary 0/1 metric for each turn indicating whether the model’s
response is personalized to the user and consistent with the user profile, without factual errors. (2)
Answer Quality: A score from 0 to 10 for each turn measuring the general helpfulness and quality of
the response with respect to the user instruction, regardless of personalization.

We present the results in Table 3. We observe that for both Level-1 and Level-2 EgoMem, the models
successfully achieve the expected RAG capability based on the retrieval results present in MemChunks.
RoboEgo achieves lower Fact Score in the Level-2 task, largely due to more frequent MemChunk
updates and error cascading from the textual retrieval module. For the Answer Quality scores which
are independent of the retrieval results, the gap becomes smaller, indicating that neither Level-1 nor
Level-2 EgoMem significantly degrades the base instruct-following capability of RoboEgo.

We observe a slight drop in throughput with Level-2 memory as it introduces a longer MemChunk.
Yet, this latency is negligible in the user experiences of full-duplex real-time chatting, as the model
generates audio frames in more than 20 fps, significantly exceeding the minimum requirement for
real-time audio decoder (12.5 fps).

6 CONCLUSION AND FUTURE CHALLENGES

In this work, we explored lifelong memory for full-duplex omnimodal models. We first defined the
task and outlined the core functions, and then introduced our proposed memory system, EgoMem:
Level-1 (profile-based) and Level-2 (content-driven). We integrated EgoMem to the omnimodal dialog
model, RoboEgo, as an implementation example. Experimental results demonstrate that, for the first
time, an omnimodal dialog agent can be equipped with robust lifelong personalization capabilities,
establishing a strong baseline to support future research. Due to computational constraints, we
did not explore larger model sizes or more advanced functionalities, such as complex tool use.
Future directions include extending the profile/graph memory to encompass procedural memory and
multimodal contents, as well as investigating whether trainable parameters can replace some of the
complex agent modules and memory units.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The data used to train the three tasks supporting our EgoMem agent is derived from synthetic
transcripts generated by publicly accessible large language models. No real-world users are involved
in this process, and no privacy is compromised during data collection. EgoMem is a plug-in
methodology that can be applied to a wide range of models. The content generated by the dialog
models does not reflect the views or opinions of the authors or affiliated institutions.

REPRODUCIBILITY STATEMENT

We provide comprehensive details of the system paradigm, implementation, and training config-
urations in Sections 2, 3, 4, as well as in the Appendix. We will release a portion of our test set
along with the associated code for stream organization, inference, and evaluation. The functions and
signals used in Level-1 and Level-2 EgoMem are clearly defined, which we believe will support the
community in reproducing our agent system and developing future variants.
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A INTRODUCTION TO THE ROBOEGO MODEL

For audio signals at, we use the Mimi tokenizer 2 to extract features at 12.5 frames per second. Each
audio frame is represented by one semantic token and seven acoustic tokens. The audio input and
output are divided into two channels, listening and speaking, while textual monologue tokens are
placed in an additional textual channel. Thus, . They are additively merged into the input embedding.
The model then processes all the historical input embeddings with a 7B LLM backbone to generate
the hidden state for the current time step. Following the RQ-Transformer architecture (Yang et al.,
2023; Zhu et al., 2024), a lightweight depth Transformer (with 100M parameters) first generates a
textual monologue token based on the current hidden state on the top layer, and then generates eight
speaking tokens autoregressively. In lifelong deployment scenarios, this process runs continuously
in real time, forming the main dialog stream, while visual signals vt are encoded through a Visual
Transformer (Dosovitskiy et al., 2020) and added into the context in a time-division multiplex (TDM)
manner, at fixed intervals of 2–4 seconds. We refer the readers to the related work (Yao et al., 2025b;
Défossez et al., 2024; Yao et al., 2025a) for detailed structural configurations.

B EXTRA DETAILS FOR EGOMEM SUB-MODULES

B.1 LEVEL-1 SUB-MODULES

Episodic Trigger. The episodic trigger is an RQ-Transformer-based (Défossez et al., 2024) model
which shares the input stream organization and model structure topology with RoboEgo (Section
2.1), despite being much smaller with 100M parameters. It consumes the 17 audio-text channels
with a maximum time step of 8192 as input. Instead of generating dialog responses, it assigns a
label to each time step with the following paradigm: {0: no dialog; 1: start of a new user’s dialog
session; 2: in-session step; 3: end of current user’s session}. We modify the attention mask from
a GPT-like (Brown et al., 2020) causal mask to a Bert-like (Devlin et al., 2019) full mask, as the
sequence labeling process is offline and chunk-wise. The training configurations of episodic trigger
is detailed in Section 4. The evaluation results are presented in Section 5.2.

Memory Extractor. The memory extractor is implemented as the following pipeline:

• The episodic trigger labels each time step. According to the labels, audio chunks starting
with label “1”, ending with label “3”, and correctly filled with “2” are considered as the
audio source for one user’s dialog session. The corresponding audio waveforms are clipped.

• The clipped waveform in the listening channel goes through automatic speech recognition
(ASR). Raw ASR results are fed into the memory extractor. The response texts from the
monologue text channel of the dialog model are also provided as reference.

• We leverage a DeepSeek-V3 (Liu et al., 2024) API to extract meaningful contents to store
in the memory. Specifically, we prompt the model to summarize the dialog content with
short, precise sentences, generate sentences describing the facts about the user, and figure
out a 90-dimensional personal trail (Li et al., 2025a; Kang et al., 2025) for the user. The
user name (or “unknown_user”) is stored in a separate field.

Memory Update Agent. This is a DeepSeek-V3 API prompted to solve profile conflicts and
formalize the extracted contents from the memory extractor, making sure that they are suitable for
updating the structured memory storage.

B.2 LEVEL-2 SUBMODULES

Textual Retrieval. The textual retrieval system gathers the top-K relevant textual information
according to the query words generated by RoboEgo, and updates the content of Level-2 MemChunk.
Specifically, for each user U connected to current user A in the social graph, U ’s name and relation
with A are concatenated with each of U ’s memory items (facts, dialog history, etc.) to form one
candidate document for retrieval. If the “relation query” group is not empty, we first match all relevant

2https://huggingface.co/kyutai/mimi
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users’ documents via the BM25 (Robertson et al., 2009) algorithm using only the relation queries;
next, if the “keyword query” group is not empty, we concatenate all the keyword into one string, and
re-rank the retrieved documents based on their vector distances to this keyword string. We leverage
the BGE-small (Chen et al., 2024a) model as the textual encoder. The top-K results are returned to
the textual channel of Level-2 MemChunk.

C DATA COLLECTION DETAILS

Textual Transcripts For Level-1 EgoMem, we first use DeepSeek-V3 (Liu et al., 2024) to synthesize
500 user profiles including name, dialog history, and a 90-dimensional persona. Next, we synthesize
10k dialogs between user and AI assistant based on open-source instruct-following datasets (e.g.,
Infinity-Instruct (Zhao et al., 2024), WizardLM (Xu et al., 2023), and multimodal question answering
datasets involving visual inputs (Chen et al., 2024b; X.AI, 2024)): the user instructions are retained,
while responses are refined by DeepSeek-V3 (or Gemini-2.5-Pro (Gemini, 2024) for VQA) to be
more helpful and personalized. Finally, we prompt DeepSeek-V3 to include more question styles
in which users ask questions regarding their own dialog history and profiles. Each dialog typically
contains 3–5 turns.

For Level-2 EgoMem, we first synthesize 500 possible relations (e.g., “father”, “colleague”), construct
relation graphs linking one main user with 3–5 socially connected users. We prompt DeepSeek-V3 to
generate questions requiring relation-graph reasoning (e.g., “Does my mother like physical exercise?”)
and mix these questions with general instructions, producing 5k dialogs. For each question, the model
annotates the effective query words (including both relation query and keywords query, both can be
empty) sufficient to retrieve supporting facts from the profiles of connected users. After generating
the query words, the model should also provide the ground-truth personalized response for training.

TTS and Augmentation. Audio dialogs are synthesized from the collected transcripts. Each user
utterance is assigned a random human voice, and converted into speech with Fishaudio TTS (Liao
et al., 2024), while model responses are consistently generated with a single fixed voice. For the
listening channel, we add diverse noise from sources like DNS Challenge (Dubey et al., 2023) and
RNNoise3, as well as random speech clips. Following Moshi (Défossez et al., 2024), we also simulate
microphone echo by mixing the speaking channel into the listening channel with probability 0.3,
applying random gain (0-0.2x) and delay (0.1-0.5s).

D TRAINING DETAILS

For Level-1 EgoMem, we fine-tune RoboEgo with a dataset containing 158K samples with different
(Level-1 MemChunk, token stream context, supervision mask) combinations. We duplicate the
dataset by using both the original and noise-augmented listening channel. Training starts from one
of RoboEgo’s SFT checkpoints, running for 5 epochs with batch size 64 and a cosine learning rate
decay from 1e-5 to 1.5e-6.

For Level-2 EgoMem, RoboEgo is fine-tuned on 54K samples with valid Level-2 MemChunk and the
corresponding query words, combined with 50% of the Level-1 training dataset reformatted with
empty Level-2 MemChunk and query words. As with Level-1, the dataset is duplicated with clean
and noisy listening channels. Training resumes from the same RoboEgo checkpoint as in Level-1,
running for 1 epoch with batch size 64 and a cosine learning rate decay from 1e-5 to 1.5e-6.

For Episodic Trigger, the sequence tagging model is initialized randomly. We train the model with
100K clean samples and 100K noised samples. The number of epoch is set to 45. We use a batch size
of 64 and the learning rate decays from 1e-4 to 1e-6 following a cosine schedule.

3https://github.com/xiph/rnnoise
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E REBUTTAL REVISION

This section addresses common concerns raised during the review process.

E.1 REAL-WORLD DEMO CASE

We provide a 2-minute anonymous video (link: https://figshare.com/s/
ebd3210db6b0a47149b7) demonstrating the performance of a deployed version of EgoMem
in real-world omnimodal chatting, which showcases the generalization capabilities from synthetic
training to real-world application.

E.2 JUSTIFICATION OF LLM EVALUATION

Correlation with Human Scores. To assess the alignment between our LLM-based scoring and
human judgment, we recruited graduate students specializing in AI to annotate model responses
on a 50-turn subset of our test set. Evaluators were provided only with the initial prompts used for
the model API and were instructed to assign Level-2 fact/quality scores based on the established
guidelines. We computed Cohen’s Kappa (McHugh, 2012) coefficient for the Fact Score as it is cate-
gorical, and the Pearson (Sedgwick, 2012) and Spearman (Myers & Sirois, 2004) coefficients for the
Answer Quality scores. These metrics are standard metrics for validating evaluation methodologies.
We averaged the coefficients across different annotators. The results are presented in Table 4. We
observe all coefficients exceed 0.6, indicating a strong positive correlation between LLM and human
evaluations.

Table 4: Alignment analysis between LLM and human scores.

Fact Score Answer Quality

Kappa Pearson Spearman

0.683 0.621 0.624

E.3 ROBUSTNESS IN REAL-WORLD ENVIRONMENTS

Human Evaluation with Real-world Audiovisual Dialogs (no-memory). While there is substantial
agreement between LLM and human evaluations regarding Fact Score and Answer Quality, we
acknowledge concerns regarding the robustness and user experience of a model trained on synthetic
data. To address this, we conducted a comparative analysis with Qwen-2.5-omni in real-world audio
dialogs, employing the same human evaluation metrics used in the backbone model (Yao et al.,
2025b). We observe that EgoMem maintains a competitive advantage in key metrics related to the
audio chatting experience, including Naturalness, Responsiveness, and Robustness. Notably: (i) as
Qwen-2.5-omni lacks memory capabilities, we evaluated using random daily queries rather than
memory-dependent ones; and (ii) the helpfulness score is significantly higher than that reported by
RoboEgo, which is attributed to the differing difficulty distributions of the instructions. These results,
combined with our demo video, demonstrate that training on synthesized data yields robust dialog
experiences.

Table 5: Comparison to Qwen-2.5-omni on omnimodal dialogs in real-world environments.

Model Helpfulness Naturalness Responsiveness Robustness
Qwen-2.5-omni 8.2 8.0 8.2 7.7

RoboEgo+memory 8.1 8.1 8.7 8.2

E.4 ABLATION/CLARIFICATION ON THE SUB-MODULES’ ROLES

We clarify the role of different sub-modules with ablation studies when necessary.

Episodic Trigger vs. Rule-based Session Splitting. We further clarify the contributions of specific
sub-modules through ablation studies.
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Episodic Trigger vs. Rule-based Session Splitting. Given the novelty of the Episodic Trigger in our
architecture, we provide additional results to justify its necessity. We selected 30 recorded streams,
each containing multiple dialogs with distinct user voices. We established a baseline session-splitting
solution that relies primarily on the face/voice retrieval system to identify speaker changes and mark
dialog boundaries, subsequently applying overlapping rules to align ASR timestamps with these
boundaries.

We compared this baseline against our proposed memory extraction pipeline utilizing the Episodic
Trigger. The extracted memory from each stream was subjected to a blind win-tie-lose human
annotation. The results are summarized in Table 6.

Table 6: Ablation analysis: Episodic Trigger vs. Rule-based.

Episodic Trigger Wins Tie Rule-based Wins

14 10 6

Impact of ASR and External LLM in Memory Extractor. We evaluate the impact of the ASR
module and the External LLM within the memory extractor using 30 Level-1 stream cases, comparing
the human-annotated Fact Score on immediate factual questions about the extracted content. We test
two ASR systems with different word error rates (WER), each under two conditions: (i) storing raw
ASR transcripts as memory and (ii) using an External LLM to summarize and refine the content.
Results are shown in Table 7.

Table 7: Ablation analysis: ASR and External LLM.

ASR WER Fact Score: Raw ASR Fact Score: EgoMem

5.9 0.73 0.87
3.0 0.87 0.9

We observe that when raw ASR transcripts are used directly, the ASR model’s WER significantly
affects the Fact Score, largely due to noisy or missing transcriptions of user instructions. In contrast,
when an External LLM is applied, it jointly analyzes the user’s ASR output and the dialog model’s
monologue—which is typically high-quality once the model correctly interprets the user speech.
Leveraging this dual input, the External LLM effectively repairs imperfect ASR outputs, making the
system more robust to ASR noise and variations across ASR models.

More Clarification on the role of Face/Speaker Verification Modules. We clarify that the results
presented in Table 3 are based on the test token streams with the ground-truth users, which actually
measures the model’s listening and dialog generation capabilities, as well as the text retrieval quality
for Level-2. If the user identification itself fails, the Fact Score will be zero. Thus, it is reasonable
to directly multiply a 0.96∼0.98 scale factor on the Fact Scores to measure the Fact Scores of the
integrated system.

E.5 BREAKDOWN ANALYSIS OF BAD CASES

We select 50 bad cases in the test corpus of Table 3 and hand-checked the full pipeline for attribution
analysis. As mentioned above, the possible failure modes include incorrect understanding of user
instructs (Class-1), failure in recalling relative Level-2 information from textual retrieval (Class-2),
and failure in aggregating the MemChunk information into the answer (Class-3). The distribution of
the error types are presented in Table 8. The majority of failures comes from the listening and audio
understanding capability, while the memory system itself contributes a smaller portion.

Table 8: Breakdown analysis of bad cases.

Class-1 Class-2 Class-3

68% 22% 10%
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