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Abstract

Graph convolutional networks (GCNs) have recently achieved great success in1

many applications. However they suffer from an incomplete annotation problem2

for complex graph-structured data. In this paper, we introduce a novel auxiliary3

learning method for GCNs in a multi-task fashion, which can efficiently enrich the4

data annotations. Specifically, both link prediction and label generation are used as5

two auxiliary tasks to complement the primary task of node classification. These6

two auxiliary tasks are jointly trained with the primary node classification task7

via a graph meta-learning strategy. The experimental results demonstrate that the8

proposed method consistently and significantly outperforms existing methods and9

achieves state-of-the-art results on several benchmark citation network datasets.10

1 Introduction11

Graph-structured data is ubiquitous in real-world applications. However, general deep learning12

methods, such as convolutional neural networks (CNNs), cannot adapt to graph-structured data13

directly, because the nodes in a graph have different numbers of neighbors, which often lose the14

ranking information. To handle the graph data effectively, graph convolutional networks (GCNs)15

have recently been proposed and used in many applications such as biomolecular prediction [1] and16

recommendation systems [2].17

Previous methods focus on designing models that can extract information from both the graph18

topology and node features. Specifically, existing GCN methods typically design different propagation19

strategies [3, 4, 5] for each network layer and stack more network layers [6, 7, 8] to derive larger20

receptive fields. However, the neighborhood aggregation is essentially a type of Laplacian smoothing21

and stacking too many layers may result in over-smoothing [9]. These drawbacks of existing methods22

limit further performance enhancement.23

In this paper, we try to explore the bottleneck of node classification from another point of view, i.e.,24

from the training data itself. As shown in Fig. 1, graph-structured data has different properties from25

grid-like data such as an image. The most obvious difference is that the nodes in a graph are connected26

by edges. This causes two main issues whien it comes to annotating graph-structured data, resulting in27

that existing methods cannot fully leverage the graph-structured information. First, the edges in most28

graph data for semi-supervised node classification are unweighted. This arbitrary edge indication29

setting cannot effectively reflect the detailed graph structures. Besides, graph-structured data may be30

contaminated with noisy edges. These noisy edges cannot represent the true pairwise relationships31

between nodes. Second, using one-hot labels to train a graph-based model is inappropriate. One-hot32

labels are widely used in various machine learning tasks, assigning a training sample to a single class.33

However, nodes in a graph are connected; even nodes with different classes may have relations. In34

this scenario, it is more suitable to use soft labels to assign a node to multiple classes, with different35

probabilities indicating which class the node possibly belongs to.36
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Figure 1: The difference between image data and graph-
structured data. The nodes in graph-structured data are
connected. Further, in most graph data for the node classifi-
cation task, edges are unweighted and noisy.

To fully leverage the graph-structured37

information for enhancing the node38

classification performance of GCNs,39

we introduce an auxiliary learning40

scheme to the GCN framework in41

a multi-task fashion. To this end,42

we add two auxiliary tasks to enrich43

the topology information of a graph44

by softening the node labels and re-45

weighting the edges. Experimental46

results show that our model achieves47

state-of-the-art node classification per-48

formance on several benchmark cita-49

tion network datasets. Our contribu-50

tions are as follows:51

(1) We propose two auxiliary tasks to capture more accurate graph information and enhance the52

model performance. The auxiliary link prediction task ensures that the model captures more graph53

topology information and generates probabilistic edges. The auxiliary label generation task softens54

the one-hot labels and generates pseudo-labels for unlabeled nodes.55

(2) The reconstructed edges and pseudo sudo labels derived via the two auxiliary tasks are iteratively56

updated with a node classifier of the primary task based on a meta auxiliary learning strategy, resulting57

in state-of-the-art node classification performance.58

2 Related Work59

Over the past few years, GCNs have achieved significant breakthroughs in graph data representation.60

Generally, existing GCNs can be divided into spectral-based methods and spatial-based methods.61

The spectral-based methods use graph spectral theory to define the graph convolutional operation62

in a graph Fourier domain. Spectral CNN [10] follows these mathematical foundations, assuming63

that a convolutional filter is a set of learnable parameters. To reduce computational complexity,64

ChebNet [11] approximates a graph convolutional filter as Chebyshev polynomials of the eigenvalues.65

GCN [12] introduces a first-order approximation of ChebNet and proposes a renormalization trick to66

alleviate numerical instabilities and exploding/vanishing gradients. DualGCN [13] introduces a dual67

GCN architecture with two graph convolutional layers in parallel to encode both local and global68

structural information.69

The spatial-based methods define feature aggregation in the spatial domain directly, which is more70

efficient, general, and flexible [14]. The key challenge for these spatial-based methods is to apply71

the convolution operation for different-sized neighborhoods, while at the same time maintaining the72

weight sharing property. Neural network for graphs (NN4G) [15] is the first spatial-based method,73

applying the graph convolutional operation in the spatial space. Diffusion convolutional neural74

networks (DCNN) [16] consider graph convolutions as diffusion processes to efficiently learn features75

that are invariant under isomorphism. Message passing neural networks (MPNN) [17] model graph76

convolution as a message passing process among the nodes. The graph attention network (GAT)77

[3] introduce masked self-attentional layers to assign different weights to adjacent nodes, leading to78

learnable filter weights. The mixture model network (MoNet) [18] introduces pseudo-coordinates to79

assign different weights to the neighbors of each node. To achieve weight sharing across different80

nodes, some spatial-based models attempt to rank a node’s neighbors via certain criteria or metrics,81

which transforms the graph-structured data into grid data for further processing. The large-scale82

graph convolutional network (LGCN) [19] ranks a node’s neighbors via the node feature values. Then,83

multiple 1D convolutional layers are stacked for feature aggregation. Approximate personalized84

propagation of neural predictions (APPNP) [4] takes the personalized PageRank algorithm as the85

model propagation method to avoid over-smoothing when stacking more layers or increasing the size86

of the neighborhood.87

Multi-task learning is designed to simultaneously learn a set of related but different tasks for ensuring88

that a learning model can derive the best performance across all tasks. Different from multi-task89

learning, auxiliary learning is only concerned with model performance on the primary task. For90
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Figure 2: Network architecture of the vanilla GCN model. The vanilla GCN contains multiple
GCN layers. Each layer captures the graph structure to generate the hidden embeddings from the
previous layer (For the first layer, it is the original feature of the node) as input, and obtains the output
through the message calculation, aggregation and update step. The last layer uses a softmax function
to generate classification probabilities for each node.

instance, Deepstereo [20] leverages auxiliary learning to predict the relative poses of multiple cameras91

for unsupervised monocular depth estimation. To improve the performance of conversational speech92

recognition, auxiliary learning [21] is applied to low-level representations. Compared to the common93

learning scheme, meta auxiliary learning can enhance learning performance. For instance, MAXL94

[22] adopts meta-learning to automatically generate the auxiliary task labels. Pseudo Label [23] is95

a semi-supervised learning method, where a deep neural network is trained using both labeled and96

unlabeled data. For unlabeled data, the model picks up the class that has the maximum predicted97

probability as the true label to train itself. MPL [24] extends the Pseudo Label [23] via a meta-learning98

strategy, where the pseudo-labels are not generated by itself, but by a teacher network.99

The existing GCNs are designed for a single task, where the properties of graph-structured data100

are not fully explored. We introduce the auxiliary learning scheme to leverage more detailed graph101

topology information for enhancing node classification performance.102

3 Method103

3.1 Preliminaries104

Given a graph G = {V, E ,X}, V is a set of nodes and E is a set of the edges connecting the related105

nodes. X ∈ RN×d represents the features matrix of the nodes, where d is the dimension of the node106

features and N = |V| is the number of nodes.107

The proposed method adopts the vanilla GCN [12] as the backbone network, taking the graph108

adjacency matrix A, labeled training set Ytrain, and original features X of the nodes as inputs to109

perform the semi-supervised node classification task. Based on the MPNN framework [17], each110

layer of the vanilla GCN is defined in three parts:111

(1) Message computation: The message of node vi and its neighbor node vj is calculated, where112

j ∈ N (i), as:113

m
(k)
j =

1√
deg(i)deg(j)

h
(k−1)
j W(k), j ∈ {i}

⋃
N (i). (1)

Here, deg(i) is the degree of node vi and W(k) ∈ Rck−1×ck are the learnable parameters of the114

kth-layer, where ck is the size of the hidden embedding.115

(2) Aggregation: The messages of node vi and its neighbors are aggregated by summing them up:116

m
(k)
N (i) =

∑

j∈{i}∪N (i)

m
(k)
j , (2)
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Figure 3: The overall network architecture. Our method consists of three networks: a backbone
network for the primary task and two auxiliary task networks. (1) The backbone network is a vanilla
GCN, which predicts the classification results of each node. (2) The first auxiliary task network is a
link predictor, which focuses on the link prediction task and generates a probabilistic edge structure
as the input of the backbone network. (3) The second auxiliary task network is a label generator,
which employs the label generation task to generate the pseudo soft labels for supervising the node
classifier. The parts connected by the dashed arrow share the same parameters, and the red slash on
the arrow indicates a stop-gradient (detach) operation.

where m
(k)
N (i) denotes the aggregated message.117

(3) Feature updating: Finally, the hidden representation is updated with the aggregated message. For118

the vanilla GCN, the update function can be considered as applying a non-linear operation to the119

aggregated message:120

hki =

{
softmax(m

(k)
N (i)), if k = K

ReLU(m
(k)
N (i)), otherwise.

(3)

Here, K is the number of model layers. The last layer of the vanilla GCN should output the121

classification probability via a softmax function. Otherwise, a ReLU operation is used.122

3.2 Multi-Task Network Architecture123

In this paper, we propose an auxiliary learning induced GCN for semi-supervised node classification124

(see Fig. 3). To enhance the node classification performance of the backbone vanilla GCN, we design125

two auxiliary tasks: link prediction and pseudo-label generation.126

The first K−1 layers of a K-layer vanilla GCN model can be considered as a feature extractor, while127

the last layer can be considered as a classifier. Denoting the feature extractor and node classifier of128

the backbone model as hθ2 and fθ1 , respectively, where θ1 and θ2 are the learnable parameters, the129

proposed two auxiliary task networks are defined as follows.130

3.2.1 Link Predictor131

To enrich the edge information, we design an auxiliary link prediction task to infer the missing edges132

and present the probability of edge existence. The link predictor we propose contains a decoder R(·)133

and the feature extractor hθ2 of the backbone model.134

The feature extractor hθ2(·) takes reduced adjacency matrix As which corresponds to the sampled135

edge set Es ⊂ E , and node features X as inputs to generate the hidden embedding:136

Hs = hθ2(X,As). (4)
Then, the decoder computes the similarity between each node based on Hs to predict the edge137

existence probabilities. We simply use an inner-product calculator with a sigmoid function as the138

implementation of decoder R(·). The similarity of two hidden embeddings can be computed as139

rij = R(hi,hj) = σ(hih
T
j ), (5)

where hi and hj denote the hidden embeddings of node vi and node vj in Hs, respectively.140
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3.2.2 Label Generator141

Although using the one-hot label is inappropriate, it is difficult to obtain soft labels with manual142

annotations for real graph-structured data. To tackle this issue, we introduce an auxiliary label143

generation task to generate soft labels that reflect the tendency of different classes each node belongs144

to. Label generator gϕ(X,A) is a vanilla GCN, where ϕ are the learnable parameters and A is the145

adjacency matrix. The label generation network predicts the label distribution of each node based on146

the graph structure A and the raw features X of the nodes, as:147

Ŷg = gϕ(X,A), (6)

where Yg are the predicted pseudo labels for guiding the training of the backbone network and the148

label generator.149

3.2.3 Node classifier150

The node classifier carries out the primary semi-supervised node classification task in our model.151

Compared to the vanilla GCN model, we add a graph reconstruction step at the beginning. The graph152

adjacency matrix reconstructed with the hidden embeddings contains richer edge information since153

the proposed auxiliary link prediction task can enhance the graph topology capturing ability of the154

feature extractor hθ2(·). However, the hidden embeddings derived by the feature extractor change155

rapidly in the first few iterations, resulting in a changing reconstructed adjacency matrix. Directly156

applying the reconstructed adjacency matrix to the entire backbone network increases the training157

instability. Thus, we only apply it as the input of the feature extractor hθ2(·), while the classifier158

fθ1(·) still adopts the original adjacency matrix as input.159

In each training iteration, the feature extractor hθ2(·) first generates the hidden embeddings of the160

nodes H = hθ2(X,A). The decoder uses H to reconstruct the adjacency matrix Arecon = R(H,H).161

Then, the feature extractor takes the reconstructed adjacency matrix Arecon to compute the hidden162

embeddings Hrecon = hθ2(X,Arecon).163

Finally, the computed hidden embeddings Hrecon and the original graph adjacency matrix A are fed164

to the classifier to obtain the final classification results:165

Ŷf = fθ1(Hrecon,A). (7)

3.3 Auxiliary Training Phases166

In addition to the backbone network, the proposed method contains two auxiliary task networks. In167

the following, we will introduce the objectives for the node classifier fθ1 , link predictor hθ2 , and168

label generator gϕ in order, and then leverage a meta auxiliary learning scheme to train the proposed169

multi-task network.170

3.3.1 Training the Node Classifier fθ1171

The purpose of the node classifier fθ1(·) is to carry out the graph-based semi-supervised node172

classification task, which yields the final prediction results. Naturally, it is necessary to use the173

classification loss between the predicted result and the real categories of nodes to supervise the174

training process. At the same time, to reflect the tendency of the class a node belongs to, the training175

should make the prediction labels of the classifier be close to the pseudo soft labels generated by176

label generator gϕ(·).177

In the tth iteration, denoting the pseudo soft labels as Ŷg(t) = gϕ(t)(X,A), the real labels used in178

training as Ytrain, and the prediction results of the node classifier of the backbone network fθ1 as179

Ŷf(t) = f
θ
(t)
1
(h
θ
(t)
2
(X,A

(t)
recon),A), the objective for the node classifier fθ1(·) is defined as180

L(t)
θ1

= LCE(Ŷ
f(t)
train,Ytrain) + LMSE(Ŷ

f(t), Ŷg(t)). (8)

The objective contains two parts: the loss on the real training labels, and the loss on the generated181

pseudo soft labels. LCE denotes the cross-entropy loss and LMSE denotes the mean squared loss.182

Although this objective can be used to update the learnable parameters θ2 of the feature extractor183

hθ2(·), as it generates the hidden embeddings used for node classification, we only employ it to184
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supervise the learning of the node parameters θ1 of the classifier fθ1(·). To avoid adding unnecessary185

supervision for generating the reconstructed graph adjacency matrix Arecon, we add a stop-gradient186

operation (detach) which is formulated as follows:187

A(t)
recon = detach(R(H,H)). (9)

3.3.2 Auxiliary Training for the Feature Extractor hθ2188

The feature extractor hθ2 is shared by the link prediction module and the backbone network. In each189

iteration, we first randomly sample a certain percentage of edges from the real edge set E to form a190

sampled edge set Es ⊂ E . Denoting the reduced graph adjacency matrix as As, which corresponds to191

the sampled edge set Es, and applying a message passing operation with As as192

H(t)
s = h

θ
(t)
2
(X,A(t)

s ), (10)

then the objective for the feature extractor is defined as193

L(t)
θ2

= LCE(R(H
(t)
s ,H(t)

s ),A). (11)

Here R(H(t)
s ,H

(t)
s ) represents the correlation between the hidden embeddings of each pair of nodes.194

3.3.3 Auxiliary Training for the Label Generator gϕ195

The label generator gϕ is a vanilla GCN model used to predict the label distribution for each node,196

which naturally needs to be supervised by a classification loss. In the tth iteration, a label generator197

first generates the prediction results using the original graph adjacency matrix A and the node features198

X, which is formulated as Ŷg(t) = gϕ(t)(X,A). Denoting the training labels as Ytrain, the objective199

of the label generator gϕ can be formulated as200

L(t)
ϕ = LCE(Ŷ

g(t)
train,Ytrain). (12)

3.3.4 Meta-Learning Based Training Strategy201

The final node classification results only depend on the primary task, while the performance of the202

other modules, including the label generator and link predictor are not our ultimate concern. Simply203

using the classification loss to train the label generator gϕ or using the link prediction loss to train204

the feature extractor hθ2 cannot provide the effects of auxiliary learning. Thus, it is crucial to make205

the node classifier fθ1 perform better after it is trained with the pseudo soft labels while taking the206

hidden embeddings derived by the feature extractor hθ2 as inputs. To this end, we use meta auxiliary207

learning to update the model parameters.208

For the auxiliary label generation task, we consider not only the classification performance of the209

label generator gϕ, but also the auxiliary effect on the node classifier. We assume that the classifier210

parameters θ1 are updated with gradient descent based on the pseudo soft labels in the tth iteration,211

θ′1 = θ
(t)
1 − η∇θ1LMSE(Ŷ

f(t), Ŷg(t)). (13)

A direct way to evaluate the auxiliary effect of the pseudo soft labels is to compute the classification212

loss of the prediction given by the node classifier using the updated parameters θ′1, as213

Lf ′ = LCE(fθ′1(hθ(t)2
(X,Arecon),A)train,Ytrain). (14)

This loss can quantify how much performance improvement the classifier gains from the two auxiliary214

tasks. Because θ′1 is updated with the pseudo soft labels generated by gϕ(·), the loss Lf ′ is also a215

function of ϕ. This means that the objective could be used to supervise the learning of ϕ. Note216

that ∇ϕLf ′ requires the gradient of the gradient to be computed [25], which can be considered as a217

meta-learning strategy. The final objective of the label generator gϕ with meta-learning is formulated218

as219

L(t)
ϕ−meta = L(t)

ϕ + Lf ′. (15)

Similar to the label generator gϕ(·), the link predictor hbθ2 should derive the effective node embed-220

dings to enhance the node classification performance. Since the hidden embeddings used for node221
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Algorithm 1 AL-GCN
Input: Graph adjacency matrix A, the node features X, the data labels Ytrain of a training set.
Output: A feature extractor hθ2 , a node classifier fθ1

1: Initialize learnable parameters θ1, θ2, ϕ
2: while not converged do
3: # node classifier training phase
4: Ŷg ← gϕ(X,A)
5: H← hθ2(X,A)
6: Arecon = detach(R(H,H))
7: Hrecon ← hθ2(X,Arecon)

8: Ŷf ← fθ1(Hrecon,A)

9: Lθ1 ← LCE(Ŷ
f
train,Ytrain) + LMSE(Ŷ

f , Ŷg)
10: Update: θ1 ← Adam(Lθ1 , θ1)
11: # meta-learning preparation
12: Compute: θ′1 ← θ1 − η∇θ1LMSE(Ŷ

f , Ŷg)
13: Lf ′ ← LCE(f

b
θ′1
(hbθ2(X,Arecon),A)train,Ytrain)

14: # label generator training phase
15: Ŷg ← gϕ(X,A)

16: Lϕ ← LCE(Ŷ
g
train,Ytrain) + Lf ′

17: Update: ϕ← Adam(Lϕ, ϕ)
18: # feature extractor training phase
19: As ← RandomSample(A)
20: Hs ← hθ2(X,As)
21: Lθ2 ← LCE(R(Hs,Hs),A) + Lf ′
22: Update: θ2 ← Adam(Lθ2 , θ2)
23: end while

classification are derived from the feature extractor hθ2 , the objective defined in Eq. 14 can also be222

considered as a function of θ2. Thus, the objective of the feature extractor hθ2 with meta-learning is223

defined as224

L(t)
θ2−meta = L(t)

θ2
+ Lf ′. (16)

This objective means that, except for the link prediction task, the feature extractor hθ2 should ensure225

that the generated hidden embedding enhance the classification accuracy of the node classifier fθ1226

updated with the pseudo soft labels. The overall training process is shown in Alg. 1.227

4 Experiments228

4.1 Experimental Settings and Compared Methods229

We demonstrate the classification performance of our method via semi-supervised document classifi-230

cation on three citation network datasets, including Cora, Citeseer, and Pubmed [26], where nodes231

represent the documents and edges are citation links. Dataset statistics are summarized in Table 1.232

The proposed method is a novel GCN, which is leveraged to carry out a node classification task.233

We compare our method with several popular graph-based node classification methods including234

GCN [12], GAT [3], DualGCN [13], SGC [27], and APPNP [4]. As we use a three-layer GCN as235

the backbone in our proposed model, we compare both two-layer and three-layer GCNs, denoted as236

GCN2 and GCN3, respectively.237

For the semi-supervised node classification, we use all node features but only 20 labels per class for238

training and 500 nodes as the validation set. We train the proposed method for a maximum of 400239

epochs using Adam [28] with a learning rate of 0.01. We use the well-trained parameters, which240

achieve the best performance on the validation set during the training phases, to evaluate classification241

accuracy on a test set of 1,000 labeled examples. We run each method 100 times and compute242

the average classification accuracy on a single NVIDIA GTX 1080Ti GPU. To implement all the243

compared methods more conveniently, we use PyG [29] as the graph-based learning framework.244
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Table 1: Dataset statistics.

Dataset Nodes Edges Features Classes
Cora 2,708 5,278 1,433 7
CiteSeer 3,327 4,552 3,703 6
Cora 19,717 44,324 500 3

Table 2: Classification results on the datasets (bold: best, underline: runner-up).

Method Cora Citeseer Pubmed
GAT [3] 82.5± 0.8% 71.4± 0.7% 78.4± 0.4%
DualGCN [13] 83.4± 0.5% 72.6± 0.6% 79.9± 0.3%
SGC [27] 81.3± 0.7% 70.9± 0.6% 78.2± 0.5%
APPNP [4] 83.2± 0.4% 71.6± 0.5% 79.8± 0.3%
GCN2 [12] 81.5± 0.7% 71.5± 0.5% 79.2± 0.4%
AL-GCN2 (ours) 82.3± 0.4% 72.6± 0.5% 79.6± 0.5%
GCN3 [12] 80.7± 1.2% 68.0± 1.4% 77.7± 0.5%
AL-GCN3 (ours) 84.7± 0.4% 72.3± 0.5% 81.4± 0.6%

4.2 Experimental Results245

In this section, we provide the experimental results of the node classification, an ablation study, and246

the visualization of hidden embeddings. More experimental results, such as parameter and model247

robustness studies can be found in the supplementary materials.248

We conduct the node classification task on three citation network datasets. As shown in Table 2,249

our method consistently and significantly enhances the learning performance compared to the other250

methods. In particular, for the Cora dataset, the proposed method is superior to GCN by 4.9%.251

Compared to the other methods, our model considers more graph-structured information via auxiliary252

learning. Thus, it is consistently and significantly superior to the compared methods, achieving253

state-of-the-art results.254

4.3 Ablation Studies255

4.3.1 On the Auxiliary Learning Modules256

To determine how the link predictor (P) and the pseudo label generator (G) affect the node classi-257

fication performance, we apply the following two ablation models: (1) Vanilla GCN with the link258

predictor, termed GCN+P. (2) Vanilla GCN with the lable generator, termed GCN+G. We compare259

GCN+G and GCN+P with the proposed method, AL-GCN (GCN+P+G), and the original GCN.260

Table 3 lists the results. As can be seen, the proposed method consistently outperforms GCN+P261

and GCN+G. Specifically, compared to the link predictor, the label generator has more effect on the262

Citeseer dataset. However, for the Pubmed dataset, the link predictor has much more effect on the263

learning performance.264

4.3.2 On the Reconstructed Graph Adjacency Matrix265

For the backbone network, a reconstructed graph adjacency matrix via a link prediction task is used266

as input. To determine how the reconstructed graph adjacency matrix affects the node classification267

performance, we compare the proposed model with the following two models: (1) A model that268

takes the original graph adjacency matrix without the reconstructed one as the input of the backbone269

network, termed w/o-recG; (2) A model that takes only the reconstructed graph adjacency matrix as270

the input of the backbone network, termed w/o-oriG.271

As shown in Table 4, our method consistently outperforms w/o-recG and w/o-oriG. This can be272

attributed to the fact that the reconstructed graph adjacency matrix via the link predictor can capture273

the detailed topology information of a graph and the fixed original graph adjacency matrix increases274

the training stability.275
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Table 3: The ablation experiment results.

Method Cora Citeseer Pubmed
GCN 80.7± 1.2% 68.0± 1.4% 77.7± 0.5%
GCN+P 83.0± 0.7% 70.6± 0.8% 81.3± 0.6%
GCN+G 83.0± 0.6% 71.7± 0.8% 78.8± 0.6%
GCN+P+G (AL-GCN) 84.7± 0.4% 72.3± 0.5% 81.4± 0.6%

Table 4: The ablation experiment results in terms of classification accuracy (in percent).

Method Cora Citeseer Pubmed
GCN 80.7± 1.2% 68.0± 1.4% 77.7± 0.5%
w/o-recG 84.5± 0.5% 71.9± 0.6% 80.1± 0.5%
w/o-oriG 84.1± 0.6% 71.4± 0.9% 80.6± 1.5%
AL-GCN 84.7± 0.4% 72.3± 0.5% 81.4± 0.6%
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Figure 4: Visualization of the hidden embedding obtained by different methods via t-SNE algorithm.

4.4 Visualization of Hidden Embeddings276

To determine how the hidden embeddings affect the learning performance, we use the visualization277

tool t-SNE [30] to observe their distribution. As shown in Fig. 4, the embedding results of GCN278

and GAT are denser, and the separation of different clusters is not obvious. In contrast, the node279

distributions learned by our proposed method are more separate, with most of the nodes from the280

same classes being close to each other, resulting in obvious cluster structures. These experimental281

results demonstrate that the proposed method can capture more detailed structure information of a282

graph, including the nodes and edges, resulting in more effective hidden embeddings.283

5 Conclusion284

We have proposed a novel graph convolutional network for semi-supervised node classification.285

Different from existing methods, the proposed model focuses on enriching the graph data and286

adopts meta auxiliary learning to enhance the representations of nodes and edges in a graph. To287

enrich node label information, an auxiliary label generator is used to generate pseudo probabilistic288

labels. Meanwhile, an auxiliary link predictor is used to generate probabilistic edges to enrich the289

graph structure information. The enriched node and edge information can iteratively enhance the290

performance of the node classification task. Experimental results on several benchmark citation291

datasets show that the proposed model is superior to the existing methods. For future work, we note292

that real-world data is usually contaminated by noise, which results in a robustness problem for graph293

learning methods. We plan to extend our model to handle noisy data by designing a more robust294

learning method for graph-structured data.295
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