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ABSTRACT

The performance of an LLM depends heavily on the relevance of its training data to
the downstream evaluation task. However, in practice, we do not have fine-grained
knowledge of the data in the evaluation task (e.g., conversations between an LLM
and a user are end-to-end encrypted). Hence, it is unclear what data is relevant for
fine-tuning the LLM. Instead, we can only deploy the LLM on the unseen task to
gather multiple rounds of coarse, noisy feedback on how well the model performs
(e.g., user ratings). Our paper presents DUET, a novel global-to-local algorithm
that optimizes training data mixtures by interleaving data selection with Bayesian
optimization to exploit coarse and noisy feedback from a downstream evaluation
task. DUET is flexible enough to incorporate different data selection methods, each
with different performance-compute tradeoffs. By analyzing DUET’s cumulative
regret, we theoretically show that DUET converges to the optimal training data
mixture even without any fine-grained data information from an unseen task.
Finally, our experiments across a variety of language tasks demonstrate that DUET
attains substantial performance improvements over existing data selection and
mixing methods in the unseen-task setting. Our anonymized code can be found at
https://github.com/pmsdapfmbf/DUET.

1 INTRODUCTION

The performance of an LLM depends heavily on the composition of training data domains (Chen
et al., 2024a; Xie et al., 2023a) and the downstream evaluation task (Hoffmann et al., 2022; Long et al.,
2017). For instance, if we knew that LLM users are interested in asking layman science questions,
then training or fine-tuning the LLM with more Wikipedia data allows it to converse better with these
users. Hence, knowing the evaluation task is important for curating a more relevant training data
mixture, producing an LLM with better performance over the specific task of interest.

However, in practice, the data (e.g., its domain, distribution, or labels) involved in an unseen
evaluation task are often unknown. Thus, it is not obvious what data is relevant for training or
fine-tuning the model. Instead, one can only deploy the LLM on the unseen evaluation task a few
times to gather coarse feedback to see how well the model performs, creating a feedback loop. How
can we efficiently use the (potentially noisy) feedback loop to improve and optimize the training data
mixture? Consider the following problem setting: An LLM owner is interested in fine-tuning their
LLM to converse better with users but due to privacy concerns (Li et al., 2024), conversations between
the deployed LLM and users are end-to-end encrypted (openai.com/enterprise-privacy).
Hence, the LLM owner does not know the actual evaluation data seen during test-time. Rather, we
only receive coarse, noisy feedback on how well the LLM has performed in the conversation (e.g.,
user ratings or duration spent on the application) and gather multiple rounds of feedback from users.

This paper presents DUET (Fig. 1), a novel algorithm that exploits the feedback loop to optimize
the training Data mixture for an Unseen Evaluation Task. DUET is a global-to-local algorithm
that interleaves data selection (Albalak et al., 2024; Ting & Brochu, 2017; Koh & Liang, 2017)
with Bayesian optimization (BO) (Snoek et al., 2012; Srinivas et al., 2010) to optimize the training
data mixture. Globally, BO in DUET uses coarse, noisy feedback from the unseen evaluation task
to automatically refine the mixing ratio of data domains in the training data mixture iteratively.
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Figure 1: DUET exploits a feedback loop to optimize the data mixture for an unseen evaluation task.
In contrast, conventional data mixing and selection works require fine-grained data information of
the task, which is not available here.

Locally, DUET uses data selection to retrieve high-quality data points from each data domain until the
proposed mixing ratio is reached. This results in an algorithm that can efficiently optimize training
data even without having access to fine-grained data information from the evaluation task.

Related works. In our problem setting, (a) there is no direct access to the data (e.g., its domain,
distribution, or labels) involved in the unseen evaluation task but (b) we can gather multiple rounds of
feedback (details covered in Sec. 2.2) from the task using an LLM. App. A.1 provides a few more
practical examples of this setting. This setting is different from those considered in conventional
domain adaptation (DA) and domain generalization (DG) works. Prior DA works assume fine-grained
knowledge of data (e.g., labeled/unlabeled data (Zhang et al., 2022) or data distribution (Ganin &
Lempitsky, 2015; Zhang et al., 2021)) from the evaluation task for selecting relevant training data
that match the evaluation data. On the other hand, DG considers a rigid setting with no knowledge
(not even feedback) of the evaluation task (Muandet et al., 2013; Shin et al., 2024; Wang et al., 2022).

Similarly, data mixing works such as DoReMi (Xie et al., 2023a), BiMix (Ge et al., 2025) and more
(Chen et al., 2024a; Fan et al., 2024; Xie et al., 2025; 2023b) introduced methods to optimize data
mixtures, and data selection works (Albalak et al., 2024; Xia et al., 2024; Pruthi et al., 2020; Xie et al.,
2023b) explored ways to find high-quality data to improve an LLM’s performance. However, these
methods assume some availability of fine-grained evaluation data information, such as evaluation
gradients, labels, distribution or naively assuming the training data shares the same distribution as the
task. In practice (like in our setting), these are not always available. In fact, when we applied existing
data mixing and selection methods directly to our setting, they perform worse than DUET (Sec. 6).
We provide more discussion of the shortfalls of these prior works in App. A.2.

To the best of our knowledge, DUET is the first work that interleaves data selection with BO to
iteratively optimize training data mixture based on feedback from an unseen evaluation task. At first
glance, eliciting multiple rounds of feedback with BO seems expensive. However, BO is sample-
efficient and is the only way we can exploit such coarse and noisy feedback iteratively, unlike prior
methods that require much more fine-grained data information (see above). In fact, subjecting models
to multiple rounds of training or fine-tuning in a feedback loop is a natural part of the deployment
life-cycle to improve LLMs. Specifically, our contributions are:

• We introduce a novel and realistic problem setting where the data involved in an unseen evaluation
task is unknown but we can deploy our LLM to gather multiple rounds of coarse and noisy
feedback. Then, we introduce DUET, a novel algorithm that exploits the feedback loop to optimize
training Data mixture for the Unseen Evaluation Task. To achieve this, DUET interleaves data
selection (Sec. 3.2) with Bayesian optimization (Sec. 3.3) to iteratively optimize the training data
mixture. DUET is flexible enough to incorporate any data selection choice in its inner loop, and
we qualitatively and quantitatively analyzed different choices in our paper.

• We provide a theoretical analysis of DUET’s convergence to the optimal training data mixture by
analyzing DUET’s attained cumulative regret (Chen et al., 2024b; Chowdhury & Gopalan, 2017)
under the BO framework (Sec. 4).

• We demonstrate the effectiveness of DUET on LLM fine-tuning for language tasks comprising both
in-domain and out-of-domain unseen tasks spanning different domains. Compared to conventional
data selection and mixing methods (e.g., DoReMi, LESS, Aioli (Chen et al., 2024a) and more),
DUET produces more optimal training data mixtures (Sec. 6.2).
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2 PRELIMINARIES

2.1 BAYESIAN OPTIMIZATION

We first provide an outline of how BO can be used to optimize a generic black-box objective function
before explaining how BO is used in DUET (Sec. 3.3). We consider a black-box objective function
f : Rn 7→ R over the space of inputs r ∈ Rn. As we show later (Sec. 2.2), we will use the data
mixing ratio as r in our setting. The goal is to find r∗ ≜ argminr f(r) which minimizes the objective
function. BO is a query-efficient active algorithm that strategically selects input points to query
the black-box objective function, conditioned on previous function observations. At each iteration
t = 1, 2, . . . , T of BO, we query the black-box function with a selected input rt to obtain a noisy
observation ỹt ≜ f(rt) + ϵt with a sub-Gaussian noise ϵt (e.g., Gaussian or bounded noise) to form
sample (rt, ỹt). Consistent with (Chowdhury & Gopalan, 2017), we model the unknown function f
as a realization of a Gaussian process (GP) (Williams & Rasmussen, 2006) that is fully specified by
its prior mean µ(r) and covariance κ(r, r′) for all r, r′ ∈ Rn where κ is a kernel function chosen
to characterize the correlation of the observations between any two inputs r and r′; a common
choice is the squared exponential (SE) kernel κ(r, r′) ≜ exp(−∥r−r′∥22/(2m2)) with a length-scale
hyperparameter m that can be learned via maximum likelihood estimation. Given a column vector
yt ≜ [ỹτ ]

⊤
τ=1,...,t of noisy observations at previous inputs r1, . . . , rt, the posterior belief of f at any

new input r′ is a Gaussian distribution with the following posterior mean and variance:

µt(r
′) ≜ κ⊤

t (r
′)(Kt + ζI)−1yt

σt(r
′) ≜ κ(r′, r′)− κ⊤

t (r
′)(Kt + ζI)−1κt(r

′)
(1)

where κt(r
′) ≜ [κ(r′, rτ )]

⊤
τ=1,...,t is a column vector, Kt ≜ [κ(rτ , rτ ′)]τ,τ ′∈1,...,t is a t×t covariance

matrix, and ζ > 0 is viewed as a free hyperparameter that depends on the problem setting (Chowdhury
& Gopalan, 2017). Using equation 1, the BO algorithm selects the next input query rt+1 by optimizing
an acquisition function, such as minimizing the lower confidence bound (LCB) acquisition function
(Srinivas et al., 2010): rt+1 = argminr µt(r)− βt+1σt(r) with an exploration parameter βt+1. In
addition, BO can also handle constraints on inputs r (Gardner et al., 2014). The cumulative regret
(for T BO iterations w.r.t. a minimization problem) RT ≜

∑T
t=1[f(rt) − f(r∗)] is used to assess

the performance of a BO algorithm (Tay et al., 2023) given that f(r∗) is the true function minimum.
A lower cumulative regret indicates a faster convergence rate. We provide a theoretical analysis of
DUET’s cumulative regret in Sec. 4.

2.2 PROBLEM SETTING: OPTIMIZING DATA MIXTURES FOR AN UNSEEN TASK

Now, we formally describe our problem setting. Suppose that we have n training datasets D ≜
{D1, D2, . . . , Dn} from n different domains (e.g., Wikipedia, ArXiv), where D is the union of these
training datasets. Let Leval(θ) be the unseen evaluation task loss w.r.t. an LLM parameterized by
θ. This "loss" represents feedback from the unseen evaluation task and does not have a closed,
mathematical form. Our goal is to find an optimal data mixture X ∗ ∈ D (a set of training data points)
and learn model parameters θX∗ such that the unseen evaluation task loss Leval is minimized:

min
X∈D

Leval(θX )

s.t. |X | = M,
(2)

where θX ≜ argminθ Ltrain(X , θ) is the model parameters learned in a standard supervised learning
manner (e.g., gradient descent) from a chosen data mixture X and Ltrain is a standard model training
loss (e.g., cross-entropy loss for LLM prediction). To make our theoretical formulation and expository
simpler, we consider the feedback Leval deterministic. However, DUET works equally well for in
noisy feedback setting, which we demonstrate empirically (Sec. 6) and elaborate in App. A.3. M is a
practical, pre-decided constraint (Mirzasoleiman et al., 2020) to ensure the selected data mixture is
not too large. In practice, evaluation task loss Leval is just a feedback that indicates how well the LLM
is performing and does not contain any evaluation data information. It can also be interchanged with
other measures to be maximized (e.g., accuracy, user ratings) with slight mathematical adjustment to
later statements.
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3 OPTIMIZING TRAINING DATA MIXTURES USING DUET

Figure 2: DUET finds the
optimal data mixture iter-
atively and strategically.

Unfortunately, solving problem 2 is challenging because the unseen evalu-
ation task loss Leval does not have a closed, mathematical form and finding
the optimal data mixture X ∗ directly is a high-dimensional discrete op-
timization problem. To address this, DUET adopts a global-to-local
approach to optimize the training data mixture. Globally, DUET uses
BO to adjust the mixing ratio in the data mixture adaptively based on
the task feedback. Locally, we interleave a data selection method of
choice (depending on the practitioner’s compute budget) to refine the data
mixture every iteration. Fig. 2 illustrates, in a simple setting, how DUET
progressively finds better data mixtures close to the optimal (green star).
We also discuss several extensions of DUET in App. A.3.

3.1 REPARAMETERIZATION OF THE OPTIMIZATION PROBLEM

We first reparameterize the objective function of problem 2 into a bilevel optimization problem that, at
the outer level, depends on the mixing ratio r ∈ Rn of training data domains (such reparameterization
has been considered in AutoML works (Chen et al., 2024b)). This reparameterized problem has a
unique structure that aligns with DUET’s global-to-local nature (Sec. 3.2 & 3.3).
Theorem 3.1. X ∗, the optimal set of data points from D, is the solution of the original problem 2 iff
r∗ = ratio(X ∗) is the optimal mixing ratio solution of the reparameterized problem:

min
r∈Rn

min
X∈Sr

Leval(θX ), (3)

where Sr ≜ {X : X ∈ D, ratio(X ) = r, |X | = M} and ratio(X ) = r means that the data points in
X satisfies the mixing ratio r ∈ RN from n data domains and ∥r∥1 = 1.

The proof can be found in App. B.1, where we show that X ∗, the optimal data mixture of original
problem 2, satisfies a mixing ratio r∗ that is also the solution of reparameterized problem 3. DUET
aims to solve problem 3 in an iterative manner. At the outer optimization level (global), DUET
uses BO to exploit feedback from the evaluation task to propose a promising mixing ratio rt at each
iteration t. At the inner optimization level (local), we introduce a sampling strategy that uses local
domain data selection to retrieve a high-quality data subset that satisfies mixing ratio rt.

3.2 USING DATA SELECTION METHODS FOR INNER PROBLEM

In this section, we show how data selection methods can be used to solve the inner problem in DUET.
For ease of expository and illustration, we use Influence Function (IF) as the choice of data
selection method to explain our method. DUET is flexible enough to incorporate different data
selection choice and we analyzed different data selection methods in our experiments (Sec. 6). Our
inner optimization problem aims to find the best-performing data mixture that satisfies:

X ∗
r ≜ argmin

X∈Sr

Leval(θX ), (4)

where Sr ≜ {X : ratio(X ) = r, |X | = M}. In other words, we need to find a subset of data X ∗
r that

yields the lowest evaluation task loss y∗r = Leval(θX∗
r
) while constrained to mixing ratio r.

First, let’s consider a simple approach, based on prior works on estimating distribution extrema
(de Haan, 1981; Lee & Miller, 2022). We randomly sample k different data mixtures from Sr.
This yields k data mixture samples {X1, . . . ,Xk} (each satisfying the mixing ratio r). A uniform
random estimator for y∗r is obtained by evaluating the unseen task performance of an LLM trained
on each data mixture sample and taking the minimum: ỹ∗r = minXi{Leval(θX1), . . . ,Leval(θXk

)}
with X̃ ∗

r = argminXi
{Leval(θX1

), . . . ,Leval(θXk
)} as the solution estimate of inner problem 4. The

estimator ỹ∗r is the 1st-order statistic (Arnold et al., 2008) and a random variable. While consistent
(i.e., as we increase the sampling size k, we can estimate the solution of Eq. 4 more accurately),
uniform random estimator ỹ∗r has high variance (we provide empirical evidence in Fig. 8) because
from k uniformly random data mixture samples, it is unlikely we select the optimal data mixture.
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How can data selection help? We aim to improve the quality of estimator ỹ∗r by incorporating data
selection methods (Sim et al., 2022; Wang et al., 2024a) into our sampling process. Specifically, we
want to increase the chance of sampling high-quality data points (conversely, reduce the chance of
sampling low-quality data points) from each data domain, before using it to train an LLM. To do
so, let us consider the use of influence function (Koh & Liang, 2017; Saunshi et al., 2023) (IF) as a
data selection method into our estimator ỹ∗r to estimate the inner problem solution more accurately.
In App. A.5, we discuss the tradeoffs between different data selection methods, such as coresets
(Mirzasoleiman et al., 2020), diversity-driven measures (Wang et al., 2024b) and LESS (Xia et al.,
2024) when used in DUET. Our experimental results (Fig. 6) also analyzed the performance of DUET
paired with different data selection methods.

IF-driven estimator. We construct an IF-driven estimator in the following manner: first, for each
dataset Di ∈ D from the training domains, we fine-tune a separate, potentially smaller, LLM on
that dataset. Second, we derive the IF score of each training data point w.r.t. the trained LLM for its
respective domain (this can be computed and stored beforehand; more details in App. A.4). Lastly,
given a mixing ratio r proposed at each iteration, we perform weighted sampling from each domain
based on each data point’s IF score within the domain dataset (instead of uniform sampling as
mentioned previously) until we satisfy the mixing ratio r. From hereon, we refer to this sampling
process as IF-weighted sampling. For each data domain, there is a higher chance to sample a data
point with a higher IF score. This yields a data mixture sample X IF . By performing IF-weighted
sampling k times, we obtain k samples of IF-weighted data mixtures {X IF

1 , . . . ,X IF
k }, producing a

new IF-driven estimator:

ỹ∗r = min
Xi

{Leval(θX IF
1

), . . . ,Leval(θX IF
k

)}, (5)

which estimates the solution of inner optimization problem 4. Unlike the uniform random estimator
mentioned earlier, IF-driven estimator emphasizes selecting data with high IF scores, and prior works
(Saunshi et al., 2023) have regarded data points with higher IF scores as of higher quality. Next, we
will discuss the empirical distribution of the IF-driven estimator.

Figure 3: Empirical distribution of
the uniform random and IF-driven
estimator ỹ∗r . Red line is the true
inner problem solution.

Empirical distribution. In Fig. 3, we mixed data from two
training domains to train an LLM to maximize an unseen task
accuracy (while Eq. 4 & 5 consider the minimization case,
we can use max instead of min for the maximization case).
We used a fixed mixing ratio r = [0.5, 0.5]. The optimal data
mixture satisfying this ratio attains a task accuracy indicated
by the red line (obtained by iterating through all possible data
mixtures in a brute-force manner). Ideally, we want our esti-
mator to be as close to the red line as possible. Next, we plot
the empirical distribution of the uniform random estimator
and IF-driven estimator. Empirically, the IF-driven estimator
(green histogram) has a lower variance and bias than the uni-
form random estimator (gray histogram), producing a closer estimate to the true solution (red line).
This suggests that the IF-driven estimator ỹ∗r estimates the solution of problem 4 more accurately.

Theoretical distribution. Exactly how well does the IF-driven estimator ỹ∗r estimate the optimal
unseen evaluation task loss y∗r w.r.t. a given data ratio r? To answer this, we theoretically analyze this
estimator’s empirical distribution. Empirically (App. A.7), the negative of the sampling distribution of
the unseen task accuracy (we consider the negative because we are looking to maximize the accuracy,
instead of minimizing the loss) of each sample Leval(θX IF ) resembles a truncated exponential
distribution. Based on this, we characterize how well the IF-driven estimator ỹ∗r estimates y∗r :
Theorem 3.2. Let {X IF

1 , . . . ,X IF
k } be k data mixture samples drawn from Sr using IF-weighted

sampling. Furthermore, assume each independent sample Leval(θX IF
i

) follows the shifted truncated
exponential distribution y∗r +expt(λ, c), for i = 1, 2, . . . , k where expt(λ, c) is a truncated exponen-
tial distribution governed by rate parameter λ and truncated at c > 0. Then, the IF-driven estimator
ỹ∗r defined in Eq. 5 is a random variable: y∗r + ϵ, where y∗r is the true inner problem solution of Eq. 4
and ϵ is a random noise variable with probability density function (PDF):

PDFϵ(u) =
λke−λu

1− e−λc

(
e−λu − e−λc

1− e−λc

)k−1

on u ∈ [0, c] .
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The proof is shown in App. B.2 and computes the probability distribution of the 1st order statistic (in
which our estimator uses) of a truncated exponential distribution. Theorem 3.2 is used in DUET’s
convergence analysis in Sec. 4. In App. B.4, we also provide details to help readers extend our
analysis to other empirical sampling distributions. This also indicates that estimation error ϵ of the
IF-driven estimator reduces to 0 as the sampling size k increases asymptotically. Surprisingly, our
experiments (Sec. 6) show that using k = 1 is enough to select good data mixtures, underscoring
the effectiveness of using data selection as opposed to random sampling. We also found that given
sufficient budget, using varying k gives us granular control of DUET’s performance (Sec. 6.3).

3.3 USING BAYESIAN OPTIMIZATION FOR OUTER PROBLEM

With the IF-driven estimator introduced to estimate the inner optimization problem solution (or any
estimator using a desired data selection method of choice), we shift our focus to solving the outer
optimization problem of problem 3, which aims to find the optimal data mixing ratio r∗ for the unseen
evaluation task. Since the solution of the inner problem y∗r = minX∈Sr

Leval(θX ) depends only on
the mixing ratio r, we can define a function f(r) ≜ y∗r = minX∈Sr

Leval(θX ), where for a given
mixing ratio r, we use the IF-driven estimator to estimate a solution for the inner problem, producing
f(r). As such, the outer optimization problem of problem 3 can be rewritten into minr f(r) where
r ∈ Rn is a probability simplex representing the mixing ratio over the n training domains. DUET
uses BO constrained to ∥r∥1 = 1 (Sec. 2.1) to find the optimal mixing ratio r∗ for the outer problem.

BO is suitable for solving this problem for a few reasons. First, evaluating f requires us to use
the IF-driven estimator to estimate the inner optimization problem solution and thus f is a black-
box function with no closed, mathematical form; BO is a principled and popular framework to
optimize such black-box functions (Garnett, 2023; Pyzer-Knapp, 2018). Second, we are estimating
the inner problem solution (Theorem. 3.2) using data selection. This implies we can only obtain
noisy observations f(r) + ϵ, where ϵ is a random noise variable with the same distribution as that in
Theorem 3.2; fortunately, BO handles noisy function observations gracefully (Srinivas et al., 2010;
Chowdhury & Gopalan, 2017) during the optimization process, allowing us to find the optimal mixing
ratio eventually (theoretical results shown in Sec. 4).

3.4 INTERLEAVING THE IF-DRIVEN ESTIMATOR AND BO

DUET uses BO at the outer level and IF-driven estimator at the inner level to iteratively optimize the
data mixture, solving problem 3. We formally describe DUET in Algorithm 1.

Algorithm 1 DUET: Optimizing training Data Mixtures for an Unseen Evaluation Task

1: Input: n training datasets from n domains {D1, . . . , Dn}. Computed IF scores of each data
point (App. A.4) w.r.t. its domain dataset and locally trained model. Initial observation of data
mixing ratio and evaluation task performance: D0 ≜ {(r0, ỹ0)}, SE kernel κ, sampling size k,
parameter βt for acquisition step and total number of BO iterations T .

2: for t = 1, . . . , T do
3: rt = argminr µt(r)− βtσt(r) (BO acquisition step)
4: IF-weighted sampling to obtain k samples of data mixtures {X IF

1 , . . . ,X IF
k } (Sec. 3.2).

5: IF-driven estimator at iteration t:
ỹ∗rt = minXi

{Leval(θX IF
1

), . . . ,Leval(θX IF
k

)}.
6: Keep track of best performing data mixture X ∗

t = argminXi
{Leval(θX IF

1
), . . . ,Leval(θX IF

k
)}.

7: Dt = Dt−1 ∪
{(

rt, ỹ∗rt

)}
8: Update the GP posterior and κ with updated observations Dt+1 (Sec. 2.1).
9: end for

10: X ∗ = argminX∗
i ∈{X∗

1 ,...,X∗
T } Leval(θX∗

i
)

At iteration t, DUET uses the LCB acquisition function (Srinivas et al., 2010) on the GP posterior to
propose a candidate mixing ratio rt for our data domains (Line 3). Using the proposed mixing ratio
rt, we use IF scores of each data point to compute the IF-driven estimator ỹ∗rt and fine-tune an LLM
with the selected data points and observe the feedback from the downstream unseen task based on the
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fine-tuned LLM. We keep track of the best performing data mixture sample X ∗
t at every iteration t

(Line 4, 5 and 6). Next, we include (rt+1, ỹ∗rt) into our historical observations Dt+1 (Line 7) and
update our GP posterior (Line 8). After which, we repeat the entire feedback process to select the
next LLM fine-tuning data mixture, until the budget of T BO iterations is exhausted. In the end, we
recover the best performing data mixture X ∗ for the unseen evaluation task (Line 10).

4 THEORETICAL ANALYSIS

4.1 CONVERGENCE ANALYSIS OF DUET USING CUMULATIVE REGRET

We analyze the convergence rate of DUET using the growth of attained cumulative regret (Chen et al.,
2024b) R̃T =

∑T
t=1 |ỹ∗rt − f(rt)| =

∑T
t=1 |f(r∗) + ϵt − f(rt)| for T BO iterations. The attained

cumulative regret consists of two terms, where |f(r∗)− f(rt)| indicates the quality of mixing ratio rt
proposed at each iteration while ϵt indicates how well we can estimate the inner problem solution at
every iteration. By analyzing the attained average regret R̃T /T with T → ∞, the following Theorem
helps us understand how close our algorithm converges (Berkenkamp et al., 2019).
Theorem 4.1. Let f be the outer problem objective defined in Sec. 3.3 with bounded RKHS norm:
||f ||κ =

√
⟨f, f⟩κ. Also, let our IF-driven estimator for the inner problem solution be governed by the

error distribution introduced in Theorem 3.2 with constant c and λ = 1. Let Ac,k =
c2(1−e−c− c

2 )
k−1

(1−e−c)k
,

where k is a fixed predecided sampling size. Then, running DUET over f using the LCB acquisition
function found in (Chowdhury & Gopalan, 2017) at each BO iteration t = 1, . . . , T yields the
following attained average regret (Chen et al., 2024b) upper bound with probability at least 1− δ:

lim
T−→∞

R̃T

T
≤ 6( 4

√
δ +

√
k)

4
√
δk

+ 2Ac,k +

√
2Ac,k

4
√
δ

.

The proof is provided in App. B.3 and bounds |f(r∗)− f(rt)| and ϵt independently using BO regret
analysis (Chen et al., 2024b; Chowdhury & Gopalan, 2017) and the error distribution defined in
Theorem 3.2. Our Theorem’s average regret indicates how close our algorithm converges to the
optimal evaluation task loss with increasing BO iteration T and different choices of sampling size
k. Notice that because c characterizes the error of our estimator in Theorem 3.2, a larger c would
decrease Ac,k and our average regret. In addition, a larger sampling size k reduces the estimation
error of the inner problem (Theorem. 3.2), decreasing Ac,k and reducing our regret bound, although
our experiments (Sec. 6.2) show that setting k = 1 is sufficient to achieve good performance.

5 PRACTICAL CONSIDERATIONS

We are free to use any data selection methods in DUET’s inner loop. We specifically highlighted IF as
a data selection method because in our experiments, IF worked slightly better when paired with BO
(see Fig. 6 for detailed ablation) as compared to other selection methods. It also has some interpretable
advantages (Sec. A.6). Even though computing IF scores could be budget-intensive, practical tricks,
such as parallel computation, Hessian approximation (Agarwal et al., 2017), pre-computation, or a
smaller surrogate model can speed up computation.

If scaling to large-scale datasets is too compute-intensive, one could also use cheaper data selection
methods in DUET, such as LESS (Xia et al., 2024) or TracIn (Pruthi et al., 2020) with some
performance-tradeoff. In the extreme case, one can even resort to the uniform random estimator
introduced in Sec. 3.2, which does not perform any data selection. We experimented with DUET
paired with different data selection methods in Sec. 6.3 and discussed their actual compute-time
in App. C.1. In addition, DUET’s iterative optimization process is a feature: subjecting LLMs to
multiple rounds of training in a feedback loop is a natural part of its deployment life-cycle.

6 EXPERIMENTS AND DISCUSSION

We conduct extensive experiments to showcase the effectiveness of DUET compared to other baselines.
We optimize data mixtures with different methods based on multiple rounds of evaluation task
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performance feedback. Then, we fine-tune an LLM with the optimized data mixture. Lastly, we
deploy the LLM on the evaluation task to evaluate how well the model has performed. We provide
more details of our experimental setup and our algorithm computational cost in App. C.1.

6.1 EXPERIMENTAL SETUP

Our experiments are carried out by performing PEFT (Hu et al., 2021) of Llama-3-8b-Instruct
(Touvron et al., 2023) across different LLM knowledge domains. We also ran our experiments with
Qwen2.5-7B-Instruct (Qwen et al., 2025) and present the results in App. C.3. Our findings
were similar even for different LLMs. The training data domains for LLM evaluation consists of 9
topics: Wikitext (Merity et al., 2016), gsm8k (Cobbe et al., 2021), PubmedQA (Jin et al., 2019),
HeadQA (Vilares & Gómez-Rodríguez, 2019) , SciQ (Welbl et al., 2017), TriviaQA (Joshi et al.,
2017), TruthfulQA (Lin et al., 2022), Hellaswag (Zellers et al., 2019), and CommonsenseQA
(Talmor et al., 2019). We also varied the difficulty of the unseen task by making them out-of-domain
(see captions of Fig. 4). Our LLM performance might have slight differences from existing papers,
most likely due to evaluation setup differences, which we elaborate in App. C.1.

We ran several baselines: DoReMi (Xie et al., 2023a) is a data-mixing approach that optimizes the
data mixture in a distributionally robust manner. LESS (Xia et al., 2024) is a data-selection method
based on data gradient similarities. The Uniform weights baseline uses a data mixture of uniform
ratio across different domains. We ran our baselines for the same number of iterations at DUET
and take the best performing result to ensure similar compute comparison. We also used DUET
with a few different data selection methods: DUET-IF uses our IF-driven estimator (Eq. 5) to select
data mixtures at each BO iteration; DUET-UR, introduced in Sec. 3.2, uses the uniform random
estimator and randomly selects data mixtures that satisfy the proposed mixing ratio; DUET-RH
(Remove Harmful) removes 20% of data points with the lowest IF scores from each data domain,
before performing sampling. DUET-LESS (Xia et al., 2024) and DUET-logdet (Wang et al., 2024b),
which incorporate different data selection methods into DUET, were also used in our ablation studies
(Fig. 6). We used a sampling size of k = 1 and BO iterations T = 10. We also constrained the total
number of selected data points to M = 10000 with a temperature of 0.75 in our LLMs. This makes
the "feedback" (performance) of all valuation tasks noisy, similar to real-world tasks.

We also compared DUET with other baselines, such as Aioli (Chen et al., 2024a), Multi-fidelity
BO (Yen et al., 2025), online data-mixing (Albalak et al., 2023a), alongside naive approaches: e.g.,
using more training tokens, random search or only data selection. Due to space constraints, we show
these results in Table. 2. In general, DUET still finds better data mixtures than these baselines.

6.2 MAIN RESULT

(a) TruthfulQA (b) gsm8k (c) PubMedQA, HeadQA (d) Commonsense, Trivia

Figure 4: Results on unseen LLM evaluation task domains over 10 iterations (higher is better)
for Llama-3-8b-Instruct. Experiments were repeated with Qwen2.5-7b-Instruct in
App. C.3. The caption shows the evaluation task. Underlined evaluation tasks are harder because
the evaluation task domains are removed from the training data (i.e., out-of-domain). Results for
more baselines are presented in Table. 1.

DUET finds more optimal data mixtures. Our result (Fig. 4) shows that DUET finds better data
mixtures within a few iterations of feedback loops. The first column in Fig. 4 consists of a relatively
easier task where the evaluation domain is part of the training task domains. In this case, DUET
(green plot) uses feedback from the evaluation task to find the optimal data mixture with more weights
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on the relevant training data domain, TruthfulQA. On the other hand, we observe the weakness of
conventional methods which cannot exploit coarse feedback: DoReMi (orange dotted line) and LESS
(orange dotted line) both cannot specifically adapt to the evaluation task and hence do not perform as
well. In the 2nd, 3rd and 4th columns, we increased the difficulty of our evaluation task by removing
the evaluation task domain from our training domains (the evaluation task is now out-of-domain).
Surprisingly, DUET still can use feedback from the unseen task to automatically optimize the data
mixture, achieving better LLM performance than other baselines. This suggests data from another
training domain is still useful for the out-of-domain evaluation task (e.g., Wikitext data can still be
helpful for mathematical questions in gsm8k). Hence, DUET is effective in both in-domain and
out-of-domain tasks. In App. C.4, we qualitatively discuss the optimal mixing ratios found by DUET.

6.3 ABLATION EXPERIMENTS

Figure 5: Ablation of differ-
ent components of DUET.

Figure 6: Ablation of using
different data selection meth-
ods in DUET.

Figure 7: Ablation of sam-
pling size k in DUET.

While we have shown that DUET outperforms existing baselines, we
also ran several ablations (using Fig. 4d) setting) to tease apart several
components in DUET.

Ablation of different components in DUET. Fig. 5 shows the impor-
tance of both BO and data selection techniques in DUET. If we used
a uniform data mixture to train an LLM, we can only achieve a base-
line performance given by the red dotted line. With just BO, DUET
automatically reconfigures the mixing ratio and attains performance
gain (A). Next, by incorporating data selection methods, such as using
IF in DUET-IF, we attain further performance gains (B) indicated by
the green plot. Different data selection methods used in DUET also
improves the LLM’s performance to a different extent (C). Therefore,
this affirms the importance of interleaving data selection and BO.

Ablation of using different data selection methods in DUET. How
do different data selection methods fare when used in DUET’s inner
loop? In Fig. 6, we found that IF outperforms other data selection
methods (LESS, RH, log-det (Wang et al., 2024b)) when used in
DUET’s inner loop. This suggests that IF retrieves higher-quality
(or remove lower-quality) data points at each iteration better than
other methods. This aligns with our discussion in App. A.5 where
we explained how IF, being able to remove low-quality data, yields
better training data mixture in our unseen task setting. All in all, we
are free to use different data selection techniques (each with different
computational cost, performance) in DUET’s inner loop.

Ablation of varying sampling size k. Lastly, we also found that
increasing sampling size k in DUET’s inner loop (Fig. 7) helps DUET
find more optimal training data mixtures. This aligns with our theoret-
ical findings from Theorem 4.1, which shows that larger k improves
DUET’s convergence. In practical settings, if budget permits, LLM
owners can fine-tune multiple copies of LLMs (i.e., increase k) to
improve DUET’s performance. However, our results in Fig. 4 showed
that even with k = 1, DUET outperforms other baselines.

7 CONCLUSION AND LIMITATIONS

Our paper proposes DUET, a novel algorithm that exploits multiple rounds of coarse, noisy feedback
from a downstream unseen evaluation task to automatically optimize training data mixture for LLMs.
Our approach offers an effective solution to address the unseen task setting, where fine-grained data
information is unavailable (and conventional approaches fail). It is also quite flexible, allowing us to
choose amongst different data selection methods in its inner loop. We provide theoretical guarantees
of DUET and empirically show that it optimizes data mixtures in a variety of LLM evaluation tasks
better than other baselines. One limitation is that our paper focused on LLM fine-tuning, but broadly
speaking, we believe that DUET can be adapted to and would work equally well for pre-training.
This leaves room for fruitful future research.
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A SUPPLEMENTARY MATERIAL

A.1 REAL-WORLD EXAMPLES OF OUR PROBLEM SETTING

In our problem setting, (a) there is no direct access to the data (e.g., its domain, distribution, or labels)
involved in the unseen evaluation task but (b) multiple rounds of coarse feedback (details covered in
Sec. 2.2) can be gathered from the task using a trained LLM. Here, we provide several real-world
examples in which such a setting occurs.

End-to-end encrypted conversations between LLM and users. This setting is specific to the
conversational setting between a trained LLM and human users. LLM owners are interested in fine-
tuning an LLM to converse well with some human-user demographics but due to real-world privacy
concerns (Li et al., 2024), conversations between a deployed LLM and users are end-to-end encrypted
during test-time (openai.com/enterprise-privacy). So, an LLM owner does not have
any knowledge of the conversation domain or the (unlabeled or labeled) data seen during test-time.
Instead, they only receive a feedback on how well the LLM has performed in the conversation (e.g.,
ratings from the human user, how long each user stays on the applicaton). The LLM owner can
collect multiple rounds of feedback over a period of time. Hence, they can exploit this feedback to
iteratively refine the training data mixture. Many chat-driven applications (e.g., whatsapp, telegram)
nowadays use end-to-end encrypted chats, so our problem setting is relevant here.

Model marketplace. In addition, there are other scenarios in which a model owner needs to
improve an ML model without having access to the data involved in the unseen evaluation task. For
instance, an ML model owner might rent or sell an ML model in a model marketplace (e.g., https:
//aws.amazon.com/marketplace/solutions/machine-learning). However, the
consumer might give feedback (e.g., how often the model makes mistakes) to the ML model owner
in hope that the ML model owner can improve the model’s performance on its own evaluation task.
Furthermore, the data used by the consumer in its evaluation task are considered sensitive data, so the
ML model owner does not know any data involved in the unseen evaluation task. Hence, the ML
owner can only rely on feedback from the consumer to improve the training data mixture.
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A.2 MORE RELATED WORKS ON DATA MIXING AND SELECTION

Recently, a large class of data selection methods utilizing coresets (Zhang et al., 2024), diversity
measures (Wang et al., 2024b), gradient information (Xia et al., 2024) or influence function (Koh &
Liang, 2017) has been introduced to retrieve a smaller subset of data from an existing dataset. These
data selection methods have become popular because they reduce training dataset size (which is an
attractive feature when traning LLMs) and prior work (Xia et al., 2024) showed that training a model
with strategically selected data points allows it to perform better. In addition, data mixing works
(Xie et al., 2023a; Ge et al., 2025; Albalak et al., 2023b) have studied how to reweigh different data
domains to produce optimal data mixtures, using distributionally robust optimization or entropy-based
signals. However, these works, when used in isolation, do not work well in our setting because they
do not exploit feedback from an unseen evaluation task. For example, even if we can retrieve a
high-quality data subset from the training data domain, this domain might not even be relevant to the
unseen evaluation task. Hence, data mixing and selection methods on their own are not applicable
to our setting because they have no way to discern how relevant the training data domain is to the
unseen task. Instead, our paper’s algorithm interleaves BO and data selection method together to
exploit feedback from the unseen evaluation task to optimize our training data mixture. Indeed, our
experimental results in Sec. 6.2 show that DUET performs better than other data mixing and selection
works.

A.3 EXTENSIONS AND DISCUSSION OF DUET IN OTHER SPECIAL SETTINGS

Here, we discuss some extensions of DUET to other settings that fall beyond the scope of our paper.
However, we find them insightful and useful when implementing DUET in practice.

Should we re-fine-tune/re-train the LLM from scratch each time in DUET or continue training
the model from the previous iteration? Our problem formulation in Sec. 2.2 and theoretical findings
(Sec. 4) assumes DUET re-train the LLM from the same initial checkpoint at every iteration. This is
necessary to ensure our surrogate function landscape in GP remains consistent throughout the BO
process, allowing DUET to converge. From a practical perspective, we speculate that DUET will be
less effective if we continue training an LLM from the previous iteration. This is because training
data mixtures from earlier iterations might not be useful for the unseen evaluation task and the model
might memorize (Tirumala et al., 2022) irrelevant information that are difficult to be overwritten in
later BO iterations.

DUET for extremely large datasets used in pre-training. We can amortize the computational
cost of IF computation by pre-computing and storing them beforehand (App. A.4) in our paper’s
fine-tuning setting. However, the size of datasets used in pre-training could be extremely large, which
might still lead to large computational cost when computing IF scores of every data point in such
datasets. To make computation faster, we can adopt methods in (Koh & Liang, 2017) to approximate
hessian inversions when computing IF scores. We can also sample a smaller subset of data to compute
IF scores, before training a neural network (Jethani et al., 2022) to predict the IF scores of other data
points.

Noisy feedback setting. In some practical settings, the feedback from the unseen task is noisy. For
instance, user ratings have a variance even within the same user demographics. How does DUET fare
when the feedback from the unseen evaluation task is noisy? Fortunately, DUET is equally effective
even when feedback is noisy. Feedback noise becomes part of the observation noise (Sec. 3.3) under
the BO framework in DUET. In our experiments (Sec. 6.2), the evaluation task feedback is inherently
noisy since LLM responses are probabilistic in nature, but DUET still performs well empirically.

A.4 INFLUENCE FUNCTION AND ITS CALCULATIONS

Influence function (IF) (Koh & Liang, 2017) has been developed to study the influence of a single data
point on an ML model’s predictions. In this section we provide a summary of IF and its derivation.
The influence of a data point z on the loss of a test data point (or a set of test data points) ztest for an
ML model parameterized by θ is given by the closed-form expression:

IFz,ztest = −∇θL(ztest, θ)
TH−1

θ ∇θL(z, θ), (6)
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where L is the loss function of the ML model and H is the hessian of the ML model w.r.t. parameters
θ. In short, a data point is deemed more "influential" in reducing the model loss on a test data point
if it has a higher IF score. As such, IF scores have also become a popular method in selecting data
points which are more helpful in training an ML model.

In our work, we segregated a validation dataset from each data domain’s dataset, in which we use
to derive the IF score of every training data point in that domain w.r.t. the validation dataset (after
fine-tuning an LLM over the training data till convergence). Then, we normalize these IF scores (for
data points in each data domain), allowing us to perform weighted random sampling at every BO
iteration of our algorithm, obtaining a data subset of size n for a given data domain. This IF-weighted
sampling is repeated for every data domain until we sample a dataset fulfilling the proposed mixing
ratio at every BO iteration. Hence, the resulting data mixture contains more proportion of high-quality
data points (based on IF scores). A summary of the IF-weighted sampling process for one data
domain is given in Alg. 2. In our algorithm, we repeat this procedure for every data domain.

Algorithm 2 IF-weighted sampling for one data domain containing dataset D

1: Input: number of data points n required for the given data domain (taken from the mixing
ratio proposed at current iteration). Dataset D = {x1, x2, ..., x|D|}, Influence value of each data
point in data domain dataset D: I ≜ [I1, I2, . . . , I|D|], small constant ϵ to avoid degenerate-case
normalization.

2: Normalize the IF scores into probabilities: Inormalized ≜

[ I1+min (I)+ϵ∑
I , I2+min (I)+ϵ∑

I , . . . ,
I|D|+min (I)+ϵ∑

I ]

3: Perform weighed sampling from dataset D according to weights given by Inormalized n times.

IF scores can be pre-computed and stored. In addition, we just need to pre-compute the IF
scores of every data point once before reusing them repeatedly at every BO iteration to perform
IF-weighted sampling. This greatly improves our algorithm’s efficiency and runtime, as compared to
other methods (see next section) which requires us to perform expensive computation every iteration.
We provide the computation runtime of calculating IF scores in App. C.1.

A.5 DISCUSSION OF USING OTHER DATA SELECTION METHODS TO SOLVE INNER
OPTIMIZATION PROBLEM IN DUET

Data selection methods (Albalak et al., 2024; Guo et al., 2024; Wang et al., 2024b) have been used to
retrieve a representative subset of data from larger datasets. We note that in our work different data
selection methods can be interchanged to produce different estimators for the inner problem solution
in line 4 and 5 of Algorithm 1. For example, instead of using the IF-driven estimator which performs
weighted sampling based on each data point’s IF scores, one could use LESS (Xia et al., 2024) to
retrieve data subsets for the inner optimization problem. However, our experiments (Fig. 6) have
shown that other data selection methods perform slightly worse than IF when used in DUET’s inner
loop. We speculate that this occurs for a few reasons.

Specifically, IF (Koh & Liang, 2017) is effective at identifying non-useful data (e.g., nonsensical text,
text with lots of spelling mistakes, blur images) and so IF will down-weigh low-quality datapoints
when we sample from that data domain. Doing so is effective in DUET’s setting because these
nonsensical training data are unlikely to be useful for any tasks, so their removal can boost the
performance of the selected data mixture on the unseen task. While LESS contains a similar
formulation as IF, it merely consider the gradient dot-products and ignores the hessian of the loss
function (Koh & Liang, 2017) during computation. Hence, it does not contain as much information
as IF.

In addition, diversity-driven methods (Wang et al., 2024b; Zhang et al., 2024) tend to select training
data subsets that are "most representative" of the training data domain. However, from observation,
they tend to keep nonsensical data points in the final data mixture, which is not as effective as IF,
which down-samples these points. Also, representative data of a training domain might not be useful
for an unseen task if the task is not related. Lastly, when calculating the data log-determinant, we
need to project data into embedding space with an embedding model, and hence the effectiveness of
the embedding model also affects the selection process. Effectiveness aside, diversity-driven methods
are also dependent on the mixing ratio chosen at each iteration. Therefore, we need to recompute
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the log-determinant (Wang et al., 2024b) or coreset (Zhang et al., 2024) at every iteration. On the
contrary, IF scores can be pre-computed and stored prior to running DUET.

Therefore, different selection methods have different properties (above), but conceptually and empiri-
cally, we found IF to work better in our unseen task setting. Our ablation studies (Fig. 6) affirms our
claim: using IF in DUET attains the highest performance as compared to selection methods such as
LESS and log-determinant. We hope DUET can serve as a testbed for more advanced data-selection
methods in the future.

A.6 MORE DISCUSSION ON THE IF-DRIVEN ESTIMATOR

Here, we provide more justification behind our choice of the IF-driven estimator.

Why not take the data with the top-N IF scores instead of sampling? One obvious alternative
is to pick the data subset with the top IF scores (satisfying the given data ratio) or remove the
datasubset with the lowest IF scores. We did not find this selection method effective in practice.
Because IF-values are pre-computed and independent (App. A.4), we end up selecting the same few
datapoints with top IF scores at every BO iteration in DUET. With the IF-weighted sampling, we
select more diverse data points, yielding better data mixtures. This becomes more apparent when
many data points have high IF scores and sampling provides us access to these data points at every
iteration. Empirically, we also found that the deterministic approach performs worse (See DUET-RH
in Sec. 6.2) than IF-weighted sampling.

Performing weighted-sampling with IF-scores not only retains the benefits of using IF-scores (we
upweigh higher quality data while still having access to data points with moderate IF-scores), but also
allows us to exploit additional computational resources to reduce the estimation error by increasing
the sampling size. For instance, Theorem 3.2 shows that higher sampling size reduces the inner
problem estimation variance and bias. Intuitively, an LLM owner could exploit more compute to
increase sampling size k and sample more data mixtures and reduce the estimation error at every BO
iteration. These estimation error variances are also handled gracefully in the BO framework.

In our experiments, we demonstrate that even with limited resource to sample and train an LLM once
(k = 1), DUET still outperforms other baselines in our setting. In fact, Our ablation (Fig. 7) shows
that increasing k results in a performance boost, showcasing the benefits of sampling in real-world
settings (where computational resources are available to make multiple queries each BO step).

A.7 EMPIRICAL DISTRIBUTIONS OF ESTIMATORS FROM DIFFERENT DATA SELECTION
METHODS

(a) Empirical sampling distribution of
Leval(θX )

(b) Empirical estimator distribution

Figure 8: (a): Empirical distribution of evaluation task accuracy Leval(θX ) from each data mixture
sample X (b): empirical distribution of the estimators introduced in Sec. 3.2. The green histogram
is our method of performing IF-weighted sampling to obtain data mixtures. The gray histogram is
simply randomly sampling data mixtures with no data selection methods. The purple histogram is the
method of removing 20% of the data points with the lowest IF scores.
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We have introduced the IF-driven estimator in Sec. 3.2 to estimate the solution of the inner problem.
The IF-driven estimator performs IF-weighted sampling on data points from each data domain to
produce data mixture samples (Eq. 5) constrained to a data mixing ratio r. Each data mixture sample
is then used to train/fine-tune an LLM before obtaining a feedback on how well it has performed
on the unseen evaluation task. Hence, this feedback based on each data mixture sample is also a
sampling distribution that we can empirically observe. Fig. 8a shows the sampling distribution of the
evaluation task performance obtained from each data mixture. Empirically, we see that the negative
of this distribution is similar to a truncate exponential distribution mentioned in Theorem 3.2 (We
consider the negative of this random variable because our paper considers the evaluation task loss,
but empirically we maximize the evaluation task accuracy). In addition, the truncated exponential
distribution is appropriate because it implies the unseen evaluation task loss is upper bounded at y∗r+c
for a non-negative constant c; this is a reasonable assumption because many real-world feedbacks are
bounded (e.g. user ratings).

We also plot the empirical distribution of the IF-driven estimator introduced in Eq. 5 in Fig. 8b. The
distribution coincides with the estimator’s distribution (formally, y∗r + ϵ) introduced in Theorem 3.2.
From the estimator’s distribution, we see that the IF-driven estimator (green histogram) has the lower
bias and variance as compared to other estimators.

B PROOFS

B.1 PROOF OF THEOREM 3.1

Theorem 3.1. X ∗, the optimal set of data points from D, is the solution of the original problem 2 iff
r∗ = ratio(X ∗) is the optimal mixing ratio solution of the reparameterized problem:

min
r∈Rn

min
X∈Sr

Leval(θX ), (3)

where Sr ≜ {X : X ∈ D, ratio(X ) = r, |X | = M} and ratio(X ) = r means that the data points in
X satisfies the mixing ratio r ∈ RN from n data domains and ∥r∥1 = 1.

Proof. Theorem. 3.1 can be proven in two steps. First, we restate the theoretical results from (Chen
et al., 2024b) in Lemma B.1. This Lemma reparameterizes any optimization problem (minx f(x))
(while retaining the solution set exactly) under some regular assumptions:

Lemma B.1. Let x ∈ Rd and y ∈ Rn. Also, consider well-defined functions f over Rd −→ R and g
over Rd −→ Rn. Then x∗ is a solution of argminx f(x) if and only if y∗ = g(x∗) is a solution of the
second optimization problem over domain {y | ∃x, g(x) = y} :

min
y

min
x

f(x)

s.t. g(x) = y

The proof of Lemma B.1 can be found in Lemma C.1 of (Chen et al., 2024b). Next, we show that the
objective function of problem 3 introduced in our optimization problem satisfies these assumptions,
allowing us to apply the Lemma B.1 directly.

In our setting, we set x ≜ X , f(x) ≜ Leval(θX ) and g(x) ≜ ratio(X ). We can see that both functions
are well-defined, where for any chosen input X , there certainly exists an observed evaluation task
loss Leval(θX ) and mixing ratio ratio(X ). Lastly, by setting y ≜ r, our optimization problem in
problem 3 is of the identical form of the optimization problem shown in Lemma B.1. Therefore, our
reparameterization process is valid.

B.2 PROOF OF THEOREM 3.2

Theorem 3.2. Let {X IF
1 , . . . ,X IF

k } be k data mixture samples drawn from Sr using IF-weighted
sampling. Furthermore, assume each independent sample Leval(θX IF

i
) follows the shifted truncated
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exponential distribution y∗r +expt(λ, c), for i = 1, 2, . . . , k where expt(λ, c) is a truncated exponen-
tial distribution governed by rate parameter λ and truncated at c > 0. Then, the IF-driven estimator
ỹ∗r defined in Eq. 5 is a random variable: y∗r + ϵ, where y∗r is the true inner problem solution of Eq. 4
and ϵ is a random noise variable with probability density function (PDF):

PDFϵ(u) =
λke−λu

1− e−λc

(
e−λu − e−λc

1− e−λc

)k−1

on u ∈ [0, c] .

Proof. Let X1, X2, . . . , Xk be k samples randomly drawn from a sampling distribution and Xmin =
min{X1, X2, . . . , Xk}. This scenario mirrors the setting in Theorem 3.2. Our goal is to derive
the distribution of Xmin and show that it is exactly the same as the distribution of ỹ∗r shown in the
Theorem 3.2.

If each random sample Xi ∼ expt(λ, c), we first use a commonly known result (Chen et al., 2024b)
that the CDF of any truncated distribution on [0, c] is F (u)−F (0)

F (c)−F (0) where F is the CDF of the original
distribution. Also, we note that for the untruncated exponential distribution, F (u) = 1 − e−λu.
Hence, The CDF of Xmin is

cdf(Xmin)(u) = 1− P(Xmin ≥ u)

= 1− P(X1 ≥ u,X2 ≥ u, . . . ,Xk ≥ u)

= 1−
(
1− 1− e−λu

1− e−λc

)k

, 0 ≤ u ≤ c.

and so the PDF of Xmin can be computed as

PDF(Xmin)(u) =
∂

∂u
F(Xmin)(u)

=
λke−λu

1− e−λc

(
e−λu − e−λc

1− e−λc

)k−1

, 0 ≤ u ≤ c.

In the original Theorem, each sample Xi follows the shifted truncated exponential distribution
y∗r + expt(λ, c) where y∗r is a constant. Hence, we can see that our estimator has the distribution of
y∗r + Xmin where Xmin has the PDF above. Hence, the Theorem is proven by setting the random
variable ϵ = Xmin.

B.3 PROOF OF THEOREM 4.1

Theorem 4.1. Let f be the outer problem objective defined in Sec. 3.3 with bounded RKHS norm:
||f ||κ =

√
⟨f, f⟩κ. Also, let our IF-driven estimator for the inner problem solution be governed by the

error distribution introduced in Theorem 3.2 with constant c and λ = 1. Let Ac,k =
c2(1−e−c− c

2 )
k−1

(1−e−c)k
,

where k is a fixed predecided sampling size. Then, running DUET over f using the LCB acquisition
function found in (Chowdhury & Gopalan, 2017) at each BO iteration t = 1, . . . , T yields the
following attained average regret (Chen et al., 2024b) upper bound with probability at least 1− δ:

lim
T−→∞

R̃T

T
≤ 6( 4

√
δ +

√
k)

4
√
δk

+ 2Ac,k +

√
2Ac,k

4
√
δ

.

Proof. We provide the proof of the sub-linear R̃T growth of DUET in Theorem 4.1 by establishing
upper bounds of |µt(x)− f(x)| and ϵt separately at each BO iteration t and use the independence
rule to bound their sum. To do so, we introduce the following two Lemmas.

Our first Lemma is taken from from known literature on Kernelized Bandits (Chowdhury & Gopalan,
2017) and provides the upper bound on difference between f(xt) and µt(x) at each BO iteration t.
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Lemma B.2. Let ||f ||κ =
√
⟨f, f⟩κ ≤ B. Also, assume that the observation noise associated with

each BO iteration is R-sub-Gaussian with R > 0. Then with probability at least 1− δ, the following
holds for BO iteration t ≤ T :

|µt(x)− f(x)| ≤
(
B +R

√
2(γt + 1 + ln(1/δ)

)
σt(x) (7)

where γt is the maximum information gain after t observations and µt(x), σ
2
t (x) are mean and

variance of posteror distribution of GP defined in Equation 1, with λ = 1 + 2/T .

Our second Lemma attempts to bound the expectation and variance of ϵt, the non-negative observation
noise (in our case, it corresponds to the estimation error involved in solving the inner problem) at
each BO iteration t. These expectation and variance will be used later to bound our cumulative regret.

Lemma B.3. Let each observation noise ϵt of BO iteration t follow the same probability dis-
tribution as ϵ defined in Theorem 3.2 with sampling size k probability density function fϵt(u) =

λke−λu

1−e−λc

(
e−λu−e−λc

1−e−λc

)k−1

with 0 < c ≤ 1, λ = 1 and u ∈ [0, c], then E(ϵt) ≤ 6
k+

2c2((1−e−c)− c
2 )

k−1

(1−e−c)k

and Var(ϵt) ≤ E(ϵt).

Proof. For λ = 1, we have that fϵt(u) = ke−u

1−e−c

(
e−u−e−c

1−e−c

)k−1

with 0 < c < 1 and u ∈ [0, c].
Then, the expectation:

E(ϵt) =
∫ c

0

ufϵt(u) du

=

∫ c

0

uke−u

1− e−c

(
e−u − e−c

1− e−c

)k−1

du

=
k

(1− e−c)k

∫ c

0

ue−u
(
e−u − e−c

)k−1
du

(1)

≤ k

(1− e−c)k

∫ c

0

u
(
e−u − e−c

)k−1
du

(2)

≤ k

(1− e−c)k

∫ c

0

u
((

1− u

2

)
− e−c

)k−1

du

(3)

≤ k

(1− e−c)k

(
(u− 2(1− e−c))((1− e−c)− u

2 )
k−1(2(1− e−c) + (k − 1)u+ u)

k(k + 1)

)∣∣∣∣∣
u=c

u=0

(4)
=

1

(1− e−c)k

(
(c− 2(1− e−c))((1− e−c)− c

2 )
k−1(2(1− e−c) + kc) + 4(1− e−c)k+1

k + 1

)
(5)

≤ 4(1− e−c)k+1

(k + 1)(1− e−c)k
+

2kc2((1− e−c)− c
2 )

k−1

(k + 1)(1− e−c)k
+

2((1− e−c)− c
2 )

k−1(1− e−c)

(k + 1)(1− e−c)k

(6)

≤ 6

k
+

2c2((1− e−c)− c
2 )

k−1

(1− e−c)k

(8)

where
(1)

≤ makes use of the fact that e−λu ≤ 1 for u ∈ [0, c] with c > 0,
(2)

≤ uses the inequality

e−u ≤ 1 − u
2 for u ∈ [0, c], and c ≤ 1,

(3)
= uses the fact that e−λc < 1,

(4)
= is derived by solving

the definite integral by parts and substitution and
(4)
= simplifies the upper bound with algebraic

manipulation.

Next, the upper bound of the variance of ϵt can be derived by
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Var(ϵt) =

∫ c

0

u2fϵt(u) du

(1)

≤ c

∫ c

0

ufϵt(u) du

(2)

≤
∫ c

0

ufϵt(u) du

= E(ϵt)

(9)

where
(1)

≤ makes use of the fact that ϵt lies in [0, c] and
(2)

≤ makes use of the fact that 0 < c ≤ 1. This
completes the proof on the bounds on E(ϵt) and Var(ϵt).

Next, we observe that xt at each BO iteration t is chosen via the IGP-LCB acquisition function
(i.e., xt = argminx µt−1(x) − βtσt−1(x) and βt = B + R

√
2(γt−1 + 1 + ln(1/δ1)) where the

observation noise associated with each BO iteration is R-sub Gaussian). Thus, we can see that at
each iteration t ≥ 1, we have −µt−1(xt) + βtσt−1(xt) ≥ −µt−1(x

∗) + βtσt−1(x
∗). It then follows

that for all t ≥ 1 and with probability at least 1− δ1,

|f(xt)− f(x∗)|
(1)

≤ f(xt)− µt−1(x
∗)− βtσt−1(x

∗)

(2)

≤ f(xt)− µt−1(xt) + βtσt−1(xt)

≤ βtσt−1(xt) + |µt−1(xt)− f(xt)|
≤ 2βtσt−1(xt)

(10)

Therefore, by setting δ1 = δ2 =
√
δ, it follows that with probability 1− δ (this follows by rule of

independence applied to the upper bound of events
∑T

t=1 |f(xt) − f(x∗)| and
∑T

t=1 ϵt) that our
attained cumulative regret can be bounded as

R̃T =

T∑
t=1

|ỹt − f(x∗)|

=

T∑
t=1

|f(xt)− f(x∗) + ϵt|

(1)
=

T∑
t=1

|f(xt)− f(x∗)|+
T∑

t=1

ϵt

(2)

≤ 2βT

T∑
t=1

σt−1(xt) +

T∑
t=1

ϵt

(3)
= 2

(
B +R

√
2(γT + 1 + ln(1/

√
δ))

) T∑
t=1

σt−1(xt) +

T∑
t=1

ϵt

(4)

≤ 2

(
B +R

√
2(γT + 1 + ln(1/

√
δ))

) T∑
t=1

σt−1(xt) +

T∑
t=1

E(ϵt) +
T∑

t=1

√
Var(ϵt)

δ2

(5)
= 2

(
B +R

√
2(γT + 1 + ln(1/

√
δ))

)
O(
√

TγT ) +

T∑
t=1

E(ϵt) +
T∑

t=1

√
Var(ϵt)

δ2

= O
(√

T (B
√
γT +RγT )

)
+

T∑
t=1

E(ϵt) +
T∑

t=1

√
Var(ϵt)

δ2

(6)
= O

(√
T (B

√
γT +

c2γT
4

)

)
+

T∑
t=1

E(ϵt) +
T∑

t=1

√
Var(ϵt)

δ2

(11)
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where we have followed the attained cumulative regret proof in (Chen et al., 2024b) closely and used
the following facts:

•
(1)
= uses the fact that ϵt is non-negative in our problem setting (Theorem. 3.2).

•
(2)

≤ is derived from Eq. equation 10.

•
(3)
= uses the definition of βT in IGP-LCB acquisition function (Chowdhury & Gopalan, 2017)
w.r.t. δ1 =

√
δ

•
(4)

≤ uses Chebyshev’s inequality over ϵt with probability at least 1− δ2.

•
(5)
= uses

∑T
t=1 σt−1(xt) ≤ O(

√
TγT ) as shown in Lemma 4 by Chowdhury & Gopalan

(Chowdhury & Gopalan, 2017).

•
(6)
= uses the fact that ϵt is bounded on [0, c] and all bounded random variables are R-sub-
Gaussian with R = c2

4 (Arbel et al., 2019).

Next, we need to derive the upper bound of
∑T

t=1 E(ϵt) +
∑T

t=1

√
Var(ϵt)

δ2
w.r.t. T . This can be done

by using the upper bound of the expectation and variance of ϵt proven in Lemma B.3:

T∑
t=1

E(ϵt) +
T∑

t=1

√
Var(ϵt)

δ2

(1)

≤
T∑

t=1

(
6

k
+

2c2((1− e−c)− c
2 )

k−1

(1− e−c)k

)
+

T∑
t=1

√
6

δ2k
+

2c2((1− e−c)− c
2 )

k−1

δ2(1− e−c)k

=
6T

k
+

2Tc2((1− e−c)− c
2 )

k−1

(1− e−c)k
+ T

√
6

δ2k
+

2c2((1− e−c)− c
2 )

k−1

δ2(1− e−c)k

(12)

where
(1)

≤ uses Lemma B.3 directly.

Then, it follows from Eq. 11 and 12 that with probability 1−δ and δ2 =
√
δ, the attained cumulative

regret R̃T at iteration T is upper bounded by:

R̃T ≤ O

(√
T (B

√
γT +

c2γT
4

)

)
+
6T

k
+
2Tc2((1− e−c)− c

2 )
k−1

(1− e−c)k
+T

√
6

δ2k
+

2c2((1− e−c)− c
2 )

k−1

δ2(1− e−c)k

(13)

Finally we set Ac,k =
c2(1−e−c− c

2 )
k−1

(1−e−c)k
. As T → ∞, with probability 1−δ and δ2 =

√
δ, the attained

average regret converges to:

lim
T→∞

R̃T

T

(1)

≤ 6

k
+

2((1− e−c)− c
2 )

k−1

(1− e−c)k
+

√
6

δ2k
+

2((1− e−c)− c
2 )

k−1

δ2(1− e−c)k

(2)

≤ 6

k
+

√
6

δ2k
+ 2Ac,k +

√
2Ac,k

δ2

≤ 6( 4
√
δ +

√
k)

4
√
δk

+ 2Ac,k +

√
2Ac,k

δ2

(14)

where
(1)

≤ divides Eq. 13 by T throughout, eliminating the O expression and
(2)

≤ uses the subsitition of
Ac,k and triangle inequality. This completes our proof for the attained average regret in Theorem 4.1.
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B.4 EXTENDING THEORETICAL ANALYSIS BASED ON DIFFERENT DATA SELECTION METHODS

Readers might be interested in how different data selection methods used to create different estimators
affect our theoretical analysis. Here, we provide details on how one could replicate our paper’s
theoretical analysis to different estimators.

Step 1. Establish the sampling distribution of Leval(θX ). Using a particular data selection method,
one obtains k data mixture samples {X1, . . . ,Xk} (in our paper, these samples are obtained via
weighted sampling based on each data point’s IF scores). Then, one trains an LLM for each data mix-
ture and obtain the evaluation task loss for each resulting LLM, yielding {Leval(θX1

), . . . ,LevalθXk
}.

From this set, one can empirically derive the sampling distribution of each sample Leval(θXi
). In

Theorem 3.2, we assumed that each sample Leval(θXi
) follows the truncated exponential distribution.

However, different data selection methods would certainly lead to different empirical sampling
distributions.

Step 2. Derive an estimator’s empirical distribution. Next, we need to theoretically derive the
1st-order statistic (Arnold et al., 2008) of the empirical sampling distribution from Step 1, since we
use the 1st-order statistic as our estimator. The procedure to do so is shown in App. B.2 and uses a
fairly standard procedure to derive the distribution of order statistics. For subsequent analysis to be
tractable, the PDF of the 1st-order statistic should have a closed form (hence, a simpler sampling
distribution in Step 1 is preferred). More importantly, the estimator’s empirical distribution should
be R-sub-gaussian for a fixed R > 0. This is because for the regret-analysis proof in Eq. 11 to
hold true, the observation noise in the BO process should be R-sub-Gaussian. Fortunately, a large
family of random distributions, including our IF-driven estimator introduced in this paper, are all
R-sub-Gaussian (e.g., exponential family, all bounded random variables).

Step 3. Derive the upper bound of estimator’s expectation and variance. Next, we derive the
upper bound of the 1st-order statistic’s expectation and variance as shown in Lemma. B.3.

Step 4. Derive attainable cumulative regret. Lastly, we analyze the convergence rate of our
algorithm using the growth of attained cumulative regret (Chen et al., 2024b) R̃T =

∑T
t=1 |ỹ∗rt −

f(rt)| =
∑T

t=1 |f(r∗) + ϵt − f(rt)| for T BO iterations. Since the error term ϵt has the same
expectation and variance of our estimator, we can use the results from Step 3 to derive our regret
bound (as shown in Eq. 11).

C ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSIONS

C.1 ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

In this section, we provide additional details in our experiments for ease of reproduceability. Through-
out our experiments, we used the SE kernel with lengthscale parameters learned from historical
observations via maximum-likelihood (Williams & Rasmussen, 2006). In our LCB acquisition
function (Greenhill et al., 2020), we set βt = 0.5 (see Alg. 1) throughout our experiments. Fur-
thermore, we need to perform constrained BO (Gardner et al., 2014) in our experiments because
the inputs to our optimization problem is a data mixing ratio r whose sum of entries is constrained
to 1. BoTorch allows us to implement such constraints (botorch.org/docs/constraints)
easily. All evaluation for language tasks is done on llm-harness (Gao et al., 2024) with default 3-shot
settings with no chain-of-thought or special prompting techniques. Hence, it is possible some of our
paper’s results differ from those reported in other papers (due to different prompting and inference
settings). However, our paper’s emphasis is on improving the LLM’s performance with a few rounds
refinement on the training data mixture. Hence, we expect DUET to work well even in other inference
settings. We treat the evaluation results on llm-harness as the feedback observed in our problem
setting. For methods (e.g., uniform mixture, LESS, DoReMi) which do not use feedback, we repeat
them 10 times to ensure fairness in comparison with DUET and show the best LLM performance in
our results.

To train the LLM, we used a LoRA (Hu et al., 2021) rank of 128 and the Adam optimizer (Kingma &
Ba, 2017) with initial learning rate of 1e5. The specific hyperparameters surrounding our optimizers
can be found in our code, which we have released. Each iteration of model fine-tuning is done in 1
epoch on a L40 Nvidia GPU and takes approximately an hour. So, performing 10 BO iterations take
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10 hours to run. In reality, the optimization process (all 10 iterations) will be carried out over a long
span of time (e.g., weeks, or even months) as part of the LLM deployment life-cycle. So this is a
reasonable amount of compute time.

IF computation. To derive the IF scores of our training data, we remove 10% of the training data
from each data domain and treat it as the validation set. Then, we fine-tune a separate LLM for each
data domain (using the same setting as above and the same model type as that in our experiments),
before deriving the IF score of every data point from each data domain based on the converged LLM
and the validation dataset. Using 4 Nvidia L40 GPUS, we were able to compute the IF scores of
TriviaQA (containing around 170k data points) in around 2-3 hours with the torch- influence library
(https://github.com/alstonlo/torch-influence). Smaller datasets required even
shorter computation time. Certainly, these runtimes are reasonable in practical settings, since we only
need to compute the IF scores once and store them before running DUET.

Other data selection methods. We can also use other data selection methods in DUET’s inner loop.
For instance, LESS (Xia et al., 2024) and TracIn (Pruthi et al., 2020) uses around 4-5 hours to build a
data-gradient store. On the other hand, diversity-driven selection techniques (Wang et al., 2024b)
are usually more computationally expensive, taking more than 30 hours to select the top 10000 data
points.

C.2 COMPARISON WITH OTHER BASELINES

One alternative baseline is to simply fine-tune the LLM on a training dataset for multiple more training
tokens (and epoch) and compare it with DUET. In Table 1, we fine-tuned Llama-3-8b-Instruct
for more epochs and training tokens on each training domain and evaluated on our evaluation task.
The results show that DUET-IF attains better results because it can exploit the feedback from the task.

Table 1: Performance of models trained on different datasets across evaluation tasks.

Train ↓ Eval. → TruthfulQA gsm8k PubmedQA+HeadQA Commonsense+TriviaQA
Wikitext 42.8 70.4 40.6 59.9
gsm8k 47.2 86.1 43.3 64.1
Pubmed 43.3 71.5 49.3 58.4
HeadQA 45.0 75.2 50.2 60.0
SciQ 45.6 75.6 44.6 63.4
TruthfulQA 59.0 74.0 43.8 61.0
Hellaswag 46.1 72.1 43.2 60.4
CommonsenseQA 50.1 73.3 47.2 65.8
TriviaQA 51.2 70.1 48.1 66.5
DUET-IF (ours) 59.8 84.2 52.4 69.6

Next, we compared DUET (paired with different data selection methods) with a variety of naive
baselines. Aioli (Chen et al., 2024a), Multi-Fid (Yen et al., 2025) are two baselines that use domain
reweighting and multi-fidelity BO to optimize data mixtures. IF just picks the top M = 20000
datapoints with the highest influence scores. Random just selects a random subset of data, but we
subjected it to more training epochs and M = 50000 data points to ensure equal compute comparison.
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Table 2: Performance of other baselines across evaluation tasks.

Other baselines TruthfulQA gsm8k PQA+HQA Commonsense, TriviaQA
Aioli (Chen et al., 2024a) 51.1±0.7 76.5±1.2 48.8±0.5 63.7±1.0

Multi-Fid (Yen et al., 2025) 52.8±0.9 73.9±1.3 47.2±0.6 65.2±0.8

ODM (Albalak et al., 2023a) 46.1±1.1 77.3±0.4 45.8±1.2 60.1±0.7

IF only 50.8±0.5 76.9±0.8 47.7±0.9 57.8±0.6

Random 49.3±0.8 64.3±1.4 41.2±0.7 57.3±1.0

Uniform + more training tokens 51.6±0.8 64.4±1.3 44.5±1.2 59.2±1.6

DUET-IF (ours) 59.8±0.6 84.2±1.1 52.4±0.9 69.6±0.8

DUET-LESS (ours) 58.7±1.0 80.5±0.7 50.8±0.9 67.6±1.3

C.3 ADDITIONAL EXPERIMENTAL RESULTS WITH QWEN2.5-7B-INSTRUCT

We repeated our experiments with Qwen2.5-7B-Instruct in Fig. 9 and observe that DUET still
can optimize data mixtures better than other baselines. This indicates that the effectiveness of DUET
is independent of the model choice. Hence, we expect DUET to work well for other models as well.

(a) TruthfulQA (b) gsm8k (c) PubMedQA, HeadQA (d) Commonsense, Trivia

Figure 9: Results on unseen LLM evaluation task domains over 10 iterations (higher is
better) for Qwen2.5-7b-Instruct. The subcaption indicates the evaluation domain.
Underlined evaluation tasks are more difficult because the evaluation task domains are removed
from the training data (i.e., OOD).

C.4 MIXING RATIO FOUND BY DUET

We also present the mixing ratio found by DUET for our experiments after 10 BO iterations. The
column title denotes the evaluation task. When the unseen task is in-domain (TruthfulQA), DUET
automatically finds that TruthfulQA is relevant training domain and places more weights on it. For
OOD cases, DUET automatically finds relevant training domains as well. For example, even though
we do not have gsm8k data for training, DUET automatically finds data from wikitext and sciq more
relevant in improving the performance of the trained LLM.

Table 3: Mixing ratio found by DUET in our Llama-3-8b-Instruct experiments after 10 BO
iterations. The column indicates the unseen task domain, in the same setting and order as those found
in our main experiments (Fig. 4). NA indicates the respective domain was not included in the training
data.

Domains TruthfulQA gsm8k PubMedQA, HeadQA CommonsenseQA, TriviaQA
Commonsense 3 7 11 NA
gsm8k 0 NA 0 10
headqa 0 0 NA 0
hellaswag 0 1 0 28
pubmedqa 0 1 NA 0
sciq 2 38 34 22
triviaqa 3 12 19 NA
wikitext 8 41 30 22
TruthfulQA 84 1 6 18
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D REBUTTAL ADDITIONS

D.1 EXTENSION AND ADDITIONAL RESULTS ON FULL-PARAMETER FINETUNING OF LLMS

While it is too computationally expensive to perform large-scale pre-training from scratch for now,
we have performed additional experiments on continual, full-parameter training on 8B and 14B
models (in contrast to LoRA fine-tuning used in our paper). We performed these experiments on the
same setting (but we had to increase the training epoch to 3 for full-parameter training to converge
better) as in Fig.4(a) and 4(b) and show the best LLM performance achieved in 10 BO iterations.

Model Method DUET-IF DUET w/o IF LESS
Llama-3-8B-Instruct 64.3 ± 0.8 60.1 ± 1.1 51.7 ± 0.7
Qwen3-14B 73.5 ± 0.6 70.1 ± 0.9 63.2 ± 1.0

Table 4: Performance gain on TruthfulQA.

Model Method DUET-IF DUET w/o IF LESS
Llama-3-8B-Instruct 85.1 ± 0.4 81.0 ± 0.7 74.4 ± 0.4
Qwen3-14B 88.6 ± 0.6 84.1 ± 0.9 80.2 ± 0.8

Table 5: Performance gain on gsm8k (OOD).

The results are generally consistent with our paper’s finding on LLM LoRA fine-tuning, and DUET
with IF performs better than its baselines. We will include this into the revised manuscript. We hope
these additional results suggest that our approach is equally feasible for full-parameter fine-tuning.

One noteworthy point is that while computing IF scores for larger models is more expensive (i.e.,
computational cost scales with number of model parameters [1]), a practical approach is to use a
smaller surrogate model to compute the IF scores, which reduces the computational time. We used
the same set of IF-scores computed from the LoRA parameters here. If computational budget is a
concern, we can also free to use less expensive data selection methods in DUET’s inner loop (as
elaborated in Sec. 3.2 of our paper) with some performance-cost tradeoff.

D.2 DISCUSSION ON COMPUTATION AND MEMORY OVERHEAD OF DUET

Here, we provide a discussion of DUET-IF’s computation and memory overhead.

D.2.1 COMPUTATION OVERHEAD OF BO IN DUET

Let T denote the number of Bayesian Optimization (BO) iterations and n denote the dimension of
the data mixture (i.e., the number of training domains). In practice, the dominant cost of DUET
comes from fine-tuning the LLM T times, since BO requires multiple function evaluations (Frazier,
2018). This allows BO to exploit feedback from the unseen evaluation task and avoid brute-force
enumeration of all possible mixture ratios.

Beyond LLM fine-tuning, BO incurs additional computational overhead. When using a Gaussian
Process (GP) surrogate, the primary cost arises from inverting the T × T kernel matrix when re-
estimating GP hyperparameters using maximum likelihood (see Eq. (5.8) in (Williams & Rasmussen,
2006)). This is typically performed using a Cholesky decomposition, which costs O(T 3).

Next, optimizing the acquisition function at each iteration typically requires gradient-based opti-
mization. For the UCB acquisition function used in our work, computing gradients of the GP mean
and standard deviation incurs O((nT + nT 2)c) operations, where O(nT ) comes from differentiat-
ing µ(xcandidate), O(nT 2) from differentiating σ(xcandidate), and c is the number of restarts used in
acquisition optimization (see botorch acquisition optimization documentation).

(A) Putting these together, the total BO compute at iteration T is:
O(T 3) +O((nT + nT 2)c) = O(T 3),

since typically n ≪ t. Summing over from the first iteration yields the same O(T 3) complexity
because Cholesky updates allow reuse of factorizations, avoiding full recomputation at each iteration.
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D.2.2 COMPUTATION OVERHEAD OF IF SCORES IN DUET-IF

When DUET is combined with data selection methods such as Influence Functions (IF), additional
compute costs arise.

Influence Scores. Given N datapoints and p trainable model parameters (in other paper, p is
the number of parameters in the model LoRA), direct computation of influence scores requires
O(Np2 + p3) operations (Koh & Liang, 2017). However, stochastic estimation techniques (Sec. 3
in (Koh & Liang, 2017)) reduce this to O(Np). Importantly, IF scores only need to be computed
once and can be reused across BO iterations.

Other Data Selection Methods. Different data selection strategies incur different costs, but these
are typically amortized since they are computed once. For example, LESS incurs O(Nbp) operations,
where b is the number of checkpoints used (Xia et al., 2024).

Putting (A) and (B) together, the joint compute cost of DUET-IF is:

O(T 3 +Np).

D.2.3 MEMORY OVERHEAD

BO alone requires O(T 2) memory to store the T × T kernel matrix. During IF computation, we
require O(p) memory to store parameter gradients; the Hessian H need not be stored explicitly,
as Hessian–vector products can be computed efficiently using conjugate gradient or stochastic
methods (Koh & Liang, 2017). After computation, storing the IF scores requires O(N) memory.

Thus, DUET-IF has a total memory overhead of:

O(T 2 + p).

Additionally, because DUET fine-tunes an LLM using different data mixtures across BO iterations,
we maintain a copy of the best-performing LoRA adaptor throughout the optimization.

CONCLUSION

In summary, the computation overhead of DUET-IF is:

O(T 3) +O(Np),

where O(Np) can be precomputed before optimization and the memory overhead is:

O(T 2 + p).

D.3 MORE DETAILS ON MIXING RATIO FOUND

↓ Domains → Iterations 1 2 3 4 5 6 7 8 9 10 DoReMi
commonsenseQA 11 0 0 11 28 0 11 80 3 0 14
gsm8k 11 0 0 9 0 0 10 16 0 90 4
headQA 11 0 0 0 0 0 7 0 0 0 6
hellaswag 11 0 0 13 0 2 0 0 0 0 3
pubmedqa 11 0 0 8 0 0 6 4 0 0 9
sciq 11 0 0 0 0 0 16 0 2 10 14
triviaQA 11 0 0 0 60 17 0 0 3 0 20
wikitext 11 0 38 11 0 10 0 0 8 0 22
truthfulQA 11 100 62 48 12 71 50 0 84 0 18
LLM Performance 47 52 53 54 48 57 51 58 60(*) 40 51

In the table below (for clarity reasons, the numbers are rounded), we show the data mixing ratio found
by DUET-IF at each iteration as compared to that found by DoReMi for the in-domain TruthfulQA
task in Fig. 4(a) (to bridge the discussion point we raised above). We also show the data mixing ratio
found by DoReMi.
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We used a uniform data mixture (∼ 11% of data to each data domain) as the initial data mixture for
BO. By chance (since BO with a confidence-based acquisition function tends to explore boundary
inputs initially), it finds that placing more emphasis on the TruthfulQA data domain yields better
LLM performance. After some adjustments, in the 9th iteration, the best performing data mixture
was found. In fact, in some of our exploratory process, we found that if we increased the number
of iterations beyond 10, we can find even better training data mixtures, but the gain in performance
typically plateaus (as in many BO applications).

Comparison to DoReMi: We can see that DoReMi adopts a distributionally robust approach and
allocates mixture weights more uniformly across different domains (since it cannot exploit the task
feedback to infer that truthfulQA data is more relevant). This is clearly suboptimal because it is not
optimized specifically towards the evaluation task. and hence its data mixture does not perform as
well as DUET-IF, as shown in our experiments.
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